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A b s t r a c t . This report deve lops a control function for 
app l ica t ion of the genera t ion rules used in the LOOS 
sys tem ( F l e m m i n g et al. 88a) that does not keep the 
spatial re la t ions b e t w e e n rectangles invariant. Such a 
control function is preferable to the one used in past 
vers ions of LOOS when certain forms of user interaction 
wi th the generat ion process are desired. 
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1. Introduction 

LOOS is a system that supports the generation of layouts of rectangles to solve layout problems 
across domains and applications (Flemming et al. 88, 88a). The generation component of the system 
consists of generation rules and a control function that appl ies these rules in a particular sequence to 
enumerate alternative solutions to a layout problem. The function guarantees criteria of monotonicity 
that are important for the overall branch-and-bound strategy employed by the system.* This control 
function, however, i s rather complicated and therefore h idden from users. The present report develops 
a non-monotonic control function for application of the LOOS rules that appears preferable w h e n user 
interaction is essential. 

Section 2 describes aspects of LOOS that are essential for a n understanding of the fo l lowing 
section. Section 3 deve lops a non-monotonic control function for applying the generation rules. 

* Monotonicity in the LOOS sense will be introduced in Section 3. 



2 . The LOOS System 

2.1 Representation of Layouts 

To assure the des ired applicabil ity across appl icat ions and d o m a i n s , the representation 
underlying LOOS al lows for continuous variations in the location of rectangles (that is, it does not rely 
on an underlying grid) and for the handling of rectangles with varying dimensions, which m a y be fixed 
or variable for individual rectangles. 

The chosen representation is an extension of the wall representation of rectangular dissections 
(Flemming 78 and 80). Figure 1(a) s h o w s a rectangular dissection or rectangulation, that is, a rectangle 
subdivided into rectangular components without overlaps or -holes'. A wall in such a configuration is a 
maximal sequence of collinear and connected line segments separating the rectangles from each other 
(the figure highlights one such wall) . A wall representation of a rectangular dissection lists all of its 
walls and the sequence of rectangles bordering each wall from each of its sides. Such a representation is 
independent of the coordinates of the rectangles contained in the dissection, but imposes constraints on 
them that vary with the representation. It has been s h o w n that wall representations of solut ions to 
layout problems under topological and dimensional constraints can be systematically generated in a 
two-step process that first generates alternative wall representations and then computes for each of 
these a set of feasible d imensions that take the constraints imposed by the wall representation into 
account (Flemming 78). 

a) 1 2 
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Figure 1: a) a rectangular dissection and its walls; b) a loosely-packed arrangement of rectangles that 
can be v iewed as having the same spatial structure 

Rectangular dissections constitute a very restricted class of floor plans that are practically 
relevant for only a limited range of problems. In order to increase the applicability of LOOS, the wall 
representation has been extended to include loosely-packed arrangements of rectangles (LPARs), which 
maintain non-overlap between components, but allow for holes and irregular boundaries; an example is 
shown in Figure Kb). N o t e that a dense ly-packed arrangement is a LPAR; that is , rectangular 
dissections form a proper subset of the set of LPARs. 

Observe that the wall representation of the plan in figure 1(a) impl ies l e f t / r ight and 
a b o v e / b e l o w relations between the rectangles in the plan that are found also in the LPAR s h o w n in 
figure Kb); wall representations, or their equivalents, can consequently also be used to represent certain 
spatial relations in LPARs, provided these LPARs can be derived from a dissection by shrinking some 
rectangles, or conversely by expanding the rectangles in the LPAR until they touch rectangles on all four 
sides and thus form a dissection. LOOS uses the equivalent of wall representations to represent LPARs in 
terms of left/right and a b o v e / b e l o w relations. These relations are called spatial in the following. The 
set of spatial relations in an LPAR is called the spatial structure or topology of the LPAR. In some 
contexts, it is convenient to call a spatial relation also a direction. 

Note that the spatial relations are transitive and do not have to be specified explicitly for 
every pair of rectangles; if, for example, a rectangle a is to the right of a rectangle b along a vertical 
wall, and a rectangle c is to the right of b along a second wall, c is also to the right of a. Diagrams like 



the one shown in Figure Kb) should be read in this sense. Note also that dissections are included in the 
LOOS representation because they represent a special case of an LPAR. 

