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In this paper we describe a prototype system, Soar/Mathematica, for automated performance of symbolic 
computations in engineering design. The input to the system comprises of a mathematical model of a design 
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1. I n t r o d u c t i o n 1 

Engineering design activity typically involves building of a mathematical model of a real world artifact. 
This model is initially mostly symbolic and as the designer commits to specific design choices the symbolic 
parameters are replaced with numeric values till finally the model is entirely numeric. Along the way 
various questions are asked of the model - analysis, and various transformations performed on the model -
synthesis. The insights obtained with respect to the mathematical model are related back to the physical 
world and the designer assesses the practicality of the design. The engineering design activity is thus seen as 
a mapping of the physical world constraints and objectives onto a mathematical model, computations with 
the mathematical model to arrive at concrete values for various model parameters, and the inverse mapping 
of the mathematical model to the physical world to assess realizibility and suitability of the designed artifact. 
Tools for numeric computation have a long history in engineering design and more recently the availability 
of powerful machines and sophisticated computer algebra systems (CASs) has opened the door on computer 
support of symbolic computations as well [3, 7, 13]. 

Automation of intellectually challenging tasks has been a long-standing goal of Artificial Intelligence. The 
framework for automatic performance of numeric computations has been persuasively argued by Abelson et 
al. [1]. Analogously, a framework for automating the symbolic computations in engineering design can be 
considered. In particular, we explore the use of a computer algebra system (CAS) by an intelligent agent. 
Actually, a CAS itself represents an automation of symbolic computations. However, given a task to be 
solved, an intelligent agent is required to mediate in the use of the CAS for the task. Two approaches are 
possible for achieving task-level automation of symbolic computations. One approach is to write programs 
in a CAS for specific tasks [5]. Here, the programmer is the intelligent agent and manually performs the 
mapping of pre-determined task specifications into CAS programs. The second approach is to build an agent 
that accepts task specifications from a user and automatically uses a CAS to perform these tasks as illustrated 
in figure 1. This approach can potentially support open-ended symbolic computations with the mathematics 
of the input task specifications governing what computations are actually performed. We have developed 
a prototype system, Soar/Mathematica, obtained by combining Soar \S, 141 with a CAS, Mathematica U6l 
as an exploration of the second approach. 2 We next describe the system design for Soar/Mathematica, 
followed by an example from sensitivity analysis, a discussion of related work, and conclusions. 
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Figure 1: A mediating agent for symbolic computations using a CAS. 

I: mathematical model, queries/transformations. 

O: results of symbolic computations on models. 

'We wish to acknowledge the foundational role played by Professor Allen Newell (d.) in shaping the development of this 
research. 

' . 2 The central argument of this paper remain* unchanged if Mathematica is replaced with any of the other readily available 
CASs. 



2 . S y s t e m D e s i g n 

Soar is a problem solving and learning architecture that is motivated both as a proposal for a unified theory of 
cognition [10] and as an integrated AI system. In Soar, all knowledge is encoded as productions and problem 
solving occurs in problem spaces. Each problem space has associated with it a state and a collection of 
operators contingent upon the problem space's state. Each problem space also has an associated collection 
of preference productions. Let us assume that Soar is in a problem space, PI , with state, SI . All applicable 
preference productions are executed in parallel and weighted preferences are added to Soar's preference 
memory. These are preferences for PI operators to be applied in SI . Soar's decision procedure collects 
all preferences and selects an operator to apply. Operator application may add new elements to SI and 
delete existing elements from SI. Consequently, the set of preference productions for PI changes leading to 
a different operator choice by the decision procedure. Thus, Soar's problem solving model comprises of a 
sequential application of operators in a problem space. If a selected operator cannot be applied in PI , Soar 
generates an impasse, termed an operator no-change (ONC) impasse. 3 An impasse denotes a recognition 

'by Soar that a new problem space is required to continue problem solving. A preference production suggests 
a new problem space, say P2, in response to the impasse. Processing similar to that described in PI then 
occurs in P2 and along the way any number of other impasses may be generated. An impasse is resolved 
when the state contains elements that the operator's application were to have produced. Upon resolution 
of an impasse Soar resumes processing in the problem space where this impasse was generated. Soar learns 
new productions, termed chunks, by associating results of impasse processing with the elements in the 
impasse producing problem space's state that were tested in order to produce these results. Soar also has 
the capability to monitor any number of input data channels and to transmit data on any number of output 
data channels asynchronously with other problem solving. 

