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ABSTRACT 

A method for dividing a polynomial of degree (2n-l) by a precomputed 

nth degree polynomial in 0(n log n) arithmetic operations is given. This 

is used to prove that the evaluation of an nth degree polynomial at n+1 

arbitrary points can be done in 0(n log* n) arithmetic operations, and con

sequently, its dual problem, interpolation of an nth degree polynomial from 
2 

n+1 arbitrary points can be performed in 0(n log n) arithmetic operations. 

The best previously known algorithms required 0(n log* n) arithmetic opera

tions . 



1. INTRODUCTION 

Given (x ±,y ±) (0 £ i £ n ) , the interpolation problem is the determina

tion of the coefficients [c ] (0 £ i £ n) of the unique polynomial 

P(x) = S c.x1 of degree £ n such that P(x.) = y. (0 s i s n). If a 
O^i^n 1 i i 

classical method such as the Lagrange or Newton formula is used, inter¬ 
polation takes 0(n ) operations. (In this paper all arithmetic operations 
will be counted. We simply write operations to denote arithmetic operations.) 

3 

However, Horowitz (1972) has shown that interpolation can be done in 0(n log n) 

operations by using the Fast Fourier Transform (FFT), and he has shown that 

interpolation is reducible to evaluation of an nth degree polynomial at n+1 

points. Moenck and Borodin (1972) have shown that the evaluation problem 

is reducible to the division problem, and they have shown that both evalua¬ 

tion and interpolation can be done in 0(n log n) operations, and precomputed 
2 

interpolation (knowing the x. in advance) can be performed in 0(n log n) 
1 

operations. The purpose of this paper is to show that, without using any 
2 , 

precomputation, both evaluation and interpolation can be done in 0(n log n) 

operations. As a corollary we show that an nth degree polynomial and all 

its derivatives can be evaluated at any point in 0(n log n) operations. 

We shall use the same approach as used by Moenck and Borodin (1972). 

But we shall first precompute all necessary divisors in 0(n log n) operations 

so that each division can be done in 0(n log n) operations. This results in 

faster evaluation and faster interpolation. 

After the work reported here was completed, the author received a re¬ 

port from V. Strassen, entiled, "Die Berechnungskomplexitit von elementar-

symmetrischen Funktionen und von Interpolationskoeffizienten" Usine 
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different techniques Strassen proves that interpolation can be done in 

0(n log n) multiplications or divisions and he states that his techniques 
2 , , 

can be used to prove that interpolation can be done in 0(n log n) arithmetic  

operations. 



-3-

2. PRELIMINARIES 

We shall work over the field of complex numbers. 

Theorem 2 . 1 . (Fast Polynomial Multiplication) 

Let A(x) = E a.x 1 and B(x) = S b.x 1 be any two polynomials. Let 
OSi^n 1 O^i^n-1 x 

A(x)-B(x) = I c.x1. Then {c. } (0 <: i <: 2n-1) can be obtained in 0(n log n) 
O^i^n - 1 1 1 

operations. 

Theorem 2.2. 

Let {a.} (0 * i £ n) and {V} (0 £ i s n - 1) be any two sequences of 

numbers. Then 

C2.1) 

Si 3> 4 • * • £l_ 
n n-1 1 

n-1 

n 

n-2 

n-1 

can be computed in 0(n log n) operations. 

Proof. 

Let A(x) 
0£i^n 

a^x and B(x) = £ b x \ Suppose that 
O^i^n-l 

A(x)-B(x) 
0^i£2n-l 

c.x l It is clear that the computation of (2.1) is 

equivalent to the computation of (n £ i £ 2n-1)« Thus the proof fol 

lows firoin Xhsorsm 2* 1« QED 
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Theorem 2.3. 

For any sequence (a.} (0 ^ i £ n) of numbers with ? 0, let 

T. a.x 1 be the unique polynomial q(x) such that 
O ^ n - 1 1 

(2.2) x
2 2n-l q(x)-( E a.x1) + r(x), deg r < n. 

O^i^n 1 

Then, we have that 

(2.3) 

a n an - l al 

V l 
a 
n 

an - l an-2 

\ - 1 

and the sequence [5.1 (0 S n-1) can be obtained in 0(n log n) operations. 

