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ABSTRACT 

Let [x 1] be a sequence approximating an alge

braic number a of degree r, and let x i + 1 

- ©{x^x xi-d+l )» f o r s o m e r a t l o n a l f u n c " 

tion tp with integral coefficients. Let M denote 

the number of multiplications or divisions needed 

to compute © and let M denote the number of multi

plications or divisions, except by constants, 

needed to compute cp. Define the multiplication 

efficiency measure of [ x ^ as E([x]) = or as 
log~ p 

E([x }) = — w h e r e p is the order of conver

gence of £x ^ Kung [1] showed that E{£x 1) ^ 1 

or equivalently, M a log^p. In this paper we show 
tt i c c r i ̂  ̂  ^ i ^ c ii^ if 

e(£ xj}) " 1 then a is a rational number; (ill) if 

E(£x)) • 1 then a is a rational or quadratic ir-i 

rational number. This settles the question of when 

the multiplication efficiency E({x^}) or E(£x^}) 

achieves its optimal value of unity* 

1. INTRODUCTION 

The effort required to approximate an alge

braic number should increase with its degree. In 

this paper we prove this assertion in a precise 

sense. We also show that the optimal efficiency 

This work was supported in part by the National 
Science Foundation under grant GJ-32111 and the 
Office of Naval Research under Contract 
N00014-67-A-03T4-0010, NR 044-422. 

of approximation can be achieved only for alge

braic numbers which have very low degrees; in fact, 

degree one or degree two. 

Let (x 1) be a convergent sequence generated by 

x 1 + 1 - to (* 1i* 1_'|i"'» x
l_ d + 1) f o r s o m e rational 

function to with integral coefficients. Let M de

note the number of multiplications or divisions 

needed to compute to and let M denote the number of 

multiplications or divisions, except by constants, 

needed to compute tp. Define the multiplication 

efficiency measure of {x.} as E((x )) jp-
log-p 

E([x.}) - — w h e r e p is the order of conv 

or as 

i 
gence of ĵ x, 5 Of course E{ £x J) ̂  E( £x ^) 

Kung [1] showed that E([x J) s 1, that is, 

M a log 0p. In this paper we show that, if fx.} is 
i. i 

a sequence approximating an algebraic number o? of 

degree r, then 

(1) M a log 2[r<r Pl-1) + 1] - 1, 

(ii) E({x.)> - 0{[log 2r] _ 1) as r -» », pro

vided that we only consider sequences 

( x ^ of order of convergence p S U, for 

some constant U, 

(ill) if Hi^}) = 1 then a is a rational 

number, 

(iv) if E({x 1J) - 1 then a Is a rational or 

quadratic irrational number. 

Another efficiency measure defined as 



where A is the number of arithmetic operations 

needed to compute tp has been studied by Kung and 

Traub [2]. 

denote the values of and D t jtp at (y ] y d> 

respectively* The symbol x Is also used as an in-

de tennin&nt over 1* 

2. NOTATION 

We work over either the field of real numbers 

or the field of complex numbers. If ve work over 

the field of real numbers, we define the integers 

to be the rational integers, for example, 1, -2, 3, 

while if we work over the field of complex numbers, 

we define the integers to be the Gaussian integers, 

for example, l+3i, 1-i, 3-21. Hence the word 

"integers" in the rest of the paper will refer to 

either the rational integers or the Gaussian inte

gers depended upon whether the base field is the 

field of real numbers or the field of complex num

bers. 

Let I be the integral domain of integers and 

let y 1,...,y d be indeterminants over I. Define 

I[y 1»".»y d](I(y 1»-.-iy d>) to b « the ring (field) 

of polynomials (rational functions) in y},...,yd 

with coefficients in I. 

Let Cp(y1 ,...,v d) € Ky, y d ) . Define 

M(tp)(M(tp)) to be the number of multiplications or 

divisions (respectively, except by constants) 

needed to compute the value of cp(y],...,yd) from an 

arbitrary point ( y y d > . 

For every t p ^ y d> € I(y^ y < J) define 

tP^y, y d>, i-1,2, to be those two relatively 

such that prime polynomials in I[yt y d ] 

cp, (y,,...,yj) 
a<y,....,y d) - :pr 

and define the degree of cp(y,,... , y d ) , deg tp, to 

be max(deg tp rdeg g^). To indicate partial deriva

tives of tp, we write DjQj for |&-, D t jtD for a y ° % y 

etc., and let y d> and D^tetf, y d> 

for .. , oy. oy, 

Let a be an algebraic number, a is called an 

algebraic number of degree r if 

r - mlnideg sjs(x) € I[x] and s(<y> - 0). 

