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A b s t r a c t 

We address the problem of finding a "tight" representation of Horn 
cardinality rules in a mixed integer programming model by describing 
a convex hull of it. A cardinality Horn rule asserts that if at least it 
of the propositions Ax,...,Am are true, then B is true. We also show 
that Horn cardinality rules have properties analogous to ordinary Horn 
rules. 

1 I n t r o d u c t i o n 

As rule-based systems and other types of logic modeling grow in popularity, 
logical rules and propositions can play an increasingly important role in 
mathemat ica l programming models . Such simple logical constraints as "if 
A is produced, then either B or C must be produced" have long been a 
part of mathemat ica l programming. But much more complex logic models 
are now being formulated, and they can also be embedded in mathemat ica l 
programming models . 

Proposit ional Horn formulas have some very attractive properties that 
account for their popularity in rule-based systems. A Horn inference problem 
are solvable by the linear programming relaxation, (see, for example , [2], [7]) 
That is, one can determine the satisfiability of a set of Horn rules s imply by 
checking whether the corresponding LP relaxation is feasible. A Horn clause 
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is a clause with at mos t one positive proposit ion. T h e rules one typically 
finds in expert sys tems , 

If the proposit ions Au...,Amaxe aU true, then B is true. 

Or 

If the propositions Ai,..., Am are all true, 

are Horn rules. 
A natural extended class of Horn rules is the Horn cardinality rules. A 

Horn cardinality rule has the form, 

If at least for at most ) k of Ax,..., Am are true, then B is true. 

And the cardinality clauses 

at least (or at mos t ) it of At,..., Am are true. 

are special cases. We wish to investigate how the properties of the ordinary 
Horn rules can be generalized to the Horn cardinality rules. 

Furthermore, when logical constraints become a significant component 
of mathemat ica l programming models , the quality of their representation 
becomes an important issue. Will iams argues in [14] that cardinality condi
tions are appropriate as a basic form in which to express logical constraints. 
Therefore, while we consider the properties of the Horn cardinality rules as 
a whole sys tem, we also wish to investigate the representation of a Horn 
cardinality rule in an MIP model . 

The usual method for representing logical conditions are as the following. 
They are first rewritten as a conjunction of logical "clauses," which is to 
say in conjunctive normal form ( C N F ) . A clause is a disjunction of atomic 
propositions or their negat ions , such as , 

z i V -1x2 V £ 3 , 

where - means "not," and V means "or." Each clause is then written as an 
inequality in 0-1 variables, which for this example is , 

xl + (l-x2) + x3 > 1, 

where XJ is interpreted as true when XJ = 1 and false when XJ = 0 This 
is a very "loose" representation of the logical condit ions, in the sense that 
its linear relaxation (which replaces X j G { 0 , 1 } with 0 < X j < 1) describes 



a polytope that has many fractional extreme points. This complicates the 
solution of the model , since most solution techniques make essential use of 
the linear relaxation. 

The difficulty with C N F representation is not that the individual clauses 
are poorly represented. In fact, each clause receives the tightest possible 
representation, namely a convex hull representation. This is a set of 0¬ 
1 inequalities whose linear relaxation describes the convex hull of the 0-1 
points satisfying them. Rather, the difficulty is that there are typically 
a large number of clauses in C N F . This results in a loose representation 
of the formula as a whole, even though each individual clause is tightly 
represented. (R. Jeroslow discusses this principle in [9].) This problem 
is particularly acute for a cardinality rule, since the number of clauses in 
its C N F equivalent grows exponentially with the rule's length if no new 
variables are added (and is apparently quite large even if new variables are 
added) . 

Thus when a logical constraint comes in the form of Horn cardinality 
rule, it is far better to give each a convex hull representation directly than 
to convert it to C N F first. We will show how to do this. That is , we will 
s tate a simple algorithm that generates for any Horn cardinality rule a set 
of 0-1 inequalities that provide a convex hull representation of it. These 
inequalities describe the facets of the convex hull. 

