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ABSTRACT

This paper develops a new approach to an old and
difficult proklem: how 1o make and update plans for
correcting a given set of contingencies. The
approach is to decompose tha problam inte a set of
wosely coupled, much smaller problems that can be
solved by a team of cooperating agents. The team is
expandable and its agents ara autonomaus, work in
parallel, and communicate asynchroncusly. Most of
tha current cadra of agents use algorthms 1hat are
either well known or fairly obvious. One type,
howeaver, uses a new algosithm for finding starting
poinmts for nonlinear programming codes. This
algorithm is described and the performance of the
team flustrated with small examples.

1. INTRODUCTICN

1.1 Terminology

Think of a power system as a network containing m
swiiches, each of which can be either open or
ckosed. Thus, the system can adopt M = 2M different
confiqurations, denoted by Cg, C1,... CM. where Cp
is the curremt configuration. Let Xn be a vector
whose elaments are the taus voltages and bus power
injactions of Cp. Though Xq contains both state and
control variables, we will, for the purposas of brevity,
call it a state vector.

The concems in operating a power system can be
divided into two broad cateqgories: cost and guality.
Cost is usually represented by a function: 1(Xn).
Quality concemns are usually expressed as a set of
nonlinear relations (sometimes, called load and
operating constraints) that are configuration-specific,
and have the general form:

Gn (Xn, D)) = 0

Hn(Xn D) = 0
where t is time and D is a vector of exogenaus, time-
varying quantities, such as customer demands for
electric energy.

Xp is said to be a normal state if it satisties these
constraints. Sp, the set of all normat states for

contiguration Cp, is called the normal set of Cp.
Contigurations for which Sp, is empty are said to be
uncorreciable; all other configurations are said to be
correctable.

Two sorts of avenis can cause a system state io
become abnormal: gradual changes in the
exogenous variables, D, and sudden disturbances
that resuft in random configuration changes. The
{atter can cauge far larger excursions, and hence, are
much more dangerous.

Let Tn(Xna. ¥nh) be the least time required to
changa the state o Cq $rom Xpg to Xpp through a

sequence of control actions. Wa will call Tp a

transition delay. Note that T is non-zero because
many control actions are rate limied. The cutlput of a
typéical generator can, for instance, be increasad at
most by a few megawatts per minute.

1.2 Focus

Thig paper deals with control actions to counter the
il effects of sudiden disturbances. These actions can
be discreta (switching operations) or continuous
(changes in the independently ccntrollable
components of the state vector). The paper
concantrates on the latter.

2. PAOBLEM FORMULATION

2.1 Optimum Power Flows {OPFs)

One of the simptest oparating philosophies is 1o
minimize instantaneous costs while keeping the
state normal. In other words:

{OPF): Min f{Xo)
st GpfXp.D) = O
Ho{Xp.D) < ©

Since the dimensions ot Xg, Go, and Hg are often
of the order of 1000, this is a iarge problem; available
techniques are barely able 1o solve it fast enough for
the results to be useful in real-time operations [1, 2,
3].

2.2 Adding Contingency Constraints

How can ona limit the ill effects of the random
configurational changes ihat resuit from sudden
disturbances? By far the most common practice
involves two steps [4, 5, 8). First, a set of critical
configurational changes (called contingencies) is
identified. Second, pfans are made to reesiablish a
normal state within socme short pariod after the
occurrence of each contingency.

The identification of critical contingencies requires
system-specilic knowiledge, much of which can be
encoded in expert systems (71, [n other words, much
if not all of the identlication process can be




automated with existing techniques. The same is not
true for planning responses to these contingencies.
To understand why, suppose that the n-th
contingency would cause the system's state to
change from Xg to Xne. if Xne is abnormal, the
planning problem is to find a normal state, Xp, that
can be achieved within an acceptably short time, say
Tn. There are two different ways to formulate this
problem: the first treats correction times as hard
constraints; the second treats them in a softer way,
specifically, as terms of an objective function. The
modifications that result to (OPF) from these two
treatments are indicated below:

(CCP1):  Min {(Xg)
st Go(Xp,D) =
Ho(X0.D) <
Gn(Xn, D) =
Hn(Xn, D) <
T{Xn-X0} <

o000

N
(CCP2):  Min f (X0} + 2. Wn tn(Xn - Xo)
=1

st. Gp(XpD) = O
n=0,1,....N
Hn(Xn,D) 5 0

where: N is the number of contingencies to be
considered; Tnpis the time allowed for the n-th
contingency to be corrected, wp is a waight
assigned to the n-th contingency; and it has been
assumed that tn{Xn - Xne) can be approximated by
Tn(Xn - X0)-