To understand the requirements of a software program that automatically uses Mathematica for perform
ing symbolic computations we have studied protocols of subjects using Mathematica for various engineering 
design tasks. An analysis of these protocols suggests that there are four primary performance processes: su
pervisory, formulation, interpretation, and external memory. Each of these processes is realized as a problem 
space in Soar as illustrated in Figure 2. In this figure, problem spaces are depicted by triangles and sp,-, /,-, 
emt, and »p,- denote the various operators implementing each of the processes. There is a task space where 
the input task specification is represented. Each process is implemented as a set of operators in the task space 
contingent upon the task state representations. When a process operator is selected in the task space an 
ONC impasse ensues and the operator is implemented in a corresponding process space as shown in figure 2. 
At the outset, a bidirectional data channel is established between Soar and Mathematica using a client-server 
arrangement. Mathematica remains invoked throughout the interaction with it by Soar analogous to the 
situation that prevails when a person uses Mathematica directly. Data to be transmitted to Mathematica is 
represented in the task state from where it is automatically sent to Mathematica by a Soar output process 
and data produced by Mathematica is received by a Soar input process and represented in the task state. 
The organization of processes in Soar/Mathematica realizes a blackboard-style control [11, 12]. Each process 
is modular and can be developed independently. From a system design point of view, process modularity 
is a significant simplifying principle. Secondly, flexible control regimes can be obtained by simply changing 
the search control knowledge without modifying the individual processes. Thirdly, the representations built 
up by individual processes are visible to all other processes that can therefore respond to any relevant data 
opportunistically. 

The knowledge of Mathematica used by Soar/Mathematica is of two kinds: procedural and declarative. 
For example, (computes mma derivative D), represents the knowledge that Soar/Mathematica can use the D 
function to compute the derivative. Figure 3 illustrates the declarative representation of the Equal function 
in Mathematica. Mathematical knowledge is represented declaratively and a typical example is the fact, 

. (number 1), which asserts that 1 is a number. The performance processes of Soar/Mathematica are described 
as follows: 

3 Soar can respond to many other kinds of impasses as well. 



Figure 2: The problem space organization of Soar/Mathematica. 

• The s u p e r v i s o r y process is concerned with the mathematics of the input problem. An objective of the 
supervisory process is to transform the input computation into simpler computations that are directly 
performable. Sometimes the transformation will be one-step. For example, an input computation to 
find the derivative of a symbolic expression is one-step transformable to a computation that is simply 
the finding of a derivative of that symbolic expression. However, an input computation that requires 
finding the symbolic upper bound of a model variable subject to several symbolic inequalities may 
require an arbitrary number of transformations. 

• The f o r m u l a t i o n process is concerned with the use of Mathematica for a symbolic computation. 
Sometimes the mapping of a symbolic computation will be direct in that a known Mathematica func
tion will serve to perform the computation. For example, given that Soar/Mathematica knows that 
Mathematica computes a derivative using the D function allows for a direct mapping of a computation 
calling for the derivative of an expression into an expression executable in Mathematica. At other 
times the mapping of a computation onto suitable Mathematica input will require arbitrary problem 
solving. For example, if the computation is to compute the equality of two symbolic expressions and 
there is no direct knowledge of an appropriate Mathematica function that performs this computation 
then Soar/Mathematica might engage in substantial problem solving to arrive at some way of using 
Mathematica for the computation or finally reach a state where it accepts that the computation cannot 
be performed using Mathematica. 

• The i n t e r p r e t a t i o n process is concerned with the mapping of the data received from Mathematica 
onto a meaning representation. For example, the character string, a x'2 + b x + c == 2 is inter
preted to the logical formula, (and (equation) (Ihs (and (name a x'2 + b x + c) (polynomial))) (rhs 
(name (2)) (constant) (number))) which essentially says that the input from Mathematica is an equa
tion whose left hand side is a polynomial and the right hand side is a constant. 

