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ABSTRACT
Let {xi} be a sequence approximacing an alge-
braic number  of degree r, and let LI
= Q{xi’xi-l""’xi-d¥l}' for some rationmal func-
tion o with integral coefficients. Let M dencte
the wumber of multiplicaticns or divisions neaded
to compute o and let ¥ dencte the number of multi«

plicaticns or divisions, except by constants,

needed to compute . Define the multiplication
log.p

efficiency measure of {xi] as E{[x] = or as

- log,p

E({xi}} =g where p is the order of conver-
gence of {xi}. Kung [1] showed that E({xi}) <1

or equivalently, M 2 log,p. In this paper we show
that (1) ¥ 2 logy[r([pl-3) + 1] - 15 (i1} if
E({xi}) = 1 then ¢ 1s a rational number; (ii{) if
ﬁ({xi}} = 1 then o is 2 rational or quadratic ir-
rétional number. This settles the question of when
the multiplication afficiency E{{xi}) or E({xi])

achieves its optimal value of unicy,

1. INTRODUCTION
The effort required to approximate an alge-
braic number should increase with its degree, In
this paper we prove this assertion in & precise

sense, We alse show that the optimal efficiency

*This work was supported in part by the National
Science Foundation under grant GJ-32111 and the
Office of Naval Research under Contract
HOOOQ14-67-A-03T14-0010, NR 044-422,

of appreximation cén be achieved orly for alge-
braic numbers which have very low degrees; in fact,
degree ome or degrese two.

Let {xi} be & convergent Sequence penerated by

x = {xi'xi-l""’xi-d+1) for some rational

i+
function m with integral coefficients, Let M de-
note the number of multiplications or divisions

needed to compute w and let ¥ denote the number of

multiplications or divisions, except by constants,

needed to compute . Define the multiplication
log,p
. |

efficiency measure of {xi} ag E([xi}) a or as
log.,p

E{Exi]) = HZ , where p i3 the order of conver-

gence of {xi}. Of course, E(fxi}} < E{{xi]}.
Kung [1] showed that E({xi}) < 1, that is,
Mz log,p. In this paper we show that, if {xi] is
a sequence approximazting an algebraic number o of
degree r, then
(1) A zlog[r(fpl-1) +1] -1,
(0 Ex ) = 0((10g,r])™') as 1 » =, pro-
vided that we only consider sequences
{xi} of order of convergence p = U, for
some constant U,
(iiiy if E[[xi}} = 1 then ¢ is a rational
number, .
(Iv) if E({xi]} » ) then o is a rational or
quadratic irrational number,

logzp
Another efficiency measure defined as




where A {8 the number of arithmecic operations
needed to compute ¢ has been studied by Kung and

Traub [2].

2., NOTATION

We work over either the fiald of real numbers
or the field of complex numbers, If we work over
the field of real numbers, we define the integers
to be the rational integers, for example, 1, -2, 3,
whila if we work over the field of complex numbers,
we define the integers to be the Gauasian integers,
for exemple, 1+3i, 1-i, 3-2i. Hence the word
"integers'" in the rest of the paper will refer to
- either the rational integers or the Gaussian inte-
geve depended upon whether the base field is the
field of real numbers or the field of complax num-
bers.

Let I be the integral domain of integers and
let Yyseoa¥q PR indeterminants over I, Define
I[y,,---.yd](t(y,.....yd)) to be the ring (field)
of polynomials (rational functions) in Ypaeees¥y
with coefficients in I.

Lat ¢(y1,...,yd) € I(yl,...,yd). Define
M(m)(ﬁ(m)) to be the numbar of multiplications or
divisions (respectively, except by constants)
needed to compute the value of m(yl,...,yd) Erom an
arbierary point (y ,....¥4).

