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Abstract: Canse-effect relations are widely used for
fault diagnosis, but a perception gap seems to exist
between the causal reasoning technology and the real
world expectation. This is because the causal modeling
of a power system falls into a cyclic loop if not treated
properly. This paper shows how a Bayesian net model
can be formulated without loop. Based on this model, a
qualitative way is proposed (o evaluate the net and the
diagnosis problem i3 transformed into an optimization
problem. A special organization called A-Teams is used
10 solve this transformed problem. Real examples are
given to illustrate the process and demonstrate the
results.

Keywords: Heuristic Approaches, Diagnosis, Bayesian
Networks.

I. INTRODUCTION

A fault in a power system precipitates a train of opera-
tions: relays operate to identify the fault and breakers
operate to isolate it. Each of these operations generates a
signal, called an alarm, which is sent to an EMS (energy
management system). The information content of these
signals varies considerably with the devices in which
they originate and the bandwidth of the communication
system. For instance, old, electromechanical relays sig-
nal only that they have operated. In contrast, newer, dig-
ital relays can provide more information than most
communication systems can handle.

Of course, relays and breakers sometimes fail to operate
correctly. Moreover, communication Systems can make
errors in delivering signals. Therefore, the alarms
received by an EMS do not always present a true or
complete picture of relay and breaker operations. To fur-

Sarosh N. Talukdar

ther complicate the picture, these alarms may be the
result of several fanlts that have occurred almost simul-
tancously in the power network.

The diagnosis problem is (o take these uncertainties into
account in determining what caused a given set of
alarms. More precisely, the problem can be stated as fol-
lows:

Given: Cy, the pre-fanlt configuration of a power net-
work; and A, a set of alarms;

Find: H;, H,,...., Hy, hypotheses that provide piausi-
ble explanations for A. Each of these hypotheses is
a set whose elements are faults, protective system
operations (such as breaker openings), misopera-
tions (such as breakers that should have opened but
did not) and communication errors (such as alarms
that were sent but not received).

This paper is organized as follows: Section 2 discusses
models of diagnosis. Section 3 introduces conventional
Bayesian network as a tool to buiid a model. Section 4
suggests a new model for power systems based on
Bayesian net. Section 5 proposes a qualitative probabil-
ity approach which efficiently evmmmlrﬁ
Bayesian net model. Section 6 of

tions of simple/multiple faults diagnosis problem for
power systems. Section 7 introduces A-Teams as the
organization to solve fault diagnosis problem. Section &
explains different agents of A-Teams. Section 9 gives
the A-Team structure. Section 10 shows the results. Sec-
tion 11 gives the conclusion.

II. MODELS FOR DIAGNOSIS

Variations of power system diagnosis problem have
been the subject of research for a long time. Basically
they can be divided into two categories: Monitoring




Infermation-Based Approach and  Modet-based
Approach [1]. The first approach consists of organizing
monitoeing  infermation from operating relays and
ripped circuit breakers during a fanlt into a tree soruc-
ture or in tabuler form. The second approach moedels the
structure and functions of the protective relaying sys-
tem, simulates the fault conditions and compares the
simulation results with the monitoring information to
obtain the diagnoses. Generally speaking, the latter is
more powerful if the model represemation is accurate
enough. We see only one model [2] covers important
cause and effect relationships govemning the behavior of
protective systems. Unforunately, with their model, one
still can not visuatize (1} the communication errors and
{2) the changes in relay protsction zone due to circuit
breaker stams. Since (1) and (2) are necessary for cor-
rect diagnosis while alarmg received do not present a
true or compiste picture of device operation and simul-
taneaus multiple faults which often occur in the light-
ning strokes, an improved model is needed. Owr
improved model bases on Bayesian Metworks,

[II. BAYESIAN NETWORKS

Bayesian networks (also called belief neyworks and
causal networks) are being used with increaging fre-
quency t0 deal with uncertainties in actificial intelli-
gence watk [3). [n form, a Bayesian network is a
directed, acyclic graph whose nodes represent uncertain
evenls and whose arcs represemt the dependencies
among these events, Specifically, it can be defined as
follows.