Certain sets of relations that can occur in a LPAR cannot be represented directly by a wall 
representation. These are the relations that occur around non-trivial holes, which are gaps that cannot 
be e l iminated by extending the rectangles in an arrangement until they touch other rectangles 
(Flemming 89). A n example is s h o w n in Figure 2(a). LOOS circumvents this difficulty by representing 
non-trivial ho les explicitly as rectangles that are marked by a special label to dist inguish them from 
regular rectangles [see Figure 2(b)]. The resulting marked structures are able to represent every set of 
spatial relations that are realizable in an LPAR (Flemming 89) and form the basis for LOOS. In the 
following, the term structure a lways refers to a marked structure. 

Figure 2: a) A LPAR containing a non-trivial hole; b) representation of a non-trivial hole by a special 
rectangle ( shown hatched) 

A special rectangle represents a non-trivial hole in a layout. Such rectangles must satisfy the 
following well-formedness conditions. 

Well-formedness conditions for special rectangles: 

(a ) The walls bordering a special rectangle must form a counter-clockwise (Figure 3a) or clockwise 
(Figure 3b) turning pinwheel . 

(b) Let the rectangles bordering the walls from the other side be denoted by ahl r,, bj, and /*, with 
h = 1 , A ; i = 1, R; j = 1 , B ; fc = 1 , L , as shown in Figure 3. In case a), neither of the 
rectangles ai , n , feior l\ is special. In case b), neither of the rectangles aA, rRi bB, or lL is 
special . 
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Figure 3: Rectangles surrounding a special rectangle 



The LOOS representation assumes, without loss of generality, that internal wal l s never cross 
each other; that is, if two internal walls meet at a common point, they form a T-connection (see Figure 
1). Crossing walls can be made to conform to this convention by the introduction of a d u m m y segment 
separating one wall at the common point into two. 

In addit ion to the spatial relations holding between the rectangles it contains , the LOOS 
representation records expl ic i t ly the upper and lower bounds far the spatial coordinates of each 
rectangle implied by the relations. These dimensional attributes are updated after each change to the 
structure. A n addit ional attribute indicates the type of domain object represented by a rectangle. A 
marked structure wi th these attributes is called a configuration. 

2.2 Operators 

This section describes the most important operators or rules provided by LOOS to generate and 
modify configurations. 

a. Generation Rules 

Generation rules can be used to generate structures from structures by adding o n e rectangle at a 
time, starting wi th a suitable initial structure, which m a y represent nothing more than the enclosing 
rectangle. Alternative structures are generated if more than one possibil ity for a d d i n g individual 
rectangles is pursued. The rules shown in Figure 4 are the two generation rules provided by LOOS. W e 
a lways assume that the rectangles bordering a horizontal wall from above are ordered from left to 
right, and the rectangles bordering the wall from belong are ordered from right to left. Similarly, w e 
assume that the rectangles bordering a vertical wall from the right are ordered from top to bottom, and 
the rectangles bordering the wall from the left are ordered from bottom to top. 

Figure 4: Generation rules 

The rules are specified in the figure as recursive rewrite rules consist ing of a left-hand side 
(LHS) and a right-hand side (RHS) both of which describe substructures of a structure. A rule can be 
applied to a structure, s, if s contains the LHS. The application consists of replacing the LHS in s by the 
RHS or of 'rewriting's according to the rule. For example, the LHS of generation rule 1 s h o w s a wall, c, 
and a sequence of rectangles r, r ; , / > i > 1, adjacent to c from one side; r, may be the first rectangle and 
r ; the last rectangle along c on that side. The RHS shows how r i r r ; can be pushed a w a y from c to 
create space for the insertion of a new rectangle, n, and a new wall, c'. In a similar way , rule 2 shows 



h o w a wall, c, can be split into two to create a pinwheel configuration of wal l s and to insert a n e w 
rectangle in the resulting hub. This rule must be used, for example, for the creation of non-trivial holes. 

