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Abst rac t 

We address the problem of finding a "tight" representation of com­
plex logical constraints in a mixed integer programming model by de­
scribing a convex hull representation of cardinality rules. A cardinality 
rule asserts that if at least k of the propositions A\,..., Am are true, 
then at least / of the propositions B\,..., Bn are true. 

As rule-based systems and other types of logic modeling grow in popu­
larity, logical rules and propositions can play an increasingly important role 
in mathematical programming models. Such simple logical constraints as 
"if A is produced, then either B or C must be produced" have long been a 
part of mathematical programming. But much more complex logic models 
are now being formulated, and they can also be embedded in mathematical 
programming models. 

A logic model is a description of a problem expressed in some logical .for­
malism, usually propositional or predicate logic, from which facts about its 
solution can be deduced. Expert systems and other rule-based systems are 
logic models, as are programs written in the logical programming language 
PROLOG. It is useful to incorporate a logic model into a mathematical pro­
gramming model when neither model alone adequately describes reality, or 
when the logic model contains constraints or heuristic rules that ease the 
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solution of the mathematical model by reducing the number of alternatives 
that must be examined. 

When logical constraints become a significant component of mathemat­
ical programming models, the quality of their representation becomes an 
important issue. We wish to address this problem by showing how best to 
represent a particular type of logical formula, namely a cardinality rule, in 
a mixed integer programming (MIP) model. We focus on cardinality rules 
because we have observed that logical constraints take this form in a large 
variety of applications. In fact McKinnon and Williams [11] use cardinality 
conditions as a basic form in which to express logical constraints. 

A cardinality rule has the form, 

If at least (or at most) k of the propositions A\,..., Am are true, 
then at least (or at most) / of the propositions 2 ? i , . . . , i ? n are 
true. 

An elementary cardinality rule is one in which each A, and each Bj is a 
literal (an atomic proposition or its negation) and no atomic proposition 
occurs more than once. The rules one typically finds in expert systems, 

if A\,..., Am are all true, then B is t rue, 

are special cases of elementary cardinality rules, as are cardinality clauses 
of the form, 

at least (or at most) k of A i , . . . , Am are true. 

The usual method for representing logical conditions in an MIP model 
has two stages. They are first rewritten as a conjunction of logical "clauses," 
which is to say in conjunctive normal form (CNF) . A clause is a disjunction 
of literals, such as, 

X\ V ->X2 V X 3 , 

where -1 means "not," and V means "or." Each clause is then written as an 
inequality in 0-1 variables, which for this example is, 

xi + (1 - x2) + x3 > 1, 

where Xj is interpreted as true when Xj = 1 and false when x 3 ; = 0. 
Unfortunately this is typically a very "loose" representation of the logical 

conditions, in the sense that its linear relaxation (which replaces Xj € {0,1} 
with 0 < Xj < 1) describes a poly tope that has many fractional extreme 
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points. This complicates the solution of the model, since most solution 
techniques make essential use of the linear relaxation. 

The difficulty with CNF representation is not that the individual clauses 
are poorly represented. In fact, each clause receives the tightest possible 
representation, namely a convex hull representation. This is a set of 0-
1 inequalities whose linear relaxation describes the convex hull of the-.0-1 
points satisfying them. Rather, the difficulty is that there are typically 
a large number of clauses in CNF. This results in a loose representation 
of the formula as a whole, even though each individual clause is tightly 
represented. (R. Jeroslow discusses this principle in [9].) This problem 
is particularly acute for a cardinality rule, since the number of clauses in 
its CNF equivalent grows exponentially with the rule's length if no new 
variables are added (and is apparently quite large even if new variables are 
added). 

Thus when logical constraints occur or can be expressed in the form of 
elementary cardinality rules, it is far better to give each a convex hull repre­
sentation directly than to convert it to CNF first. The resulting description 
is no shorter than the CNF equivalent, because it contains all the inequali­
ties that appear in CNF. But it avoids the loose representation that results 
from using only the inequalities in the CNF representation. 

We will therefore state an algorithm that generates for any elementary 
cardinality rule a set of 0-1 inequalities that provide a convex hull represen­
tation of it. Our main result is that these inequalities in fact describe the 
facets of the convex hull. 

Several authors have contributed to the inequality representation of log­
ical formulas in CNF. Tseitin [12] showed how to convert any formula of 
propositional logic to CNF in linear time by adding new variables. Cook 
[3, 4], Dantzig [5], Blair et al [2], and Williams [13, 14, 15] discussed the 
use of 0-1 inequalities to represent logical constraints in CNF, and Karp [10] 
used them to show that integer programming is NP-hard. The shortest such 
representation, however, was recently proposed by Wilson [16]. 