• The e x t e r n a l m e m o r y process is concerned with the management of indices into the external envi
ronment to allow for reuse of results produced previously. 

•3. E x a m p l e 

" In this section we discuss an example of a symbolic computation performed by Soar/Mathematica in sensi
tivity analysis. Sensitivity analysis is concerned with the dependence of system behavior on system parame-



object: 

lypSmma-fact 
name: Equal 

Figure 3: The declarative specification of a Mathematica function. 

ters [6]. Typical parameters are initial conditions, natural frequencies, and dead times; system behavior can 
be the time response, the transfer function, or any other quantity characterizing the system dynamics. This 
problem instance requires the calculation of system sensitivity with respect to the open-loop gain parameter, 
S% = f £ f , for a system whose closed-loop transfer function is, T(s) = u+^n^y 4 

The task is specified to Soar/Mathematica as illustrated in Figure 4 as an object network. The object, ol, 
is the goal whose purpose, (S T K), denotes that the sensitivity is to be computed with respect to the open 
loop gain parameter of the system. The goal object is linked to the data objects, dl, dB, d3, d4, and d5 that 
specify the various system parameters. This input task specification is added to the task space blackboard. 
Figure 5 illustrates the solution trace produced by Soar/Mathematica for the above input task specification. 
The decision cycles are numbered along the left margin 5 and the symbols G, P, S, and O stand for goal, 
problem space, state, and operator, respectively. An impasse is indicated by an arrow and indentation. 
Ellided processing prior to a decision cycle is indicated by an ellipsis in the left margin. In figure 5 we have 
shown only a few of the procedures of the supervisory, formulation, interpretation and external memory 
processes to demonstrate a working implementation of Soar/Mathematica. Soar begins processing in a 
problem-space called top-ps. In d3, a task operator is applied in top-ps to invoke the task problem space. 
In d7, there is a tie impasse as more than one operators are applicable in the task space. These are two 
supervisory process operators, spl and sp2, that can be applied to the input task specification. The first 
operator is applicable because a definition for the input task exists and the second operator is applicable 
because it is a general heuristic that suggests an assessment of whether the computation can be performed 
by Mathematica. To resolve this impasse Soar invokes the selection space that has a search control heuristic 
that resolves the contention in favor of spl since that is more specific than spS. Therefore, in dlO, Soar 
selects spl whose application produces an impasse and leads to the invocation of the supervisory problem 
sp&ce. In tills problem sp&ce the impasse is resolved by the application of the use-definition operator 
which is a rewrite rule for the input calculation, replacing the input specification with the definition of 
sensitivitv In d20 another suoervisorv oDerator is selected bv Soar and the resulting imDasse is resolved bv 
aDDlvini the snlit calculation onerator in d2S that snlits a rlmnm .nH calculation into atomic f i l i a t i o n * 
Here the calculation Product /derivative T K) Quotient KT)\ is Jilit into (derivative T K) Quotient 
K T) and (vroduct (result (derivative T K)) (result (anotient K T))) Tn HIS Soar splprt«! a formulation 
ooerator and the resulting imnasse is resolved bv the Indication of deterrnine-mrrirfunction ooerator that 
selects a Mathematica function for the calculation (derivative T K). Between d42 and dl81 Soar finds 
out aDDroDriate arimments for the selected function bv mternretinff the task sncrifi ration Tn dlftl Soar 
selects another formulation operator to build the input for Mathematica using the syntax' for the selected 
Mathematica function and the names of the arguments to this function and comnletes this nrocessinir in 

Mill i^a I U U M I U U CLIIU m c i i a i l i w u i m c a i g m i i c u k a k u k i n s l u u n i u u a i i u w i u p i c k c s n i l s p r u i G S B l l l g 

dl86-345. In d346, Soar selects an output operator to transmit formulated input to Mathematica by the 
aDDlication of the mma-transmit ODerator in the outout Droblem soace II is the transmitted outDut to 
Mathematica and O l is the input received from Mathematica in response. In d351 Soar applies an input 
ODerator that records the receiDt of data from Mathematica In d356 an interpretation ODerator is aDDlied 
and the resulting impasse is resolved by the application of the build-meaning operator in the interpretation 
spa.ee and that maps the received d&tsi onto &• meaning representation. Processing between d361 and d513 

4 The transfer function, T(s), is denned as the ratio of the Laplace transform of the output variable to the Laplace transform 
pf the input variable under the assumption that all initial conditions are zero [9]. K, Kl , and t are system parameters. 

