
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



High-Level Specification of a Software Environment to 
Support the Early Phases in Building Design 

Ulrich Flemming, Robert Woodbury 



High-Level Specification of a Software Environment 
to Support the Early Phases in Building Design 

U. Hemming, R. Woodbury 
Engineering Design Research Center 

Carnegie Mellon University 
Pittsburgh, PA 15213 

October 1992 

Abstract . This report develops a high-level functional specification 
for a software environment to support the early phases in building 
design (SEED). Particular emphasis is placed on support for the design 
of recurring building types. The environment is divided into modules, 
each of which addresses a specific design task. All modules consist of 
the same generic components. They are supported by a common 
database and interfaces with a common style. Among the data in the 
database are solution prototypes or cases that facilitate work with 
recurring building types. The first system prototype will comprise 
three modules suppor t ing the following tasks! architectural 
programming, schematic layout design, and schematic configuration 
design. 

This work has been supported by the Engineering Design Research 
Center, a NSF Engineering Research Center, and the Carnegie Mellon/ 
Building Industry Computer-Aided Design Consortium (CBCC). 



Contents 

1. Overall Goal 1 

2. Overall Architecture 2 

3. Modules 5 

3.1 Module 1: Architectural Programming 5 

3.2 Module 2: Schematic Layout Design 6 

3.3 Module 3: Schematic Configuration Design 8 

References 10 



1. Overall Goal 

This report presents a high-level functional specification of a software environment that 
supports the early phases in the design of buildings. The overall system is called SEED. 

SEED is intended to support, in particular, the design of recurring building types, that is, 
building types dealt with frequently in a firm or institution. Such organizations - from housing 
manufacturers to government agencies - accumulate considerable experience with recurring building 
types. But capturing this experience and its reuse are supported only marginally by present CAD 
systems. Systems supporting work with recurring building types must reflect what is constrained and 
what is free in their design, should support the well-understood design tasks as effectively as possible, 
must provide means to capture and reuse accumulated design experience, and must be flexible enough for 
adaptations to a unique design context and individual designers. 

The goal of the system is to support, in principle, the preliminary design of such buildings in all 
aspects that can benefit from computer support. This includes using the computer not only for analysis 
and evaluation, but also more actively for the generation of designs, a capability that remains 
underutilized in present CAD systems. The intent is to develop of a collection of generic capabilities 
that can be easily adapted to different building types. 

The present report describes the overall architecture and intended functionality of the first 
prototype from a high-level, user-oriented perspective as we envision them at the outset. It is the 
basis for an object-oriented software engineering process in which system specifications are developed 
through successive levels of abstractions. 

These specifications are intended to serve several purposes. First and foremost, they are meant 
to implement an orderly software development process that assures compliance with the intended 
functionality of the system through all development stages, and logical consistency and compatibility 
between individual parts and modules. Furthermore, the specifications are intended to provide a 
means of communication between us and our sponsors to assure mutual agreement on the direction of our 
efforts; as a means to insure coordination between the efforts of the individual researchers involved in 
the project; and as documentation of our efforts. 

The first prototype will be based on the experience accumulated at CMU with the 
LOOS/ABLOOS (Hemming et al. 1988a,b; Coyne and Flemming 1990, Coyne 1991) and GENESIS 
(Heisserman 1991, Heisserman and Woodbury 1992) systems. The building types addressed in the pilot 
version will be selected in consultation with our sponsors. 



2. Overall Architecture 

2.1 Phases and Modules 

Our approach for the first version of the prototype starts with the assumption that the 
preliminary design process can be divided into phases, each of which addresses a particular subtask of 
the overall design problem and leads to a particular set of related decisions. For example, the 
preliminary structural design phase may deal with the task of finding an appropriate structural 
system for an overall building configuration. There is no assumption that phases have to occur in a 
strict sequence. A partial ordering between them may, however, exist because the information needs of 
one phase may depend on decisions made in another phase. 

We plan to develop for each phase an individual support module based on a shared logic and 
architecture. This will allow us, on the one hand, to make local use of various pieces of existing and 
possibly heterogeneous software and to distribute the development efforts among individual modules. 
The shared logic and architecture assure, on the other hand, that the modules appear to the user as 
parts of a unified whole, which includes a common style for the interfaces. They also allow us to 
develop generic protocols for phase transitions; they make any sequence of phases logically extensible 
and should facilitate the "plugging in" and "plugging out" of individual module versions. 

The results generated in any phase are stored in a database for re-use, either in the context of 
the same project or a different project, in which case they become prototypes or cases. 

2.2 Components 

The architecture proposed for a module assumes that the task to be accomplished in any module 
can be divided into five generic subtasks. Each of these is supported by a specific module component. 
Figures 2-1 and 2-2 show respectively data flow and control flow views between these components, the 
user, and the database. 

