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Abstract 
A computationally attractive method for determining the optimal control of 

unconstrained linear dynamic systems with quadratic performance indices is presented. In 
the proposed method, the difference between each state variable and its initial condition is 
represented by a finite-term shifted Chebyshev series. The representation leads to a system 
of linear algebraic equations as the necessary condition of optimality. Simulation studies 
demonstrate computational advantages relative to a standard Riccati-based method, a 
transition matrix method, and a previous Fourier-based method. 

The authors are with the Department of Mechanical Engineering, Carnegie Mellon 
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Introduction 
Determining the optimal control of linear, lumped parameter models of dynamic 

systems is one of the principal "state space" design problems. The challenge is to find the 
optimal trajectories of the control and associated state which give the best tradeoff between 
performance and cost of control. Toward this end, variational methods can be used to cast 
the optimality condition as a two-point boundary-value problem (TPBVP). The most well-
known solution is achieved via the Hamilton-Jacobi approach which converts the TPBVP 
to a terminal value problem involving a matrix differential Riccati equation. The Riccati 
equation provides the optimal solution in closed-loop form with natural advantages for 
physical implementation, although it is computationally intensive and sometimes difficult to 
employ in solving high order systems. 

A preferred alternative for the optimal control solution of time-invariant problems is the 
open-loop transition matrix approach (Speyer, 1986). Typically, the transition matrix 
approach converts the TPBVP into an initial value problem. The transition matrix approach 
is also susceptible to numerical problems in determining the optimal control of high order 
systems (Yen and Nagurka, 1991). In particular, numerical instabilities are attributed 
principally to the errors associated with the computation of large dimension matrix 
exponentials (Golub and Van Loan, 1983). 

In contrast to Riccati-based and transition matrix methods, approximate solution 
strategies, namely trajectory parameterization methods, have been investigated. In general, 
these approaches approximate the control, state, and/or co-state trajectories by finite-term 
series whose coefficient values are sought giving a near optimal solution. For example, 
approaches employing Walsh (Chen and Hsiao, 1975), block-pulse (Hsu and Cheng, 
1981), Chebyshev (Paraskevopoulos, 1983; Vlassenbroeck and Van Dooren, 1988), 
Laguerre (Shih, et ai, 1986), and Fourier (Chung, 1987) series have been suggested. 
Like the state transition matrix approach, many of these approaches employ algorithms that 
convert the TPBVP into an initial value problem. By approximating the state and co-state 
vectors by truncated series, the initial value problem can be reduced to a static optimization 
problem represented by algebraic equations. However, the transition matrix (needed to 
convert the TPBVP to an initial value problem) must still be evaluated which, as mentioned 
above, can cause instability problems in high order systems. 

State parameterization offers two important advantages for solving optimal control 
problems. First, the state initial condition can be satisfied directly. Second, the state 
equation can be treated as an algebraic equation in determining the corresponding control 
trajectory (since the state and hence state rate are known), assuming that no constraints on 



the control structure prevent an arbitrary representation of the state trajectory from being 
achieved. 

This technical report extends previous work (Yen and Nagurka, 1991) for solving 
optimal control problems via Fourier-based state parameterization. The earlier work has 
shown computational advantages of a Fourier-based state approximation for solving linear 
quadratic (LQ) optimal control problems relative to standard methods. For systems with 
different numbers of state and control variables, artificial control variables were introduced 
to overcome the potential difficulty of trajectory inadmissibility. 

The particular focus of this report is to explore a simplified parameterization approach 
employing a finite-term Chebyshev representation of the state trajectory. Chebyshev 
functions can nearly uniformly approximate a broad class of functions, making them 
computationally attractive (Vlassenbroeck and Van Dooren, 1988). Following the Fourier-
based development, it is shown that the necessary condition of optimality can be derived as 
a system of linear algebraic equations from which an unknown state parameter vector can 
be solved. In contrast to the earlier work, a simplified state representation is adopted 
involving a constant term and shifted Chebyshev terms. This representation guarantees 
satisfaction of the state initial condition and enables the linear transformation of the 
unknown parameter vector in the solution procedure. The result is an accurate, robust, and 
computationally attractive method that is especially suited for high-order systems. 