5 In subsequent discussion we use the notation d<number> to refer to a particular decision cycle. 

http://spa.ee


produces the second interaction with Mathematics and the output, 12, is sent out and data, 0 2 , is received 
from Mathematica in response. In d565, Soar selects an external memory operator since the arguments of the 
selected Mathematica function refer to results already produced in previous interactions with Mathematica. 
In the external-memory space there is an operator, find-environment-index, that obtains the indices into 
the external environment (of Mathematica) corresponding to these previously computed results. Processing 
between d570 and d687 produces the third interaction with Mathematica and the output, 13, is sent out and 
the input, 0 3 , is received from Mathematica in response. The entire episode takes 693 decision cycles to 
complete. 

object: 
id:ol 
type: goal 
purpose: (STK) 
data:dld2d3d4dS 

object: 
id: dl 
type: data 
description: (transfer-function) 

(name(K/(l+KKl+st))) 

object: 
id:d2 
type: data 
description: (parameter) (name t) 

object: 
id: d3 
type: data 
description: (parameter) (name K) 

object: 
id:d4 
type: data 
description: (parameter) (name Kl) 

object: 
id:d5 
type: data 

description, (open-loop-g<un) (rmnic K) 

Figure 4. The input specification for the sensitivity &n&Lysis example* 

4. R e l a t e d Work 

In this section we discuss the relationship of Soar/Mathematica to some work in automatic programming 
and intelligent user interfaces. Soar/Mathematica is an automatic programming system since it automat
ically devises the way in which a computational system, a CAS, must be used to implement a given task 
specification [2]. Of the many classes of programming, Soar/Mathematica has been explored in the realm of 
exploratory programming of the sort that occurs in the course of routine symbolic computations performed 

• .by engineers on mathematical models of design artifacts using a CAS. There are two key characteristics of 
this problem solving: an incremental algorithm design and immediate execution. The reason that the algo
rithm design is incremental is that typically the initial specification is not complete since all the implications 

' of the model and computations specified on the model are not known to the problem solver. Therefore, the 
problem solver sets up sub-goals in accordance with the task mathematics and indulges in immediate perfor-



manceof any subgoal that seems direct enough. These characteristics are reflected by the Soar/Mathematica 
trace of Figure 5. 

Soar/Mathematica can be viewed as an intelligent interface [15] to Mathematica since it allows a user to be 
oblivious of the knowledge of how to use Mathematica to perform symbolic computations. Soar/Mathematica 
elevates the level of interaction with Mathematica from that in Figure 5 to that in Figure 4. There is some 
work in providing expert help in the use of CASs [4]. However, Soar/Mathematica differs in its goal to 
undertake to perform automatically the necessary interaction with the CAS for the class of tasks considered. 

5. Conclusions 

In this paper we have described a system to automate the performance of symbolic computations in en
gineering design. The system is founded on an automatic use of a CAS. It separates the specification of 
computations from their implementation and can therefore enhance an engineer's efficacy. We have explored 
tasks that do not require treatment of traditional concerns of data structures and control flow. These tasks 
typically involve mathematical transformations that are directly available in CASs. Therefore, an agent 
requires a representation of general mathematical knowledge and a knowledge of a CAS's functionality in 
order to automatically carry out the input computations. We believe that Soar/Mathematica demonstrates 
a novel approach to task-level automation of symbolic computations in engineering design. 

The development of Soar/Mathematica can proceed in two directions. The capabilities of the supervi
sory process can be enhanced to deal with more classes of mathematical computations. At the same time 
the formulation process can be enhanced to make more sophisticated use of Mathematica. An interesting 
twist is to use Soar's learning capability to automatically increase the capabilities of both these processes 
and is a direction we are currently pursuing. We note that once an input task has been interpreted by 
Soar/Mathematica in mathematical terms it is just another symbolic computation for it. Therefore, the core 
knowledge of mathematics and of Mathematica in the system will apply across tasks. 