We say or is a rational number if r-1 and a is a 

quadratic irrational number if r»2. m(x) £ I[x] is 

called the minimal polynomial associated with „ if 

m( a) - 0, deg m - r and m(x) is monic. 

Let [x.) be a sequence converging to a such 

that <it :=• |xt-or| / 0 for all i. The sequence 

[x ) is of order of convergence p (or [x ) is a 

p t h order sequence) if 

11m 
!-«»> e 

14-1 1+1 
1 + 1 - 0 and lira — ~ f 0 p-e p+e 

for any e > 0. 

For each algebraic number a, define C(a) to 

be the class of all sequences ,£x } with the follow

ing properties: 

(i) lim x • a and x { a for all i, 
I—as i 

(11) [xj has order p > 1, 

(ill) [ x j is generated by the iteration tp, 

that is, for some tp(y,,... ,yd> 

€ I< y i,....y d>, * t + , - ^ . . . . . x . ^ ) 

for i a d, with a = tp(a a ) . 

For any sequence [x } in G(or) generated by 

the Iteration tp, the multiplication efficiency of 

t x j is defined as 

by Kung [1], or as 

E(t X l}) -

log,p 
* « X l » " — 

by paterson [3], where M =• M(tp), M - M(tp) and p is 



the order of convergence of [x*}. Obviously, we 

have E(lx t}) * E ( t x t } ) . Define 

E(r) - sup { sup E((x ])] 
cy€A(r) ( x A C G f o ) 

where A(r) is the set of all algebraic numbers of 

degree r. 

3 . STATEMENT OF RESULTS 

It follows from the results in Kung [1] that 

(3.1) E(lXij) 1 

(hence, E({x i)) £ 1) for any (x*) € G(a) and for any 

algebraic number a* 

Theorem 1. 

If a is an algebraic number of degree r * 2. 

then for any sequence [XA] in G(a) generated by 

the iteration co, 

(3.2) M 2 > l o g 2 [ r ( r p l - l ) + 1] - 1 

or equivalently, 

(3.3) E({x.}) * (log2p)/tlog2[r (rp l.l) + 

where M = M(co) and p is the order of convergence of 

Since ( l o g 2 p ) / l l o g 2 [ r ( r P 1 - l ) + 1] - 1} < 1 

whenever r > 2 and p > 2, (3.3) is a stronger re

sult than (3.1) . Moreover, (3.2) implies that if 

we fix p then M * log 2r + c for constant c. 

This means that to achieve the same order of con¬ 

vergence we have to use more multiplications or 

divisions, except by constants, in each itera¬ 

tion stage when the degree r of the algebraic num¬ 

ber is higher. 

Suppose that we only consider sequences {x*} 

of order of convergence p £ U for some constant 

U > 0. (This is the case in practice.) Then 

(3.3) implies that 

E(r) - 0[(log r)" 1] as r *. 

However, Paterson [3] showed that 

E(r) * . 8 2 / * 

and conjectured that 
1 

E(r) - O ( r * ) as r 

It is still an open problem to find how fast 

E(r) drops as r »• 

Will E({x t}) or E({x i)) achieve its upper 

bound of unity? Paterson [3] observed that for 

any quadratic irrational number &> there exists 

[*) € G(a) such that E * x * ) » 1. Kung [1] ob¬ 

served that for the rational number -j there 

exists [x,J € G(-j) such that E({x tJ) = 1. 

Theorem 2. 

Let a be an algebraic number of degree r and 

let {x} € G(cv) . Then 

(3.4) r * 1 if E([ X IJ) « 1; 

(3.5) r * 1 or 2 if E({x }) » 1. 

Corollary 2.1. 

(i) g is a rational number if and only if 

there exists {x* € C(a) with E({x i}) • 1. 

(ii) cy is a quadratic irrational number if 

and only if there exists [x* £ G(a) 

with * ( { x * ) • 1 and there exists no 

tx i} € G(a) with E({x.}) = 1. 

Proof of Corollary 2.1. 