Definition 1: A Bayesian net is a tuple < N, E, §>
where:

N = [X;, X5 X3,... X;} is a set of nodes and
x e {0, 1,..] isone of the discrete stakes that X;
can be;

E = [Y;, Y3, Ya,-..., Y} } i8 2 set of edges which con-
nect one node to another;

S = (Z). Z2s Zases Zyy} 8 & set of all conditional
probabilities P(x; | T1Xi) and T1Xi is the set of adja-
cent predecessars of X; which have been assigned
states.

The best way to understand Bayesian networks is (o go
through an example. Suppose one night I went home on
a highway. I saw a car driving slowly ir front of me. [
started to think if the car had problem. I kew that a
driver wowld slow down if he/she realized an engine
problem. However, an inexperienced driver might fegi
uncomfortable 1 drive fast. With this only evidence,
driving-stowly, I could not decide what had happened.
‘When came near, I keard big roise from the engine. This
gave me another cloe of the event, With this evidence

added, I evaluated the whoke possibility again and now
my belief of the car problem increased almost to one.
This example is illustrated in Fig. 1.

Fig. 1. A Bayesian network for the car-problem
P{*}: Probability of (*)
A:Not A

The impartane thing 10 nose is that there are two sets of
probabilities associated with cach node. The clements of
sent raw or higiorical information about the ¢vent asse-
probabilities and the evidence, one can find the second
set of probabilities. They are called “cvaluated”, of
“posterior”, probabilities. They are modificadons of the
price probabilities 1o take imo account the latest evi-
dence. In this exampie, the evaluated probability P(car-
problem | engine-noise, driving-slowly)= (.95 is mxh
higher than prior probability P{car-problem)={0.6, The
cvaluated probability is sometimes called “befief".
Given a Bayesian network, its prior probabilities and
some evidence, the “beligfs” identify the events likely to
have caused the evidence.

IV. BAYESIAN NETS FOR POWER SYS-
TEMS

[n the case of power sysiems, we propose a Bayesian
network model which has five levels of nodes. They are
Level 1: faults
Level 2; staie variables out of “range™ (e.g. high faul
curent or veltage)
Level 3: relay operations
Level 4: breaker operations
Level 5: alarms at EMS
Figure 2 is a very simple power system with two trans-
mission lines and three buses. The eorresponding Baye-

sian net, probabititics rot specified, is shown in Figure
1

In this figure, 2 node represents 2 random binary vari-
able (1; on and 0: off); a solid arc from a parent node
causes the chiid event to happen and a broken arc from a
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Figure 3: A Bayesian network for the power system of Fig. 2
parent node inhibits the child event to happen. For
example, fault at Linel (F1) will cause an excursion of
fauit current (F1r) in the right side of Line 1. This cur-
rent will cause relay Rir to operate. The operation of
R1r will cause breaker Bir to trip and also cause the
alarm R1ra to tum on. The trip of Blr will cause the
alarm Blra to tarn on and inhibit fault current Fdl, the
current appeared near R3r, to continue. There are five
important features of this net.

1.It introduces level 2 variables to make the cyclic net
acyclic. Without level 2 variables, following cycle
will happen: if F1 is “on” first, the relay R1r will
operate and trip breaker B1r; the trip of Blr will go
back to inhibit F1 to be “off”. this cycle makes rep-
resentation of Bayesian net impossible. In other
words, Bayesian net can not treat cyclic events.

2. It shows communication errors. For example, if
node Rira is “off” and node Rlr is “on”, the alarm
R1ra is missing. This is because the operated relay
R1r(“on") caused the alarm R1ra to tum “on” but it
didn’t respond correctly. On the other hand, if node
Rlra is “on” and node R1r is “off”, the alarm Rlra
is a false alarm.

3. It shows topology changes. For example, if for
some reason breaker Blr opened, level 2 nodes
Fdl, Flr, Fa2 and all arcs connected will be
removed from the network. This change changes
relay protection zone and is easily visualized.