For every w(yi....,yd) € I(y],....yd) define
wi(y],...,yd), i=1,2, to be those twe velatively
prime polynomials in I[yj,...,yd] such that

( ) CPI (}‘-l:--uyd)
ClYypeaa,¥ B S

1 d Wz(}']r-"lyd)

and define the degree of m(y,,...,yd). deg ¢, to

ba max(dag Q],dﬁg “b}' To indicate partial deriva-

- S0 22—
tives of g, we-write Dyo for 33 Dy, y@ foF By, %y,

ete., and let nim(;],...,§d) and ni’jm(il,...,id)

denote the values of th and Di,jm at (yl,...,yd)
respectively. The aymbol x is also used as an {n-

datgrminant over I,

Let o be an algebraic numbar., ¢ is called an

Algebraic number of degree r if

r = min{deg sls(x) € I[x] and s({a) = O},

We say o s a vationdl number if r=] dand o i8 &

quadratiec irrational number if =2, m(x) € I[x] is

called the minimal polynomial associaced with o if

m{y) = 0, degm = r and m(x) is monic.

Lat {xi] be A& sequence converging to o such
that e i= |xi-a| # 0 for all i. The sequence
[xi} is of prder of convergence p (or {xi} iz a

pth order sequence} if

lim ——— = 0 and lim ———
] aip-c j—a p+ﬂ

i+ 8141 £

for any € = 0,

For each algebraic number o, define G(a) to
be the class of all sequences {xi} with the follow-
ing properties:

(1) lmx, = o and x, $ o for all i,
i—im

(1) [xi} has order p = 1,

(iii)‘{xi} iz generated by the iteration g,

that is, for some w(yl,...,yd)

€ I(yl,...,yd), x, }

H]-muv”.m

i-d+]
for 1 2d, with & = ©leryennser).
For any sequence [xi] in G{x) generated by

the iteration ¢, the mulciplication efficiency of

{xi] is defined as

log,p
EC(fx, 1) = —

by Kung [1], or as

- 1ogzp
E(x, D) = —5

by Patersen [3], where M = M{g), M = ﬁ(¢) and p is




the order of convergence of [x"}.

Obvicusly, we

have E{1lx.}) * E{tx }). Define
E(r) - sup { sup E{{x 1)]
cyfA(r) (x"C&fo)

where A{r} is the set of all algebraic numbers of

degree r.

3. STATEMENT OF RESULTS

It follows from the results in Kung [1] that

(3.1) E({lx,j) 1

(hence, E({x.)) £ 1) for any {(x") € G{(a) and for any

algebraic number a*

Theorem 1.

If 4 iz an algebraic number of degree r ™ 2.

then for any s=equence [X% in G(a@) generated by

the iteration oo,

{(3.2) M 2> log.[r(r,1-1) + 1] - 1

or equivalently,

{3.3} E({x.}! * (leg.,p)/tlog.lx(rl.1}) + 11-1},

where M = M{co) and p is the order of convergence of

Since (log.p)/llog.[r{r.1-1) + 1] - 1} < 1

whenever r > 2 and p » 2, (3.3) is a stronger re-

gult than (3.1). Moreover, (3.2) idmplies that if

we fix p then M log.r + ¢ for constant c.

This means that to achiewve the same order of con-
vergence we have to use more multiplications or
divisions, except by constants, in each itera-
tion stage when the degree r of the algebraic num-
ber is higher.

{="}

Suppose that we only comnsider sequences

of order of convergence p £ U for some constant

U= 0. {This iz the case in practice.) Then

(3.3} implies that

E(r) - 0[{log r)"'] as T L

However, Paterson [2] showed that

E(r) * .82/"*

and conjectured that

E(r) - O(r") as r

It is s8till an open preoblem te find how fast

E(r) drops as r »e

Will E({x.}) or E({x,)) achieve its upper

bound of unity? Paterson [3] observed that for

any quadratic irrational number &> there exists

[*) € Gfa) such that E"x") =» 1. Kung [1] ob-

served that for the rational number -3j there

exietas [xJ € G{-j) euch that E({xJ) = 1.

Theorem 2.

Let 8 be an algebraic number of degree r and

let {Xx} € Glcv). Then

(3.4) r* 1 if E([.J) « 1;

(3.5) T+ 1 or 2 if E{{x }) » 1.

Corollarx 2.1.