Both rules can be applied in rotated or reflected versions. W e will s h o w be low that if these 
transformations are taken into account, every structure can be generated by apply ing these rules in 
sequence, starting with a suitable initial structure. 

b. Propagation Rules 

The dimensional bounds for a newly inserted rectangle depend o n those of the surrounding 
rectangles; conversely, the dimensional bounds of these rectangles are likely to become tighter through 
the insertion. The propagation rules compute the bounds for the newly inserted rectangle and propagate 
the resulting changes recursively through the configuration. 

In (Flemming et al. 88), propagation rules for rectangles representing domain objects with fixed 
d imens ions are described. These rules orient an object if its longer s ide fits only in o n e direction. 
Otherwise, they leave the object un-oriented. That is , orientation is not treated in LOOS as an explicit 
design variable, which reduces the combinatorics of search. 

More recently, propagation rules that can handle rectangles with variable d imens ions have 
been added to the system. 

c. Test Rules 

The configurations generated by LOOS are evaluated by a tester based o n a flexible collection od 
test rules. Propagation and testing are not addressed in this report. 



3. Non-Monotonic Enumeration of Alternatives 

The basic difference between the two generation rules shown in Figure 4 i s that rule 1 leaves 
the spatial relations be tween the rectangles already allocated unchanged, whi le rule 2 changes the 
relations b e t w e e n rectangles r i A and r'y.i (and, by transitivity, the relations b e t w e e n further 
rectangles) from right/ left to a b o v e / b e l o w (if applied in the orientation s h o w n in Figure 4; similar 
changes occur for different orientations). As stated in the introduction, LOOS applies the rules under a 
rather complicated control regime, which uses rule 2 for the insertion not only of non-trivial holes, but 
also of 'place-holders' for regular rectangles so that the relations between these rectangles remain 
unchanged by the insertion of further regular rectangles (Flemming 89). This monotonic i ty of the 
spatial relations during generation is important because it enables LOOS to evaluate and consequently 
prune intermediate so lut ions wi th certainty as most criteria or constraints that are not satisfied by an 
intermediate solution can never be satisfied by a structure generated from it. 

However, a less complex control regime may suffice in many applications, one that is still able 
to generate all possible structures of a g iven number of rectangles, including non-trivial holes, but is 
al lowed to change spatial relations in the process. This eliminates the need for specific place-holders 
the significance of which may be difficult to appreciate by users unwi l l ing to immerse themselves 
deeply in the technical complexit ies connected with the original LOOS control strategy. The present 
section develops such a simpler, non-monotonous control regime. 

The precise specification of this regime and the proof that it is, in fact, able to produce all 
possible structures require a greater level of technicality. In order to be able to specify applications of 
generation rules independent of a specific orientation, w e use the functions I*, P*, and N * to relate a 
spatial relation or direction * to the other relations or directions. If * is a direction, I*, P», and N * 
should be read inverse, last, and next direction of », respectively. The functions are defined in the 
following table. 

I* P* N » 

A (above) B L R 
B (below) A R L 
R (right) L A B 
L (left) R B A 

Table 1: Functions I \ P*, and N* 

For example, if a wall c borders a rectangle r in direction *, we can a lways say that r borders c 
in direction I* independently of *. Or for an application of rule 1 in any orientation, if wall c borders 
rectangles r{ r ; in direction * before the application, c will border the newly inserted rectangle, n, in 
direction * after the application, while rectangle r{ will be in direction N * of rectangle r i + l before and 
after the application. * will be called the direction of application of rule 1. The direction of 
application of rule 2 is determined in the same way by the relation between wall c and rectangle rp 
figure 3 specifies both rules for * = R. 

If a rule is specified in terms of a generic application direction * (that is, the spatial relations 
between the rectangles and walls that appear in its LHS and RHS are defined in terms of * through the 
functions in Table 1), applications in specific orientations can be found by associating values A, B, R, or L 
with ». These different orientations can also be v iewed as applications of the rule under different 
rotations, and for rule 1, no further variations are needed. 

It turns out that for rule 2, applications are needed also under different reflections. These are 
more difficult to reduce to a s ingle parametric form. We therefore specify explicitly rule 2 in two 



reflected versions, 2a and 2b, as s h o w n in Figure 5. Rule 2a generates a counterclockwise and rule 2b a 
clockwise turning pinwheel of walls. It is understood that each version can be applied in any rotation. 