4.This net, though very wide horizontally (in the order
of 1000), is only five layers deep. This strongly ver-
tical configuration means alarms can be treated
locally by looking a small part of the net.

5.We adopt the most common situations that one relay
send only one alarm to EMS. In this net, the relay
“backup” alarm is indistingnishable from its *“pri-
mary” alarm,
In a real world, when fanlts happen, the set of alarms A
initializes the level 5 nodes of the net N into 1 or 0. The
diagnostic system should then find marking M(N)’s
which set the other nodes of net N to 1 or {} to explain
the situation. Each explanation has a belief P(M(N)/A).
Our task is to find all the plausible markings which have
beliefs better than a given value.

- One typical approach 1o this problem is “Belief Revi-

sion method” suggested by Judea Pear! {4]. The thesis of

this method is:
Let BEL(x*) be the highest probability of X=x
given the best complementary marking of X's
neighboring nodes. Upon receiving evidence
(alarms in our case), start calculate BEL(x;*} for
each node X; connected to the evidence. Propagate
this calculation through all the node X, whenever its
neighboring nodes’ marking changed. The propaga-
tion iteratively executes until there is no more mark-
ing changes.

Unfortunately, there are several disadvantages of this

conventional Bayesian nets approach:

1. It focuses on finding the best belief marking, or
Most Probable Explanation (MPE), and can be
extended to second best explanation only. That is
not adequate for us.

2.Special handlings (clustering or conditioning) are
needed 1o treat multiple connected nets such as our
model for power systems.

3. Most of the time the probabilities associated with
the net for belief evaluation are not available,

4. The computational effort required for this evalua-
tion grows very rapidly with the size of the net.

How can one handle this situation?
V. QUALITATIVE PROBABILITY
The ability to operate with qualitative information




inspires the field of qualitative reasoning. Many works
have been done for physical systems under the name of
qualitative simulation. Nothing similar has been done [or
evaluation of belief of a Bayesian network as we know.
We will define qualitative probability inside the model of
qualilative Baycsian net and develope an algebra Lo
operate on 1t
Definition 2: Given

(1). a Bayesian net <N, E, 5>

(2). every P(X| T UJXi ) iscither O, low, high or |

Define

Qualitarive Bavesian Net as a Bayesian net with

cvery  probability  p(l) being  discretived  into
PC) € D= {0*,..,1 1< , 1} where
0<e«l,

For example. the qualitative conditional probability of
every prior probability P(xj | {JX7 ) is discretized to
p o UX) and p(XillIXi) e {0, e, 1 1),

Notice that convi entional Bavesian networks have proba-
bility P(.) e |0, 1], a continuoys interval. Here, we
define pr) e D = {0 KU 1-e, 1}« adis-
crete set The main reason 15 that we can represent an
interval by a discrele number. Also the discretization of
this intcrval makes compultation casier (we will sce this
soon). The set 1s illustrated in Fig. 4.

OM:L.E 1* 1

Fig. 4: The discrete set in qualitative probability

For X, ¥ €
lows.

D. let us define operator ®  as fol-

Definition 3:

X®y=0 1ifY=o
XE& r=X ify=1-¢
X® y=X  ifY-=l

X® 7=8"*[X=c", Y=c¢"whercab € {1,
Theorem 1; The quafiiative joint probability

(X X2 Fa. . . . »'m)
pix X /R Prx, 2IX2) B
pixtiXn).

Proof: Through recursively using of chain rule formula,
we get

Py "Zn— Fv Sillr—ym) -
Xn.2...

Fr*n ' Xn-lt—* "DhP(n-1"
XO..JCX3IX,, Xj)P(X2IX ~ X ~. \

Since pO"UXi) e {0, e. l-e, 1}. the dis-
cretizved pex, x.,.... xix, X[, Xi,, ,....5 « dillcr-
ent from  pfxinxi) ® pixlux2) ®

p (X,inx») in the order of e every time
Y= 1- ¢ appeared. That is, given X, Y (=1- ¢} as
qualitative conditional probabilities.

