
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TIGHT REPRESENTATION OF LOGICAL
CONSTRAINTS AS CARDINALITY RULES

John N. Hooker, Hong Yan

EDRC 70-06-92

Tight Representation of Logical
Constraints as Cardinality Rules *

J . N. H O O K E R
H. YAN

Graduate School of Industrial Administration
Carnegie Mellon University, Pittsburgh, PA 15213 USA

June 1992

Abst rac t

We address the problem of finding a "tight" representation of com
plex logical constraints in a mixed integer programming model by de
scribing a convex hull representation of cardinality rules. A cardinality
rule asserts that if at least k of the propositions A\,..., Am are true,
then at least / of the propositions B\,..., Bn are true.

As rule-based systems and other types of logic modeling grow in popu
larity, logical rules and propositions can play an increasingly important role
in mathematical programming models. Such simple logical constraints as
"if A is produced, then either B or C must be produced" have long been a
part of mathematical programming. But much more complex logic models
are now being formulated, and they can also be embedded in mathematical
programming models.

A logic model is a description of a problem expressed in some logical .for
malism, usually propositional or predicate logic, from which facts about its
solution can be deduced. Expert systems and other rule-based systems are
logic models, as are programs written in the logical programming language
PROLOG. It is useful to incorporate a logic model into a mathematical pro
gramming model when neither model alone adequately describes reality, or
when the logic model contains constraints or heuristic rules that ease the

*The first author is partially supported by AFOSR grant 91-0287 and ONR grant
N00014-92-J-1028. Both authors are partially supported by NSF grant 1-55093.

1

solution of the mathematical model by reducing the number of alternatives
that must be examined.

When logical constraints become a significant component of mathemat
ical programming models, the quality of their representation becomes an
important issue. We wish to address this problem by showing how best to
represent a particular type of logical formula, namely a cardinality rule, in
a mixed integer programming (MIP) model. We focus on cardinality rules
because we have observed that logical constraints take this form in a large
variety of applications. In fact McKinnon and Williams [11] use cardinality
conditions as a basic form in which to express logical constraints.

A cardinality rule has the form,

If at least (or at most) k of the propositions A\,..., Am are true,
then at least (or at most) / of the propositions 2 ? i , . . . , i ? n are
true.

An elementary cardinality rule is one in which each A, and each Bj is a
literal (an atomic proposition or its negation) and no atomic proposition
occurs more than once. The rules one typically finds in expert systems,

if A\,..., Am are all true, then B is t rue,

are special cases of elementary cardinality rules, as are cardinality clauses
of the form,

at least (or at most) k of A i , . . . , Am are true.

The usual method for representing logical conditions in an MIP model
has two stages. They are first rewritten as a conjunction of logical "clauses,"
which is to say in conjunctive normal form (CNF) . A clause is a disjunction
of literals, such as,

X\ V ->X2 V X 3 ,

where -1 means "not," and V means "or." Each clause is then written as an
inequality in 0-1 variables, which for this example is,

xi + (1 - x2) + x3 > 1,

where Xj is interpreted as true when Xj = 1 and false when x 3 ; = 0.
Unfortunately this is typically a very "loose" representation of the logical

conditions, in the sense that its linear relaxation (which replaces Xj € {0,1}
with 0 < Xj < 1) describes a poly tope that has many fractional extreme

2

points. This complicates the solution of the model, since most solution
techniques make essential use of the linear relaxation.

The difficulty with CNF representation is not that the individual clauses
are poorly represented. In fact, each clause receives the tightest possible
representation, namely a convex hull representation. This is a set of 0-
1 inequalities whose linear relaxation describes the convex hull of the-.0-1
points satisfying them. Rather, the difficulty is that there are typically
a large number of clauses in CNF. This results in a loose representation
of the formula as a whole, even though each individual clause is tightly
represented. (R. Jeroslow discusses this principle in [9].) This problem
is particularly acute for a cardinality rule, since the number of clauses in
its CNF equivalent grows exponentially with the rule's length if no new
variables are added (and is apparently quite large even if new variables are
added).

Thus when logical constraints occur or can be expressed in the form of
elementary cardinality rules, it is far better to give each a convex hull repre
sentation directly than to convert it to CNF first. The resulting description
is no shorter than the CNF equivalent, because it contains all the inequali
ties that appear in CNF. But it avoids the loose representation that results
from using only the inequalities in the CNF representation.

We will therefore state an algorithm that generates for any elementary
cardinality rule a set of 0-1 inequalities that provide a convex hull represen
tation of it. Our main result is that these inequalities in fact describe the
facets of the convex hull.