Some attention has also been paid to the representation of cardinality 
clauses (recall that these are a special case of elementary cardinality rules). 
Hadjiconstantinou and Mitra [6] described an algorithm for the automatic 
conversion of logical formulas, including cardinality clauses, into inequality 
form. But they do not consider the tightness of the representation. Hooker 
[8] described a generalized resolution procedure that generates all the un-
dominated implications of a set of cardinality clauses. This can lead to a 
tighter representation because it in effect generates valid cuts. But it can be 
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computationally expensive if carried to completion on a large set of clauses. 
In research that proceeded concurrently with ours, Araque and Chandru [1] 
found a convex hull representation of cardinality clauses. But their work has 
a different focus, because it does not consider cardinality rules in general, 
and it describes the polyhedron associated with a set covering formulation 
of the problem, which has twice the dimension of the polyhedron we stiidy. 

We begin in Section 1 by augmenting propositionai logic with cardinality 
rules to obtain "cardinality logic." Since our convex hull representation 
is designed for elementary cardinality rules, we show how to convert any 
formula of cardinality logic to a conjunction of elementary cardinality rules 
(cardinality normal form) in linear time. We also show tha t the CNF of an 
elementary cardinality rule grows exponentially with the length of the rule, 
when no variables are added. When additional variables are used, CNF is 
polynomial but still quite large using what is apparently the best known 
conversion. 

Section 2 states our algorithm for generating the convex hull description 
of a cardinality rule and proves its correctness. In Section 3 we use an 
example to illustrate its application. 

1 C a r d i n a l i t y Rules 

We begin by augmenting propositionai logic with cardinality rules. We then 
show how to write any formula of cardinality logic in cardinality normal 
form. Finally we discuss what is involved in the reduction of elementary 
cardinality rules to CNF. 

1.1 C a r d i n a l i t y L o g i c 

A cardinality rule is written, 

( A 1 , . . . , A m ) f c ^ ( B 1 , . . . , f i n ) / , ' ( 1 ) 

and is read, "if at least k of A\,..., Am are t rue, then at least / of B\,..., Bn 

are true." We assume ra> k > 0, n > 0, and / > 1. The phrase "at least" 
can be replaced with "at most" by writing, 

(-1A1,..->,4m)m_^ => ( - i B i , . . . , - « 2 ? n ) n _ / . 

Ordinary rules have m = k and / = 1 in (1). When m = 1 or n = 1 we will 
omit the parentheses, so that (A)\ (B)\ is written A^B. 
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When the antecedent is a tautology, which is to say k = 0, (1) asserts 
that at least / of B\,..., Bn are true. In such cases we can assume without 
loss of generality that m = 0. When the consequent is a contradiction, which 
is to say / > n, (1) asserts that fewer than k of A i , . . . , A m are true. In such 
cases we can assume that n = 0 and / = 1. We therefore suppose tha t every 
cardinality rule satisfies a) either m> k > 1 or m = = 0, and b) either 
n>l> l o r ( n , / ) = ( 0 , l ) . 

Propositional logic is recursively defined to consist of atomic propositions 
x\, X 2 , . . . , which are regarded as formulas, plus all formulas of the forms -«A, 
A A 5 , A V 5 , A D B, and A = fi, where A and 5 are formulas. Here A 
means "and," V means "or," D means "implies," and = means "is equivalent 
to ." Implication and equivalence are defined by, 

Cardinality logic is recursively defined to consist of all the above formu­
las and all formulas of the form (1), where A i , . . . , A m and Bi,..., Bn are 
formulas of cardinality logic. 

1 . 2 CARDINALITY N O R M A L F O R M 

We now show how to convert any formula of cardinality logic to cardinality 
normal form in linear time. If the formulas to be represented are already 
elementary cardinality rules, this conversion is not necessary, and one can 
proceeed directly to the linear inequality representation (Section 2). 

We first review conversion to conjunctive normal form (CNF) in ordinary 
propositional logic. This can be done by a) using (2) and (3) to remove all 
occurrences of D and = ; b) using De Morgan's laws, 

and the equivalence ->-»A = A to absorb all negations into literals; and c) 
using the distribution law, 

(A D B) =def ( - A V 5 ) 

(A = B) =def ((A D B) /\(B D A)). 
(2) 

(3) 

- ( A A S ) = ( - L A V N F I ) 

->(A V B) = ( -«A A -«5), 

A V ( F L A C ) = ( A V B) A ( A V C ) , 

to transform the result to a conjunction of clauses. 
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