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Abstract. This report develops a conitrol [unction for
application of the generation rules used in the LOOS
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1. Introduction

LOOS is a system that supports the generation of layouts of rectangles to solve layout problems
across domains and applications (Flemming et al. 88, 88a). The generation component of the system
consists of generation rules and a control function that applies these rules in a particular sequence to
enumerate alternative solutions to a layout problem. The function guarantees criteria of monotonicity
that are important for the overall branch-and-bound strategy employed by the system.” This control
function, however, is rather complicated and therefore hidden from users. The present report develops
a non-monotonic control function for application of the LOOS ruies that appears preferable when user
interaction is essential.

Section 2 describes aspects of LOOS that are essential for an understanding of the following
section. Section 3 develops a non-monotonic control function for applying the generation rules.

* Monotonicity in the LOOS sense will be introduced in Section 3.




2. The LOOS System
21 Representation of Layouts

To assure the desired applicability across applications and domains, the representation
underlying LOOS ailows for continuous variations in the location of rectangles (that is, it does not rely
on an underlying grid) and for the handling of rectangles with varying dimensions, which may be fixed
or variable for individual rectangles.

The chosen representation is an extension of the wall representation of rectangular dissections
(Flemming 78 and 80). Figure 1(a) shows a rectangular dissection or rectangulation, that is, a rectangle
subdivided into rectangular components without overlaps or 'holes'. A wall in such a configuration is a
maximal sequence of collinear and connected line segments separating the rectangles from each other
(the figure highlights one such wall). A wall representation of a rectangular dissection lists all of its
walls and the sequence of rectangles bordering each wall from each of its sides. Such a representation is
independent of the coordinates of the rectangles contained in the dissection, but imposes constraints on
them that vary with the representation. It has been shown that wall representations of solutions to
layout problems under topological and dimensional constraints can be systematically generated in a
two-step process that first generates alternative wall representations and then computes for each of
these a set of feasible dimensions that take the constraints imposed by the wall representation into
account {Flemuning 78).
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Figure 1: a) a rectangular dissection and its walls; b) a loosely-packed arrangement of rectangles that
can be viewed as having the same spatial structure

Rectangular dissections constitute a very restricted class of floor plans that are practically
relevant for only a limited range of problems. In order to increase the applicability of LOOS, the wail
representation has been extended to include loosely-packed arrangements of rectangles (LPARs), which
maintain non-overlap between components, but allow for holes and irregular boundaries; an example is
shown in Figure 1(b). Note that a densely-packed arrangement is a LPAR; that is, rectangular
dissections form a proper subset of the set of LPARs.

Observe that the wall representation of the plan in figure 1(a) implies left/right and
above/below relations between the rectangles in the plan that are found also in the LPAR shown in
figure 1(b); wall representations, or their equivalents, can consequently also be used to represent certain
spatial relations in LPARs, provided these LPARs can be derived from a dissection by shrinking some
rectangles, or conversely by expanding the rectangles in the LPAR until they touch rectangles on all four
sides and thus form a dissection. LOOS uses the equivalent of wall representations to represent LPARs in
terms of left/right and above/below relations. These relations are called spatial in the following. The
set of spatial relations in an LPAR is called the spatial structure or topology of the LPAR. In some
contexts, it is convenient to cail a spatial relation also a direction.

Note that the spatial relations are transitive and do not have to be specified explicitly for
every pair of rectangles; if, for example, a rectangle a is to the right of a rectangle b along a vertical
wall, and a rectangle ¢ is to the right of b along a second wall, ¢ is also to the right of 2. Diagrams like




the one shown: in Figure 1(b} should be read in this sensc. Note also that dissections are included in the
LOOS representation because they represent a special case of an LPAR.