The input component is the general read interface between a module and the database. This 
component makes, in principle, everything specified or generated by another module or by a previous 
invocation of the same module available to a module. This may involve translations between data 
formats, or the stripping away of information. For example, if a module dealing with two-dimensional 
layouts reads a three-dimensional configuration of components, information about the third dimension 
may have to be deleted. Specific problems caused by this will have to be worked out on a case-by-case 
basis. But we specify this possibility in order to stress that, in principle, no predetermined order of 
execution for the modules is assumed. 

The problem specification component allows designers to specify or modify the task to be 
performed in the current module. For example, if the task of the current module is to develop a 
schematic floor plan generated in another module into a three-dimensional configuration of building 
elements, this floor plan must be made available to the current module (this is the function of the input 
module); but the module may need additional information about the desired roof shape, wall 
construction etc. This is done in the problem specification component. 

The generator supports the generation of solutions to the problem specified for the current 
module. In each module, we intend to make a broad range of phase-specific support options available, 
from complete automation to interactive constructions that are completely under the designer's control. 

The evaluation component evaluates solutions for compliance with the specifications. 
Iterations at this stage may occur, where the evaluation results influence further generator action. 

The output component allows a designer to write any result generated or specified in a module 
into the database. Examples are a solution stored as a prototype for re-use in a different project, or an 
intermediate solution for the current project that is to be elaborated in another module. 



Database 

Figure 2-1: Data flow in generic SEED module 

Control flow in a module follows data flow with two possible exceptions. First, the designer, 
acting through the interface, can exercise any form of control offered by a module at any time during the 
specify-generate-evaluate part of a modules execution. Second, upon completion of each module, a 
task-controller containing a task sequence of modules may pass control to the first module in the 
sequence. If control is returned to the task controller, it passes control to the next task in the sequence. 
This simple device would permit different overall system architectures to be configured. For example, 
a linear sequence of tasks occurs when each task controller has exactly one task in its sequence, with the 
last task being the simple output of results, whereas a tree of tasks can be described by having multiple 
entries in each task control sequence. 

As mentioned above, problem specifications, solution generation and evaluation are under the 
designers control through an interactive interface offering various degrees of intervention in each of 
the processes, from the total reliance on preprogrammed options, operations, and default values to the 
possibility of overwriting any default value and manual execution of tasks. For example, the designer 
may choose in a schematic layout phase to start with prestored standard plans or to generate a custom 
layout from scratch; furthermore, if the second option was selected, the designer may rely on the 
generative capabilities of the module to generate a layout automatically or may construct the layout 
step-by-step interactively. It is this rich palette of opportunities for interaction and intervention that 
assures the desired flexibility of the system. 

The information stored in a database, on the other hand, allows the designer to take advantage 
of prior work and experience and to expedite the design process. For example, a designer may generate a 
novel layout by extensively modifying a prototype retrieved from the database, or by generating the 
layout from scratch, may decide that it should be added to the current set of prototypes, and may 
consequently add it to the database. 

Input 

Output 

Specifica
tion 
Specifica
tion 

Generation Generation 
* "V 

mmmmmi 
Evaluation < 1 Evaluation 

Interface 
Input 
Interface 

Specifica
tion Int. 

Generation 
Interface 

Evaluation 
Interface 

Output 
Interface 

User 



Database 

<- > 

Specifica
tion 

Specifica-
t- -Wtionlnt. 

Generation 

' 4-
Evaluation 

<-

Output 
K—* 

Interface 
Input 
Interface 

Generation 
Interface 

Evaluation 
Interface 

Output 
Interface 

> ^ User 

> Telecontrol^ 
— r p q - q 

Other 
Module 

Other Other 
Module Module 

Figure 2-2: Control flow in generic SEED module 



3. Modules 

We now give a high-level specification of the three modules planned for the first prototype in 
terms of the generic components outlined above: 

Module 1: Architectural programming 
Module 2: Schematic layout design 
Module 3: Schematic configuration design 

We assume that these phases are generally executed in the given order, but iterations are possible, and 
each phase may be combined with others. 

3.1 Module 1: Architectural Programming 

The task of this module is to develop an architectural program or design brief for the project 
under consideration. This program can be viewed as the specification of the overall design problem 
posed by the project under consideration. 

Input 

Input from the database to this module may consist of prototypical architectural programs that 
have been developed in the past for similar projects, templates for program components etc. (see 
below). 