Several authors have contributed to the inequality representation of log
ical formulas in C N F . Tseit in [12] showed how to convert any formula of 
propositional logic to C N F in linear t ime by adding new variables. Dantzig 
[3], Blair et al. [2], and Will iams [13] discussed the use of 0-1 inequalities to 
represent logical constraints in C N F , and Karp [10] used them to show that 
integer programming is NP-hard. Hadjiconstantinou and Mitra [5] described 
an algorithm for the automat ic conversion of logical formulas, including car
dinality clauses, into inequality form. But they do not consider the tightness 
of the representation. Hooker [8] described a generalized resolution proce
dure that generates all the undominated implications of a set of cardinality 
clauses. In research that proceeded concurrently with ours, Araque and 
Chandru found a convex hull representation of cardinality clauses. 

This paper is organized as the following. Section 2 states our algorithm 
for generating the convex hull description of a Horn cardinality rule and 
proves its correctness. In Section 3 we show that they have a natural gen
eralization in cardinality logic with precisely the same properties. We also 
propose our future related works. 



2 CN F OF H O R N C A R D I N A L I T Y RULES 

A Horn cardinality rule is written, 

( i 4 i , . ..,Am)k B, (1) 

and is read, "if at least k of A l t . . . , An are true, then B is true." W e assume 
m > k > 0 and the phrase "at least" can be replaced with "at most" by 
writing, 

(~>Aly...,->Am)m-k -'B. 

Ordinary Horn rules have k = m. W h e n m = 1 we will omit the parentheses , 
so that (A)x => B is written A B . 

When m = 0, (1) becomes a cardinality clause asserting that B is true. 
W h e n 5 = 0, it asserts that fewer than k of Au ..., Am are true. 

We first show that Horn cardinality rules have an exponential C N F ex
pansion. 

Theorem 1 No CNF formula equivalent to a Horn cardinality rule 

(xu.. .,xm)k y. (2) 

whose variables are in {xu .. .,xm,y} has fewer than (™^J clauses. 

Proof. Let F be any C N F equivalent. Let {x*,y*) = (x\,..., x*m, j f ) £ 
{ 0 , l } < m + 1 ) be a minimal violator of (2) if it violates (2) but would satisfy it 

if any x*j equal to 1 were switched to 0. There are n* 1 1 1 ™-^ violators, 

since each has exactly k x*'s equal to 1, and y* = 0. Every minimal violator 
(x*,y*) must violate some clause C x . in F. We show that every Cx» is 
necessarily distinct, from which the theorem follows. 

Since (x*,y*) violates C , . , C** cannot contain the posit ive literal X j 

when Xj = 1. But since (x*,tT) is a minimal violator, C* . must contain 
XJ for each ^ = 0- r t f o l l o w s t h a t t h e posit ive literals in Cx- are precisely 
those for which x) = 0, which impUes that every C x . is dist inct. • 

W h e n additional variables are used, there is a polynomial C N F expan
sion, but it is still long. We will show this by example using the pigeon hole 
principle, which Haken used to prove that the resolution m e t h o d of theorem 
proving has exponential complexity [6]. To convert the formula, 

(xux2,x3,x4)3=> y (3) 



to C N F , we create new variables Z i j for i = 1 , . . . , 4 and j = 1,2- The C N F 
equivalent is the conjunction of the following clauses. 

