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ABSTRACT

Quasi-static wedging of three-point contacts is investigated,
wherein the concepts of vittual and redundant wedging due to a
resultant force failing into a friction cone are proposed. We
consider the fully-started case of 2 square peg and hole
consisting of two point-surface contacts and one line-line
contact. An analysis of the wedging diagram for this highly
constrained configuration is carried out and compared to the two
dimensional case. An approximate wedging diagram is
constructed which shows that wedging of squarc pegs inio
square heles is more likely than cylindrical pegs and holes of
similar sizes,

INTRODUCTION

Assembly consumes, on average, 50% of a product's in-plant
cycle time and direct labor. We believe that Flexible Assembly
Systerns (FAS) will be highly cost effective where many styles
and models of a particular product are required, due to the ease
of reprogramming the machines. The various styles and models
can be expected 1w vndergo several design changes during the
life cycle of the equipment. However, a tuly fiexible assembly
environment  is, at present, difficult to achieve. A more
thorough understanding of Fart Maring Analysis is required 10
be able 1o program with  high repeatability. An example of part
mating is the well known "peg-in-hole” problem, which is one of
the moest ubiguitous assembly operations. Using e pure
positional contrel, the success of peg insertion requires that the
part clearance is oot smaller than the accuracy andfor the
repeatability of the manipulators and manufacturing jigs. In

- addition, wear of manufacturing machines and imperfect

alignment of parts are wnavoidable in the manufacturing plant.
Dimensions of the same component alsoe differ from one part w
another due 10 practical constraints such &5 cost and technical
shorticomings. The geometrical variations, unfortunately, may
czuse excessive mating forces, which will then lead to the failure

~ of the insertion process.

Assembly robots in the laboratory which use force conrol
often operate with inherent instability. When the flexibility of
the system induces a vibration within the desired closed-loop
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bandwidth, instability will ofien occur. The implementation of
high-bandwidth, high-accuracy force control has proven 1o be
difficult. This is especially due to the "contact instability”
problemn (Eppinger and Secning, 1987), which occurs when
contact is made with 2 rigid environment, such as in the peg
insertion precess.

Whitney, et. al. (1982) esiablished a strategy for inserting 2
chamfered, round peg into a round hele. This stralegy assumes
that the peg and hole are rigid and that the peg is mounted with
a compliant soucture. A special configuration of this compliant
structure, Remote Center of Compliance (RCC), pives
especially good characteristics in sopporting the peg. 1t reduces
the mating forces and the likelihood of jamming and wedging. In
this analysis, jarnming refers to failure of assembly due to
improperly aligned forces; wedging refers to improper
geometrical initial conditions. Caine (1985) analyzed 1he
insertion of chamferless right reciangular pegs.  In this case,
there are sets of forces and moments which must be applied to
the peg to avoid jamming. Swip (1988a) extended Caine's
approach to include a hybrid force-position strategy using active
compliance for convex three-dimensional pegs. This srategy
initially tilted the peg and subsequently meved it in contact with
the hole. The point of suppon and the target point were defined
such that it would simulate human behavior. The targer point
was selected based on the shape of bbb the peg and the hole as
well as the point of support on the peg.  Sirip (1988a) also
indicated that the reduction of the degrees of freedom leads 10 an
easier interpretation of the forces measured. Strip (1988b) also
invented a passive mechanism for jamming eveidance in three-
dimensional insertion. Wedging condibons were not considered.

Three-dimensional wedging was studied by Siwurges (1988},
but limited to two opposing coataci points. This study alse
extended the jamming diagram of Whitney, et. al. {1982} to the
three-dimensional case.

It is essential that both wegdging and jemming conditions
must be observed for successful peg-in-hole assembly.
Wedging mest likely occurs in assembly processes where initial
erTors cannol be measured nor guaranteed by the tolerances
of madng pans. In this paper, we will investigate conditicns for
wedging in three dimensions snd develop a correspending

wedging diagram.




WEDGING DUE TO THREE-POINT CONTACTS

There are conditions in which wedging may occur among
multiple point contacts, although there is no wedging a1 ahy pair
of contacts between the peg and hole. In the case of multi-point
contacts, we classify wedging into three types: 1wo point,
virtual and redundan:t. The two-point wedge is described in
Whitney, ct. al. (1982). Virtnal wedging of three-point contacts
occurs when lines connecting the contact points of each pair de
noi fall within the fricdon cones of both contacts, However, &
combination of two friction cones may form p resultant force
which lies within the  third friction cone. Soch 8 wedging
condition imposes geometric constraints on the forces and the
contact points. Redundam wedging is created by multiple
instances of two-point wedges and/or virual wedges.

