
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Non-Monotonic Enumeration of Layout Alternative
Using the LOOS Operators

Non-Monotonic
Enumeration of Layout Alternatives

Using the LOOS Operators

Ulrich Flemming

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213

October 1992

A b s t r a c t . This report deve lops a control function for
app l ica t ion of the genera t ion rules used in the LOOS
sys tem (F l e m m i n g et al. 88a) that does not keep the
spatial re la t ions b e t w e e n rectangles invariant. Such a
control function is preferable to the one used in past
vers ions of LOOS when certain forms of user interaction
wi th the generat ion process are desired.

Contents

1. Introduction 1

2. The LOOS System 2

3. Non-Monotonic Enumeration of Alternatives 6

References 13

1. Introduction

LOOS is a system that supports the generation of layouts of rectangles to solve layout problems
across domains and applications (Flemming et al. 88, 88a). The generation component of the system
consists of generation rules and a control function that appl ies these rules in a particular sequence to
enumerate alternative solutions to a layout problem. The function guarantees criteria of monotonicity
that are important for the overall branch-and-bound strategy employed by the system.* This control
function, however, i s rather complicated and therefore h idden from users. The present report develops
a non-monotonic control function for application of the LOOS rules that appears preferable w h e n user
interaction is essential.

Section 2 describes aspects of LOOS that are essential for a n understanding of the fo l lowing
section. Section 3 deve lops a non-monotonic control function for applying the generation rules.

* Monotonicity in the LOOS sense will be introduced in Section 3.

2 . The LOOS System

2.1 Representation of Layouts

To assure the des ired applicabil ity across appl icat ions and d o m a i n s , the representation
underlying LOOS al lows for continuous variations in the location of rectangles (that is, it does not rely
on an underlying grid) and for the handling of rectangles with varying dimensions, which m a y be fixed
or variable for individual rectangles.

The chosen representation is an extension of the wall representation of rectangular dissections
(Flemming 78 and 80). Figure 1(a) s h o w s a rectangular dissection or rectangulation, that is, a rectangle
subdivided into rectangular components without overlaps or -holes'. A wall in such a configuration is a
maximal sequence of collinear and connected line segments separating the rectangles from each other
(the figure highlights one such wall) . A wall representation of a rectangular dissection lists all of its
walls and the sequence of rectangles bordering each wall from each of its sides. Such a representation is
independent of the coordinates of the rectangles contained in the dissection, but imposes constraints on
them that vary with the representation. It has been s h o w n that wall representations of solut ions to
layout problems under topological and dimensional constraints can be systematically generated in a
two-step process that first generates alternative wall representations and then computes for each of
these a set of feasible d imensions that take the constraints imposed by the wall representation into
account (Flemming 78).

a) 1 2

3 4

b)

Figure 1: a) a rectangular dissection and its walls; b) a loosely-packed arrangement of rectangles that
can be v iewed as having the same spatial structure

Rectangular dissections constitute a very restricted class of floor plans that are practically
relevant for only a limited range of problems. In order to increase the applicability of LOOS, the wall
representation has been extended to include loosely-packed arrangements of rectangles (LPARs), which
maintain non-overlap between components, but allow for holes and irregular boundaries; an example is
shown in Figure Kb). N o t e that a dense ly-packed arrangement is a LPAR; that is , rectangular
dissections form a proper subset of the set of LPARs.

Observe that the wall representation of the plan in figure 1(a) impl ies l e f t / r ight and
a b o v e / b e l o w relations between the rectangles in the plan that are found also in the LPAR s h o w n in
figure Kb); wall representations, or their equivalents, can consequently also be used to represent certain
spatial relations in LPARs, provided these LPARs can be derived from a dissection by shrinking some
rectangles, or conversely by expanding the rectangles in the LPAR until they touch rectangles on all four
sides and thus form a dissection. LOOS uses the equivalent of wall representations to represent LPARs in
terms of left/right and a b o v e / b e l o w relations. These relations are called spatial in the following. The
set of spatial relations in an LPAR is called the spatial structure or topology of the LPAR. In some
contexts, it is convenient to call a spatial relation also a direction.

Note that the spatial relations are transitive and do not have to be specified explicitly for
every pair of rectangles; if, for example, a rectangle a is to the right of a rectangle b along a vertical
wall, and a rectangle c is to the right of b along a second wall, c is also to the right of a. Diagrams like

the one shown in Figure Kb) should be read in this sense. Note also that dissections are included in the
LOOS representation because they represent a special case of an LPAR.