Chebyshev-based Approach 

Problem Statement. The LQ optimal control problem involves finding the control 

u(t) and the corresponding state x(t) in the time interval [0,T] that minimizes the quadratic 

performance index L, 

L = Li + L 2 (1) 

where 

Li = Xr<T)Hx(T) + hTx(T) (2) 

[x^OQtOxtO+u^ORtOutD+x^OStOudJ+q^OxfD+r^OutOldt (3) 

for the linear system 



x(t) = A(t)x(t) + B(t)u(t) (4) 

with known initial condition x(0)=x 0 . The state vector x is N x l , the control vector u is 
Mxl , the system matrix A is NxN, and the control influence matrix B is NxM. It is 
assumed that the columns of B are independent, weighting matrices H, Q, R and S and 
weighting vectors h, q and r have appropriate dimensions, and that H, Q, R and S are real 
and symmetric with H and Q being positive-semidefinite and R being positive definite. 

State Parameterization. The LQ optimal control problem can be converted to an 
optimization problem by approximating each state variable by the summation of the initial 
condition and a K term series. 

K 
xn(t) = x n 0 + X <*(«> vnk - k=l,2 K and n=l,2 N (5) 

k=l 

where x n 0 =x n (0) and y„k is the k-th unknown coefficient of the basis function ck(t) for the 
n-th state variable. A variety of basis functions is available with the requirement that the 
summation vanishes at t=0 such that the initial condition x n 0 is satisfied. Here, the 
proposed basis function is 

c k (0 = ¥k(0 + (-I)*'1 , k=l,2 K ( 6 ) 

where y k ( t ) is a shifted Chebyshev polynomial and the additional term (-1)*- 1 ensures 

c k(0)=0. 

In general, Chebyshev polynomials are orthogonal on the interval $e [-1,1] with the 
weighting function (1 - ^ ) ~ 1 / 2 and have the following analytical form: 

(pk(^) = cos (kco S - i4 )= £ ^ ^ Q D i C k U i ) ! 0 " ^ ' ^ ' k = 0 ' 1 ' 2 ' - ( ? ) 

where the notation [k/2] means the greatest integer smaller than k/2. In shifted Chebyshev 
polynomials the domain is transformed to values between 0 and T by introducing the 
change of variables ^ = 2t/T-l giving 

Vk(t) = (Pk(S) = <Pk(2t-l) (8) 

where nondimensional time x = t/T. From equations (7) and (8) the first few shifted 



Chebyshev polynomials are 

Vo(t) = l ; yi(t) = 2 x - l ; \|/2(t) = 8x 2 - 8t + 1 (9a-c) 

y 3 (t) = 32x 3 - 48x 2 + 18x - 1 ; \|/4(0 = 128T4 - 256r 3 + 160t 2 - 32t + 1 (9d,e) 

The initial and terminal values of the shifted Chebyshev polynomial and their first time 

derivatives can be obtained as 

Vk(0) = ( - D k ; ¥k(0) = ( - l ) k + 1 ( 2 k V T ) ; VkCD = 1 ; Vk(T) = 2k 2 /T (lOa-d) 

Equation (5) can be written alternatively as 

x„(t) = x n 0 + c r ( t ) y n (11) 

where 

c r (t)=[c!(t) c 2(t) . . . c K (0] ; y n = [ y n i y n 2 y^T (12),(13) 

In equation (13) y n is a state parameter vector (containing the unknown coefficients) for the 

n-th state variable. 

The state vector containing the N state variables can be written in terms of a full state 

parameter vector y, i.e., 

x(t) = x 0 + C(t)y (14) 

where 

C(t) 

c r(t) 

CT(t) 

O 

y i 

y_2 

y N . 

[ y n 

[yu 

O 

c^(t) 

y i 2 

y22 

(15) 

Nx(NXK) 

[VN1 yN2 

y i K ] r 

y a i c f 

y N K l 7 J 

(16) 

(N)(K)xl 

y 



In equations (15) and (16), the matrix dimensions are identified and the notation (N)(K) 
denotes N times K. From equation (14), the state rate vector can be written as 

x(t) = D(t)y (17) 

where 

D(t) = C(t) = 

d r(t) O 

d r(t) (18) 

O d r ( t ) _ 

d r ( t ) = [ c ! ( t ) C 2 (t) . . . CK(t)] 

Nx(N)(K) 

(19) 

The control vector u(t) can also be expressed as a function of y. From equations (4), (14), 

and (17), 

u(t) = [B-HODtO-B-^OAWCtOly - B"HOAGfro (20) 

Equation (20) assumes that B ' 1 exists and implies that the lengths of the state and control 

vectors are the same (i.e., M=N). This requirement is later relaxed (see subsection on 

General Linear Systems). 