Problem Specification 

The specification component allows the designer to develop interactively the overall project 
statement. We assume that this statement normally comprises at least the following parts: 

Overall project goal: 
building type and additional indicators of overall project goals, e.g. desired rental area 
for an office building, no. students for a school, no. of bedrooms for a house 
budget 

Project context 
site characteristics (geographical location, size, shape, orientation, setbacks etc.) 
pointers to applicable codes and regulations 

Generation 

The generation component supports the interactive development of an architectural program 
from the project statement. The component offers procedures to generate automatically or 
interactively an architectural program in terms of the following data: 

required rooms and areas 
constraints on the size, orientation etc. of individual rooms and on connections between 
rooms 
additional criteria, code requirements, recommendations etc. 



Evaluation 

The evaluation component supports an evaluation of the program in its context (financial 
feasibility, compliance with codes, life-cycle costs, etc.) 

Output 

The output component allows the designer to write results produced in this module into the 
database for various purposes. For example, the project statement and the architectural 
program can be saved to provide a problem statement for the schematic layout phase, or a 
project statement and architectural program are in an intermediate state of resolution and 
saved to allow additional work in a subsequent session. The same data may also serve as a 
prototype to be re-used when a program for a similar project is to be developed; in this case, the 
project description may serve as index for the retrieval of this prototype 

Database 

In order to support the module effectively, the database must contain at least the following 
information: 

a collection of generic room types or classes, including constraints associated with room 
types, so that the generation component can assemble a list of required rooms from 
instances of these classes 
building codes 
cost statistics (e.g. typical construction cost/sq.ft for recurring building types) 

As the system is used repeatedly for a recurring building type, program prototypes will become 
available that may drastically reduce the effort required to develop a program for this type of 
building. The project statements will be stored with the programs and serve as index in the 
retrieval of such prototypes. 

If energy-efficiency is a desired aspect of preliminary design, data supporting the derivation of 
design guidelines from locational information must also be available in the database. 

3.2 Module 2: Schematic Layout Design 

The task of this module is to generate a schematic layout of the program units in "center line 
form"; that is, spatial units are delineated by lines, which indicate possible locations for interior and 
exterior walls and partitions. 

Input 

The input component supports this module by reading appropriate information from the 
database. For example, it can be used to produce an initial problem specification, that is, a 
context specification and architectural program generated in module 1. The input component 
may also retrieve a prototypical solution, or a solution saved in a previous session, which the 
designer wants to develop further. 



Problem Specification 

The specification component allows designers to modify or edit the current problem statement, 
for example, to add rooms, or modify the constraints associated with a room. 

Generation 

The generation component supports the generation of schematic layouts for the rooms in the 
program in at least four modes: 

retrieval of saved or prototypical layouts from the database 
designer-controlled construction of a layout; that is, the designer controls the addition, 
deletion, and reinsertion of rooms in the current layout 
automatic generation of one or all feasible layouts or partial layouts; that is, the 
system generates layouts that satisfy constraints, guidelines, etc. under its own control 
interactive editing of a layout created in any one of the above modes. 

Designers should be able to switch freely between modes. For example, a designer may ask the 
system during designer-controlled construction to generate automatically all feasible ways to 
insert the next unit, select one possibility, and return to designer control. 

The basic units that are directly manipulated in each of these modes are the units of the 
program, not walls or partitions that separate these units from each other. We selected this 
approach in order to provide a very flexible layout tool that allows designers, for example, to 
start with "loose" arrangements of major areas and to add gradually other units of the program, 
including circulation spaces, and to rearrange the layout until it is sufficiently "dense" and 
developed so that walls can be drawn as center lines. 

Evaluation 

The evaluation component allows for an evaluation of a layout at any state of development 
according to the constraints and criteria specified in the current problem statement. Several 
options should be available: 

evaluation according to all aspects 
evaluation according to selected aspects. 

Designers should furthermore be able to execute each option for selected areas or the entire 
layout. They should also be able to set a switch that triggers an evaluation option 
automatically after each design decision or only upon an explicit designer request. 

Output 

The output component allows designers to write any result produced in this module into the 
database: a schematic layout or layouts in center line representation to be elaborated in module 
3; a problem statement or a problem statement/layout pair to provide a basis for work in a 
subsequent session; or a problem statement/layout pair stored for re-use as a prototype in a 
similar project. In each case, evaluations can be stored with the respective layouts. 



Database 

In order to support the module effectively, the database must contain a collection of prototypes 
that can be adapted to various contexts and allow the storing intermediate solutions. For the 
editing of the problem statement, the data available for module 1 must remain available for 
this module. 

3.3 Module 3: Schematic Configuration Design 

The goal of this module is to generate a schematic three-dimensional configuration of building 
spaces and physical components as well as evaluations of this configuration according to given criteria. 