Certain sets of relations that can occur in a LPAR cannot be represented directly by a wall
representation. These are the relations that occur around non-trivial holes, which are gaps that cannot
be e l iminated by extending the rectangles in an arrangement until they touch other rectangles
(Flemming 89). A n example is s h o w n in Figure 2(a). LOOS circumvents this difficulty by representing
non-trivial ho les explicitly as rectangles that are marked by a special label to dist inguish them from
regular rectangles [see Figure 2(b)]. The resulting marked structures are able to represent every set of
spatial relations that are realizable in an LPAR (Flemming 89) and form the basis for LOOS. In the
following, the term structure a lways refers to a marked structure.

Figure 2: a) A LPAR containing a non-trivial hole; b) representation of a non-trivial hole by a special
rectangle (shown hatched)

A special rectangle represents a non-trivial hole in a layout. Such rectangles must satisfy the
following well-formedness conditions.

Well-formedness conditions for special rectangles:

(a) The walls bordering a special rectangle must form a counter-clockwise (Figure 3a) or clockwise
(Figure 3b) turning pinwheel .

(b) Let the rectangles bordering the walls from the other side be denoted by ahl r,, bj, and /*, with
h = 1 , A ; i = 1, R; j = 1 , B ; fc = 1 , L , as shown in Figure 3. In case a), neither of the
rectangles ai , n , feior l\ is special. In case b), neither of the rectangles aA, rRi bB, or lL is
special .

a) b)

l l "A
---,

a \ aA

I, 1

j
b

Figure 3: Rectangles surrounding a special rectangle

The LOOS representation assumes, without loss of generality, that internal wal l s never cross
each other; that is, if two internal walls meet at a common point, they form a T-connection (see Figure
1). Crossing walls can be made to conform to this convention by the introduction of a d u m m y segment
separating one wall at the common point into two.

In addit ion to the spatial relations holding between the rectangles it contains , the LOOS
representation records expl ic i t ly the upper and lower bounds far the spatial coordinates of each
rectangle implied by the relations. These dimensional attributes are updated after each change to the
structure. A n addit ional attribute indicates the type of domain object represented by a rectangle. A
marked structure wi th these attributes is called a configuration.

2.2 Operators

This section describes the most important operators or rules provided by LOOS to generate and
modify configurations.

a. Generation Rules

Generation rules can be used to generate structures from structures by adding o n e rectangle at a
time, starting wi th a suitable initial structure, which m a y represent nothing more than the enclosing
rectangle. Alternative structures are generated if more than one possibil ity for a d d i n g individual
rectangles is pursued. The rules shown in Figure 4 are the two generation rules provided by LOOS. W e
a lways assume that the rectangles bordering a horizontal wall from above are ordered from left to
right, and the rectangles bordering the wall from belong are ordered from right to left. Similarly, w e
assume that the rectangles bordering a vertical wall from the right are ordered from top to bottom, and
the rectangles bordering the wall from the left are ordered from bottom to top.

Figure 4: Generation rules

The rules are specified in the figure as recursive rewrite rules consist ing of a left-hand side
(LHS) and a right-hand side (RHS) both of which describe substructures of a structure. A rule can be
applied to a structure, s, if s contains the LHS. The application consists of replacing the LHS in s by the
RHS or of 'rewriting's according to the rule. For example, the LHS of generation rule 1 s h o w s a wall, c,
and a sequence of rectangles r, r ; , / > i > 1, adjacent to c from one side; r, may be the first rectangle and
r ; the last rectangle along c on that side. The RHS shows how r i r r ; can be pushed a w a y from c to
create space for the insertion of a new rectangle, n, and a new wall, c'. In a similar way , rule 2 shows

h o w a wall, c, can be split into two to create a pinwheel configuration of wal l s and to insert a n e w
rectangle in the resulting hub. This rule must be used, for example, for the creation of non-trivial holes.

Both rules can be applied in rotated or reflected versions. W e will s h o w be low that if these
transformations are taken into account, every structure can be generated by apply ing these rules in
sequence, starting with a suitable initial structure.

b. Propagation Rules

The dimensional bounds for a newly inserted rectangle depend o n those of the surrounding
rectangles; conversely, the dimensional bounds of these rectangles are likely to become tighter through
the insertion. The propagation rules compute the bounds for the newly inserted rectangle and propagate
the resulting changes recursively through the configuration.