Both these formulations are very large--at least
N+1 times as large as (OPF). As such, both are
beyond existing capabilities for fast, reliable and
repeated solution, In addition, each requires the
user to select some parameters: {Tn} in the case of
(CCP-1) and {wn} in the case of (CCP-2). It happens
that the selection of {Tp} is much more difficult. The
explanation is as follows. Let Z = [X0,X1,....XN] be a
vector called a super-state. Let S1 be the feasible
set of (CCP1), that is, the set of all values of Z that
satisfy the constraints of (CCP1). Let S2 be the
feasible set of (CCP2). Then S1 is small and
sensitive to the values selected for {Tp} while S2 is
much bigger and insensitive to the values of {wp}.
Another way ot putting it is that the constraints of
(CCP1) require all the contingencies be correctable
and also, all the corrections be completed within time
limits, {Tp}, that must be selacted apriori. In contrast,
the constraints of (CCP2) require only that ail the
contingencies be correctable. In selecting {Tn} there
is a considerable risk of making S1 empty, in which
case little useful information is likely to result from
attempts to solve (CCP1), even though these
attempis be long and painful. In seiecting {wp},

however, the user is merely expressing an opinion
on the relative importance of the contingencies and
can adjust this opinion interactively.

Because of (CCP1)'s profound disadvantages
redative to (CCP2), we will henceforth consider only
(CCP2). Also, recall that the vector of exogenous
variables, D, is time varying, and therefore, the
solution of (CCP2) Is time varying.

2.3 A Decomposition

Notice that the constraints of (CCP2) consist ot
N+1 independent blocks. As a result, (CCP2) can be
decomposed into a set. {{IPn)}, of N+1 subproblems
each having the form:
(IPn}: Min fn{Xn.Z2n)

Xn
st: Gn(Xn,D) = 0O
Hn(Xn.D) < 0
where:

Zn = Z\Xp, that is, the super-state Z with the
elements of X removed

n=1,2,...N

N
fo (X0, Zo) = f(Xp) +>:1 wn T(Xn - X0)
N=
fniXmZn) = niXn-Xo0) forn=1,2,..,N
Let {(IPn}} be the set of all the {IPn) and Z* be a
simultaneous solution of this set. Then, it can easily
be shown that Z* is also a solution of (CCP2); hence,
{{IPn}} and (CCP2} are equivalent (8].

2.4 A Skewed Approximation

Can the couplings among the members of {{IPn)}
be loosened so their parallel solution becomes
easier?

Note that the exact solution of {{IPn)} Is
uncbtainable because the exact value of the
exogenous vector, D, is unknown. The elements of
D are time varying and are measured by sensors that
can be hundreds of miles apart. There is always
some delay and time skew in making and collecting
these measurements. What if delays and time skews
ware allowad for the values of Z,,? More specifically,
suppose that each (IP,) is treated as a separate
problem that is solved iteratively for Xp, while Zn and
D are treated as exogenous variables whose values
are updated as new estimates of them become
available. Then we have a set, {(IPy")}, of more
loosely coupled problems, each of the form:

{IPnY):  Min fr (X, Z'n)
Xn

s.t: Go(Xpn, D) = ©
Hn(Xn.D) < ©
where Z'n and D' are the latest available values of Zp
and D.

Consider the case where (IPn) has muitiple
solutions. Intuitively, one would expect each
solution of (IPp") to track the corresponding solution
of {IPn) as it varies In time with an error that increases




smoothly with the skew in the values of Z'n and D',
That this is actually the case is easily proved [8, 9].

3. MULTI-AGENT SOLUTION PROCESSES

3.1 Asynchronocus Teams {(A-Teams)

The praceding sections have decomposed the
contingancy constrained problem, (CCP2), into a
sef, {{IPnY}, of N+1 smalier problems, each of the
form and size of an optimum power flow. The smaller
problems are very loosely coupled and can be
solved by a team of agents working in parallel,
provided the 1eam is properly organized.

The organization we will use is called an A-Team
and is described In [10]. lis main features are:
= Agents with a multiizde of skills are combined so

they complement and help one another

« All the agents are autonomous. Most agenls use
onty localty available data. All the agents work in
parallel and communicate asynchronously (that is,
no agent has 1o wait for results from another}.

« The organization is very open. The addition of a
new agent may require some meodifications to that
agent, but none to the rest of the organization. As
a result, the number of agents tends ic grow
continuaily.