(i) The sufficiency of the condition is al¬ 

ready implied by Theorem 2. Let us therefore 

assume that cy is a rational number. Define 
2 

<p(x) - (x-a) + a* Then clearly cp(x) € I ( x ) , 



M(cp) « 1 and the sequence { x * generated by to is 

of order of convergence p «2. Hence E((x*}) • 1. 

(it) The sufficiency of the condition is im

plied by (i) and Theorem 2. The necessity of the 

condition follows from (i) and Paterson 18 observa

tion. QED 

Corollary 2.1 answers completely the ques

tion of when E([x i)) or E({x i)) achieves its opti

mal value of unity.. In fact, Corollary 2.1 gives 

new characterization theorems for rational and 

quadratic irrational numbers. 

4. PROOF OF THEOREM 1 

Let us first establish three lemmas. 

Lemma 1. 

If Y(x) € I ( x ) , Y(x) $ 0 and if Y ( i ) (a) - 0 

for i a0, JM , for some algebraic number a of 

degree r, then 

Y*x) = q(x) • [m(x)] A 

for some q(x) € I [ x ] , q(x) * 0, where m(x) is the 

minimal polynomial associated with a. 

Proof of Lemma 1. 

We prove the lemma by induction on £• It is 

well known that any polynomial in I[x] which has a 

zero at a is divisible by m(x) . Therefore, if ipl 

then the statement of Lemma 1 is true. Assume 

that the statement is true for I £ n. Suppose 

that Y A ( c r ) s 0 for i=0,...,n. By the induc

tion hypothesis (x) • w(x) • s(x) for some 

w(x) € I [ x ] , w(x) £ 0, where s(x) - [m(x)] n. 

Then Y(x) * w(x) • t(x) where t(x) « . Note 

t h a t Y ( n ) ( x ) » Z (*) w * * x ) • t ( i ) ( x ) . But 
0*i*n V i y 

Y ( n ) ( a ) - 0 and t ( i )(<y) - 0 for i-0,...,n-l. Thus, 

w(<y)t ( n )(cy) m 0. Using the fact that m1 (a) f 0 

and *(ff) t 0, one can easily verify that 

t ( n )(cr) + 0. Therefore w ( a ) - 0. This implies 

that there exists v(x) € I[x] such that 

w(x) - v(x) • m(x) . Thus, Yj (x)-v(x)» [m(x) J"'*"'. 

Since w(x) 0, we have v(x) * 0. The proof by 

Induction is complete. QED 

Lemma 2 . 

Let cp(y, y d) € K y A . . . . A ) . If cp gen

erates a p t h order sequence in G(cr) for some alge

braic number a> then 

(4.1) deg <p * fpl 

and for any k«1,...,fpl-1, 

(4.2) D< - cp(a,...,a) - 0 

for all 1 £ ij,...,i„ £ d. 

Proof of Lemma 2. 

Since (4.1) has been shown in Kung [1], we 

only prove (4.2) . From Kung [1], we know that 

(4.3) cp,(y y„) - c K A ( y >y„) 

I c(J1»...»jj)(y,-a) 
J,+. . .+j d arpi 

where the constants c(jj,...,j„) are independent of 

y.,...,y,. Since D co • D (<p-a) 

follows from (4.3).QED 
V , f k *2 ' 

See Kung[1] for the proof of the following 

lemma. 

Lemma 3 . 

If «p(y,f.»y d) € K y , , . . . , y d ) , then 

M(<p) * log 2(deg co). 



Proof of Theorem 1. 

Let [x } be a p t h order sequence In G(or) gen

erated by cp. Since cp(a,...,a) - a, there exists a 

neighborhood N(a-,...,a) of (a,...,a) such that 

does not vanish in N(o a ) . Choose an open 

'interval'I containing a such that I X...XI 
Of Of Of 

C N(or,... ,a). Then we define a function -• R 

by t(x) • cp(x, ... ,x) . $ is well-defined since 

cp,(x,...,x) ^ 0 for x € I • Clearly, $(x) € I(x). 