Proof. 
Let ( E a x V < S a . x 1 ) ^ S c.x1. Then Z c * = 

OSiSi 1 0*iSn-1 1 0£i£2n-l 1 O ^ n - 1 
Since deg r < n, c 2 1 = 1 and c. = 0 for i = n,n+l,... ,2n-2. Therefore, 

i 2n-l , , = x — r . 

(2.4) 

a a 1 ... a.. 

* 9 « 
an-2 

an L n~lJ 

Furthermore, from (2.4), one can easily show that, for any i (1 £ i ^ n ) , 
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0 
* 

o 
* 
a 
n 

# 

0 
• 
6 _ - _ _ 

This proves (2.3). By using the fast division algorithm given by Moenck 

and Borodin (1972), the unique polynomial q(x) (i.e., the sequence {a\} 

(0 * i £ n-1)) can be computed in 0(n log 2 n) operations. QED 

Definition 2.4.(Precomputing) 

Given any polynomial P(x) = E a.x 1 with a } 0, by precomputing P(x), 
0<a*n 1 n 

we shall mean the computation of the {a ] (0 £ i £ n-1) which are defined by 

(2.2) or (2.3). That is, precomputing P(x) is just the division of x 2 n ^ by 

P(x). 
2 

Hence, by Theorem 2.3, we can precompute an nth degree in 0(n log n) 

operations. Since this bound will be sufficient to prove the results in 

this paper, no attempt has been made to improve it. 



3. FAST DIVISION USING PRECOMPILED DIVISOR 

Theorem 3,1. 

Let U(x) = S u . x 1 and V(x) = £ v . x 1 (v * 0 ) . Suppose that 
0£i£2n-1 1 Ofi*n 1 n 

V(x) has already been precomputed, i.e., {v*} (0 * i * n-1) are available 

with no associated cost. Then we can compute the unique polynomials Q(x) 

and R(x) such that 

(3.1) U(x) « Q(x)-V(x) + R ( x ) , deg R < n 

in 0(n log n) operations. 

Proof. 
It suffices to show that to compute Q(x) we only require 0(n log n) 

operations, since R(x) = U(x) - Q(x)«V(x) and Q(x)«V(x) can be computed in 

0(n log n) operations by Theorem 2.1. Let Q(x) = q.x , and let 
0<a<*i-1 

Q(x)*V(x) = I. c.x 1. From ( 3 . 1 ) , it is clear that u. = c, for 
0*i*2n-1 1 

i = n,...,2n-1. Therefore, 

v v - • • • V-
n n-1 1 

and hence, by (2.3), 

n-1 V 2 
*>n 

n-2 

n-2 
v 1 
n-1 

The theorem then follows from Theorem 2.2. QED 

n 

n o 



4. FAST EVALUATION 

Moenck and Borodin (1972) have shown that evaluation is reducible to 

division and have proved the following theorem; 

Theorem 4.1. (Moenck and Borodin (1972)) 

Let U(x) be a polynomial of degree n - 2 r-l. Then we can evaluate U(x) 

at n+1 arbitrary points x 0 > x r . . . , x n in O(g(n)log n+f(n)log n) operations, 

provided that we can divide a polynomial of degree (2n-l) by an nth degree 

polynomial in 0(g(n)) operations and multiply two nth degree polynomials 

in 0(f(n)) operations. 

This fast evaluation algorithm requires certain divisions. The divisors 

are exactly the members of the following family except the polynomial at 

level r+1. 

x-x Q, x-Xp x-x 2, x-x 3, x-x n Level 1 

i=n-3 

n 
n (x-x.) 

, (x-x J (x-x ) n-1 n n 
Level 2 

Level 3 

(4.1) 
n (x-x.) 
i=0 1 

n (x-x.) Level r 

i=0 
Level r+1 

operations. 



Proof. 