» The agents develop and maintain populations of
solutions to ithe overall problem and its
components,

The structural features of A-Teams make them well
suited to distributed Implementations in networks of
computers. Tha key question is: can an A-Team be
made to do anything useful? After ali, autonomouts
agents, each deciding for kself what it is going to do
and when, if ever, X will communicata with its team
matas, can act al cross purposas. Surprisingly, there
are simpie sirategies to keep this from happening.
Cne of 1them is to balance agenis that create
solutians with agents that desiroy them. In difficult
integer programming problems (travelling salesman
and robot design) this strateqy has been shown to
produce scale efficlent behaviar (as agenils are
added better solutions are obtained more quickly
and speed of the team increases) and even
synergistic coaperation {the capabilities of the {eam
appear o be greater than tha sum of the capabilitles
of its agents) [10].

To visualize how this sirategy works, think of an A-
Team as a distributed collection of memeries {Fig. 1).
Cne of these mamories contains a population of
solutions to the overall problem beiryg considered.
The others contain populations of sokutions to sub-
problems. Each population is continually
transformed by agents working in parallel. Some,
catlad creators, add membars to the population,
others, calied desiroyers, cull members from it.
Suppose that for each popuiation there are several
criteria by which the goodness of members can be
measured. Think of the population as a set of points
in the space whose axes represent these criteria. We
wani the creators and destroyers {0 act so that
together, they herd the population into a dasirable

part of the spacse. It has been demcnstrated 1hat this
happens sven with very narrow creators and
destroyers, each able to take only a single criterion
into account in making its decisions [11]. In essence,
each craator works to produce soiutions that are
better in tarms of its criterion; each destroyer tesis
sotutions with respact 10 its critericn and eliminates
those that fail.
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Fg 1: The structure of an A-Team. Memcries are
represanied by rectangles; agents, by arrows.

3.2 Agents
Like rules in an expert system, the number of

agenis in an A-Team tends to grow continually. We
do not have the space 1o describe all the agants now
in the team for solving (CCP2). Instead, we will list the
agants involvad in maintaining a population of
solutions to its principal sub-problem, {IPn}, and
describe one of tham in some detail. These agenis
are.

« Daia imporiers: to collect tha latest values of Z'p
and D",

» Probes: 10 perform fine searches of
neighborhoods, that is, to find local minima of
{IPn") fromn given starting points. This capability is
provided by conventional noniinear pregramming
codes [12].

* Voyagers: {0 provide starting points for the
probes. Tha wvoyagers do this by conducting
coarss searches ihat Iocate neighborhoods in
which good sclutions of (IPN) are likely to lie.

* Inhibitors: o place "fences” {implemented in the
torm of constraints) around neighborhoods thai
have been investigated, and thereby, to keep
voyagers from wasting effort on revisiting these
reighborhoods. (The fences are simifar in
concept to the discrete restrictions in tabu search
[13], and can be viewed as their extension to
continuous domains.)

» Destroyers: to perform two functions. First, to
aliminate obsolete solutlons and fences {Recall




that the solutions of (IPn") are time varying.

Therefore, solutions that are valid at ime t are less

valid at tme t+At ) Second, to eliminate results from

voyagers that have become trapped in some
unproductive part of their search space and force
these voyagers to jump to a new location.

Except for the voyagers, these agents use either
well known methods or fairly obvious heuristics. The
voyagers, however, use a new trajectory-based
heuristic that is described below.

4. THE VOYAGER ALGORITHM

41 Coarse Search by a Relaxed Interior

Point Method
Consider an optimization problem with multiple

solutions, some better than others. The pumpose of a

voyager is to find points close enough to the better

solutions to serve as starting points for conventional
nonlinear programming codes (these codes
invariably employ greedy algorithms that head for the
nearest local optimum, regardless of its quality). Fig.

2 illustrates how the voyagers and probes ccoperate

to find solutions.

The two main ideas behind the voyager-algorithm
are:

* Replace the objective and constraints of the
optimization problem to be sclved ((IPn) in our
case) by a binary vector field r'vV(Xn). The magnitude
of this field is 1 everywhere except at the solutions
of the optimization problem, where it is 0. Every
field line passing through an infeasible point leads
to a feasible region; every field line that passing
through a feasible point leads to a minimum.