(i) g is a rational number if and only if

there exists {x" € Cfa) with E({x }) =

(ii) cy is a quadratic irraticnal number if

A

and only if there exists [x" £ G(a)

with *({x") * 1 and there exists mo

tx } € G{a) with E({x.}} = 1.

Procf of Corecllary 2.1.

(1} The sufficiency of the condition is al-

ready implied by Theorem 2. Let us therefore

assume that cy is a rational number. Define

2

<p(x) - (x-a) + a* Then clearly cp(x) € I(x),

1.



M{cp) « 1 and the sequence {x" generated by to is
of order of convergence p«2. Hence E{(x™}) & 1.
(it) The sufficiency of the condition is im-
plied by (i} and Theorem 2. The necessity of the
condition follows from (i) and Paterszon'8 observa-

tion. QED

Corollary 2.1 answers completely the ques-
tion of when E{[x,)) or E({x)) achieves ite opti-
mal value of unity.. In fact, Corollary 2.1 gives
new characterization theorems for raticnal and

quadratic irrational numbers.

4. PROOF OF THEOREM 1

Let us first establish three lemmas.

Lemma 1.

If Y(x) € I(x), ¥(x) $ 0 and if Y (a) - 0
for i0,..., JM, for scme algebraic number a cof
degree r, then

Y x) = gq{x) ¢ [m{x}]*
for some g(x) € I[x], q(x) * 0, where m(x) is the

minimal polynomial agscciated with a.

Proof of Lemma 1.

We prove the lemma by induction on £e It is

well kneown that any pelynomial in I[x] which has a

zero at a is divisible by m{x). Therefore, if ipl

then the statement of Lemma 1 is true. Assume

that the statement is true for I £ n. Suppose

that Y*{cr)* 0 for i=0,...,n. By the induc-

ticn hypothesis (x} o wix) =+ si{x) for some

wix) € I[x], wix) £ 0, where s({x) - [mi{x}]".

Then Y{x) * wi{x) e t{x) where t{x) =« . HNote

that¥ ™ (x)=» Z (*) w™ " x} e t{x). But
O%i*n™”

Y {a) - 0 and t*{<y) - 0 for i-0,...,n-1. Thus,

wi{<y)lt"(cy} m 0. Using the fact that m (.} f 0

and "“(ff) ¢ 0, one camn easily verify that
t*{er) + 0. Therefore w{,} - 0. This implies

that there exists v(x) £ I[x] such that

wix) - v({x) e m{x). Thus, ¥j (x)-v{x)e [m(x) J"s™.
Since w(x) 0, we have v(x) " 0. The proof by
Induction is complete. QED
Lemma 2.

Let cp{(¥.,,...,¥,) € Ky"*...."}). If cp gen-

erates a p'' order sequence in G(cr) for some alge-

braic number a> then

(4.1) deg ¢ * fpl

and for any k«1,...,fpl-1,

(4.2} D= - cpla;...,a) - 0

for all 1 £ ij,...,i, £ 4.

Proocf of Lemma 2.

8ince (4.1} has been shown in Fung [1], we
only prove {4.2). From Kung [1], we know that
(4.3 ceply. .. .. y.) - eK*{y,...>y,)

I e(f.»...»3i)y.-a)
J.+...+jarpl

where the constants cf{jj.,....j,} are independent of

¥erisa::¥s+ Since D co & D (<p-a)

follows from (4.3).QED

See Kungl[l] for the proof of the following
lemma.

Lemma 3.
If «p(y.f.»y,) € Ky,,...,¥,), then

M{<p} * log,(deg co}.



Proof of Theorem 1, = r{{pl-1)., But one can easily see that

Let [xi} be a pth order sequence in G{g) gen- deg(Di ¢)1 Zz deg Y] and 2deg o 2 deg(Di m)l + 1.
1 1
erated by . Since g(oy...,a) = o, there exists a Hence deg ¢ = [r([p1-1) + 1]/2. By Lemma 3, we
neighborhood N{a,+..,a} 0f (uy...,qa) such that 0y have M 2 1ogz[r([p]-l) +1] - 1. QED

does net vanish in N(a,...,0). Choose an open
5. PROOF OF THEOREM 2

"{nterval' 1 containing o such that I xX,..xI
o o o

€ N(g,e.~,a). Then we define a function Q:Ia - R We first escablish twe auxiliary theorems,

by &(x) = @(x,...,x). % is well-defined since Theorem 3.