-.ari Vj/V i u ' V Z 1 2 

- . Z J V Y V Z 2 I V 2 2 2 

- . x 3 Vj/ V Z 3 i V z 3 2 

- . I 4 V Y V Z 4 I V Z 4 2 

V ^ l l V - > Z 2 1 
V - I Z N V - 1 ^ 3 1 

V - . Z 2 1 V - . Z 3 i 

V - . 2 2 1 V ~ . Z 4 1 

V - > Z 3 1 V - ^ 4 I 

V ^ z i 2 V - . Z 2 2 

V - . z i 2 V - I Z 3 2 

V - > Z 1 2 V - > Z 4 2 

V - I Z 2 2 V - > Z 3 2 

V - I Z 2 2 V-1Z42 

V - . Z 3 2 V - . Z 4 2 

We interpret the formula (3) as saying that if we have 3 or more pigeons 
(i .e. , 3 or more z / s are true) , then we cannot put them in 2 holes with at 
most one per hole (y is true) . In ( 4 ) , z,-,- = 1 is interpreted as saying that 
pigeon j is put in hole *. The first four clauses of (4) say that every pigeon 
is put into a hole, or else y is true. The remaining clauses say that no 2 
pigeons are put into the same hole. Thus (4) forces y t o be true precisely 
when we try to put 3 or more pigeons in 2 holes, just as (3) does. 

In general, (2) is read as saying that if we have k or more pigeons, we 
cannot put them in JFC — 1 holes. Thus the above method of producing a 
C N F equivalent generates m(k - 1) additional variables and m + ( l / 2 ) ( f t -
l ) m ( m - 1) clauses. We are aware of no shorter conversion. 

3 Convex Hull Representation of Horn Cardinal
ity Rules 

In this sect ion, we describe the facets of the convex hull of the feasible points 
of a Horn cardinality rule. Consider Horn cardinality rules having form (2) 
Denote by 5 the set of feasible points satisfying ( 2 ) , and by conv(S) the 
convex hull of 5 . We begin by giving the equivalent 0-1 linear inequality 
representation of a Horn cardinality rule. 
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Lemma 1 The 0-1 linear inequality is an equivalent representation of (2): 
-ex + (l + m-k)y>l-k. (5) 

Proof: If (2) is true, then either y = 1 or ex < k (or bo th ) . It is easily 
checked that (5) is satisfied in either cases. Furthermore, if (2) is false, then 
y = 0 and ex > k, which violates (5 ) . • 

T h e following l e m m a starts our description of the convex hull of (2 ) . 

Lemma 2 When k > 2 or m = k = 1, (5) defines a facet of conv(S). 

Proof: Lemma (1) showed that (5) is valid for ( 2 ) . The case m = Jb = 1 is 
trivial. W h e n k > 2 , we need to find m+ 1 affinely independent points in S 
such that 

-ex + (1 + m - k)ey = (1 - k) 
We construct the first m points satisfy ex = k-1 and y = 0, and another 

point satisfying ex = m and y = 1 as the following. 
Let A be a k x k matr ix of all ones except for zeros on the diagonal. Let 

0 be a k x ( m - k) zero matrix . B is a ( m - Jb) x k 0-1 matrix with k ~ 2 
ones in each row. And / is a ( m - k) X (m - k) identity matrix . 

( e M 
D = A 0 0 . 

Then the rows of D are the m + 1 points required. To show that they 
are affinely independent , it suffices to show that det(D) / 0. It is clear that 

det(D) = det(A) 

To compute det(A), add all other rows of A to the first row and then subtract 
all other rows from the new first row divided by {k - 1). Then it is clear 
that det(A) = { - l ^ i k - 1). The l e m m a follows. • 

To describe the entire set of facets, we first show that the inequality (5) 
is the only facet-defining inequality, 

ax + fiy > c, (6) 

in which each a;- ^ 0 and 0 # 0. We then obtain the remaining facets 
recursively by showing that they are the facets of simpler cardinality rules. 
To do the latter we exploit the facts a) that the remaining facets are facets 
of the convex hull's projections onto lower dimensional spaces, and b) that 
each of these projections is itself the convex hull description of a simpler 
rule. 



Lemma 3 Assume (6) defines a facet ofconv(S). If a, / 0, for all i, then 
(6) is a nonzero scalar multiple of (5). 