In (Flemming et al. 88), propagation rules for rectangles representing domain objects with fixed
d imens ions are described. These rules orient an object if its longer s ide fits only in o n e direction.
Otherwise, they leave the object un-oriented. That is , orientation is not treated in LOOS as an explicit
design variable, which reduces the combinatorics of search.

More recently, propagation rules that can handle rectangles with variable d imens ions have
been added to the system.

c. Test Rules

The configurations generated by LOOS are evaluated by a tester based o n a flexible collection od
test rules. Propagation and testing are not addressed in this report.

3. Non-Monotonic Enumeration of Alternatives

The basic difference between the two generation rules shown in Figure 4 i s that rule 1 leaves
the spatial relations be tween the rectangles already allocated unchanged, whi le rule 2 changes the
relations b e t w e e n rectangles r i A and r'y.i (and, by transitivity, the relations b e t w e e n further
rectangles) from right/ left to a b o v e / b e l o w (if applied in the orientation s h o w n in Figure 4; similar
changes occur for different orientations). As stated in the introduction, LOOS applies the rules under a
rather complicated control regime, which uses rule 2 for the insertion not only of non-trivial holes, but
also of 'place-holders' for regular rectangles so that the relations between these rectangles remain
unchanged by the insertion of further regular rectangles (Flemming 89). This monotonic i ty of the
spatial relations during generation is important because it enables LOOS to evaluate and consequently
prune intermediate so lut ions wi th certainty as most criteria or constraints that are not satisfied by an
intermediate solution can never be satisfied by a structure generated from it.

However, a less complex control regime may suffice in many applications, one that is still able
to generate all possible structures of a g iven number of rectangles, including non-trivial holes, but is
al lowed to change spatial relations in the process. This eliminates the need for specific place-holders
the significance of which may be difficult to appreciate by users unwi l l ing to immerse themselves
deeply in the technical complexit ies connected with the original LOOS control strategy. The present
section develops such a simpler, non-monotonous control regime.

The precise specification of this regime and the proof that it is, in fact, able to produce all
possible structures require a greater level of technicality. In order to be able to specify applications of
generation rules independent of a specific orientation, w e use the functions I*, P*, and N * to relate a
spatial relation or direction * to the other relations or directions. If * is a direction, I*, P», and N *
should be read inverse, last, and next direction of », respectively. The functions are defined in the
following table.

I* P* N »

A (above) B L R
B (below) A R L
R (right) L A B
L (left) R B A

Table 1: Functions I \ P*, and N*

For example, if a wall c borders a rectangle r in direction *, we can a lways say that r borders c
in direction I* independently of *. Or for an application of rule 1 in any orientation, if wall c borders
rectangles r{ r ; in direction * before the application, c will border the newly inserted rectangle, n, in
direction * after the application, while rectangle r{ will be in direction N * of rectangle r i + l before and
after the application. * will be called the direction of application of rule 1. The direction of
application of rule 2 is determined in the same way by the relation between wall c and rectangle rp
figure 3 specifies both rules for * = R.

If a rule is specified in terms of a generic application direction * (that is, the spatial relations
between the rectangles and walls that appear in its LHS and RHS are defined in terms of * through the
functions in Table 1), applications in specific orientations can be found by associating values A, B, R, or L
with ». These different orientations can also be v iewed as applications of the rule under different
rotations, and for rule 1, no further variations are needed.

It turns out that for rule 2, applications are needed also under different reflections. These are
more difficult to reduce to a s ingle parametric form. We therefore specify explicitly rule 2 in two

reflected versions, 2a and 2b, as s h o w n in Figure 5. Rule 2a generates a counterclockwise and rule 2b a
clockwise turning pinwheel of walls. It is understood that each version can be applied in any rotation.

2a

2b

Figures: R u l e s 2 a a n d 2 b

We prove in the fol lowing that rules 1 and 2 are sufficient to generate all possible marked
structures containing a g iven set of rectangles. This result, by itself, is not surprising. But the proof
itself is important because it forms the basis for our non-monotonic control regime, in which the sequence
of rule applications that create any structure is unique, including the insertion of special rectangles.