9y (Kye0,®) # 0 for x €1 . Clearly, §(x) € I(x). Let 3(x) € I(x), and let o be an algebraic

()

Recall that Do denotes the partial derivative of

number, If 3(¢) = ¢ and & " (g) = 0, i=1,...,p-1,

¢ with respect to Yy and that Diw(x,...,x) de- for p = 2, then

B - @) = 0, 120,...p-1.

notes the value of Dim evaluated at (x,...,x) for 3

X € Id. Suppose that Dim(x,...,x) = 0 for all

i=1,...,d. Then by the chain rule, Proof of Theorem 3,
d d We use induction on p., If ¥(y) = o and
F 3(x) = a;w(x,...,x) = E Di¢(x,...,x) =0.

i=isd () = 0, then B (e - néz(a) = 0 and

[ v = .
Hence ¥ is a4 constant on Ia' Since §2(°0§1(a) - Ql(a)§2(°o 0; hence

(o) = Dlay et = oy 31(0) - o#;(a) = 0. Therefore, the statement of

Theorem 3 is true if p=2, Assume that the state-
P (X50005%)

M m————e— TT < n. -
$(x) B, (Fren s o ment is true for p € n. Suppose that $(o) = ¢
: and Q(i)(oo = 0 for i=1,,..,n. By Lemma 1}
for gll x € Iq. Chooge & rational number ¥ in Ia'
Note that the polynomials o, (x,...,x), i=1,2, have G &) - @l(x)ﬁé(x) = q(x)+[m(x)]"

Py (%y000,8)

integral coefficients. Hence —w——sr i
0y (X0 00,%)

s a
for some q(x) € I{x], where m(x) is the minimal
rationgl number, This implies that ¢ is a ration=-
polynomial associated with o, Note that
al number. This is a contradiction, Therefore,

dn-l
(5.2) ——;:T[QZ(X)Q;(x)*@l(x)§é(x)]

(6.4) D, 9(x,...,%) £ 0 dx
1

= 3,08 08, 0 8™ ()

for some 1 = i] < d. Now we define another func-

tion ¥:I -~ R by ¥(x) = D, o(x,...,x), Clearly, 7 + I (n;])[égn-]-i)(x)§§i+1)(x)
o 1 0<i=n-2
¥(x)} € I(x}., By the chain rule, for k=2,.,,,[p]-1, .
- 881D 6y s (D (0 .
&-1) ! 2
b § (X) = T D CD(X...-,XL
151, 00,1, sd il""’ik ’
2° Tk Using the fact that m(y) = 0, from (5.1) and (5.2)

Then it follows from Lemma 2 that Y(i)(u) =0 for Ve get that

i=0,...,7p1-2. By (4.4) ¥(x) £ 0. Hence it fol- {n) (n)

(5.3) 8, (08 ()-8, ()3, (@)
lows from Lemma 1 that deg % z ([pl-1)+deg m




+ T (";‘)[ig“““’can,‘“”w
¢sisn-2

(n=1-1) (1+1)
- &,

(G)QZ (a)] - 0-

But by the induction hypothesis,
(0 - @{P @ =0, 1=0,... 01,

Hence, for i=0,,...,n-2,

(i+1)

(n=-1-1) {n-1-i)
% (a)@l

(@) -4, (1+)

()8, (o)

= 40 (o 18D () s ¢

o)
-0.
Therefore (5,3) implies that

(n)
)

(00 -8, (@8 (o) = 0,

Qz(a)ﬁ
and hence

+™ () -0t{™ (@ = 0.

The proof by induction is complete. QED

Theorem 4,

Let &(x) € I(x). If M(3) = log,(deg &), then
M(%)

deg Qz < deg §1 a 2 and the leading coefficil-

ent of él(x) is divisible by that of Qz(x).

Proof of Theorem 4.