Generzl conditions for planar wedging are shown in Fig. 1 for
a polynomial shaped boundary of a planar hole, Let X, (i=1,2,3)
be the three contact points on the surface of the hole. Their
coordinates [x;,y,] are polynomial in C; with lateral errors, ¢; =
[e:, ¢}).  The noration of Faverjon and Ponce (1991) is
particularly unseful in developing the constraints for planar
wedging. A contact configuration for vinual wedging is a set of
C,; for which the following inequalities are satisfied:

(X, - X} O X, P o (1)

where X, = [X4, y4], the intersection of two friction cones can be
determined from:

X—X,) 0% < o (2)

(X,- X)) O X, < a (3)

where X;: unnormalized normal 1o contact point i; o : half
angle of fricdon cone; and © denotes the angle which associates
1o two corresponding vectors,

In the case of redundant wedging, a pair of virtual wedges is
formed with more than one set of contacts. There are three
possible pairs [i,j] of contacts: [1,2] {1.3} §2.3] . S§ix
incqualities bound the wedging region of each pair of contacs as
follows:

X;-X)0X < a, (4)

X-Xp 90X, < @ (5)
i=l2;j=i+1

Figure 2 shows how to determine the value @3, which
determines wedging for polygonal contact configurations. Let 8,
and @3 be specified. The contact point 3 is at the origin. The
following parameters are given according to the geometry of the
hole.

d, and d,
d, and d,

x-y coordinate of contact point 1
x-y coordinate of contact point 2

The condition for a virtual wedge exists when point 4 lies
within friction cone of point 3, That i3, the resultant of the two
forces lying on the edge of the firsi and second friction cones
passes through point 3 and therefore lies within the third friction
cone.

4 fd, =11l
0, = (%—ﬂ,htmi(leI:), (6)

where 1, and 1, are trigonomerric functions of d; , d5, 6, and @,
shown in Appendix 1.

From Fig. 2, the shaded area of the friction cone at point 3
shows a possible region where reaction forces from three
contacts (1, 2 and 3) are in equilibrium. One boundary of each of
the three friction cones intersects at point 4 for B, = 6,,. Point 4
is a special condition which helps define the upper and lower
limits of the wedging space. In general, point 4 does not exist,
but peint 4' and poimt 4" show the actal Jimits of viral and
redundant wedging. The boundaries of the first and third friction
cones also intersect at point 4, whereas those of the first and
second friction cones intersect at point 4", A line 4'-2 connects
point 4" and 2. Angle vis defined as an angle which the line 4.2
makes with the line 2-4. This angle is the lower limit of 8,
where the virtual wedging condition is sausfied as 8, is rotated
counter clockwise. Note that every point along the line 4-4' lies
within the third friction cone. We also define § as an angle
between the line 4-2 and the line 2-1. If the angle 6, is
decreased by rowating the cone 2 in the counter elockwise
direction, a reaction foree from the contact point 1 will fall into
the friction cone of point 2 and two-point wedging occurs, If
virtual wedging and two-point wedging occur simuliancously,
we have redundant wedging. Therefore, in order 10 have only
virtual wedging, ymust be smaller than .

The wvalue of 8, is plotted in Fig. 3 as a function of d4 for
selected values of 8,, 65 and d,, dy, da. The upper bound
condition of virtual wedging is determined by adding 2o to By,
Its lower bound condition is obtained by subtracung P from 8;,,.
The upper bound and lower bound conditions of redundam
wedging  are (8. - B) and {08z, - § -2a), respectively. To
avoid wedging, 6; must lie outside the areas of virtual and
redundant wedging.

It should be clear from Fig. 2 that a sufficient condition for
virntual wedging exists if any two friction cones corresponding o
two contact points both include the third contact point.

In this section, we introduced the concepts of virtwal and
redundant wedging in the plane. The extension 1o thrce
dimensions will be described in the following sections.