Proof: We first show a, < 0 for all *. Since (6) defines a facet of conv(S), 
it must contain a set T of m + 1 affinely independent points in S. For any 
i € { l , . . . , m } we know that some (x,y) <E T , has xt = 1. Otherwise the 
facet is defined by z , > 0. Since (x,y) satisfies (2), it must either falsify its 
antecedent or satisfy its consequent. In either case a point (xf, y) identical to 
(x,y) except that x\ = 0 also satisfies (2), so that ax'+ py > c. Subtracting 
ax + py = c from this, we get a, < 0. Without loss of generality, assume 
a, < a 2 < • • • < a m < 0. 

We then show that for any (x, y)€T,y=\ implies ex = m. Consider a 
point ( i , 1) e T . If ex < m , ( that is, xt = 0 for some * ) , then a point (x',y) 
identical to (x, 1) except x\ = 1 satisfies (2). Thus ax'+P > e, which implies 
at > 0, a contradiction. It is clear that points (x, y) € T with ex = m satisfy 
y = 1, since T contains only feasible points . 

We can also show that for any (x,y) € T , y = 0 implies ex = k - 1. 
Consider a point ( z , 0) <E T. We must have ex > k - 1. And if ex < k - 1, 
we have as above that a t > 0 for some t. Thus ex = k - 1. 

It follows that the points in T can be partit ioned into subsets Tx and T 2 , 
with ex = k - 1 and y = 0 for all (a?, p) € T l 5 and ex = m and y = I for all 
(x,y) e T 2 . Thus there are m points in r t and 1 point in T2. 

Now we show that a,- = a V». First consider the points in Ti . Set am = a . 
We will build recursively a set Q C { 1 , . . . , m } of indices such that a, = a for 
all t € Q. Initially Q = { m } , and we will augment Q untU Q = { 1 , . . . , m } . 

At each step of the recursion we have Q = {q,..., m}. Let T ' be the set 
of points in Ti satisfying ar,- = 1 for some t € {q,.. . , m } . Since 2\ contains 
m independent points with y = 0, 2? must be nonempty. Let (x, 0) € T\ ? be 
a point satisfying xt = 0 for some t < 9. We suppose for the m o m e n t that 
such a point exists . Then the point ( i ' , 0 ) identical to (x,0) except arj = 1 

and x\ = 0 for some i € Q wi th = 1. Then (x',0) satisfies 0 1 ' > c, since 
ear = - 1. This implies at > ait Since by assumption at < a t + 1 < . . . < a;, 
we have at = a^+i — ... — at — a, and we update g = {t,t + l , . . . , m } . 

It remains to show, then, that there is a point (27,0) € 7 ? with a:, = 0 
for some t < 9 if 9 ^ 1. Suppose to the contrary, We consider two cases: 

Case 1. Tj = T ' . Then all the points in Ti have xp = l,Vp < q, since 
otherwise ( x , 0 ) exists . But this implies for p < q that xp = 1 for all points 
in T, which is impossible since otherwise xp < 1 would define the facet. 



Case 2. Tx ± T«. Consider any point (x,0) € Tj \ 7 ? . Since it satisfies 
ex = k - 1, we must have g > k - 1. On the other hand, consider any point 
( J C , 0 ) € Tf. By hypothesis xv = 1 for aU p < q, we must therefore have 
ex > k, which is impossible ( x , 0 ) € 2 i . 

We conclude that Q can be updated until q = 1. Thus ai = . . . = am = 
a. 

Therefore, (6) becomes 

aex +{3y>c (7) 
Substituting into (7) a point (x,y) € Tu we get 

a ( f c - l ) = c. (8) 

Doing the same for (x,y) 6 T 2 , we get , 

a m + /) = c (9) 

Thus 

/3 = ~a(m — k + 1) 

Substituting this and (8) into (7 ) , we have 

aex - a(m - k + l)y > a(k - I). (10) 

Since a < 0, the l e m m a follows. • 
The following l e m m a says that any facet without y is a x variable bound

ary. 