X xY =Xx(l-e) =X + 0(e)X
x®y=x

Notice that the 0(e)X has been omitted in the sec-
ond equation where we use operator ® 1in stead
of multiplication. This is OK since 0(e) is verv
small and the omission will not affect the discretiza-
tion accuracy. This completes the proof.

Theorem 2: Let fbe a Qualitative Bayesian Net defined
on a sct NsfXj, X,, X.,...., X,,} ofnodes. Given an
mitialized subset E (evidence) = {x, x.......,X,)
and a set of markings M(f) = {x, x,..... x"}. the
lincar ordering in terms of qualitative beliel
p (M) 1 E) is the same as the linear ordering in
terms of £2(M(f),E)

Proof: The belief

POXJ. Nowee, Xjo| 1T Xj, Xje X)) 7 POXL Nopety Xj,
AHl--» )Y/ PCinitin-—"n) - to- !)
Since P(x, x™,..... ~ 3y is a constant a for the

given sel (X, X, ..., XN). wewrile(cg. 1) as
PCXIt Mt ' tin vi-Intwmy - @' PClo™ vin A1117,

Therefore, after discretization the linear ordering of

plx.x,..,%x.0 Ik, Xi,,,__"n)hasno difference
with p{x,, x.... X, XM *3. This completes
the proof.

Using Theorem | and 2, for each nonzere p (M({/) IE).
its ordering is inversely proportional to the number of
p (xir1Yn)=£ it has. As aresult. the evaluation for the
belief of a given marking becomes a simple counting
problem - traverse over the marked net and count the
number of node which has a p & /An'e

VL DIAGNOSIS PROBLEM IN TERMS OF
QUALITATIVE BAYESIAN NETWORKS
However in the field of diagnosis. it is more familiar te

talk about "abnormal clement” in stcad of p (x I1TXn),
we will start by defiming discrepancy.

Definition 3: Let Boolean variable AB/X ), an abnormal
behavior of node X, be defined as
If pixtiiXn) £, ihendBX) =

The discrepancy O(M({/) | E) of a marking M over a
net/given cvidence E is the sum of all ABfX™'s over
M(/}.



Theorem 3: The problem of finding the linear ordering
ola set ol marking M(/)'s given cvidence E m terms
of qualitative helief p (M{fi I E) 1s equivalent to
finding their linear ordering in tetms of discrepancy
O(M(HIE).

Proof: It comes from Theorem 2 and defimition 3.

We now define a simple [aull diagnosis problem in the
terminology of qualitative Bavesian networks.
Defimtion 4: Let/;, be a qualitaive Bayesian net for
power system defined as a tuple<N,, Eo* So>; for each
node X.. x, e {10}, pix™IXk) has been com-
pletely specified; AZ(7 ) is a marking of 7. A is a set of
alarms and p (M{(/, ) [ A) be the qualitative belief. A
simple fauli diagnosis problem i3

Given: Kfo*a-
Find: 6(M{/HIA) > a
such that M{/o)=>/y
Where: a1s a parameter, i the umt of discrepancy

M is the marking on the net £, ; Only one [ault
on this marking

fi 1s the qualitative Bayesian ncl of the new
steady state afier M happened and evervthing
has sctiled down.

For multiple faults, withoul losc of generality, we
assume that onc faull happens afler another and (here is
enough time for things to settle down before next fault
occurs. This assumption makes 1t possible to visualize
the multiple faults in several time stages and within each
time stage there is only one fault The multiple faults
diagnosis problem is delmed accordingly.