Approximation of Performance Index. The performance index can now be 

approximated as a function of the state parameter vector y. First, equation (14) with t=T is 

substituted into equation (2) giving the cost Li as a quadratic function of y 

L l = y4H®c(T)c^(T)]y + y 4 ( 2 H x 0 + h ) ® c r ( T ) ] + xJ(Hx 0 +h) 

where <8> is a Kronecker product sign (Brewer, 1978), e.g., 

r V n Z . . . Vi„Zl 

V21Z 

(21) 

v<g>z 
LV„lZ V n n Z. 

(22) 

where V is an nxn matrix and Z is an arbitrary matrix. From equations (14) and (20) the 

integrand of equation (3) can be also expressed as a quadratic function of y, i.e., 



rQx+urRu+xrSu+qrx+rru = y r Py+y^p+xjpo (23) 

where, for convenience, the time-dependent notation (t) has been dropped and 

P = F 1 ®cc 7 , + F 2 ®dd^+F3®dc r (24a) 

p = (2F,x 0 +fi )®c+(F 3 x 0 +f2)®d ; p 0 = F 1 x 0 + f i (24b,c) 

In equations (24a-c) F l t F 2 , and F 3 are NxN matrices and ft and f2 are Nxl vectors 

given by 

F ^ Q + A ^ R B - ' A - S B ^ A ; F 2 = B ~ r R B _ 1 (25a,b) 

F 3 = - 2 B - r R B - l A + B - r S ; h = q - A r B " r r ; f2 = BTr (25c-e) 

and superscript -T denotes inverse transpose. Hence, P is an (N)(K)x(N)(K) matrix, and 

p and po are (N)(K)xl vectors. From equation (23), the integral part of the performance 

index can be expressed as 

L 2 = f ( y ^ P y f y T p + x 5 p 0 ) d t = y r P * y + y r P * + 4 P o ( 2 6 > 
Jo 

where 

P * = f Pdt ; p* = f pdt ; P o = [ Podt (27a-c) 
Jo Jo Jo 

can be integrated numerically for time-varying problems. Combining equations (21) and 

(26) gives the performance index L as a quadratic function of y, i.e., 

L = y r G y + y*g + x f l H x 0 + h + p S ] (28) 

where 

G = H®c(T)c(T) T + P* ; g = (2Hx 0 +h)®c^(T) + p* (29a,b) 

For time-invariant problems, F x , F 2 , F 3 , ^ and f2 are constants, and equations (27a-

c) can be rewritten as 



P * = pi<8> (cc r)dt + F2<8> (dd r)dt + F3® (dc r)dt (30a) 

p* = (2FiXo+fi)<8» [ c d t + (F3x 0 +f2)® if ddt ( 3 0 b ) 

Jo 
Jo 

= T(FlXo+fl) (30c) 

The terms in the brackets can be evaluated numerically or derived in closed-form. For 

example, the first integral term of equation (30b) can be derived as 

I cidt = i (t)dt + ( - i r T = l a 0 1 + ( - i r T , i=l,...,K ( 3 1 ) 

Jo Jo 

where 
1 +(-iy . , 

aoi = 0 and ocoi = , i*l ( 3 2 ) 

1 - i 2 

Closed-form relations for all bracketed terms in equations (30a,b) are presented in 

Appendix A. 

Optimality Condition. The necessary condition of optimality can be obtained by 
differentiating equation (28) with respect to y. The resulting optimality condition is 

(G + G r)y = -g ( 3 3 ) 

representing a system of linear algebraic equations from which the unknown vector y can 

be solved. Note that the state initial condition is embedded only in the right-hand side of 

equation (33). The coefficient matrix remains the same for problems with different initial 

conditions. 