Lemma 4 Let conv(S) have a facet 

ax > c. (11) 

Then there exists an index j such that (11) is equivalent to x, > 0 or x5 < 1. 

Proof: Since (11) is feasible, all points with y = 1 satisfy it. A n d since it 
does not contain y, it therefore has all points feasible. A facet containing 
all 2 m + 1 points has to be a variable boundary. That is , a* > 0 or x; < 1 for 
some i. a 

L e m m a 5 If k < m, any facet of conv{S) other than (5) is a facet of 
the projection of conv(S) onto (ar , - , , . . . , xim_iyy) for some {iu ..., i m _ i } C 
{ l , . . . , m } . 



Proof: Consider a facet F of conv{S) other than (5) . Thus at least one 
variable is missing from the inequality describing F. By l emma (4 ) , this 
missing variable can not be y. Without loss of generality, assume it is xx. 
We wish to show that F is a facet for the projection P of conv(S) onto 
(a?2, • • - , x m , y). F is clearly valid for P. So it suffices to show that there are 
m affinely independent points of P on F. 

Consider m + 1 independent points of S on F. Let A be the ( m + 1) x 
( m + 1) 0-1 matrix with each point as a row. Hence det(A) / 0. On the 
other hand, det(A) can be expended in the cofactors of its first column: 

det(A) = a n A n + • • • + < W u > W I , I 

Clearly, each of the cofactors A}1 corresponds to a set of m vectors in P. 
Since det{A) / 0, we must have that at least one of these cofactors is non
zero. This implies that at least one set of m points in P are independent. 
Furthermore, they are all on F since F does not contain xlt Thus , F is a 
facet of P. • 

L e m m a 6 For k < m, the projection of S onto ( a t , - , , . . . , xim_,, y) is pre
cisely the set of 0-1 points satisfying ( x i x x i m _ t ) k => y. 

Proof: Wi thout loss of generality, we again assume 

( A R , - , , . . . , ) = ( ^ 2 ) • • • ) xm)-

Now denote by P : ( 5 ) the projection of S onto (x2,. ..,xm). Also let 

Si = {(x,y)\x € { 0 , l } m - \ y € { 0 , 1 } , ( x 2 , . . . , xm)k => y). 

We wish to show Si = Pi(S). 
Take a point (x2,..., xm, y) G 5 a . It is clear that for either y = 1 or 

y = 0 we have (0,x2,. ..,xm,y) € 5 . Thus ( x 2 , . . . , a s m , j , ) € P i ( 5 ) . That 
is, Si C P ! ( 5 ) . Now, take ( z 2 , . . x m , y) e Pi(S). Then there exists an xx 

such that (xux2l...,xm,y) € 5 . If y = 1, clearly ( x 2 , . . . , x m , l ) <E Si. If 
y = 0, we know that at most k - 1 of ( a ? i , s 2 , • • - , « m ) can be 1. Therefore, 
at most A; - 1 of ( i 2 , . . . , i m ) can be 1. That is, (x2,.. .,xm,y) e 5 a . Thus 
J \ ( S ) C 5 i . • 

From the results of l emmas 2-6, we have showed the main result of this 
section. That is, the full description of the convex hull of the general cardi
nality rule can be stated as follows. 



T h e o r e m 2 Ifm > k > 2, the facets of conv(S) are 

- ( a? i + • • • + Xm) + ( m - k + \)y > 1 - fc, 

p/ti5 tf/ie facets of 

(x,„...,x,m^kAy 

for all sets { i i , . . . , i m _ i } C { 1 , . . m } . • 

T h e o r e m 3 If k = m, the facets of conv(S) are 

- x\ xm +y > 1 - m , (12) 

p/tzs X{ > 0, X{ < 1 for all i and y > 0 y < 1 provided that m > 2. 