Several authors have contributed to the inequality representation of log
ical formulas in CNF. Tseitin [12] showed how to convert any formula of
propositional logic to CNF in linear time by adding new variables. Cook
[3, 4], Dantzig [5], Blair et al [2], and Williams [13, 14, 15] discussed the
use of 0-1 inequalities to represent logical constraints in CNF, and Karp [10]
used them to show that integer programming is NP-hard. The shortest such
representation, however, was recently proposed by Wilson [16].

Some attention has also been paid to the representation of cardinality
clauses (recall that these are a special case of elementary cardinality rules).
Hadjiconstantinou and Mitra [6] described an algorithm for the automatic
conversion of logical formulas, including cardinality clauses, into inequality
form. But they do not consider the tightness of the representation. Hooker
[8] described a generalized resolution procedure that generates all the un-
dominated implications of a set of cardinality clauses. This can lead to a
tighter representation because it in effect generates valid cuts. But it can be

3

computationally expensive if carried to completion on a large set of clauses.
In research that proceeded concurrently with ours, Araque and Chandru [1]
found a convex hull representation of cardinality clauses. But their work has
a different focus, because it does not consider cardinality rules in general,
and it describes the polyhedron associated with a set covering formulation
of the problem, which has twice the dimension of the polyhedron we stiidy.

We begin in Section 1 by augmenting propositionai logic with cardinality
rules to obtain "cardinality logic." Since our convex hull representation
is designed for elementary cardinality rules, we show how to convert any
formula of cardinality logic to a conjunction of elementary cardinality rules
(cardinality normal form) in linear time. We also show tha t the CNF of an
elementary cardinality rule grows exponentially with the length of the rule,
when no variables are added. When additional variables are used, CNF is
polynomial but still quite large using what is apparently the best known
conversion.

Section 2 states our algorithm for generating the convex hull description
of a cardinality rule and proves its correctness. In Section 3 we use an
example to illustrate its application.

1 C a r d i n a l i t y Rules

We begin by augmenting propositionai logic with cardinality rules. We then
show how to write any formula of cardinality logic in cardinality normal
form. Finally we discuss what is involved in the reduction of elementary
cardinality rules to CNF.

1.1 C a r d i n a l i t y L o g i c

A cardinality rule is written,

(A 1 , . . . , A m) f c ^ (B 1 , . . . , f i n) / , ' (1)

and is read, "if at least k of A\,..., Am are t rue, then at least / of B\,..., Bn

are true." We assume ra> k > 0, n > 0, and / > 1. The phrase "at least"
can be replaced with "at most" by writing,

(-1A1,..->,4m)m_^ => (- i B i , . . . , - « 2 ? n) n _ / .

Ordinary rules have m = k and / = 1 in (1). When m = 1 or n = 1 we will
omit the parentheses, so that (A)\ (B)\ is written A^B.

4

When the antecedent is a tautology, which is to say k = 0, (1) asserts
that at least / of B\,..., Bn are true. In such cases we can assume without
loss of generality that m = 0. When the consequent is a contradiction, which
is to say / > n, (1) asserts that fewer than k of A i , . . . , A m are true. In such
cases we can assume that n = 0 and / = 1. We therefore suppose tha t every
cardinality rule satisfies a) either m> k > 1 or m = = 0, and b) either
n>l> l o r (n , /) = (0 , l) .

Propositional logic is recursively defined to consist of atomic propositions
x\, X 2 , . . . , which are regarded as formulas, plus all formulas of the forms -«A,
A A 5 , A V 5 , A D B, and A = fi, where A and 5 are formulas. Here A
means "and," V means "or," D means "implies," and = means "is equivalent
to ." Implication and equivalence are defined by,

Cardinality logic is recursively defined to consist of all the above formu
las and all formulas of the form (1), where A i , . . . , A m and Bi,..., Bn are
formulas of cardinality logic.

1 . 2 CARDINALITY N O R M A L F O R M

We now show how to convert any formula of cardinality logic to cardinality
normal form in linear time. If the formulas to be represented are already
elementary cardinality rules, this conversion is not necessary, and one can
proceeed directly to the linear inequality representation (Section 2).

We first review conversion to conjunctive normal form (CNF) in ordinary
propositional logic. This can be done by a) using (2) and (3) to remove all
occurrences of D and = ; b) using De Morgan's laws,

and the equivalence ->-»A = A to absorb all negations into literals; and c)
using the distribution law,

(A D B) =def (- A V 5)

(A = B) =def ((A D B) /\(B D A)).
(2)

(3)

- (A A S) = (- L A V N F I)

->(A V B) = (-«A A -«5),

A V (F L A C) = (A V B) A (A V C) ,

to transform the result to a conjunction of clauses.

5