Certain sets of relations that can occur in a LPAR cannot be represented directly by a wall
representation. These are the relations that occur around non-trivial holes, which are gaps that cannot
be eliminated by extending the rectangles in an arrangement until they touch other rectangles
(Flemming, 89). An example is shown in Figure 2{a). LOOS circumvents this difficulty by representing
non-trivial holes explicitly as reciangles that are marked by a special label to distinguish them from
regular tectangles [see Figure 2(b)]l. The resulting marked structures are able to represent every set of
spatial relations that ave reaiizable in an LPAR (Flemming 89} and form the basis for LOOS. In the
following, the term structure always refers ¢ a marked structure.
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Figure 2: a)} A LPAR containing a non-trivial hole; b} representation of a non-trivial hole by a special
rectangle {shown hatched)

A special rectangle represents a non-trivial hole in a layout. Such rectangles must satisfy the
following well-formedness conditions.

Well-formedness conditions for special rectangles:

{a} The walls bordering a special rectangle must form a counter-clockwise (Figure 3a) or clockwise
{Figure 3b} turning pinwheel.

il Let the rectangles bordering the walls from the other side be denoted by ap, 1, bj, and i, with
h=1.,4;,i=1 . R, f=1,.,8;k=1,.. L, as shown in Figure 3. In case a), neither of the
rectangies a1.r1. #orf is special. Incase b}, neither of the rectangles a4, rg bg, or i is
special.

Figure 3: Rectangies surrounding a special rectangle




The LOOS representation assumes, without loss of generality, that internal walls never cross
each other; that is, if two internal wails meet at a common point, they form a T-connection (see Figure
1). Crossing walls can be made to conform to this convention by the introduction of a dummy segment
separating one wall at the common point into two.

In addition to the spatial relations holding between the rectangles it contains, the LOOS
representation records explicitly the wupper and lower bounds for the spatial coordinates of each
rectangle implied by the relations. These dimensional attributes are updated after each change to the
structure. An additional attribute indicates the lype of domain object represented by a rectangle. A
marked structure with these attributes is called a configuration.

22 Operators

This section describes the most important operators or rules provided by LOOS to generate and
modify configurations.

a. Generation Rules

Generation rules can be used to generate structures from structures by adding one rectangle at a
time, starting with a suitable initial structure, which may represent nothing more than the enclosing
rectangle. Alternative structures are generated if more than one possibility for adding individual
rectangles is pursued. The rules shown in Figure 4 are the two generation rules provided by LOOS. We
always assume that the rectangles bordering a horizontal wail from above are crdered from left to
right, and the rectangles bordering the wall from belong are ordered from right to left. Similarly, we
assume that the rectangles bordering a vertical wall from the right are ordered from top tc bottom, and
the rectangles bordering the wall from the left are ordered from bottom to top.

Figure 4: Generation rules

The rules are specified in the figure as recursive rewrite rules consisting of a left-hand side
{LHSY and a right-hand side (RHS) both of which describe substructures of a structure. A rule can be
epplied to a structure, s, if s contains the LHS. The application consists of replacing the LHS in s by the
RHS or of 'rewriting’ s according to the rule. For example, the LHS of generation rule 1 shows a wall, ¢,
and a sequence of rectangles r; ..., i j2i21, adjacent to ¢ from one side; r; may be the first rectangle and
rj the last rectangle along c on that side. The RHS shows how #;, ..., r; can be pushed away from ¢ to
create space for the insertion of a new rectangle, », and a new wall, ¢". In a similar way, rule 2 shows




how a wall, ¢, can be split into two to create a pinwheel configuration of walls and to insert a new
rectangle in the resulting hub. This rule must be used, for exampie, for the creation of non-trivial holes.

Both rules can be applied in rotated or reflected versions. We will show below that if these
transformations are taken into account, every structure can be generated by applying these rules in
sequence, starting with a suitable initial structure.

b. Propagaiion Rules

The dimensional bounds for a newly inserted rectangle depend on those of the surrounding
rectangles; conversely, the dimensional bounds of these rectangles are likely to become tighter through
the insertion. The propagation rules compute the bounds for the newly inserted rectangle and propagate
the resulting changes recursively through the configuration.