Definttion 5: A multiple faults diagnosis probiem is
A jo,a
EGMK(A-1) AR} "~ a

such that Mfe(/*/ ) =>/%

Given:
Fmd:

A*cA*-l,,..cA0=4

Where: a is a parameter, in the unit of discrepancies

folm-—-tA-

Mi. M....., ME is a sequence of markings on
those nets. A A, ... A arc scts of alarms
remaining to be explained in each net/}, ....,A *

sequence of nets

Nolice thal this is a multi-stage optimization problem
consists of k time stages. Can the coupling of each time
stage be made more loose so their parallel solution
beecomes more casy? The answer 1s ves. Use the same
philosophy of dynamic programming, one can decom-

pose the problem mio k subproblems and calculate the
solution to the subproblem. The computation proceeds
from the small subproblems (o the larger subproblems,
stores the answers somewhere else and assembles them
later. Since at each time stage. there is onlv one simple
faull diagnosis problem, any updating at this time stage
needs no recalculation of its marking at last ime stages.
The decomposed problem is more general and easily be
parallclized.

Definition 6: An over all fenult(s) diagnosis problen is
A f,a
Wkifk-i)*KA> * *
such that MfeC/*: ) = =f,
AJbeAJk-1....cA0 =4

Given:

Find:

VH. A-TEAMS

The preceding sections have decomposed the multiple
faults dhagnosis problem mto a set of smaller problems,
each of the form and size of a simple fault diagnosis
problem. The smaller problems are very loosely coupled
and can be solved by a lcam of agenis working in paral-
lel, provided the tcam is properly organized.

An organization can b characlerized by a quadruple:
(C, D, A _T): where: C is a graph. called a control [low,
that shows who supervises whom; D 1s a graph, called a
data flow, that indicates who does what and who may
exchange data with whom; A is a set of criteria, called
activity constraints. that prescribe how agents are to
operate in time; and I is a set of criteria, called inscriion
constraints, thal speeify what must be donc to add or
delete an agent from the orgamization [3]. The space of
all organizations contains a set whose members, called
A-Teams, have two very desirable properties, First, they
are exceedingly open (new agents can be added to an A-
Team almost cffortlessly). Scecond, they arc casily dis-
tributed (an A-Tcam fits naturally inlo a nctwork of
computers, its agents use only locally available mforma-
tion and it 1s less sensitive to communication delavs
than other organizations).

An A-Team is defined as follows |5];

. C, 1its control flow, 18 null, meamng that it contains no
supervisors; all its agents are autonomous.

. D, its data flow 1s cyche so its agents can use feedback
and 1icration in developing solutions,

. A 1ts set of activity constraints, 1s empty, meamng that
its agents are free to act when thev wish. In particular,
there 1s no predetenmined schedule for exchanges of
information; rather, exchanges occur asvnchronously
{(spontancously). Moreover, all the agents can work in
parallel all the time.



. L, its set of insertion constraints, is unspecified but
tends to be “haif empty.” (Because the agents are auton-
omous, there is no managerial superstructure to modify
when an agent is added or deleted; the only changes that
need to be made are to the agent itself.)

Clearly, the structure of an A-Team allows for anarchic
behavior. Autonomous agents, each deciding for itself
what it is going to do and when, if ever, it will commu-
nicate its results, can act at cross purposes. Surprisingly,
there are simple strategies, not only to prevent this from
happening, but to make A-Teams high in performance
(fast at finding good solutions to difficult problems).
Two categories of these strategies are (5]: mixing and
socialization. “Mixing” means choosing agents so there
is a balance between those that create solutions and
those that destroy them. The balance must be such thata
population of solutions is maintained and herded along
paths that lead to profitable conclusions. “Sccialization”
means the insertion of a few instincts (rules) in each
agent that cause it to seek a local consensus {align its
actions with those of its immediate neighbors).

Often, a well selected mix of agents and a few simple
instincts are sufficient to make an A-Team effective.
This seems 1o be the case in the power system fault
diagnosis problem.