2a 

2b 

Figures: R u l e s 2 a a n d 2 b 

We prove in the fol lowing that rules 1 and 2 are sufficient to generate all possible marked 
structures containing a g iven set of rectangles. This result, by itself, is not surprising. But the proof 
itself is important because it forms the basis for our non-monotonic control regime, in which the sequence 
of rule applications that create any structure is unique, including the insertion of special rectangles. 

Theorem: 
If Gn> h is a marked structure with « regular and h special rectangles, h > 0, where the regular 
rectangles are labeled arbitrarily from 1 to n, there exists a sequence of applications of rules 1 
and 2 that generates Gn> h and inserts the regular rectangles in the order given by their labels. 

Proof: The proof is by induction on «, where the structure G 1 0 containing one regular and no special 
rectangle serves as starting structure. C 1 0 contains exactly four external and no internal walls. 
If n =2, an application of rule 1 to each wall in G l 0 with r,= ry = rectangle 1 generates the four 
possible structures G 2,o- N o other structure with 2 regular rectangles exists (that is, a structure 
with 2 regular rectangles cannot contain any special rectangle). 
Let n o w n > 2, and let the theorem be true for all structures G„_h k. Suppose G„ h is an arbitrary 
structure with n regular rectangles and h special rectangle's; label the regular rectangles 
arbitrarily from 1 to n. 
Consider rectangle n. It must border a wall in each of the four directions, at least one of which 
must be internal because n > 2. The configuration of these four walls must belong to at least one 
of the cases shown in Figure 6 (the crossing walls at the ends of c are meant to indicate that c 
may form a T-joint at that point in one of two ways). 



Case 1: There exists an internal wall, c\ so that n is the only rectangle bordering c' on its side. 
Let * be the direction in which n borders cDenote the ordered rectangles on the other side of c' 
by r a , r m . If neither r1 nor rm is a special rectangle, apply rule 1 backwards in an 
appropriate orientation to remove wall c'and n. This generates a well-formed structure G n 1 h. 
If rjor rm is a special rectangle, we have the structures shown in Figure 7. Neither of the 
rectangles a, b or c can be special, and a backward application of rule 2a or 2b removes the 
special rectangles, generating a well-formed structure GW/k< A from which n can be removed as 
before. 

Case 1: 

Case 2: 

Figure 6: Cases 1 and 2 

Case 2: There exists no internal wall so that n is the only rectangle bordering the wall on its 
side. In this case, the four walls bordering n must form a pinwheel as shown in figure 6. If 
neither nor r'y is a special rectangle, apply rule 2a (in case 2a) or 2b (in case 2b) backwards (in 
the orientation shown in figure 4) to remove wall c' and n. This generates a well-formed 
structure G„ . | A . If, in case 2a, rz- or r'y is a special rectangle, it must be a clockwise turning hub 
that can be removed by a backward application of rule 2b, generating a structure G W / A < fa from 

which n can be removed as before. In case 2b, special rectangles can be removed in a similar 
way. 

Thus, we can always generate a well-formed structure G n . | A </j by backward application of 
the generation rules. By hypothesis, there exists a sequence of rule applications that generates 
Gni k by inserting rectangles 1 , n- 1 in that order. Clearly, Gn A can be generated from G„ | A 
by an application of rule 1 or 2 that inserts n, followed, possibly, by one or two applications of 
rules 2a or 2b that insert special rectangles. • 

We now specify the function nonjnonotonicexpand that accepts as input a structure and inserts 
a new rectangle in all possible ways, including special rectangles. The generated structures are 
collected in a set, which is the function's output. The function is based on the above proof; that is, it 
reverses the reductions used in the induction to determine the required forward applications of the 
generation rules. The application of the propagation rules is left out in the specification. 



Figure 7: Special vertices at the corners of n 

In addit ion, the procedure guarantees that each structure can be generated in only one way; 
that is, it avoids generating duplicates. Observe in this connection that the cases s h o w n in Figure 6 are 
unique (that is, g iven n, there is only one way of selecting walls c and c' and rectangles r and r') except 
when, in case 1, n is also the only rectangle bordering c on its side (in this case, c and c' can be reversed to 
result in a different subcase of case 1). In case 2, uniqueness is based o n the convention that for pinwheel 
configurations, w e select only vertical walls as c and c' and label them as shown in the figure. 