FEATURE DEFINITIONS OF A SQUARE PEG
AND A HOLE

Figure 4 shows a squars peg and hole.  All designatlions
for bounding edges have been anached. A relercnce
frame for the peg is designed with prime (7). The four side
edges arc described by line segments PBi° (i = 1, ... 4). The
four bottom cdges arc denoted by line segments ¥ (i = I,
i), 0O is the origin of reference coordinaies for the peg
which is attached 1a the first bollom comer, p;. Let w be
the width of the peg. The poini-coordinaies of the four
COTners  arc

p, =10 o o 17 (7
p, = (0 w o0 1] (8)
P, = 1lww 0o 1Y} (9)
p, = Ilwo 0o 17 (10

For the squarc hole, the four op inner edges are described
by line segment @, (i = 1, .. ,4). The outer edges of the chamfer

are denoted by line segment g (i =1, ..4) &and the four chamfer
corhers by line segment &; (i = 1, .. 4). It is assumed thar the




inner edges lie normal 1o line «. O is the origin of reference
coordinates for the hole which is attached to the first inside
corer, §,. If W is the width of the hole, the point coordinates of

the four-hole corners will be

g, = (0 0 0 1] (11}
g, =10 W 0 17 {12)
g, =Il-ww o 1] (13}
9, =I[-wo 0 1] (14}

Ip addition, each chamfer surface is defined a poimt &
in the planc which comtain lines o; and €.

e, = lem 0 sm 1] (15}
e, = |0 cn+W s 1] (16}
e, = [-on-W 0 sm 171 (37
eg = | -w - s 11 (18}

where n is the chamfer angle with the horizontal plane. The
symbotls ¢ and s represent trigonometric functions for cosine and
sine, respectively.

AN APPROXIMATE MODEL OF WEDGING FOR THE
ORTHO-CONFIGLURATION

Using the notation fer the peg and hole defined in the
previons section, we will analyze the cnset of wedging with
three contacts. Of the many likely contact configurations which
are possible after chamfer crossing, the ortho configuration
(Sturges, 1988) of Fig. 5 is typical of three-point constraints.
‘This contact configuration consists of two point-surface contacts
and a line-line contact. It is always possible 1o obuain this
configuration during chamfer contact since there is no possibility
of planar wedging for the two point contacts. However, as the
peg advances o cross the chamfer, the resultant of two contacts
might fall into the friction cone of the third contact {point-
surface). Eguations (15)-(18) are shown in the previous
section for the purpose of completeness of geometrical
description. The chamfer angle (n) is involved in the
determination of a lateral error(ey) defined in Whitney, et. al.

(1982). Since, at the onset of wedging for this configuration, the
peg has already passed the chamfer surface, we will consider the
contacts made by the geometry of the peg and hole as shown in
eqs. (7)3-(14). The three contacts are pictorially shown in Fig. §
which excludes the chamfer surface. We will develop an
approximate wedging diagram for this case taking the x-z plane
of the hole as a reference plane and comparing it with the two-
dimensional case of Whitney et al. {1982).

For pelygonal pegs and holes, contact configurations such as
linie-line can be analytically described by wsing the Pliicker
coordinates [N,Ng]. N is a directional vector which is nol
necessarily normalized. Njis a moment of & line {. P is any

point on the line {,
Ne = PxN {19y

The contacl states analysis to follow is raost conveniently
expressed in Plicker coordinates. Let the direction cosines of
peg line B define a unit vector N at infinity in frame O

No= B B B3 0, (20

which can be ransformed to be a unit vecter in frame O of the
hole by

N = DN, 21

where D is the homogencouns transformation marrix which
relales the location of the peg with respect to the hole:

oycd  sBoysh-sycB  sBsy +cBoysy x,
D = syce sBsysd+owel cBsys¢-sBoy v, 22)
T | -k cés0 ccl z, |’

O 0 0 1

In the analysis below, we will refer to the elements of D as:
d, d; 4dp
D = 2
dy d; dyy % (23)
o o 1

Contact constraints are readily described by computing ihe
mual moment between two lines (Hunt, 19738). The muwal
moment of two lines is defined as the distance between the lines
along their unigue common normal multiplied by the sine of the
angle berween them

dsind = NN, +NN, (24)
If the Pliicker coordinates of L., and /., are:
Z.] = o ow o, 0, 6 O (25)
b, = B, By By . B, B By (26)
then L.
NiNgp = )8, + oBg + o5, (27}
NpRgy = By, + Byoxg + Byer, (28)

From eq. (26}, if p is any point on the iine £, the moment pan
of the Pliicker coordinates can be expressed in 2 matrix form as

Noz = Ap = ADp’ (29)

where A i5 an anlisymmetric cross-product matrix:

A

S _ | -Bs © 0

s T 30
o 0 0 1

At this point, we can use the Pliicker coordinates 1o restate
the line segments of the peg and hole, B, and o, , which create
the line-line contact at peint 2 of the orthe configuration,

B; = (0 0 1 w 0 0) (30}




a, = {0 0 1 0 0 -W; {31)
These two lines satisfy the line-line contact consiraint at
point 2 when z, = ¢ By using egs. (24) and (29), we obtain the

coordinaie of poing 2:

(32)

p, = D= £-"—&lfill}t.

| B B

From eqs. {21), (22), and {29}-(31), the coordinate of Py in
the reference frame of the hole is obtained:

dlﬂ-
di‘.]