Consider the algorithm which computes §(x) in
M(§) = logz(deg %) multiplications or‘divisions.

Since by Lemma 3,

M(8) = M(3) = log, (deg @),
we have M(3) = M($), That is, there are no multi-
plications or divisions by constants in the al-

gorithm. Note that deg § = ZM(@).

We prove the
theorem by induction on M = M(§)., It is easy fo
check that the statement of Theorem 4 1is true if
M=1, Assume that the statement is true for M £ L,
and let us prove it for M=L+1. Suppose that deg &
- 2 ana M(3) = log,(deg 8). Then ¥(x) can be

computed in (L+]) multiplications or divisions by

some algorithm, With respect to this algorithm
let Rn(x) denote the result immediately following
the n':h multiplication or division for n=1,,...,L+1,

Let Ro(x) = x. Then for n=0,...,L either

(5.4 R . (x)=( © M_ R (x)+4)
et 0%i%a n,i { n

. (usfsn Nn,iRi(x) + Bn)
or
. = A
(5:5) Ryyq (0 = (T M, (RO +A)
/ (Osfsn Nn’iRi(x) +8),

M
for some integers n,i’® Nn,i

Bn, for i=0,,..,n; and

and some numbers An’

3(x) = z

R.{(x) + A
0=+l ML+1,i i L+1

for some integers ML+1 i i=0,,..,L+1, and some
H]

mumber A One can show that, for n=1,...,I+1,

L+1°
the following is true (see Kung [1]). For any

integers KD....,Kn, and any number C,

P_(x;K,C)
T KR, (x)+C3 =——n

0<izn 171 Qn(x)
where Pn(x;K,C) is a polynomial in I[x] depending
on K = (KO""'Kn) and on C; where Qn(x) is a
polynomial in I[x] independent of K and of C;
moreover, both polynomials have degree < 2%, Now
suppose that for o=L (5.4) holds; that is,
(5.6} RL+1(K) = (¢ MLsiRi(X) + AL)

0<i<L

*+ { £ N R {(x) + B, ).
osist. bl L

Then

(3.7) ¥x)= T

R, (x) + A
OSisLHM'LH it L+

s PO FOLR (x)+osquL+’ AR A,

i 715 Rk 713 L A5
Qi C0




whers
(5.8) B CesMy 0A) )
My FLOGH A ) B (iR, Bp)
RLALIL WL SRR AL AL,
and

(5.9) Qu,, (0 = [Q ()T,

Let r(x) be the greatest common divisor of
PL(K;HL,AL) and QL{x}. {Let r{x)} =1 if PL{x:HL?ﬁﬂ
and QL(x} are relatively prime.} Write PLEx;HL,ﬁL}
= r{x)*p{x) and QL{xJ = r{x)+q(x}. Then from (5.7),

(5.8), {5.9),

{5.10) #{x)
o Met e PO P G LB Py (M

r(x)'[q(x)]z

]} q(x}

L+I’ L+

Suppese that deg( I
O=i<L

deg p < 2L and deg q < 2 . BNote thar if r(x) =

,1 i + ﬁL) < 2 Then

then deg r-q2 < 2L+1 and on the other hand, if

deg r > 1 then deg r-q2 < deg rzoq2 = deg Qi < 2L+I.

Therefore, deg r'q2 < 2L+]. Also note that since

koth P (x; N ,B Y} and P (% ML+1’ LT
L

27 My e PO P GGG LB ) B GG Lgd )

"q{x) has degree < 2L+l. Hence (5,10} implies

that deg § < 2L+]. This is a contradiction,

} have degree

Therefore, deg({ T HL R + A ] = EL Obviously,
0si<L
E HL iR (x}) + ﬁL can be computed in L multi-
O<i<],

plications or divisions, Hence.by the induction

hypothesis, deg @ < EL, and P, (x;M A ) has

degree 2L and the leading coefficient of
PL(x;ﬁL,AL} is divisible by that of QL[x). Sim-

ilarly, we can prove that PL(x;N BL) has the same

Ll
Therefore, from (5.7), (5.8}, (5.9), we

L+ and the lead-

property,
conclude that deg ﬁz < deg @l =2
Ing coefficient of ilix) is divisible by that ef

§2(x). Similarly, we can obrain the same conclusion

1f for v»L (5,5) holds; that 1is,

B = ¢ T M R G 4 apfC T N

Ei{x] + EL).
ds=sisL HSISL

The proof by inductlon is complete. QED

Proof of Theorem 2.