The specifications rely on the predicate 

special (r ) 

which returns T if rectangle r is special and F otherwise, and on three functions: 

rule_l ( G, r, r', *, R), 

which returns a structure generated by applying rule 1 to structure G in direction * with pivots r and r* to 
insert rectangle R; 

rulej.a ( G, r, r \ *, R), 

which returns a structure generated by applying rule 2a to structure G in direction * with pivots r and r' 
to insert rectangle K; and 

rulejb ( G, r, r', *, R), 

which returns a structure generated by applying rule 2b to structure G in direction * with pivots r and r' 
to insert rectangle R. 

The symbol s denotes an instance of a special rectangle, and the symbol £ denotes the external 
rectangle that borders each of the external walls from a unique direction. 



function non_monotonicjscpand (Gn, *> R) 
;Input: Cn.k = a stracture with n regular and it special rectangles, n > 1, Jt > 0 
; K ' : rectangle to be inserted 
begin 
X<-0 
for every wall c in Gn,k 

begin 
for every direction * so that c borders rectangles r\,..., rm in direction * 

;; for every wall, there are two such directions! 
unless n = £ 
begin 
f o n ' = 1 m 

unless special (r; ) 
begin 
for; = i , m 

unless [speciaHrj ) or ( i = 1 a n d ; = m and (* = L or * = B)) ] 
begin ; ; generate all applications of rule 1 to c in direction * 
Gn+l,fc *~ rulejt (G„, jt, r,-, ry, *, R) 
X - X u { G „ + 1 , * } 

;; fol lowed by insertions of special vertices 
Y «- rule_2a_all ([Gn+\i jt }, r ; , P*, s) 
x - x u y 
X «- X u rule_2b_all (Y u {G„ +i, * }, rj, N*, s) 
end 

i f ( o l « i d * = R) 
begin ;; generate all applications of rule 2a to c in dir. 
Y «- ruleJ2a_all ( lG«,fc J, r;, , K) 
X " X U ^ n . .. f . . 

touoweaoy insertions or special vernces 

A *"~ A U fUl€-Zu_Ull \L> U i ,T j, r , S) lf T j 9S in rig. D 
end 

if ( f ^ it/ <inci •— Ij) 
begin ;; d o the same for rule 2b 
y <- rule 2b all ([G 

— — VI TtfK If I* r 

x *~~ x u y 
7 *— tuts 2.u all ( V r* P* s) 
Y . Y M ? ~ ' " ' 

X / x u m b ^ alKZuY r'- N* s) •• r' as in Fie 5 
end 

end 
end 

end 
•• that can be Generated from G t- with R as the new rectangle 

end 



Functions rule_2a_all and rule_2b_all called by non_monotonic_expand are specified as 
fol lows: 

function rule_2a_all ( X, r, *, R) 

;Input: X : a set of structures 
r : rectangle contained in each G e X 

: application direction 
R : rectangle to be inserted 

begin 
X « - 0 
for every G e X 

find wall c bordering r in direction » in G 
unless [ special ( r > or r is the first rectangle bordering c in direction I* ] 

let r i , r m be the rectangles bordering c in direction 
u n l e s s ( m = l ) 

tor; - l, m 
unless special (r' ,) 
A A U \ TUl£_X.tl \ \jf T, T j , , I\f) 

end 
end 

returnX 
trxiQ 

function rule_2b_all(X, r,*,R) 

;Input: X : a set of structures 
; r : rectangle contained in each G E X 
; * : application direction 
; R : rectangle to be inserted 
begin 
X ^ 0 
for every G e X 

find wall c bordering r in direction * in G 
unless [special ( r ) or r is the last rectangle bordering c in direction I* ] 
begin 
let r'i r'm be the rectangles bordering c in direction * 
unless < m = 1 ) 

begin 
for / = l m-1 

unless special (r'j) 
X ^ X U ( rwfe_2b ( G, r, r), *, R)} 

end 
end 

return X 
end  





H o w these functions work i s illustrated in Figure 8. It s h o w s a structure with 6 regular 
rectangles and a wall, c. The figure s h o w s all w a y s in which non_monotonic_expand inserts rectangle 7 
along this wall in direction * = R, including all insertions of special rectangles. 
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