VII. PARALLEL PROCESSING WITH A-
TEAMS

There are many algorithms for the variations of the
power system diagnosis such as: rule based approaches
for eliminating redundant alarms [6], distributed
approaches for synthesizing hypotheses [7], set-theo-
retic approaches [8], model-based approaches (9], and
search techniques [10]. Since their algorithms base on
different assumptions from this model, we can not use
them without modification of our model. However, we
do build a modified “patchwork synthesis” algorithm for
reference purpose. This algorithm is:

Step 1. Given an unmarked causal net with aftarms,
initialize one fault as “on”. For ¢ach “on” alarm
node ¢, find the pair of its parent b and grandparent
a. If a is “on™, mark b “on”, This is because a “on”
gives an explanation support and ¢ “on” gives a
forecast support to & “on”. Repeat this procedure
until all the “on” alarms are checked. Put the
marked net into the store (a data object). Do this for
all the single faults.

Step 2. Take one copy of a causal net from store (the
original one in the store is not changed), randomly
select one relay or breaker node and mark it oppo-
site to its original state. Evaluate it with the evalua-
tion function. If its discrepancy is decreased, put it

into the store for further improvement, otherwise
delete it.

Step 3. Repeat this procedure until no further
improvement.

We build 12 agents for the A-Team. Two of them use
domain knowledge such as loops and isolation, A loop
is a set of linked nodes including excursion of state vari-
able, relay alarm, breaker alarm, relay and breaker. A
primary loop is a loop without an inhibitive arc to the
node of excursion. A backup loop is a loop with an
inhibitive arc to the node of excursion. A fault is called
isolated when that transmission element has been de-
energized by the opening of the related breakers. These
two can generate complete solutions by themselves.
They are:

. Construction Agent 1 (CA1): Given alarms and the
fault, find the primary loops they belong to, Mark
the relay and breaker nodes “on". Repeat this proce-
dure until the fault is isolated within the primary
loop.

. Construction Agent 2 (CA2): Given alarms and the
fauit, find the primary loops they belong to. If any
of other alarms indicates the backup loop alarms of
the primary loop, mark the breaker node of the pri-
mary loop “off” and the other nodes *“on”. Repeat
this procedure until the fault is isolated within the
backup loop.

Other agents use pieces of causal net knowledge and are
not so powerful. They are:

. Construction Agent 3 (CA3): Given alarms, find
each alarm the pair of its parent and grandparent, If
the grandparent is “on”, mark its parent “on".
Repeat this procedure uniil all the alarms are
checked.

. Randomizing Agent (RA): Given a marking, ran-
domly find one retay or breaker node and mark it
opposite to its original state. Evaluate it with the
evaluation function. If its discrepancy is decreased,
put it into the store for further improvement, other-
wise delete it.

. Stage Change Agent (SCA): Go through the input
store to find a causal net which has reached steady
state of the time stage. Change this causal netinto a
new net of next time stage.

. Leaming Agent (LA): Given two causal nets with
same fault and time stage, extract the nodes which
have same states of the two and mark other nodes
“off” to produce a new causal net

. Modification Agent 1 (MAI1): Given a causal net
with alarms and the fault, check 1o find a loop. If the




first 3 nodes of the loop match the pattern “on®,
“Dtl" ﬂ.l:l.d. -Hon!l’ ﬂlcn I:I'.Iﬂlk lh.c m mﬂ nm as Il.onﬁ
and “on”. Da this once if there is any match. Else do
it for another pattern; “on”, "on” and “off” and mark
“on” and “on".

. Modification Agent 2 to 6 {MA2 0 MAG): Same as
above except different patterns used.

IX. STRUCTURE OF A-TEAM

There are different ways to pit these agents together to
generale a data-flow for an A-Team. Fig,5 is one possi-
ble configuration. The coordination policy is very sim-
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Figure 5: The A-Team data fiow.