» Each voyager behaves as a Newtonian particle
under the influence of two forces. The first force
acts to align the particle's velocity with the vector
field ; the second, to keep the magnitude of the
particle's velocity constant. As a result, particles are
attracted by feasible regions and minima but
circulate at near-constant speed, never stopping.
Once a voyager enters a feasible region it can only

escape if the region is small. The constraints that

delineate the boundaries of the region behave as
elastic membranes, forcing the voyager back into the
interior whenever it violates them. Thus, the voyager
can be thought of as using a relaxed intericr point

method. (Traditicnal intericr point methods [14, 15,

18] treat constraints as rigid rather than elastic

boundaries. This requires a great deal of

computational effort. Since there are few if any
benefits, the relaxed approach seems preferable.)

*  solution
X launch point
X\/\2**  probe trajectory
—>+ voyager trajectory

Fig 2 A voyager conducts a coarse search which

takes it close to solutions of problem BH-2 (described in
the appendix). Its purpose is to find starting {launch)
points from which conventional nonlinear programming
algorithms (called probes) can begin fine searches for
the solutions.
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Fig 3: The vector field for the problem in Fig. 2



4.2 The Vector Fleld
The process for replacing (IPn") by a vecior field is

as follows, First, the equality constraints: Gp {Xn,
D'}=0 are approximated by inequalilies:

Gn(Xp, D) sa

Gn(Xn, D) 2-a
where a is a non-negative, user-selected parameter.
Thus (IPn') is replaced by a problem with only
inequality constraints which, for the purposes of
notational brevity, we will write as follows:
(VP):  Min {(X)

st ¢j(X) <0, j=1, ..M

whera M is the total number of inequality constraints.
Let: n'(X) be the field vector at point X; | be the set of
constraints that are violated at X, thatis, I = { j | ¢j(X) >
0}; © be the null set; v be the gradient operator; and
li.| be the Euclidean norm. Then:

[ -ZaiX) veX)

| iel, ifl»0

: X Gi(X) Ve ||

[ VEX) fl=0
100 = 4 and

} (R (VX)) = O

| ftl=0

| 0 and

L VIOl = 0

In words, the field n' is of unit magnitude
evarywhere except at solutions to (VP). Also, at
infeasible points the field is directed towards feasible
regions; at feasible points, it is directed towards
solutions of (VP).

4.3 Voyager Dynamics
The dynamics of the voyager are described by the

following differential equations:
dVX) .1 (8400 +BZX)
dt T
dX
at- V™
where:
840 =100 - Voo N
B9 = W (E- VOOl )

nX) = n'(X) lIVOX)I; © is the mass of the voyager; N(X)
is a unit vector that is normal to V(X) and in the plane

of V(X) and n'(X); E is the speed to be maintained;
and W is a constant.
in words, the force B1 is normal to V in direction

and proporional to the angle between V and 1’ in
magnitude. B1 acts to align V with 1y'. In contrast, the

force Bp is co-linear with V and proportional to the
difference between ||V|} and E in magnitude. B2 acts
{o make ||V} equal to the desired speed, E.

4.4 Discussion

By using only tha direction, not the magnitude, of
the vector field as a guide, the voyager is able to
travei at near constant speed and thereby, keep from
being trapped by minima. This feature distinguishes
voyagers from other trajectory based algorithms (17,
18l.

Besides voyagers, how can one pick starting
points for noniinear programming codes? Perhaps
the most widely applicable technique is to pick the
points randomily. Table1 compares the resuits
obtained from starting points generated by a vayager
to starting points generated randomiy {random muttti-
start or RMS). The results were calculated by a
nonlinear programming code (SQP routine VF13
from the Harwell Library) for several small but ditficult
optimization problems that are described in the
Appendix. Calculations were continued until the
global optimum was found. The results shown are
the averages over three trials. The "function
evaluation® counts include both function and
gradient evaluations. "Good solutions” are those
within 30% of the global optimum.

Table 1: Voyagers vs. random selection (RMS) for
generating starting peinta for optimization problems. The
problems increase in size from He-6 to Gr-20.

Problem| Starting No. of Mo. of No. of
point function | solutions] good
generation | evaluations | found | solutions

found
He-& Voyagar 38,587 13 7
RMS 44,030 10 3
Gr-10 Voyager 217.963 49 47
RMS 659,853 48 as

P —

Gr-15 | Voyager 467,653 49 49
RMS 1,850,368 45 38
Gr-20 Voyager | 1,454,397 86 85
BMS 5,918,456 85 71

Notice that the voyager picks befter starting points
than RMS and its advantage increases with problem
size and dimension.

5. A SMALL POWER SYSTEM EXAMPLE
Some resuits from tests on a system with 6 buses,
11 lines and 3 generators [19] are reported here.
Nine contingencies were considered, each involving
the outage of a single line. Operating cost was
approximated by a weighted sum of generations.
Cormrrection times were those required to make the
generation shifts necessitated by each contingency.




