
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Contingency Constrained Operations
S.N. Talukdar. V.C. Ramesh

EDRC 18-36-92

CONTINGENCY CONSTRAINED

S. N. Talukdar

V. C. Ramesh

Engineering Design Research Center

Carnegie Mellon University

Pittsburgh, PA., 15213

(c-mail: snt@edic.cmu.edu)

Submitted to the Power Industry Computer Applications (PICA) '93 Conference, Phoenix,
Arizona, May 4-7,1993.

mailto:snt@edrc.cmu.edu

CONTINGENCY CONSTRAINED OPERATIONS

Sarosh N. Talukdar V.C. Ramesh
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT
This paper develops a new approach to an old and
difficult problem: how to make and update plans for
correcting a given set of contingencies. The
approach is to decompose the problem into a set of
loosely coupled, much smaller problems that can be
solved by a team of cooperating agents. The team is
expandable and its agents are autonomous, work in
parallel, and communicate asynchronously. Most of
the current cadre of agents use algorithms that are
either well known or fairly obvious. One type,
however, uses a new algorithm for finding starting
points for nonlinear programming codes. This
algorithm is described and the performance of the
team illustrated with small examples.

1. INTRODUCTION

1.1 Terminology
Think of a power system as a network containing m

switches, each of which can be either open or
closed. Thus, the system can adopt M - 2 m different
configurations, denoted by Co, Ci.... C M . where Co
is the current configuration. Let X n be a vector
whose elements are the bus voltages and bus power
injections of C n . Though X n contains both state and
control variables, we will, for the purposes of brevity,
call it a state vector.

The concerns in operating a power system can be
divided into two broad categories: cost and quality.
Cost is usually represented by a function: f (X n) .
Quality concerns are usually expressed as a set of
nonlinear relations (sometimes, called load and
operating constraints) that are configuration-specific,
and have the general form:

Gn(Xn,D(t)) - 0
H n(X n,D(t)) * 0

where t is time and D is a vector of exogenous, time-
varying quantities, such as customer demands for
electric energy.

X n is said to be a normal state if it satisfies these
constraints. S n , the set of ail normal states for

configuration C n , is called the normal set of C n .
Configurations for which S n is empty are said to be
uncorrectable; all other configurations are said to be
correctable.

Two sorts of events can cause a system state to
become abnormal: gradual changes in the
exogenous variables, 0, and sudden disturbances
that result in random configuration changes. The
latter can cause far larger excursions, and hence, are
much more dangerous.

Let Tn(Xna. *nb) b e t n e l e a s t , i m e required to
change the state of C n from X n a to X n b through a
sequence of control actions. We will call x n a
transition delay. Note that in is non-zero because
many control actions are rate limited. The output of a
typical qenerator can. for instance be increased at
most by a few megawatts per minute.
1.2 FOCUS

This paper deals with control actions to counter the
ill effects of sudden disturbances. These actions can
be discrete (switching operations) or continuous
(changes in the independently controllable
components of the state vector). The paper
concentrates on the latter.
2. PROBLEM FORMULATION

2.1 Optimum Power Flows (OPFs)
One of the simplest operating philosophies is to

minimize instantaneous costs while keeping the
state normal. In other words:

<OPF): Min f(Xo)
s.t. G 0(X0,D) = 0

Ho(Xo,D) i 0
Since the dimensions of X 0 , Go. and Ho are often

of the order of 1000, this is a targe problem; available
techniques are barely able to solve it fast enough for
the results to be useful in real-time operations [1, 2,
3]-

2.2 Adding Contingency Constraints
How can one limit the ill effects of the random

configurational changes that result from sudden
disturbances? By far the most common practice
involves two steps [4, 5, 61. First, a set of critical
configurational changes (called contingencies) is
identified. Second, plans are made to reestablish a
normal state within some short period after the
occurrence of each contingency.

The identification of critical contingencies requires
system-specilic knowledge, much of which can be
encoded in expert systems [7]. In other words, much
if not all of the identification process can be

automated with existing techniques. The same is not
true for planning responses to these contingencies.
To understand why, suppose that the n-th
contingency would cause the system's state to
change from Xn to X n c . It X n c is abnormal, the
planning problem is to find a normal state, X n , that
can be achieved within an acceptably short time, say
T n . There are two different ways to formulate this
problem: the first treats correction times as hard
constraints; the second treats them in a softer way,
specifically, as terms of an objective function. The
modifications that result to (OPF) from these two
treatments are indicated below:

(CCP1): Min ffXrj)
s.t. Go(Xo,D) - o

Ho(Xo,D) i 0
Gnf.Xn.D) - 0
Hn(X n,D) i 0 n = 1,2,...,N
xn(Xn-Xo) s T n

N

s.t. Gn(Xn.D) = 0
n - 0 , 1 N

H n (X n ,D) i 0

where: N is the number of contingencies to be
considered; T n is the time allowed for the n-th
contingency to be corrected, w n is a weight
assigned to the n-th contingency; and it has been
assumed that t n (X n - Xnc) can be approximated by
xn(Xn-Xo).