Proof: When k = m, the rule is an ordinary clause. L e m m a 2 implies tha t 
(12) defines a facet. It is easily shown tha t all the bounds also define facet 
when m > 2. The case m = 1 is obvious. •. 

T h e o r e m 4 If m > k = 1, £/ie facets of the conv(S) are the facets of 

xi y, (13) 

/ o r i = 1 , . . . , r a . 

Proof: We only need to show tha t 

- ex + m y > 0 (14) 

does not define a facet of conv(S). 
If it does , it should contain m + 1 affinly independent po in t s . Consider 

all the feasible poin ts on —ex + y = 0. It is clear t ha t there are only two 
poin ts (ex,y) = (m, 1) or ( 0 ,0 ) . Thus (14) can not be a facet. Theorem 2 
implies the resul t . • 

We will see in next section, tha t a set of Horn cardinali ty rule keeps all the 
nice p roper t i es of the ordinary Horn rule . Par t icu la r ly , the inference problem 
on a set of Horn cardinali ty rules can be solved by l inear p r o g r a m m i n g . And 
a linear t ime a lgor i thm is given for solving the cardinal i ty Horn satisfiability 
p rob lem. 



4 Properties of Horn Cardinality Rules 

We have described the convex hull of the Horn cardinality rule as a special 
case of the general cardinality rule in the last section. On the other hand, it 
is nature to see that the Horn cardinality rule is an extension of the ordinary 
Horn rule. Horn inference problem are solvable by the Unear programming 
relaxation, (see, for example , [2], [7]) That is, one can determine the satisfi
ability of a set of Horn rules simply by checking whether the corresponding 
LP relaxation is feasible. In this section, we will show that Horn cardinality 
rules also has this property. 

Consider a data base in Horn cardinality rules, 

CF = (CHi,---,CHm) (15) 

with proposit ions ( z i , • • - , z n ) . In rule CHj, denote m,- the number of an
tecedents , kj the minimum number of antecedents required to imply the 
consequence, and S, the set of antecedent proposit ions in CHr We also use 
x u to denote the consequence proposition in CHj. 

From the last section, we know that a Horn cardinality rule has an 
equivalent 0-1 linear inequality representation. Thus , the data base (15) has 
an equivalent 0-1 Unear inequality system 

xj + (1 + m i ~ki)xj+ > 1 = l , - - , m , (16) 

where ar̂ 's are 0-1 variables. We show that CH is true if and only if the 
Unear relaxation of (16) is feasible with the variable boundaries. 

This property is closely connected with the unit resolution, or the chain
ing procedure. However, the normal unit resolution does not work for the 
cardinality problem. Here, we describe another chaining procedure for Horn 
cardinality d a t a base CF. We call the procedure positive chaining since it 
is restricted to fixing variables to T R U E . 

Positive Chaining Procedure. Pick any positive unit rule I, X i , of CF; 
if there is none, exit the procedure. If / is the negation of another unit 
rule of C F , CF is inconsistent; exit the procedure. 

Otherwise fix x{ = true, and remove x{ from CHj if x{ is a antecedent 
in CHj and set kj = kj - 1. If kj = 0, remove all the remaining 
antecedent variables from CHj, and x j + is left as a positive unit rule. 



Denote (16) simply by Ax > a. Then we have the M o w i n g important 
property analogous to the system of ordinary Horn clauses. 

Theorem 5 A system Ax > a of Horn cardinality rules is satisfiable if and 
only if the positive chaining detects no inconsistency, and if and only if the 
linear system Ax > a, 0 < x < 1 is feasible. 

Proof. It is obvious that if the rules are true, then the linear sys tem is 
feasible. 

If posit ive chaining detects no inconsistency and the procedure is termi
nated . Then a unit clause must have negative form. And all other clause 
will have at least two literal, one of which is a negated variable. Thus the 
original sys tem can be satisfied by sett ing remaining variables to 0, and all 
the variables fixed in positive chaining are fixed to 1. That is, if posit ive 
chaining detects no inconsistency, then the rules must be consistent. 