Recall that D.qj denotes the partial derivative of 
j. 

cp with respect to y,, and that D.cp(x,... ,x) de¬ l. 1 
notes the value of D cp evaluated at (x x) for 

x € I • Suppose that D.cp(x,... ,x) = 0 for all 
Of i 

W „ . . , d . Then by the chain rule, 

< ? ( x ) * { x X) 3 s M l ) a 0 . 
^ î iS"d 

Hence $ is a constant on I . Since 

»<«> - q><« a) - a, 

(x,... ,x) 
4 ( x ) ' cp2(x,...,x) " a 

for all x € I . Choose a rational number x in I . 
a of 

Note that the polynomials «.<x,...,x) f 1-1,2, have 
< M * *> 

integral coefficients. Hence jr is a 

rational number. This implies that a is a ration

al number. This is a contradiction. Therefore, 

(4.4) D 1 <p(x,...,x) ^ 0 

for some 1 i i , s d , Now we define another func

tion Y:I - R by Y(x) - t>± co(x,...,x). Clearly, 

Y(x) € K x ) . By the chain rule, for k-2,...,Tpl-1, 

T ( k _ 1 ) ( x > = <p(x xX 2 D 
l*i 2 i k£d T * " * k 

Then it follows from Lemma 2 that = 0 for 

i»0,...,fpl-2. By (4.4) Y(x) £ 0. Hence it fol

lows from Lemma 1 that deg Y, * (fpl-D'deg m 

- r<fp 1-1). But one can easily see that 

deg(D. cp). 2 deg ¥ and 2deg cp 4 deg(D. cp), + 1. 

Hence deg cp * [r(Tpl-n + 1]/2. By Lemma 3, we 

have M a log2[r(rpl-1) + 1] - 1. QED 

5. PROOF OF THEOREM 2 

We first establish two auxiliary theorems. 

Theorem 3. 

Let 8(x) g I(x), and let a be an algebraic 

number. If <KoO = a and j ( 1 ) ( a ) - 0. 1-1 p-1. 

for p at 2, then 

*\L)(a> - a* 2
( i )(o) - 0, i=0,...,p-l. 

Proof of Theorem 3. 

We use induction on p. If Ua) - or and 

«*(<*) =• 0, then ^(a) - «* 2(a) - 0 and 

* 2(of)«j(ff) - ^ ( c r ^ C o r ) - 0; hence 

5} (or ) - ai^(a) - 0. Therefore, the statement of 

Theorem 3 is true if p=2. Assume that the state

ment Is true for p £ n. Suppose that Ha) 'a 

and 5 ( l ) ( a ) = 0 for 1-1,...,n. By Lemma 1 

(5.1) « 2<x)*j<x) - *,(x)* 2(x) - q(x).[m(x)] n 

for some q(x) € I[x], where m(x) Is the minimal 

polynomial associated with a . Note that 

n-1 
(5.2) 2—y[$ 2(x)«](x)-t 1(x)f'(x)] 

dx 

$ 2(x)5{ n )(x)-$ 1(x)^ n ;(x) (n) , 

+ E 
0£l£n-2 

( nr 1)[* 2
( n" 1" 1 )(x)${ i + 1 )(x) 

,(n-1-i). ,,(1+1). 
Q- (XI a>_ I (x)$ 2 <x)]. 

Using the fact that m(o-) - 0, from (5.1) and (5.2) 

we get that 

» (5.3) $2(a)*!"'(«)-$, (of)^ n )( f f) 



i) <i+l) 

But by the induction hypothesis, 

•{"(or) - « * 2 l > ( a ) " °* ^ n " 1 ' 

Hence, foT i-0,...,n-2, 

* 2
( n _ 1 _ 1 ) <of)*{ t + 1 ) (a) - * { n _ 1 ' 1 ) <of>^ 1 + 1 ) (Of) 

- o. 

Therefore (5.3) implies that 

* 2 ( o f ) « 1

( n > ( Q r ) - « 1 ( o r ) # * a ) ( « ) - 0, 

and hence 

The proof by induction is complete. QED 

Theorem 4. 

Let *(x) € I(x). If M($) - log2(deg • ) , then 

deg 4 2 < deg $ 1 - 2 M W and the leading coefflcl-2 
ent of is divisible by that of $ 2(x). 

Proof of Theorem 4. 

Consider the algorithm which computes $(x) in 

M($) - log 2(deg ») multiplications or divisions. 