ﬁ2 = Yody —2dy +wd; ) 63
Zody; - % dyy 4w,

%o Gy — Yo oo + wily,

Seuing d = 0 in eq. (24) and substituting with eqs. {31) and
(33), yields the contact constraint relarion:

zo(sﬂcw-cﬁswsqnh(yU-W}c¢cﬁ+wc¢cw = 0. (34)

Figurc 5 a!so shows the geometry for the onser of
wedging fif there is one) as the second poini-surfacc
contact {point 1) enters the hole. According to Fig. 5, ong
can sec (hat fwp point-surface comtacts are located m

p, = (& y, 0 1Y (35)

p, = (x; ¢ z, 1} (36)
We obtain the unknown coordinate of point 1 and point 3 from

egs. (9), (22) and (36):

¥o = W {cwcd+sBsysy-sych) (37)
Xy = W ( sBcysd-cyce-sych) {38}
z, = w(c9s0-s¢) {39}

Since virtuat wedging can exist if any of two friction cones of
two contacts in Fig. 5 both include the third contact point, a sel
of six relationships between contact points can be found. Table
1 gives the minimom values for friction coefficient, K, which
canse wedging, based on the geometry of Fig. 5 and the analysis
in Section 3 above. To read the 1able, consider a row number as
a friction cone base and a column number as an included contact
point. A virtual wedge formed by the friction cones at contact 1
and contacr 3 including contact 2 (denoted as VW(1.2) and
VYW(3.2)) satisfies relations in row 1 - column 2 and row 3 -
column 2, viz:

: |z| . 0y
"u'IW +(x2—x3)2j
W -
x; = B (41)

Tabte 1 Minimom values of p sufficient for wedging

Included Contact Peint
1 2 3
_ Wy Wy2+z]
1 x, x,
Erict
i I
2 - W2 7
Cone |2[iW-Ye W+ (- 2]
Rase
!"3 |z .
3l W2 + 22| | ViWT & (xz - x0)?

Due to a small engle approximation, we assume that the
normal 1o all thres cortacts is perpendicular to the inher surface
of the hole. The inner surface of the hole at point 3 is parallel 10
one at point 2 bur perpendicular 1o one ar point 1. Therefore,
VW(2.3) and VW(3,2) are the same whereas VW{7.3) and
VW(2.3} wre reciprocal to VW(2.J) and YW(3,2), respectively.
Replacing inegualities by equalities in egs. {40} and ¢q. {41) and
solving eq. (37) through eq. (41) yield 1he possiblc
configurations for the onset of wedging, which we now develop
into a wedging diagram.

Referring to the wedging diagram for two dimensions
(Whitney erzl, 1982) in Fig. 6, the linear equation of the upper
and lower boundary is

U, + 5, < By (42}
where 6., B wedging limit angle, is equal 1o tcfu.

The parameter s and ¢ represent a slope and clearance ratio
between the peg and hole, respectively:

_ Ly

' - {43)
[+

e = -m—‘;i] (44)

with

angular error

latera} error

distance from a rigid support 1o the peg's tip
Jateral compliznce

angular compliance

o




A quasi-static analysis, similar to Whitney, et. al. (1982),
has been carried out relative 1o the x-axis of the hole for the
ortho configuration of the peg. The stope and wedging limit 8, of
eq. (42) is formed using relations given by eqs. (37) through
(41) and static balances of forces and moments about a
compliance center defined in Whitney, et. al. (1982). After doing
a bit of algebra and dropping high order terms, we find that:

v
L, |cBcdcy+p E—c—)]
![ bl

= = (45)
L2+ EQ--L, [cecd)swﬂt (%’7 4 ]
x c6
2
o = cod [FB2YEI-dAC) (46)
A
with
A = w? + 2wicosyp
= 2wlcoloyp + 2Wweop(l - p?)
C = wko?2-p?

Eqs. (45) and (46) describe an approximate linear model of
wedging which determines the values of 8, and s . This linear
model is valid only if all three angles (. ¢, y) are small (< 5°).
In this case, nonlinear terms are infinitesimal when compared
with linear terms. We still need 1o know the admissible range of
lateral error, £;, on the axis of interest so that we can construct
a wedging diagram. In addition, the ratio of Kg/K, in cq. (45)
appears as a value in the reference frame of the hole and will
require a ransformation from the frame of the peg.