Currently, Soar/Mathematica is essentially an intelligent assistant in the performance of symbolic com
putations using a CAS. It can be developed into a more integrated engineering design system by the incor
poration of additional task knowledge such as sensitivity of real systems. Then, it might be to possible to 
automate other portions of the engineering design process such as the formulation of appropriate mathemat
ical models and assessment of the results of computations in task terms. 



0 g: gl 
1 p: p2 (top-pe) 
2 s: s4 (top-state) 
3 o: olO (task) 
4 — > g : g U (operator no-change) 
5 p: pl2 (task) 
6 a: sl3 
7 — > g : gi48 (operator tie: spl, sp2) 
8 p: pl49 (selection) 
,9 s: sl50 
'l0 o: ol42 (supervisory-process: spl) 
11 ™>g: gl60 (operator no-change) 
12 p: pl61 (supervisory-process) 
*13 s: sl62 

16 o: ol67 (use-definition) 

20 o: ol88 (supervisory-process) 
21 —>g: g203 (operator no-change) 
22 p: p204 (supervisory-process) 
23 s: s205 

25 o: o210 (split-calculation) 

38 o: o270 (formulation-process) 
39 —>g: g273 (operator no-change) 
40 p: p274 (formulation-process) 
41 s: s275 
42 o: 0277 (determine-mma-function) 

181 o: o286 (formulation) 
182 —>g: g825 (operator no-change) 
183 p: p826 (formulation) 
184 s: s827 
185 o: o829 (mma-syntax) 

346 o: 01271 (output) 
347 ™ > g : gi274 (operator no-change) 
348 p: pl27S (output) 
349 s: 81276 
350 o: ol278 (mma-transmit) 

I I : 
D [Times[K.Power[Plus [ 1,Time. [K, K1] .Time, [s,t] ] , -1] ] .K] 

01: 
((Plus 
(Times -1 
(Times (Times K Kl) 
(Pover (Power (Plus 1 (Times K Kl) (Times s t)) 2) -1))) 

(Power (Plus 1 (Times K Kl) (Times s t)) (Times -1 1)))) 

Figure 5: The problem solving trace produced by Soar/Mathematica on the sensitivity analysis example. 



(input) 351 o; ol287 
352 —>g: gl338 (operator no-change) 
353 p: pl339 (input) 
354 B : 81340 
355 o: 01342 (result-received) 
356 o: 01355 (interpretation) 
357 —>g: gl359 (operator no-change) 
358 p: P1360 (interpretation) 
359 s: 81361 
360 o: 01363 (build-meaning) 

512 o: 01965 (formulation) 
'513 o: 01979 (output) 

12: 
'Times [K,Power[Times[K,P<™«r[Plus[l.Ti*es[K,Kl] .Times[s,t]] , - 1 ] ] ,-1]] 

02: 
((Plus 1 (Times K Kl) (Times s t))) 

514 o: ol987 (input) 
515 ~>g: g2003 (operator no-change) 
516 p: p2004 (input) 
517 s: 82005 
518 o: O2007 (resuit-received) 
519 o: o2020 (interpretation) 
520 o: o2031 (supervisory-process) 
521 o: o2037 (interpretation) 
522 o: o2045 (supervisory-process) 

(external-memory-process) 565 o: 02204 
566 ">g: g2248 (operator no-change) 
567 p: p2249 (external-memory-process) 
568 s: S22S0 
569 o: o2252 (find-environment-index) 

686 o: o2748 (formulation) 
687 o: o2762 (output) 

13: 
Times [Out [1] , Out [2]] 

03: 
((Times (Plus 1 (Times K Kl) (Times s t)) 
(Plus 
(Times -1 
(Times (Times K Kl) 
(Power (Power (Plus 1 (Times K Kl) (Times s t)) 2) -1))) 

(Power (Plus i (Times K Kl) (Times s t)) (Times -1 1))))) 

688 o: o2770 (input) 
689 «>g: g2833 (operator no-change) 
690 p: P2834 (input) 

*.691 s: s283S 
692 o: o2837 (result-received) 
693 o: o2850 (interpretation) 

Figure 5 continued. 
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