Since by Lemma 3, 

we 

M(S) a M(S) a log 2(deg * ) , 

have M($) - M($). That Is, there are no multi

plications or divisions by constants in the al

gorithm. Note that deg $ - 2
M ^ ) . We prove the 

theorem by induction on M - M($). It is easy to 

check that the statement of Theorem 4 is true if 

M-l. Assume that the statement is true for M * L, 

and let us prove it for M-L+l. Suppose that deg $ 

- 2 L + 1 and M(S) - log 2(deg »). Then $(x) can be 

computed in (L+l) multiplications or divisions by 

some algorithm. With respect to this algorithm 

let R (x) denote the result immediately following n 
the 0 t h multiplication or division for n-1 L+l. 

Let 

or 

R Q(x) - x. Then for n-0 L either 

(5.4) R_,(x) - ( E M .R, (x) + A ) 
ftf1 0Si*n tt«1 1 n 

* ( E N R (x) + B ) 
OatlSta a , i 1 n 

(5.5) R ..(x) - ( E M .R.(x) + A ) 
n + 1 OSiin n > 1 1 n 

/ ( E N R (x) + B ) , 

for some integers M ., N , and some numbers A , B,L n,i n 
B , for 1-0,...,n; and 

for some integers M, . ., i-0,...,L+1, and some 

number A ^ . One can show that, for n-1,..., L+l, 

the following is true (see Kung [1]). For any 

integers K„ K , and any number C, 
U II 

P (x;K,C) 
2 K R (x) + C m a , 

OilSn 1 1 V X J 

where P (x;K,C) is a polynomial in I[x] depending n 

on K - (K Q K n) and on C; where Q ^ x ) is a 

polynomial in I[x] independent of K and of C; 

moreover, both polynomials have degree £ 2 n . Now 

suppose that for n=L (5.4) holds; that is, 

(5.6) R J ^ J W - ( E M j ^ R ^ x ) + A L ) 

• ( E N ,R.(x) + B ) . 
0<:l«L 

Then 

(5.7) 5(x) - E H.,. ,R.(x) + 
OSiSL+1 ' 

t- A L+l 

"L+1 ,L+1RL+1 ̂ ^ Q s i ^ L + l , i Ri < X ) + A L + 1 

RL+1 V*'"L+1' L+V 
< W X > 



where If for n-L (5.5) holds; that Is, 

(5.8) P L + 1 < X ; M
L + 1 » A

L + 1 

and 

"\ + i,L + rV x ; VV'V*-'V BL> 

+ P L ( * ; M L + 1 , A L + 1 ) * Q L ( x ) 

(5.9) Q L + 1 ( x ) - [Q L(x)] 2. 
Let T(X) be the greatest common divisor of 

P L(x;M L,A L) and Q L ( x ) . (Let r(x) = 1 if P^x-.M^Aj) 

and Q L(x) are relatively prime.) Write P L(x;M L,A L) 

- r(x)«p(x) and Q T(x) « r(x)«q(x). Then from (5.7), L 
(5.8), (5.9), 

(5.10) *(x) 

_ V l.L +^ W- PL ( x : NL ' V + FL ( x ; V l ' V l ) " ' ( l { ) 

r(x).[q(x)] 2 

Suppose that deg( Z ft. . R, + A_ ) < 2 . Then 

deg p < 2L and deg q < 2 L . Note that if r(x) = 1 

then deg r-q 2 < 2 L + 1 and on the other hand, If 

deg r > 1 then deg r-q 2 < deg r 2*q 2 - deg Q? S 2 W 1 

^ . 2 ^ „L+1 „ , Therefore, deg r*q < 2 , Also note that since 

both P L(x;N L,B L) and P ^ x ; ! ^ . A ^ ) have degree 

' L + 1 , L + 1
 L i r L ' L + r l + i 

•q(x) has degree < 2 . Hence (5.10) implies 

that deg $ < 2 W " 1 . This is a contradiction. 

Therefore, deg( E VL R + A ) - 2 L . Obviously, 
E M R.(x) + A can be computed in L multi-

OSISL L > 1 1 L 

plications or divisions. Hence by the induction 

hypothesis, deg Q L < 2 L , and P L(x;M L >A L) has 
degree 2 and the leading coefficient of 

P L(x;M L,A ) is divisible by that of Q,(x). Sim¬ 

ilarly, we can prove that P ^ X J N ^ j B ^ ) has the same 

property. Therefore, from (5.7), (5.8), (5.9), we 
,L+1 conclude that deg $ 2 < deg $ ] = 2 L and the lead 

lng coefficient of * (x) is divisible by that of 

d-

K,^. - { E M . .R.(x) +A.)/( E N .R (x) + B ), 
X + 1 0S1SL L , I 1 L 0S1SL L , I 1 L 

The proof by induction is complete. QED 

Proof of Theorem 2. 
th Assume that { x ^ be a p order sequence gen

erated by t p , for some ^(y,,...,y d) € I(y ],... , y d ) . 