To find €4, let @ be the chamfer width. Using the
homogeneous transformation matrix, D, in eq. (22) and the
geometry of Fig. 4, the admissible range of lateral error for
avoiding wedging is:

£, = a4 + W2 - (wi2)cyco + sycl - sBoysd)  (47)

Similarly, the compliance supporiing the peg in Fig. 7

is transformed 10 the frame of the hole.

K, = K;cyce+ Ky (s8cysh - sych)
K, Kg cyce + K¢ (sBcysd - sycd)
Ky (s0sy - cycOs)

]

+

(48)

Compliances of the support are denoted by italic terms. An
approximate wedging diagram shown in Fig. 8 is obtained by
making small angle approximations and substituting the
following parameters into eq. (45) through eq. (48): ¢=0" p =
1.5, Ly = 1 cm; all linear compliances (K; and X y) arc 1 N/m; all
angular compliances (Ko, Ky and K ) are 50 N-m/rad.; w = 9
cm, W=10cmand 4 =.5cm. '

The solid lines and dashed lines represent the wedging
diagram in two dimensions and the approximaite three-
dimensional wedging diagram, respectively. The diagram
considers the effects of three-point contacts. It can be seen that
the confined area in the latter case is smaller due to smaller
values of ©,, and s. In addition, when the azimuth rotation of the
Pcg. v, increases, the admissible range of the lateral error
decreases. This means that the wedging space is larger.
Therefore, when w is small, but non-zero, insertion of square

pegs into square holes which leads to the ortho configuration is
shown quantitatively to wedge more readily than that of
cylindrical pegs and holes of similar support and dimensions.

CONCLUSION

Studies of the peg insertion problem have been carried out for
over a decade. The Remote Center of Compliance (RCC), which
evolved from the early work, is successful in facilitating peg
insertions with tight tolerance. However, its capability is limited
to round pegs and holes with chamfers. It fails to insent
polygonal, nonsymmetrically-shaped pegs into mating holes. In
addition, techniques for using active force control for such mating
processes rely on an assumption of predictable iniiial error due
1o mating tolerance.

To obtain a better understanding of this problem, we have
extended the study of the wedging diagram into three
dimensions. Possibilities of wedges for fully-started comacts,
¢.g., the ortho configuration between a square peg and hole,
reveal virtual wedging among three contracts. The wedging
space is now described by the parameters of contact
configurations: positions and orientations of the peg relative to
the hole. Strategies for iniiially orienting the peg must avoid this
wedging space. It remains 10 determine wedging conditions for
other contact configurations and the consiraints between them.
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AFPPENDIX 1
Geometric relations invalving fixed in Figure 2

Points 4 and 4' have coordinate 1,1y} and(1°.,I%)), respectively:




d,-d,

- a8}

X
tan{_ —&
{2 ]

where
dé = d2 tan(c + 91]
) ) . Fig. 1: Generalized three contact configuration
After knowing these coordinates, 85, can be determined by with vinual wedging
using the condition of the normal a1 the contact point 2:

d,-d
= 8. +unt| "% | g
: (358

-1
Y = 32. +a-tan™ -——d‘ *
d, +1,

which leads 10 £q. {6}

Two point wedge
Similarly, we can also cbtain the values of § and v as following. boundary
2
d,-d ———
= a +|.a.ﬂ—] —3 4 - H
P " [d: +4, ] : ;{ |L
| A
d, -1
= 8, +o-tanTf—F i
Y = [d, +1,] |
: |
Note that (6, - ¥) is the lower bound condition of virtual _ i_

wedging for the three contact forces along the boundary of friction
cones (also see Fig. 2}.

Fig. 2: Virual wedging in a polygonal geometry




Pior QO
(0.v,.0)

Fig. 3. 6., olvirlual and redundant wedging for the conlacts in
Fig. 2: 0 =20° 6.=90° a=15° and d. =4.0 cm,
d,=70cm, d,=80c¢m

Fig. 5: Orthoe conliguration al onset of wedging

W

g T W

Fig. 6 Wedging diagram f[or two-dimensional peg insertion lasks

Kg. 4: Feature definitions of a square peg and hole



Fig. 7. Generalization of linear and angular
compliance of the support

L4

Wedging Duag | Liecsymbol | Azimuth sogk ()} | slope [¥-intercept| X- muercepl
degrer degree m
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Fig. 8: Wedging diagram for the orthe configuration
compared

with the 2-D case