Theorem:
If Gn> h is a marked structure with « regular and h special rectangles, h > 0, where the regular
rectangles are labeled arbitrarily from 1 to n, there exists a sequence of applications of rules 1
and 2 that generates Gn> h and inserts the regular rectangles in the order given by their labels.

Proof: The proof is by induction on «, where the structure G 1 0 containing one regular and no special
rectangle serves as starting structure. C 1 0 contains exactly four external and no internal walls.
If n =2, an application of rule 1 to each wall in G l 0 with r,= ry = rectangle 1 generates the four
possible structures G 2,o- N o other structure with 2 regular rectangles exists (that is, a structure
with 2 regular rectangles cannot contain any special rectangle).
Let n o w n > 2, and let the theorem be true for all structures G„_h k. Suppose G„ h is an arbitrary
structure with n regular rectangles and h special rectangle's; label the regular rectangles
arbitrarily from 1 to n.
Consider rectangle n. It must border a wall in each of the four directions, at least one of which
must be internal because n > 2. The configuration of these four walls must belong to at least one
of the cases shown in Figure 6 (the crossing walls at the ends of c are meant to indicate that c
may form a T-joint at that point in one of two ways).

Case 1: There exists an internal wall, c\ so that n is the only rectangle bordering c' on its side.
Let * be the direction in which n borders cDenote the ordered rectangles on the other side of c'
by r a , r m . If neither r1 nor rm is a special rectangle, apply rule 1 backwards in an
appropriate orientation to remove wall c'and n. This generates a well-formed structure G n 1 h.
If rjor rm is a special rectangle, we have the structures shown in Figure 7. Neither of the
rectangles a, b or c can be special, and a backward application of rule 2a or 2b removes the
special rectangles, generating a well-formed structure GW/k< A from which n can be removed as
before.

Case 1:

Case 2:

Figure 6: Cases 1 and 2

Case 2: There exists no internal wall so that n is the only rectangle bordering the wall on its
side. In this case, the four walls bordering n must form a pinwheel as shown in figure 6. If
neither nor r'y is a special rectangle, apply rule 2a (in case 2a) or 2b (in case 2b) backwards (in
the orientation shown in figure 4) to remove wall c' and n. This generates a well-formed
structure G„ . | A . If, in case 2a, rz- or r'y is a special rectangle, it must be a clockwise turning hub
that can be removed by a backward application of rule 2b, generating a structure G W / A < fa from

which n can be removed as before. In case 2b, special rectangles can be removed in a similar
way.

Thus, we can always generate a well-formed structure G n . | A </j by backward application of
the generation rules. By hypothesis, there exists a sequence of rule applications that generates
Gni k by inserting rectangles 1 , n- 1 in that order. Clearly, Gn A can be generated from G„ | A
by an application of rule 1 or 2 that inserts n, followed, possibly, by one or two applications of
rules 2a or 2b that insert special rectangles. •

We now specify the function nonjnonotonicexpand that accepts as input a structure and inserts
a new rectangle in all possible ways, including special rectangles. The generated structures are
collected in a set, which is the function's output. The function is based on the above proof; that is, it
reverses the reductions used in the induction to determine the required forward applications of the
generation rules. The application of the propagation rules is left out in the specification.

Figure 7: Special vertices at the corners of n

In addit ion, the procedure guarantees that each structure can be generated in only one way;
that is, it avoids generating duplicates. Observe in this connection that the cases s h o w n in Figure 6 are
unique (that is, g iven n, there is only one way of selecting walls c and c' and rectangles r and r') except
when, in case 1, n is also the only rectangle bordering c on its side (in this case, c and c' can be reversed to
result in a different subcase of case 1). In case 2, uniqueness is based o n the convention that for pinwheel
configurations, w e select only vertical walls as c and c' and label them as shown in the figure.

The specifications rely on the predicate

special (r)

which returns T if rectangle r is special and F otherwise, and on three functions:

rule_l (G, r, r', *, R),

which returns a structure generated by applying rule 1 to structure G in direction * with pivots r and r* to
insert rectangle R;

rulej.a (G, r, r \ *, R),

which returns a structure generated by applying rule 2a to structure G in direction * with pivots r and r'
to insert rectangle K; and

rulejb (G, r, r', *, R),

which returns a structure generated by applying rule 2b to structure G in direction * with pivots r and r'
to insert rectangle R.