General Linear Systems. To apply the Chebyshev-based approach to systems 

with different numbers of state and control variables, a penalty function technique is 

proposed. The state-space model of equation (4) is modified to 

x(t) = A(t)x(t) + B'(t)u'(t) (34) 

It is required that B 1 be invertible and that the modified excitation B'u1 be as close to the 



column space of B as possible. This can be done by choosing a well-conditioned B f and 
penalizing the orthogonal projection of BV onto the left-nullspace of B in a modified 
performance index, 

L' = L + p E ( 3 5 ) 

with 

E = ( [(B'(t)u'(t) - B(t)u(t)f(B'(t)ii»(t) - B(t)u(t))]dt ( 3 6 ) 
Jo 

Here, L is the original performance index of equation (1), p is a weighting constant chosen 
as a large positive number, and E is the integral of the orthogonal projection. E can be 
viewed as an error index indicating the proximity of the modified state equation to the 
original state equation. By equating Bu and B'u' and applying least squares 
approximation, the original u can be reconstructed as 

u = Wu (37) 

where 

W = ( B r B ) " B r B ' ( 3 8 ) 

With u from equation (37), the modified performance index L' can be rewritten as 

L' = Li + I [ x r Q x + u r R ' u + x r S ' u + q r x + r , : r u]d t (39) 
Jo 

where Li is from equation (2) and 

R f = W r R W + p ( B - B W f ( B - B W ) ; S'= SW ; r' = r A W (40*-c) 

Equations (34) and (39) represent a modified LQ problem solvable by the Chebyshev-
based approach. Matrix B' can be chosen arbitrarily as long as it is invertible. A 
convenient choice is the identity matrix which minimizes function evaluations in equations 
(20) and (25a-e). 

The procedure for solving a general time-invariant LQ optimal control problem is 



summarized below: 

INPUT: initial state XQ; system matrix A; control influence matrix B; 
terminal time T; coefficient matrices H, Q, R, S; coefficient vectors h, q, r; 
number of Chebyshev-based polynomial terms, K. 

Step 1 If 
then 

M*N, 
pick B'; compute W from equation (38); replace B by B'; 
replace R, S, and r by R', S\ and r' from equations (40a-c). 

Step 2 Compute Fj , F 2 , F 3 , fi and f2 from equations (25a-ns). 

Step 3 Compute P*, P * and P J from equations (30a-c). 

Step 4 Compute G and G from equations (29a,b). 

StepS Compute y from equation (33). 

Step 6 Compute performance index L from equation (28). 

Step 7 Evaluate state and state rate from equations (14) and (17). 

Step 8 Evaluate control from equation (20). 
Step 9 If 

then 
M*N, 
evaluate original control from equation (37). 

OUTPUT: performance index L; state trajectory x(t) and control trajectory u(t). 

STOP 

Simulation Studies 

E X A M P L E 1 . Sage and White (1977) consider the one-dimensional diffusion equation 

^ = — + u(y,t) , 0 £ t < T , 0 < y < Y (41) 
dt dy* 

with boundary conditions and initial condition 

5*<0,t) = ^ Y , t ) = 0 ; x(y,0) = 1 + y (42),(43) 
dy dy 

The performance index to be minimized is 

[ 

O J O 

L = 4 [x2(y,t)+u*(y,t)]dydt (44) 
0 



Using a finite difference approximation, this distributed parameter system can be 
approximated by the N-th order system 

x = Ax + B u (45) 

where 

A = 
(Ay) 2 

-2 2 
1 - 2 1 O 

O 1 - 2 1 
2 -2 

; B = I N x N ; Ay = ^ y 

NxN 

x = [ x t x 2 . . . x N f , x n = x((n-l)Ay) , n = 1,2,...,N 

u = [ U l u 2 . . . u N f , u n = u((n-l)Ay) , n = 1,2,...,N 

with initial conditions 

x n (0 )= 1 + ( n - l ) A y , n = 1,2,...,N 

The performance index can then be approximated by 

x+u^RiOdt 

(46a-c) 

(46d) 

(46e) 

(47) 

(48) 

where 

Q = R diagfi i i, y 
L2 21 <£->NxN 

(49) 

Simulation studies were conducted using a Macintosh Ilex. The optimal value of the 
performance index and the optimal trajectories of the state and control vectors at 101 
equally-spaced points were solved by a Riccati equation solver (Speyer, 1986), a transition 
matrix approach (Speyer, 1986), a Fourier-based state parameterization approach (Yen and 
Nagurka, 1991), and the proposed Chebyshev-based approach. 