Define * : I a - R b Y *<x) " cp(x,...,x) for some open 

'interval* I containing a , as in the previous sec-
or 

tion. Then by the chain rule, 

* < k ) ( x ) E D 
1*i 1 t...,i sd i 1 " * ' , 1 k 

<p(x,...,x) 

$ 2(x). Similarly, we can obtain the same conclusion 

for any positive integer k, Hence by Lemma 2 we have 

(5.11) * ( k ) ( a ) - 0, k-1 [pl-1. 

We first prove (3.5). Assume that E f ^ } ) - 1. 

Suppose that r > 2. Since by (3.3) E([x }) < 1 

whenever r > 2 and p > 2, we have p £ 2. Hence 

1 * M(ep) - log 2p £ 1. This implies that M(o) = 1 

and p-2. Since M(cp) =• 1, one can easily see that 

deg cp1 - 2 and deg «p£ ^ 1. Hence <p.(x,...,x) 

- xco2(x,...,x) has degree at most 2. Suppose that 

(*,...,x.) - xcp2(x,...,x) s 0. Then $(x) = x and 

$'(x) = 1. But by (5.11) 8'(a) - 0, since p=2. 

This contradiction shows that ^ ( x x) 

-xcpj(x,• • i,x) ^ 0. Note that © ( a , . . . , a ) = a , that 

is, tpj ( a , . . . , a ) - ixfyiot a) - 0. Therefore, a 

Is a zero of the polynomial tp̂  (x,,,. ,x)-xco2 (x,... ,x) 

which has degree one or degree two. This implies 

that r £ 2. Hence we get a contradiction by assum

ing that r > 2, Therefore r £ 2, We have shown 

(3.5). 

Now suppose that E ^ } ) - 1. Then E([x i}) -1, 

and r-1 or 2 by (3.5). Suppose that r»2. From 

Lemma 2 and Lemma 3, 

) 



M(tp) i M(cp) > log2<deg cp) a log 2fpl 2 log 2p. 

But E{(,x1}) - 1, that Is, M(tp) - log 2p. We have 

(5.12) M(cp) - M(<p) - log 2(deg cp) • log 2rpl 

- log 2P. 

Hence p is a integer. Nov consider $. Clearly 

$(or> - or. By Theorem 3, (5.11) implies that 

(5.13) « 1
( p" 1 >(«) - o*£ p" U<«> 0. 

Using the proof of Theorem 2, one can show that 

deg $ i 2 ^ P ~ 2
I ) + 1 = p-i. But by (5.12) p - deg cp. 

Hence p - deg co * deg $ i p-j. This implies that 

deg $ - p. 

Note that the algorithm which computes 

cp(y1 y d ) in M(a>) multiplications or divisions 

reduces to an algorithm which computes «(x) In at 

most M(cp) multiplications or divisions. Hence 

M($) SM(cp) - log 2p - log 2(deg $). 

By Lemma 2, M(S) <= log 2(deg $). Thus M(?) 

- log 2(deg §). Hence by Theorem 4, deg $ 2 * p-1 

and deg ^ - p. Now suppose that 

(5.14) i\*-*\x) - x ^ P " 1 ) ( x ) 3 0. 

Then deg $ 2 - p-1. Let us assume that ^ ( x ) 

Z b.x 1. Then by 
OSiSp-1 

2M(co) a 2 

Z a x and $-(x) 

(5.14) we have pa p b .. Note that p p-1 
This is a contradiction, since by Theorem 4 a p is 

divisible by b p-1" Hence, 

• {"-"(X) - x$ 2
(P- 1 )(x) i 0. 

Clearly, ^ " ^ ( x ) - x ^ P _ 1 ) ( x ) is a polynomial of 

degree one. Hence (5.13) implies that a is a root 

of the linear equation •{'""(x) - x ^ ^ U ) - 0. 

Therefore, by assuming r-2 we have obtained r-1. 

This is a contradiction. Nevertheless, since r is 

either 1 or 2, we have thereby- shown that r-1. QED 

[1 ] 
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