Both these formulations are very large-at least
N+1 times as large as (OPF). As such, both are
beyond existing capabilities for fast, reliable and
repeated solution. In addition, each requires the
user to select some parameters: {Tn} in the case of
(CCP-1) and {wn} in the case of (CCP-2). it happens
that the selection of {Tn} is much more difficult. The
explanation is as follows. Let Z - [Xn.Xi Xwl be a
vector called a super-state. Let SI be the feasible
set of (CCP1), that is, the set of all values of Z that
satisfy the constraints of (CCP1). Let S2 be the
feasible set of (CCP2). Then S1 is small and
sensitive to the values selected for {Tn} while S2 is
much bigger and insensitive to the values of {wn}.
Another wav of DUttina it is that the constraints of
(CCP1) require allI the cortirtgencies bVSrrectable
and also, all the corrections be completed within time
limits. (Tn). that must be selected aDriori In contrast
the constraints of (CCP21 reauireonlv that all the
c o n t S d e s be correctable In seledL (TnUhere
teaSdXable risktf makino S1 emrtv £which
c^se little usSul informatton hT l^elv to result ram
attempts to solve (CCP11 even thouah thaJS
attempts be longand panfulI In selecting {wnl

however, the user is merely expressing an opinion
on the relative importance of the contingencies and
can adjust mis opinion interactively.

Because of (CCP1)'s profound disadvantages
relative to (CCP2), we will henceforth consider only
(CCP2). Also, recall that the vector of exogenous
variables, D, is time varying, and therefore, the
solution of (CCP2) is time varying.

2.3 A Decomposition
Notice that the constraints of (CCP2) consist of

N+1 independent blocks. As a result, (CCP2) can be
decomposed into a set. {(IPn)}, of N+1 subproblems
each having the form:
(IPn): Min f n (X n , Zn)

Xn
s.t: Gn(X n.D) = 0

n - 1 , 2 , ...,N
Hn(Xn.D) * 0

where:
Z n - Z\X n , that is, the super-state Z with the

elements of X n removed
N

f 0 (Xo,Z 0) - f(Xo) + S wnx n(X n-Xo)
n=1

fn(X n,Zn) « tn(Xn-Xo) torn - 1 , 2 , N
Let {(IPn)} be the set of all the (IPn) and Z* be a

simultaneous solution of this set. Then, it can easity
be shown that T is also a solution of (CCP2); hence,
{(IPn)} and (CCP2) are equivalent [8].

2.4 A Skewed Approximation
Can the couplings among the members of {(IPn)}

be loosened so their parallel solution becomes
easier?

Note that the exact solution of {(IP„)} is
unobtainable because the exact value of the
exogenous vector, 0, is unknown. The elements of
D are time varying and are measured by sensors that
can be hundreds of miles apart. There is always
some delay and time skew in making and collecting
these measurements. What if delays and time skews
were allowed for the values of Z n ? More specifically,
suppose that each (IP n) is treated as a separate
problem that is solved iteratively for X n . while Zn and
D are treated as exogenous variables whose values
are updated as new estimates of them become
available. Then we have a set, {(IPn')}> of more
loosely coupled problems, each of the form:
(IPn1): Min fnfXn.Zn)

Xn
s.t: GntXaD 1) = 0

Hn (Xn, & 0
where Z n and D' are the latest available values of Z n

and D.
Consider the case where (IPn) has multiple

solutions. Intuitively, one would expect each
solution of (IPn') to track the corresponding solution
of (IPn) as it varies in time with an error that increases

smoothly with the skew in the values of Z ' n and D'.
That this is actually the case is easily proved [8,9].

3. MULTI-AGENT SOLUTION PROCESSES

3.1 Asynchronous Teams (A-Teams)
The preceding sections have decomposed the

contingency constrained problem, (CCP2), into a
set. {(IPn1)}, of N+l smaller problems, each of the
form and size of an optimum power flow. The smaller
problems are very loosely coupled and can be
solved by a team of agents working in parallel,
provided the team is properly organized.

The organization we will use is called an A-Team
and is described in [10]. Its main features are:
• Agents with a multitude of skills are combined so

they complement and help one another
• All the agents are autonomous. Most agents use

only locally available data. Ail the agents work in
parallel and communicate asynchronously (that is,
no agent has to wait for results from another).