The value of the performance index and the execution time (in seconds) for T=l, Y=4 
and N=5, 8, 11, 14, 17, and 20 are summarized in Table 1. The Riccati equation solver 
provides accurate solutions in all cases, although it is time-consuming for the higher order 



systems. The transition matrix approach is accurate and computationally more efficient 
than the Riccati equation solver but it encounters numerical difficulties and fails to provide 
reasonable solutions for N>14. In the Fourier-based and Chebyshev-based approaches the 
number of terms in the state approximation was selected to provide accurate solutions, 
defined (arbitrarily) as having a percent relative error of less than one percent. To achieve 
this high accuracy, two Fourier-type terms in addition to the fifth-order auxiliary 
polynomial terms are required in the Fourier-based approach and six shifted Chebyshev 
terms in addition to the constant (initial condition) term are needed in the Chebyshev-based 
approach. Both state parameterization approaches are computationally more efficient than 
the transition matrix approach for N>8. 

It is possible to interpret the results of the state parameterization methods in light of the 
number of equivalent linear algebraic equations. A K-term Chebyshev-based approach 
involves (N)(K) linear algebraic equations representing the conditions of optimaiity. In 
comparison, a K-term Fourier approach involves N(2K+3) linear algebraic equations (see 
Yen and Nagurka, 1991). The results suggest that the six-term Chebyshev-based approach 
is more accurate and computationally more efficient than the two-term Fourier-based 
approach in all cases. In particular, for N=20, the Chebyshev-based method (involving 
120 equations) shows greater than 34 percent savings in execution time when compared 
with the two-term Fourier-based approach (with 140 equations). For N>17 in both 
approaches, the performance indices increase slightly as the system order grows, while the 
solutions from the Riccati equation solver indicate that the performance index should 
decrease. Adding terms to the series improves the accuracy of the solutions. 

The time histories of the state variables for N=5 obtained via a transition matrix 
approach and a 6-term Chebyshev-based approach are plotted in Figure 1. The solutions 
from both approaches coincide indicating that convergence has been achieved. Similarly, 
for N=5, the control variable histories for the two approaches overlap for the scale shown 
in Figure 2. 

Example 2. This example, adapted and modified from (Meirovitch, 1990, Example 
6.3), considers a series arrangement of J masses and J springs. As shown in Figure 3, it 
represents a 2J order system with a single force input acting on the last mass, mj. The 
displacement of mass m̂  is denoted by qj. The mass and stiffness matrices are 



M = 
mi 

O 

m 2 

O 

mj 

K = 

ki+ k 2 - k 2 

- k 2 k 2 +k 3 - k 3 

O 

O 

-kj.i kj.i+kj -kj 
kj 

The state equation of this system is given by equation (4) with 

x = [x i x 2 . - - x 2 j ] r = [qi q 2 - - - qj qi q 2 - - • qj] 7* 

A 

O 

- M _ 1 K O 

; B = [ 0 0 ••• 0 1/mjf 

The initial conditions are 

X ( 0 ) = [ X ! ( 0 ) x 2 ( 0 ) . . - X 2 J ( 0 ) f 

where it is presumed 

xj(0) = 1 ; XJ(0) = 0 , j = 1,2,...,J-1,J+1 2J 

(50) 

(51) 

(52) 

(53),(54) 

(55) 

(56a,b) 

indicating that the last mass only has been displaced from rest. 
The problem is to find the optimal control history, u(t), that minimizes the performance 

index 

f 1 0 

L = (xrQx + u2)dt ; Q = 
Jo 

K 0 1 

LO M 

(57),(58) 

The integrand term x^Qx represents the sum of kinetic and potential energies of the 
system. The inclusion of the integrand term u* reflects the desire to minimize the force (as 
well as the total energy). 