In (Flemming et al. 88), propagation rules for rectangles representing demain objects with fixed
dimensions are described. These rules orient an object if its longer side fits only in one direction.
Otherwise, they leave the object un-oriented. That is, orientation is not treated in LOOS as an explicit
design variable, which reduces the combinatorics of search.

More recently, propagation rules that can handie rectangles with variable dimensions have
been added to the system.

c. Tes# Rules

The configurations generated by LOOS are evaluated by a tester based on a flexible collection od
test rules. Propagation and testing are not addressed in this report.




3. Non-Monotonic Enumeration of Alternatives

The basic difference between the two generation rules shown in Figure 4 is that rule 1 leaves
the spatial relations between the rectangles already allocated unchanged, while rule 2 changes the
relations between rectangles r; 1 and r’j-1 (and, by transitivity, the relations between further

rectangles} from right/left to above/below (if applied in the crientation shown in Figure 4; similar
changes occur for different orientations). As stated in the intreduction, LOOS applies the rules under a
rather complicated control regime, which uses rule 2 for the insertion not only of non-trivial holes, but
also of ‘place-holders' for regular rectangles so that the relations between these rectangles remain
unchanged by the insertion of further regular rectangles {Flemming 89). This monotonicity of the
spatial relations during generation is important because it enables LOOS to evaluate and consequently
prune intermediate solutions with certainty as most criferia or constraints that are not satisfied by an
intermediate solution can never be satisfied by a structure generated from it.

However, a less complex control regime may suffice in many applications, one that is still able
to generate all possible structures of a given number of rectangies, including non-trivial holes, but is
aliowed to change spatial relations in the process. This eliminates the need for specific place-holders
the significance of which may be difficult to appreciate by users unwilling to immerse themselves
deeply in the technical complexities connected with the original LCOS control strategy. The present
section develops such a simpler, non-monotoncus control regime.

The precise specification of this regime and the proof that it is, in fact, able to produce all
possible structures require a greater level of technicality. in order to be able to specify applications of
generation rules independent of a specific orientation, we use the functions I*, P*, and N* to relate a
spatial relation or direction * to the other relations or directions. If * is a direction, I*, P*, and N*
should be read inwverse, last, and next direction of *, respectively. The functions are defined in the
following table.

* Il PF N.‘
A (above) B L R
B {below} A R L
R (right) L A B
L {left} R B A

Table 1: Functions I*, P*, and N*

For example, if a wall ¢ borders a rectangle r in direction *, we can always say that r borders ¢
in direction I* independently of *. Or for an application of rule 1 in any orientation, if wall ¢ borders
rectangles ry, ..., r; in direction * before the application, ¢ will border the newly inserted rectangle, n, in
direction * after the application, while rectangle r; will be in direction N* of rectangle r;, ; before and
after the application. * will be called the direction of application of rule 1. The direction of
application of rule 2 is determined in the same way by the refation between wall ¢ and rectangle r;
figure 3 specifies both rules for * = R.

[f a rule is specified in terms of a generic application direction * (that is, the spatial relations

“between the rectangles and walls that appear in its LHS and RHS are defined in terms of * through the
functions in Table 1}, applications in specific orientations can be found by associating values A, B, R, or L
with *. These different orientations can also be viewed as applications of the rule under different
rotations, and for rule 1, no Further variations are needed.

It turns out that for rule 2, applications are needed alse under different reflections. These are
more difficult to reduce to a single parametric form. We therefore specify explicitly rule 2 in two




reflected versions, 2a and 2b, as shown in Figure 5. Rule 2a generates a counterclockwise and rule 2b a
clockwise turning pinwheel of walls. Tt is understood that each version can be applied in any rotation.
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Figure 5: Rules 2a and 2b

We prove in the following that rules 1 and 2 are sufficient to generate all possible marked

structures containing a given set of rectangles. This result, by itself, is not surprising. But the proof
itself is important because it forms the basis for our non-monotonic control regime, in which the sequence
of rule applications that create any structurc is unigue, including the insertion of special rectangles.