ple, The ohserved alarms and the initial configiwvanon
are used to initialize cansal nets with different simple
fauit in bin Py {a small store} to stan with. Bin Py is the
store which keeps all the hypotheses, some are feasible
and some are infeasible, of problem (Py), the simple
faolt diagnosis problem in time stage 1. A Feasible
hypathesis is one which represents a steady state of cur-
rent time stage. All agents select their inputs randemly
and without repetition from theit input stores, The gen-
erated cansal nets with discrepancy measure are sent
back to the store. There are several bins which keep
hypotheses of different problem (P;). SCA looks at each
bin to find the feasible hypothesis. If there exists one in
bin P;, SCA wili update it to the next bin P, ; by gener-
ating tha corresponding causal net, reintroducing the
alarms not yet explained and initializing it into different
simple fault nets. This updats means there may have
multiple faults. Every hypothesis in the bin has its com-
plete record of last stages’ markings. The siore keeps all
the causal nets in order of each accumulated discrepan-

cies. The better this measure one causal net has, the
more chance it will be selected by the agents. There are
only a certain amount of skots (e.g. 200) in the store. All
the nets being ranked 201 and above are destroyed anto-
matically. The process (ermipaes when no further good
causal nets can be generaied.

X. RESULTS

We mn this A-Team with four cases vsing a model sys-
tem shown below (Fig. 6). The right hand side of cach
thock represents the alarm: the black mark represents
“on"state; the small block at each bus/line element rep-
resets the state of fault. The protection schema is
designed as this:

The primary protections for each clement are: R1r and
R1l wo protect line 1; R2 1o protect bus 2; R3r amd B3t
to protect line 3; Rdr and R4l 1o protect line 4,

R11is o backup: R2 when B1r failed w trip; R31 when
B3l failed 1o trip and R4l when B4l failed o trip,

R3r is to backup: R2 when B3l failed 1o trip; R1r when
R1r failed to trip and R41 when B4l failed to trip.

Rdr is o backup: R2 when B4l failed tn trip; R1r whan
BIr failed o trip and R31 when B3 failed to wip.

For gxample, in case 1 there are three relay alarms:
Rila, Rlra, R3ra and four breaker alarms: Blla, B3la,
B3ra, Bdla

Case 2: R2
Flt

R Tar
Figure 6: Test cases for power system fault diaghosis
For case 1 to 3, we took diagnoses with discrepancy less
than the number of alarms as good diagnoses. For case
4, we took diagnoses with discrepancy less or squal to
the number of alanms as good diagnoses, Table 1 shows




the resuit for simple fault assumption.

A
case 1 7 2% 19 2 0
case 2 7 25 4 2 1
case 3 5 14 10 o 3
case 4 5 9 g 0 0

TABLE 1: Simple fault diagnosis

In table 1, column two represents the number of alarms
for each case. Column three shows the number of good
diagnoses found by A-Team. Column four te column
seven show the resulis found by Patchwork Synthesis,
Construction Agent 1 and Construction Agent 2 sepa-
rately. Patchwork Synthesis sometimes (e.g. in case 3)
works as good as A-Team. However, A-Team is more
robust and always generates more good diagnoses. All
the runs are performed in a DEC 5000 workstation. The
agents are built with CLIPS (an expert sysiem shell
from NASA} embedded in C language. The stors is built
with RPC2 (a paradigm of communication between a
server and several clients from CML) which makes the
asynchronous execation of each agent possible.

Use same set of cases, we ke out the simple fault
assumpxicn and let A-Team go to find multiple fanlts, if
they are there, Table 2 shows the results under normal
operation of A-Team.

fumbey | Tmber of
Problem |, ajxrms | good diagnoses
Dy AJeam

case | 7 kX

case 2 7 A

case 3 6 14¥ *: No multipls

faniis,

case d 5 b

TABLE 2: Multiple faults diagnosis
XI1. CONCLUSION

In this paper, we show that how a power system can be
formalated into 8 Bayesian neowork model. Base on this
model and a suggested qualitative way of belief evalua-
tion, we show that how we transfarm the power sysiem
diagnosis problem inte multi-stage optimization prob-
lem. We then use a special organization called A-Teams
to solve this ransformed problem. The result shows that
A-Team effectively integrates different beuristics to
give very good performance. The easiness of adding
new heuristic without modification of the existing sys-
tem is a big plus comparing o other diagnostic pro-

grams wrilien in expert system shell.
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