An A-Team containing 10 voyagers {one for the
base-case and one for each conlingency), 10
probas and surkiry other agents (¢t Section 3},
distributed over a net of 7 workstations was used to
produce the results given in Table 2. The four cases
vary in the weights assigned to the terms of the
objective function of (CCP2). Specifically, the
weights were chosen so only cost was minimized in
Case-1; only the comection time tor contingency-2
was minimized in Case-2; cost and all cormraction
times ware equally weighted in Case-3; and
contingency-2 was given a greater weight, than cost
or any other contingency, in Case-4. Thus, by
varying the weights it is possible o explore the
tradeoifs among cost and contingency correction
times. In an EMS an operajor could conduct such an
exploration periodically and from the resulis, salect
tha tradeoff hesshe likad most.

Table 2
Rasults far a 6 bus, 11 line, 3 ganarator system
Case-t | Case-2 | Case-3 | Cased
Ralative 18.32] 2059 2003 18,65
oparating
Cost

c1 4611 2oe67[ 513l o024

c2l 31.76] 487} 2807] 13.03

3l 2041 975l 1432] 378
Contingency [ C4 N 4.52] 3032 o076] 2177
comection- 65§ e18l 3288| s03} 2430
ime(min). |osf 1180l 2041] s97] 2120
el 1108] asyo) 11.78] 2707

2075| so72] es2| 2229

il 2324] 3042] o082| 2202

6. CONCLUSIONS

This paper has developed a process lor solving
contingency constrained optimum power flows, The
process has two main componeants. First, the overal
prebiem is decomposed into a set of N+1 loosely
coupled, smaller problems, each of the form and size
of an cptimum power flow, where N is the number of
contingencies to be considered. Second, the
smaller problams are solved by an asynchronous
team of agents working in parallel. This team is open
{s0 new agents can be easily added), distributabrle
(so it can be readily implemented in a network of
computers), and effective (so it finds good solutions
quicklyy. The openness and disiributability resuit
from using autonomous agents that communicate
asynchronously. The effectiveness is a result of two
factors. First, the skifls of several agenis {particularly,
voyagers and probes) are combined so they can find
solutions that none of them could find alohe,
Second, the team maintains populations of solutions
and so has greater coverage than an approach

conlined to working with a single soluticn. The
populations are barded in profitable directions by the
combined actions of agents that create solutions and
agents that destroy themn. We bslieve that in dealing
with difficult probloms, & is at least as important to be
able to recagnize and destroy bad sclutions as to
create good ones.

The solution process has, as yet, only baen tested
on small problems. Many implameniation questions
must be answered before the process can be
applied to full-sized power systems and real time
operations. Chief among these is: wiil the process
scale-up to jull-sized power systems? We believe
that the answer is "yas.” As a firs! approximation, the
computational complexity of gur A-Team is the
complexity of its most complax agent. This agent is
the nonlingar programming cocde used to find
salutions to oplimum power flows. Such codes have
baen in existence for some time and are known 10
perform faity well on ull-sized systems. Therefore, it
is reasonable to expact the A-Team to perform at
least as well.
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APPENDIX
Some small but difficult optimization problems,
adapted from [20], are listed below.

BH-2
Min (x -2 1x 548 1-6) 2 +10(1~)cos x 4 +10
41:2 T 8x
(x4 -5)2 + {x2 - 10)2 252
(x1 - 5)2 + (x2- 10)2 < 102
The problem has 3 minima at (-3.142, 12.275),
(3.142, 2.275), (9.425, 2.475) with objective 0.398.

10 N 2 N -
(o] Min in/d-ncos(xi/ﬁ)ﬂ
im1 %!
600<x;£600,i=1,2,..N

N
Y x% < (1800)°
()]

s.t.
(1]

For Gr-10,
For Gr-15,
For Gr-20,

d = 4000,
d = 80,000,
d = 800,000,

N=10
Na=i5
N=20

2

13}

All three of these problems have a global minimum
at the origin with value zero. There are several
thousand local minima.

14

{15]

[16]

(17]

[18)

[19]

[20)

st

He-6
Min -(25(x1 - 2)2 + (x2- 2)2 + (x3- 1)2
+{x4- 42 + (x5 - 1)2 + (x5 - 4)
st. Xx1,%x020,1<x3<5,0<x456,1<x555,

0sx<10,2<SX1+ X256, Xy +X252,
X1-3%252,4<(%3-3)2 + X4, 45 (X5 -3} + Xp