Using the values m^lQkg and k-liV/m (j=l,2 J) for three different systems, J=3, 

5, and 7, the optimal solutions were determined using a Riccati approach, a transition 

I 



matrix approach, and the Chebyshev-based approach. In the latter approach an eight term 
series {Le., initial condition plus seven Chebyshev-type terms) was selected, the weighting 
constant p=10 5 was used, and B' was chosen as the identity matrix. The resulting values 
of the original performance index and the execution time are summarized in Table 2. For 
J=7 there is less than a 0.21 percent error in the value of the performance index and a time 
savings of greater than 52 percent relative to the transition matrix method (and over a 96 
percent savings relative to the Riccati solver). 

For J=3 the time histories of the state variables x 3 and x 6 (the displacement and velocity 
of the last mass, respectively) and the control variable u obtained using the Chebyshev-
based approach are compared with the respective state and control variables of the transition 
matrix approach in Figures 4 and 5. To verify that the penalty function technique is 
successful, the error index, E, is evaluated by substituting back the state and control 
trajectories into equation (35). The results are E=7.64xl0-? for J=3, E=8.09xl0~ 7 for 
J=5, and E=8 .09x l0 - 7 for J=7, indicating that the modified state equation closely 
approximates the original state equation. 

Discussion 

Selection of Terms of Chebyshev-based Series. The proposed approach 
provides near optimal solutions with the accuracy depending on the number of terms of the 
series. Increasing the number of terms improves the accuracy while sacrificing computation 
time. A recommended procedure for selecting the number of terms is to solve the problem 
using a K term series and a K+I term series, and to then check whether the relative error of 
the performance index is within a desired tolerance. When the difference I is arbitrarily 
large, the relative error essentially represents the error between the approximate and exact 
solutions. If the relative error is within the required tolerance, the K term series is 
acceptable. 

Selection of Penalty Function Weighting Constant. An important factor 
affecting the solution accuracy of general systems is the weighting constant. To ensure that 
the modified excitation B'u' closely approximates the original excitation Bu, the weighting 
constant is chosen to be a large positive number. However, if the weighting constant is too 
large, the magnitude of the original performance index can become insignificant relative to 
the approximated performance index. On the other hand, if the weighting constant is too 
small, (B'u'-Bu) is not driven small enough to approximate the original system. When an 
exact solution is not available, it is useful to plot L vs. p and E vs. p to help determine the 



appropriate weighting constant. Figure 6 shows these relations for Example 2. It reveals 
that the performance index is least sensitive in the range lO^pKlO?. Thus, p=l()5 is an 
appropriate weighting constant, and the corresponding E of less than 10-6 indicates a 
satisfactory approximation of the state equation. 

Comparison of Available Approaches vs. Chebyshev-based Approach. 
Vlassenbroeck and Van Doreen (1988) proposed a Chebyshev-based state and control 
parameterization approach for solving nonlinear optimal control problems. To apply the 
Chebyshev polynomials, the system dynamics are transformed from time interval [0,T] to [¬ 
1,1] and then converted into equality constraints (with tedious analytical formulation). Since 
both state and control parameterization is employed, the optimal control problem is 
converted into an optimization problem with constraints. In contrast, the proposed 
Chebyshev-based approach employs shifted Chebyshev polynomials on time interval [0,T]. 
By applying state parameterization only, fewer unknown parameters are needed. The state 
equation is used to represent the control as a function of the state, circumventing equality 
constraints, and the LQ optimal control problem is then converted into an unconstrained 
optimization problem which may be cast as a system of linear algebraic equations. In 
summary, Vlassenbroeck and Van Doreen's approach is capable of solving nonlinear and 
constrained optimal control problems, while the Chebyshev-based approach of this paper 
provides a direct and fast solution procedure for linear optimal control problems. 

Compared to the Fourier-based approach (Yen and Nagurka, 1991), the Chebyshev-
based approach offers a simplified solution procedure with concomitant computational 
advantages. Although the Chebyshev-based approach is computationally more attractive, 
the Fourier-based approach is more flexible in that it can deal with a broader class of 
problems, namely those with general boundary conditions. It is capable of solving optimal 
control problems with known initial states, initial state rates, terminal states, and/or terminal 
state rates by isolating the known boundary conditions from the unknown parameters in the 
state parameter vector y. 