Theorem:

Proof:

lf G, j is a marked structure with n regular and # special rectangles, 4 2 0, where the regular

rectangles are labeled arbitrarily from 1 to n, there exists a sequence of appiications of rules 1
and 2 that generates G, ;, and inserts the regular rectangles in the order given by their labels.

The proof is by induction on 1, where the structure G4 g containing one regular and no special
rectangie serves as starting structure. Gy o contains exactly four external and no internal walls.

If n =2, an application of rule 1 to each wall in Gy g with 7;=7; = rectangle 1 generates the four

possible structures Gy g. No other structure with 2 regular rectangles exists {that is, a structure
with 2 regular rectangles cannot contain any special rectangle).

Let now n > 2, and let the theorem be true for all structures G, 1 - Suppose G, ,, i5 an arbitrary
structure with # regular rectangles and #t special rectangles; label the regular rectangles
arbitrarily from 1 to #.

Consider rectangle n. It must border a wall in each of the four directions, at icast one of which
must be internal because 1 > 2. The configuration of these four walls must belong, te al least one
of the cases shown in Figure 6 (the crossing walls at the ends of ¢ ate meant to indicate that ¢
may form a T-joint at that point in one of two ways).




Case 1. There exists an internal wall, ¢, so that » is the only rectangle bordering ¢’ on its side.
Let * be the direction in which »# borders ¢Denote the ordered rectangles on the other side of ¢’
by r,, r,. If neither r, nor r, 1is a special rectangle, apply rule 1 backwards in an
appropniate orientation to remove wall ¢’ and n. This generates a well-formed structure G, . .
If rjor », is a special rectangle, we have the structures shown in Figurc 7. Neither of the
reclangles a, & or ¢ can be special, and a backward application of rule 2a or 2b removes the
special rectangles, generating a well-formed structure G, " from which n can be removed as

before.
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Figure 6: Cases 1 and 2

Case 2: There exists no internal wall so that 7 is the only rectangle bordering the wall on its
side. In this case, the four walls bordering » must foom a pinwheel as shown in figure 6. 1f
ncither #, nor r'v is a special rectangle, apply rule 2a (in case 2a) or 2b (in casc 2b) backwards (in
the oricntation shown in figure 4) 1o remove wall ¢"and n. This generates a well-formed
structure G .| *. If, in case 2a, r- orr'y is a special rectangle, it must be a clockwise turning hub
that can be removed by a backward application of rule 2b. generating a structure G, "< f fro"
which » can be removed as before. In case 2b, special rectangles can be removed in a similar
way,

Thus, we can always generate a well-formed structure G, .| ™ </j by backward application of
the generation rules. By hypothesis, there exists a sequence of rule applications that generates
G, i k by inserting rectangles 1. » - 1 in that order. Clearly, G, " can be generated from G..|
by an application of rule 1 or 2 that inscrts #, followed, possibly, by onc or two applications of
rules 2a or 2b that insert special rectangles. »

We now specifyv the function ronjronoionic expand that accepts as input a structure and inserts
a new rectangle in all possible ways. including special rectangles. The generated structures are
collected in a sci, which is the function's outpul. The lunction is based on the above prool that is, it
reverses the reductions used in the induction to determine the required forward applications of the
generation rules. The application of the propagation rules is left out in the specification.
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Figure 7: Special vertices at the corners of n

In addition, the procedure guarantees that each structure can be generated in only one way;
that is, it avoids generating duplicates. Observe in this connection that the cases shown in Figure 6 are
unique (that is, given n, there is only one way of selecting walls ¢ and ¢’ and rectangles r and r’) except
when, in case 1, # is also the only rectangle bordering ¢ on its side (in this case, ¢ and ¢’ can be reversed to
result in a different subcase of case 1). In case 2, uniqueness is based on the convention that for pinwheel
configurations, we select only vertical walls as cand ¢’ and label them as shown in the figure.