Finally, we show that if the positive chaining detects inconsistency, the 
linear sys tem is infeasible. In fact, when the positive chaining fixes a variable 
Xi t o true, the corresponding linear constraint xt > 1 fixes x{ t o 1 along with 
the bond x, < 1. Thus if the positive chaining had found inconsistency, that 
means there is a pair of constraints in the linear sys tem: xt > 1 and -xi > 0. 
This implies that the LP would not have been feasible. • 

The linear t ime algorithm for testing the ordinary Horn satisfiability 
problem was first proposed by Dowling and Gallier [4]. Minoux gave a 
simpler graph representation of Horn clauses, and a new version of linear 
t ime {0{K), where K is number of literals) algorithm [11]. By modifying 
the Minoux's algorithm, we give a similar linear t ime algorithm for test ing 
the Horn cardinality problem. Note that the Horn cardinality inference 
differences from the ordinary Horn inference only in that a Horn cardinality 
rule has an extra parameter k which indicates the minimum number of 
antecedents required to imply the consequence. 

Given a set of Horn cardinality rules CF, a directed graph G(CF) asso
ciated with it is constructed as follows: 

• it contains n + 2 nodes , one node i for each variable xf (i = 1 , 2 , . . . , n) 
plus one node t (standing for "true") and one node / (s tanding for 
"false"), 

• if the j-th rule CHj contains a single variable in posit ive form, then 
there is an arc u = (t,Xi) with label l(t,Xi) = j, 



• if the j - t h rule CHj is of the form (xilXl2 . . . x . J j t , then G{CF) con
tains q arcs (xi}, f) with labels equal to j , l{xi}, f) = j , r = 1 , 2 , . . . , q, 

• if the j - t h rule CH3 is of the form ( a ^ X j , . . . a r i m ) * a P .
 t h e ] 1 G ( C f ) 

contains g arcs (xi},xp) wi th label equal to j and node , r = 1 , . . .,q. 
Associated with node p, assign a valve, val(p) = k. 

Now, we present the algorithm as follows. 

Algorithm C H 

step 0. Initialization 
Set up G{CF) associated with the given Horn cardinality rules. 
For each rule CHj (j = 1 , 2 , . . . , m) compute kj, m,- and set 
S = {j\m3 = 0 } , 
set val(i) = 1, if xt in CH3 and CH} € 5 , val(i) = 0 else. 

step 1 
If 5 = 0, terminate, set all remaining free variables to 0 and all fixed 
variables to 1. SAT. 
If S ? 0, pick j e S and S S \ {j}. 

step 2 
If CH} has no consequence, terminate. Inconsistency is detected. 
Else, let xt be the consequence variable in rule CHj. 
For every arc ( a r . - . Y ) with label r = l(Xi,y) in G ( C F ) , do 

fcr = kT — 1 
If kr = 0 and Y = / , T E R M I N A T E . U N S A T . 
If kj = 0 and Y = xr, with t>af(r) = 0 do 

set m r - 0, 
5 = 5 U { r } , 
t>a/(r) = 1. 

go to step i . 

This algorithm is implemented basically as a labelling process. And each 
arc in G{CF) is examined at most once. Therefore, it is clear that the 
complexity is 0{K), where K is number of arcs, or number of occurrences 
of literals in the Horn cardinality rules. 

5 F U T U R E W O R K S 

A wider and useful class of logic rules are cardinality rules, having the form 

(Au...,Am)k=> (Bu...,Bn)t (17) 



which says that "if at least k of A i , . . . , Am are true, then at least / of 
B i , . . . , Bn are true." We have observed that logical constraints take this 
form in a large variety of applications. Also this is a nature generalization 
of ordinary clauses. We wish to investigate the representations of this rule 
when we consider to use such logical constraints in mathemat ica l program
ming models . We also need to know how to convert a logical rule in to a 
conjunction of cardinality rules. 
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