Conclusion 
This report has presented a robust and computationally efficient Chebyshev-based 

algorithm for solving LQ optimal control problems. A key reason underlying the 
computationally streamlined nature of the approach is that the necessary condition of 
optimality can be written as a set of linear algebraic equations. Another advantage of the 
approach, especially important for time-invariant problems, is the availability of closed-



form formulas for the integrals of shifted Chebyshev polynomial terms needed in 
establishing the linear algebraic equations. Finally, a penalty function technique is 
promoted as a means to make the approach tractable for systems with different numbers of 
state and control variables. Simulation results demonstrate computational advantages of the 
proposed approach relative to a Riccati approach, a transition matrix approach, and a 
previous Fourier-based approach. 
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A p p e n d i x A Integrals for Chebyshev-based Approach 

A. l Properties of Chebyshev Polynomials. Chebyshev polynomials are 
orthogonal on the interval $<= [-1,1] with the weighting function (1 - fc?)-1'2 and have the 
following analytical form: 

(p k(c J)=cos(kcos- 1^) , k=0,l,2,... ( A ^ 

or 

where the notation [k/2] means the greatest integer smaller than k/2. From equation (A.2), 
the first few Chebyshev polynomials can be extended as 

<Po(cJ = 1 

<Pi<S = § 
<*B = 2 * 2 - 1 (A.3a-f) 

q>4(^) = 8 ^ - 8 ^ 2 + 1 

<p5(4) = 1 6 ^ 5 - 2 0 ^ 3
 + 54 

The Chebyshev polynomials have several interesting properties, such as satisfying (i) 
the recurrence relations 

( p k + i ( c j - 2cJ<pk(£J) + <pk_,(c,)=0 , k=l,2,... 
(A.4a,b) 

( l -4 2 ) (p k (^=-k^(p k (^ + k(pk_i(4) , k=l,2,... 

where the dot indicates differentiation with respect to time, (ii) the boundary and midpoint 
values 



<pk(l) = 1 

cPk(-l) = ( - l ) k 

(A.5a-d) 
(p2k(0) = ( -D k 

92k + l (0) = 0 

and (Hi) the product relations 

<Pi($)<Pj($)= i [ < P i + j ( A ) + < P H A ) ] » 

(A.6a-b) 

A ) = yi+<P2k(A)] 

These properties can be used to develop the recurrence formulas for the integrals in the next 
section. 

A.2 Integrals of Chebyshev Polynomials. Applying the properties of the 

recurrence relation, product relation, and boundary values in Section A. l , the integrals of 

£<pj» A '(pj, (pi(pj, <X) and <>(p can be derived by "integration by parts". Here, the integrals 

are denoted as follows. 

(A.7) 

(A.8) 

<Pite)<Pjte)d4 ( A . 9 ) 

•I (A. 10) 

(A.11) 

The recurrence formulas for these integrals are summarized below, where the subscripts i 



and j are non-negative integers. 

((j + i x j - i - 1 ) ! i + (
 M

 1 ) H + 

a;; = 

U«<i_ixH-i>1 . when j - i - 1 * 0 

, otherwise 
(A.12) 

p j = l - ( - l ) + i _ i a C i _ 1 ) j 

Yu = 2t a°<+J) + a olHl] 

0 

(3oi 

Pii 

2P2i-Poi 

4 p 3 i - 3 p n 

Sij = { 

, i=0 

, i*0, j = 0 

, i*0, j = l 

, i*0, j = 2 

, i*0, j = 3 

\28i(j_2) - 8 i ( M ) + 2i[Y(i+1)H_2) - Y(i-i)G-2)] . i*0. J^ 4 

0 

Poi 

4Pu 

12p2i-3Poi 

J = 0 

. j - l 

j = 2 

,j=3 

(A.13) 

(A.14) 

(A. 15) 

(A. 16) 

l2^ a_2) - eJ-4) + 2j8i(j_i) + (8 - 2 j ) 8 J J ) , j>4 

where li-jl denotes the absolute value of (i-j). 