The specifications rely on the predicate

special (r)
which returns T if rectangle r is special and F otherwise, and on three functions:
rule_1 (G, r. r',* R},

which returns a structure generated by applying rule 1 to structure G in direction * with pivots r and r' to
insert rectangle R;

rule 2a (G, r,r", ", R),

which returns a structure generated by applying rule 2a to structure G in direction * with pivotsr and r’
to insert rectangle R; and

rule 2b (G, v, 7", ", R),

which returns a structure generated by applying rule 2b to structure G in direction * with pivots r and r°
lo insert rectangle R,

The symbol s denotes an instance of a special rectangle, and the symbol E denotes the external
rectangle that borders cach of the external walls from a unique direction.




function non_monotonic_expand (G . R)

sInput: Gy, ¢ 2 structure with n regular and & special rectangles, n 21, k>0
; R : rectangle to be inserted

begin

X

for every wall cin Gy, ¢

for every direction * so that ¢ borders rectangles ry...., 7, in direction *
: for every wall, there are two such directions!
unlessri =E
begin
fori=1,...m
unless special (r; )
begin
forj=i,..,m
unless [ special (rj Jor (i=1andj=mand(*=Lor*=8)})]
begin ;; generate all applications of rule 1 to ¢ in direction *
Guek —rule 1 (G 7 rj, " R)
X «XulGpe1, k)
;; followed by insertions of special vertices
Y < rule 2a_all ((Gns1,k ). 7j, P*, 5)
X+«Xuy
X = XU rule 2b_all(Y U {Gpe1,k ) i, N*. 5)
end
if(iland"=R)
begin ;: penerate all applications of rule 2a to ¢ in dir. *
Y « rule 2a_all ({Gux ), 1% R)
X+e«Xuy
;; followed by insertions of special vertices
Z —rule 2b_all (Y, r; N*, s)
X~XulZ
X = Xurule2b all(ZU Y, 7' P*,8);;r'j asin Fig. 5
end
if(i<mand*=1)
begin  ;; do the same for rule Zb
Y = rule_2b_all ({Gux 1, ri.*, R}

X+« Xuy
Z —rule 2a_all{Y ,r; P* 5)
X+~XuZ
X —Xuvrule 2a all{ZU Y, r',', N* s);r’jasinFig. 5
end
end
end
end
return X ;; the set containing all structures Gpe1, k= &

;; that can be generated from Gy g, with R as the new rectangle
end
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Functions rule_2a_all and rule_2b_all called by non_monotonic_expand are specified as
follows:

function rule_2a_all (X, r,*, R)

JInput: X : a set of structures

; r : rectangle contained ineach G ¢ X
; * : application direction

; R : rectangle to be inserted

begin

X0

foreveryGe X

find wall ¢ bordering r in direction * in G
unless [ special (r ) or r is the first rectangle bordering c in direction I* ]

letr’y, .., r'm be the rectangles bordering ¢ in direction *

unless (m=1)
begin
forj=2,..,m
unless special ( ')
X « Xu{rule_2a(G, nri.t, R))
end
end
return X

function rule_2b_all( X, r,*, R)

JInput: X : a set of structures

; r : rectangle contained ineach G € X
; * : application direction

; R : rectangle to be inserted

begin

X -0

forevery Ge X
find wall ¢ bordering r in direction * in G
unless {special ( r) orr is the last rectangle bordering ¢ in direction F* ]

letr’y, .., r';m be the rectangles bordering ¢ in direction *
unless{m=1)

forj=1,..,m-1
unless special (1))
X «Xulrle2b(G,r, T, R)}
end
end
return X

11
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Figure 8: Ilustration of non-monotonic enurmeration
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How these functions work is illustrated in Figure 8. [t shows a structure with 6 regular
rectangles and a wall, ¢. The figure shows all ways in which non_monotonic_expand inserts rectangie 7
along this wall in direction * = R, including all insertions of special rectangles.
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