The symbol s denotes an instance of a special rectangle, and the symbol £ denotes the external
rectangle that borders each of the external walls from a unique direction.

function non_monotonicjscpand (Gn, *> R)
;Input: Cn.k = a stracture with n regular and it special rectangles, n > 1, Jt > 0
; K ' : rectangle to be inserted
begin
X<-0
for every wall c in Gn,k

begin
for every direction * so that c borders rectangles r\,..., rm in direction *

;; for every wall, there are two such directions!
unless n = £
begin
f o n ' = 1 m

unless special (r;)
begin
for; = i , m

unless [speciaHrj) or (i = 1 a n d ; = m and (* = L or * = B))]
begin ; ; generate all applications of rule 1 to c in direction *
Gn+l,fc *~ rulejt (G„, jt, r,-, ry, *, R)
X - X u { G „ + 1 , * }

;; fol lowed by insertions of special vertices
Y «- rule_2a_all ([Gn+\i jt }, r ; , P*, s)
x - x u y
X «- X u rule_2b_all (Y u {G„ +i, * }, rj, N*, s)
end

i f (o l « i d * = R)
begin ;; generate all applications of rule 2a to c in dir.
Y «- ruleJ2a_all (lG«,fc J, r;, , K)
X " X U ^ n . .. f . .

touoweaoy insertions or special vernces

A *"~ A U fUl€-Zu_Ull \L> U i ,T j, r , S) lf T j 9S in rig. D
end

if (f ^ it/ <inci •— Ij)
begin ;; d o the same for rule 2b
y <- rule 2b all ([G

— — VI TtfK If I* r

x *~~ x u y
7 *— tuts 2.u all (V r* P* s)
Y . Y M ? ~ ' " '

X / x u m b ^ alKZuY r'- N* s) •• r' as in Fie 5
end

end
end

end
•• that can be Generated from G t- with R as the new rectangle

end

Functions rule_2a_all and rule_2b_all called by non_monotonic_expand are specified as
fol lows:

function rule_2a_all (X, r, *, R)

;Input: X : a set of structures
r : rectangle contained in each G e X

: application direction
R : rectangle to be inserted

begin
X « - 0
for every G e X

find wall c bordering r in direction » in G
unless [special (r > or r is the first rectangle bordering c in direction I*]

let r i , r m be the rectangles bordering c in direction
u n l e s s (m = l)

tor; - l, m
unless special (r' ,)
A A U \ TUl£_X.tl \ \jf T, T j , , I\f)

end
end

returnX
trxiQ

function rule_2b_all(X, r,*,R)

;Input: X : a set of structures
; r : rectangle contained in each G E X
; * : application direction
; R : rectangle to be inserted
begin
X ^ 0
for every G e X

find wall c bordering r in direction * in G
unless [special (r) or r is the last rectangle bordering c in direction I*]
begin
let r'i r'm be the rectangles bordering c in direction *
unless < m = 1)

begin
for / = l m-1

unless special (r'j)
X ^ X U (rwfe_2b (G, r, r), *, R)}

end
end

return X
end

H o w these functions work i s illustrated in Figure 8. It s h o w s a structure with 6 regular
rectangles and a wall, c. The figure s h o w s all w a y s in which non_monotonic_expand inserts rectangle 7
along this wall in direction * = R, including all insertions of special rectangles.

References

U. Flemming (1978): "Wall representations of rectangular dissections and their use in automated space
allocation" Environment and Planning B 5 215-232

U. Flemming (1980): "Wall representations of rectangular dissections: additional results" Environment
and Planning B 7 247-251

U. Flemming; R. F. Coyne; T. Glavin; H u n g Hsi; M. D. Rychener (1988): A generative expert system for
the des ign of bui lding layouts (final report). Report 48-15-89. Engineering Des ign Research
Center. Carnegie Mellon University. Pittsburgh, PA

U. Flemming, R. Coyne , T. Glavin and M. Rychener (1988a), "A Generative Expert System for the
Des ign of Building Layouts - Version 2," Artificial Intelligence in Engineering; Design (Proc.
Third International Conference, Palo Alto, CA) . J. Gero, ed.. N e w York: Elsevier, pp . 445-464.

U. Hemming (1989): "More on the representation and generation of loosely-packed arrangements of
rectangles" Environment and Planning B. Planning and Design 16 327-359