We first convert all polynomials in (4.1) into the form £ h.x 1. This 
i 1 

can be done in 0(n log 2 n) operations (see Horowitz (1972)). Then we shall 

precompute the polynomials at level j from the precompiled polynomials at 

level j+1, for j = r,r-1,...,l. By Theorem 2.3, we can precompute the poly

nomial at level r+1 in 0(n log2 n) operations. Suppose that all polynomials 

at level j+1 have been precomputed. Let D(x) = E d.x 1 be a polynomial 
0<:i£2J 1 

at level j+1, and let E(x) = E. e.x1 and F(x) = E. . f x 1 be those 
0 ^ 2 J " 

two polynomials such that D(x) = E(x)-F(x). By (2.2), we know that 

x 2 ^ 1 ' 1 = ( E. 3.x 1)-D(x) + r (x), deg r < 2 j, 
2J-1 1 0^iS2 

Since D(x) = E(x)-F(x), it follows that 

2J-1 ^ )"^(x^ r (-x) x _ 0£i^2J-l D__ 
E( xT" 7i T T 

x x E(x) 
But, by (2.2), 

2^-1 • r (x) , i 
= J e . x 1 + - ^ - r - , deg r < 2 J " 

E(x) 0^i£2^ -1 1 M x ; fc 

Hence, if ( E. d.xS'FCx) = .E g x 1 

O^i^J-1 1 O^i^^J" 1 -1 
, then 

_ l E. g.x 
i oagJ-i 1 , RD ( I 0 . - i, RE (*> 

o a - J - ' - i S l + 2 i x ~ ^ 7 7 = o,iiJ-'-.v ^ 
x x E(x) 

• 

By the uniqueness of the partial fraction expansion, it is easy to see that 
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Therefore, we can precompute E(x) by computing ( £ d.x 1)-F(x), which 
0£i*2J-1 1 

can be performed in 0(j«2J) operations by Theorem 2.1. Similarly, we can 

precompute F(x) in O ( j ^ ) operations. Since there are 2- , polynomials 
2J-1 

at level j, all polynomials at level j can be precomputed in 

0 ( ~ Y 'j*2J) = Otj^1""1"1) operations. Hence, all polynomials in (4.1) can 
2 J 

be precomputed in 0( £ j^** 1) = 0(r 2.2 r) - 0(n log 2 n) operations. QED 
isj^r 

Theorem 4.3. 

Let U(x) be a polynomial of degree n = 2 r-l. Then we can evaluate U(x) 
2 

at n+1 arbitrary points XQ,X.| ,... ,x^ in 0(n log n) operations. 

Proof. 
We first precompute all divisors needed for the algorithm of Theorem 

2 

4.1. By Theorem 4.2, this takes 0(n log n) operations. Then by Theorem 3.1, 

all divisions used in the algorithm of Theorem 4.1 can be performed in 

0(n log n) operations. The proof follows from Theorem 4.1 by letting 

g(n) = f(n) = n log n, QED 
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5. FAST INTERPOLATION 

Horowitz (1972) has shown that interpolation is reducible to fast 

evaluation. 

Theorem 5.1. (Horowitz (1972)) 

Given n+1 = 2 pairs of numbers (x*y*) (0 * i * n) , the coefficients 

of the unique polynomial P(x) of degree * n such that y* = P(x*) (0 £ i £ n) 

can be obtained in 0(h(n) + f(n)log n) operations, provided that evaluation 

at n+1 point is 0(h(n)) operations and multiplication is 0(f(n)) operations. 

Theorem 5.2. 

Given n+1 = 2 pairs of points (x*,y*) (0 £ i £ n ) , the coefficients 

of the unique polynomial P(x) of degree * n such that y = P(x*) (0 * i * n) 
2 

can be obtained in 0(n log n) operations. 

Proof. 

Apply the result of Theorem 4.3 to Theorem 5.1. QED 

Corollary 5.3 . 

An nth degree polynomial and all its derivatives can be evaluated at 

2 

any point in 0(n log n) operations. 

Proof. 
Suppose that we want to evaluate the nth degree polynomial P(x) and all 

its derivatives at some point a. Then it suffices to show that {d*} (0 * i * n) 
2 

such that P(x) = S d.(x-cy) , can be obtained in 0(n log n) operations. 
O*i*n 1 
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First, we evaluate P(x) at n+1 arbitrary distinct points xn,x.,...,x . 
D i n 

This takes 0(n log n) operations by Theorem 4.3. Next, we determine 

{d^} (0 <. i ^ n) such that S = P(xj)» = xj~o: for j = 0,l,...,n. 

This is an interpolation problem and takes 0(n log n) operations by 

Theorem 5.2. QED 
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