Agsume that {xi} be a pth order sequence gen-
erated by p, for some w{yl,....yd} € I(y1....,yd}.
Define i:Ia = R by 2(x) = plx,...,x} for some open
'1n:erval'Iﬂ containing o, 4s in the previous sec-
tion., Then by the chain rule,

ALY > D

1 (K, ee,X)
1511,...,iksd

i],..., k

for any positive integer k, Hence by Lemma 2 we have
.1 85 (@ = 0, ke1,...,p1-1.

We first prove (3.5), Assume that E([xi}) =1,
Suppose that r > 2. Since by (3.3) E{{xi]} <1

whenever r > 2 and p > 2, we have p < 2, Hence

1 = ﬁ(w) - logzp £ 1., This implies that Mim) = 1
and p=2, Since ﬁ(m) =1, ﬁne can easily see that
deg P " 2 and deg @, S 7. Hence @1(x,...,x}
- xmb(x,...,x) has degree &t most 2, Suppose that

9., Then ¥{x} = x and

fll

¢l(x,...,x) - i¢2(x,...,x)
' (x) = 1. But by (5.11) &'(a) = 0, since p=2,
This centradiction shows that_qﬁ(x,...,x)

-ty (X304, %) #£ 0. Note that wlgy...,o) = o, that
is, m](a.-..,a} - mnz{u,...,a} = 0. Therefore, o
is a zero of the polynomial ¢1(x,...,x}-xm§(x,...,x)
which has degree one or degree two., This implies
ﬁence we get a contradiction by assum-

that r < 2,

fng that r > 2, Therefore r = 2, We have shown
(3.5,

Now suppose that E({xi}} = 1, Then E([xi}) =1,
and r=1 or 2 by (3.5). Suppose that r=2, From

Lemma 2 and Lemma 3,




Mip) = H{g) = lugz{deg o) = logzrp] = 1ngzp.
But E{{xi}} = 7, thac tu, M{g) = log,p. We have

(5.72) M{g) = H(g) = lag,(deg o) » log,[p]

- lagzp.

Hance p 13 a integer, XNow consider %. Clearly

3{o) = o» By Theorem 3, (5.11) implies chat

(e=1)

5.1 85" V(@) - oy? Vi = 0

UVsing the proof of Theorem 2, one can show that
dag & = ELE:%ltl = p-%; But by (5.12) p = deg q.
Hence p = deg @ = deg & = p-%- Thisg implies chat
deg § = p.

Note that the algorithm which computas
m(y1,...,yd) in M(wp) multiplications or divisions
teduces to an algorithm which computer 3(x) Ln &t

mast M{p) multiplications or divislons. Hence
M(E) = M{g) = log,p = 1ogz(des 3.

By Lemma 2, M{%) = 1032(dég 8)., Thus M(J)
= 1ogz(deg %), YHence by Theeorem &4, deg §2$ -1

and deg @1 = p. HNow suppose that
(5.14) ifp-]){x) - x@ép-l}{x} = 0,

Then deg §2 w p=-1, Llet us agsume that Ql(x)

= T aixi and Qz(xl = T bixi. Then by
0=isp Osisp-1

(5.14) we have pap = bp-l' Note that p = 2
This 1 a contradiction, since by Theorem & aP is

divisible by bp_]. Hence,

(p-1)
‘l

) - xasP Vo £ o

-Clearly, ifp-l)(x} - xiép-l)(x) iz & polynomlial of
degree cne. Hence (5.13) implies that o is & root
of the linear equation @fp-]}{xj - xiép-])(x) =q,

Therefore, by assuming r=2 we have cbtained =1,

M{o) 2

Thia ia a contradiction. Meverthelaaa, mince r is

either 1 or 2, we have thereby shown that re), QED
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