Input 

The input component allows designers to read data from the database to support work in the 
current module: for example, a context specification and building program generated in module 
1, and a schematic layout generated in module 2. Taken together, these data specify initially 
the problem to be solved. 

Problem Specification 

This module allows the designer to elaborate and edit the problem specification for the current 
module, for example, indicate the configuration (zoning and massing) strategies and physical 
building systems to be applied in this module. These specifications may be prestored in the 
database, input by the designer, or result from a combination of these two sources. 

Generation 

The generation component acts by applying the selected configuration strategies and the 
building systems to the problem specification to generate one or more alternative three-
dimensional configurations. Several modes of action are supported: 

retrieval of standard or prototypical configurations or sub-configurations from the 
database 
definition of a configuration by direct manipulation; analogously to the previous 
section, this mode will be called designer-controlled construction 
automatic generation of one, some, or (in special cases) all feasible configurations, that 
is, configurations that meet the goals given in the input module 
automatic generation within a limited spatial and technical search scope. By 
describing what strategies and technical systems may be applied where in a design and 
to what resolution, designers can customize their level of interaction with the system 
interactive editing of configurations created in any of the above modes using the 
operators provided for designer-controlled construction 

Designers should be able to switch freely between modes and configurations. For example, a 
designer may wish to generate a single configuration automatically and then modify that 
configuration interactively. At a later time, the designer might return to the automatically 
generated configuration and use it as the basis for continued development. 



The units that are directly manipulated in each of these modes are spatial and physical 
components, which are defined in the spatial strategies and make u p the physical building 
systems described in the specification stage. For example, if sloped roofs framed with trusses 
are specified, then roofs would exist as conceptual parts of the configuration and could be 
created and modified in references to roof centerlines, slopes, bay modules, and bay 
articulations. We selected this approach in order to give maximum flexibility in the 
development of specific modules, as the conceptual parts that are manipulated in the 
configuration module are likely to be specific to the particular building type or context being 
addressed. 

Evaluation 

The evaluation component allows for evaluations at those stages in the development of a design 
that provide sufficient information for evaluations to occur. At any time, any eligible 
evaluation should be able to be invoked on any part of the design to which it applies. 
Evaluations are self-priming, specification-driven and designer-controlled: they are self-
priming because they determine when and where they can apply by examining the state of the 
configuration and input information; they are specification-driven because each is associated 
with one or more items provided in the specification, and their execution determines how well 
that item is satisfied; they are designer-controlled because the designer has ultimate control 
over when and to what part of a design they should be applied. 

Output 

The output comprises the input to the module, the specifications used or created, configurations 
of three-dimensional spaces and physical elements, and the results of evaluations according to 
the criteria stated in the problem statement. These may be stored in any degree of completion 
subject to data-dependencies; for example, a configuration may be stored with the input and 
specifications from which it is derived but without any evaluations. Similarly, the input and 
specifications might be stored alone. 

Database 

The database must support storage and access for at least the following information: 

data required for the layout component 
lexicons of configuration strategies and physical building systems 
configurations 
evaluations and evaluation methods 

As the system is used repeatedly for a recurrent building type or method of construction, 
prototypical solutions will become available that may greatly reduce the effort required to 
develop future solutions. These will be stored in the database, indexed by the input to which 
they respond and the specifications by which they are generated. 



References 

R.F. Coyne and U. Flemming (1990), "Planning in Design Synthesis - Abstraction-based LOOS," 
Artificial Intelligence in Engineering. Vol. 1 - Design (Proc. Fifth International Conference, 
Boston, MA), J. Gero, ed.. New York: Springer, pp. 91-111 

R.F. Coyne (1991), ABLOOS - An Evolving Hierarchical Design Framework, Ph.D. Dissertation, 
Department of Architecture, Carnegie Mellon University, Pittsburgh, PA 

U. Hemming, R. Coyne, T. Glavin and M. Rychener (1988a), "A Generative Expert System for the 
Design of Building Layouts - Version 2," Artificial Intelligence in Engineering; Design (Proc. 
Third International Conference, Palo Alto, CA) , J. Gero, ed.. New York: Elsevier, pp. 445^164 

U. Flemming; R. F. Coyne; T. Glavin; Hung Hsi; M. D. Rychener (1988b), A Generative Expert System for 
the Design of Building Layouts (Final Report), Report 48-15-89, Engineering Design Research 
Center, Carnegie Mellon University, Pittsburgh, PA 

J. Heisserman (1991), Generative Geometric Design and Boundary Solid Grammars, Ph.D. Dissertation, 
Department of Architecture, Carnegie Mellon University, Pittsburgh, PA 

J. Heisserman and R. Woodbury (1993), "Generating Languages of Solids Models", submitted to Solids 
Modeling 