A.3 Integrals of Shifted Chebyshev Polynomials. In shifted Chebyshev 

polynomials the domain is transformed to values between 0 and T by introducing the 

change of variables £ = 2t/T-l giving 

Vk(0=<Pk(S) = <Pk(2T-l) (A.17) 

where nondimensional time x = t/T. From equations (A.17) and (A.2) the first few shifted 

Chebyshev polynomials are 



vfo(t) = 1 

\|/2(t) = 8 T 2 - 8T + I (A.18a-e) 

\|r3(t) = 3 2 x 3 - 4 8 x 2 + 1 8 x - l 

V 4 ( t ) = 128T4 - 256x 3 + 160x2 - 32x + 1 

The initial and terminal values of the shifted Chebyshev polynomial and their first time 
derivatives can be obtained as 

¥k<0) = (-1)* 

y k (0 ) = ( - l ) k + 1 (2k 2 /T) 

In this section, the integrals of y W j , W j and VWj are developed. Equation 

(A.17) yields the following relations: 

Vk(t) = <pk(S) 

t / A o r w ^ 

Making use of equations (A.20a-d) with equations (A.7)-(A.l 1), the following integrals are 
obtained: 

(A.19a-d) 
Vk(T) 1 

(A.21) 

(A.22) 



r v i ( t ) v j ( t ) d t = ^ 

f Vi 

(A.23) 

'0 

Vi(t) V j (t)dt= Sy (A.24) 

'o 

( Vi(t)\ir j(t)dt=2,Ei j (A.25) 

' o 

where i and j are non-negative integers. 

A.4 Closed-form Integrals for Chebyshev-based Approach. The basis 

function of the Chebyshev-based approach is repeated here as 

Ck(t)=Vk(t) + ( - l ) k - 1 , k=l,2,...,K (A.26) 

The closed-form integrals of the basis function can be derived from equations (A.21)-(A.26) 

as 

f c i d t = X a o i + ( - l ) i - 1 T (A.27) 
Jo 2 

Jo 
didt = Poi (A.28) 

Jo 

| (Cicj)dt = Ifoy + ( - lV^aio + ( - 1 ) w O O J + 2 ( - l ) H - 2 T ] ( A . 2 9 ) 

^ S i j + t - l ^ B o i (A.30) 
[ (diCj)dt = 5ij 

Jo 

(A.31) 

where a, p\ Y, 8, and e are defined in equations (A.12)-(A.16). Equations (A.27)-(A.31) 

show the closed-form relations of the integral parts required for the Chebyshev-based 

approach in solving time-invariant optimal control problems. 



Table 1. Simulation Results for Example 1 

Riccati* Transition 
Matrix Fourier-based Chebyshev-based 

N 5 £ 
Time 
(s) 

Perf. 
index 

Time 
(s) ££ Time 

(s) EL Time 
(s) 

5 15.180 12.22 15.180 1.83 15.180 2.05 15.180 1.63 
8 15.056 64.18 15.056 6.60 15.056 5.23 15.056 3.77 
11 15.027 212.97 15.027 16.78 15.031 10.77 15.030 7.40 
14 15.016 520.32 15.440 33.42 15.030 19.20 15.029 12.73 
17 15.011 1100.50 unstable - 15.042 30.62 15.042 20.28 
20 15.008 4797.15 unstable - 15.061 46.73 15.061 30.68 

N=17, the Riccati equation is integrated backward using a 
Runge-Kutta routine with a time step of 0.01 second. For 

N=20, the time step is reduced to 0.005 second to ensure a numerically 
stable solution. 

* For N=5 to 
fourth-order 

Table 2. Simulation Results for Example 2 

J=3 J=5 J=7 

METHOD 
Perf. 
index 

Time 
(s) 

Perf. 
index 

Time 
(s) 

Perf. 
index 

Time 
(s) 

Riccati* 7.6205 22.9 7.6204 145 7.6204 511 

Transition Matrix 7.6205 3.75 7.6204 13.2 7.6204 34.7 

Chebyshev-based 7.6055 2.33 7.6049 7.70 7.6049 16.6 

* The Riccati equation is integrated backward using a fourth-order Runge-
Kutta routine with a time step of 0.1 second. 
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Figure 1. State Variable History of Example 1 
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Figure 2. Control Variable History of Example 1 
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Figure 3. 2 j Order System of Example 2 
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Figure 4. State Variable History of Example 2 
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Figure 5. Control Variable History of Example 2 
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Figure 6. Performance and Error Indices vs. Weighting for Example 2 