• The organization is very open. The addition of a
new agent may require some modifications to that
agent, but none to the rest of the organization. As
a result, the number of agents tends to grow
continually.

• The agents develop and maintain populations of
solutions to the overall problem and its
components.
The structural features of A-Teams make them well

suited to distributed implementations in networks of
computers. The key question is: can an A-Team be
made to do anything useful? After all, autonomous
agents, each deciding for itself what it is going to do
and when, if ever, it will communicate with its team
mates, can act at cross purposes Surprisingly, there
are simple strategies to keep this from happening.
One of them is to balance agents that create

synergistic cooperation (the capabilities of the team
appear to be greater than the sum of the capabilities

To visualize how this strategy works, think of an A-
Team as a distributed collection of memories (Fig. 1).
One of these memories contains a population of
solutions to the overall problem being considered.
The others contain populations of solutions to sub-
problems. Each population is continually
transformed by agents working in parallel. Some,
called creators, add members to the population,
others, called destroyers, cull members from it.
Suppose that for each population there are several
criteria by which the goodness of members can be
measured. Think of the population as a set of points
in the space whose axes represent these criteria. We
want the creators and destroyers to act so that
together, they herd the population into a desirable

part of the space. It has been demonstrated that this
happens even with very narrow creators and
destroyers, each able to take only a single criterion
into account in making its decisions [11]. In essence,
each creator works to produce solutions that are
better in terms of its criterion; each destroyer tests
solutions with respect to its criterion and eliminates
those that fail.

D'.the latest value of D

2
o
75

O

I -

e
o

£
o

CD

w

c ?

o
CD

Rg 1: The structure of an A-Team. Memories are
represented by rectangles; agents, by arrows.

3.2 Agents
Like rules in an expert system, the number of

agents in an A-Team tends to grow continually. We
do not have the space to describe all the agents now
in the team for solving (CCP2). Instead, we will list the
agents involved in maintaining a population of

• Data importers: to collect the latest values of Z n

andD'.
• Probes: to perform fine searches of

neighborhoods, that is, to find local minima of
(IPn') from given starting points. This capability is
provided by conventional nonlinear programming

• Voyagers:' to provide starting points for the
probes. The voyagers do this by conducting
coarse searches that locate neighborhoods in
which good solutions of (IPn*) are likely to lie.

• inhibitors: to place "fences" (implemented in the
form of constraints) around neighborhoods that
have been investigated, and thereby, to keep
voyagers from wasting effort on revisiting these
neighborhoods. (The fences are similar in
concept to the discrete restrictions in tabu search
[13], and can be viewed as their extension to
continuous domains.)

. Destroyers: to perform two functions. First, to
eliminate obsolete solutions and fences (Recall

that the solutions of (IPn') are time varying.
Therefore, solutions that are valid at time t are less
valid at time t+At.) Second, to eliminate results from
voyagers that have become trapped in some
unproductive part of their search space and force
these voyagers to jump to a new location.
Except for the voyagers, these agents use either

well known methods or fairly obvious heuristics. The
voyagers, however, use a new trajectory-based
heuristic that is described below.

4. THE VOYAGER ALGORITHM

4.1 Coarse Search by a Relaxed Interior
Point Method

Consider an optimization problem with multiple
solutions, some better than others. The purpose of a
voyager is to find points close enough to the better
solutions to serve as starting points for conventional
nonlinear programming codes (these codes
invariably employ greedy algorithms that head for the
nearest local optimum, regardless of its quality). Fig.
2 illustrates how the voyagers and probes cooperate
to find solutions.

The two main ideas behind the voyager-algorithm
are:
• Replace the objective and constraints of the

optimization problem to be solved ((IPn1) in our
case) by a binary vector field rV(Xn). The magnitude
of this field is 1 everywhere except at the solutions
of the optimization problem, where it is 0. Every
field line passing through an infeasible point leads
to a feasible region; every field line that passing
through a feasible point leads to a minimum.

• Each voyager behaves as a Newtonian particle
under the influence of two forces. The first force
acts to align the particle's velocity with the vector
field ; the second, to keep the magnitude of the
particle's velocity constant. As a result, particles are
attracted by feasible regions and minima but
circulate at near-constant speed, never stopping.
Once a voyager enters a feasible region it can only

escape if the region is small. The constraints that
delineate the boundaries of the region behave as
elastic membranes, forcing the voyager back into the
interior whenever it violates them. Thus, the voyager
can be thought of as using a relaxed interior point
method. (Traditional interior point methods [14, 15,
16] treat constraints as rigid rather than elastic
boundaries. This requires a great deal of
computational effort. Since there are few if any
benefits, the relaxed approach seems preferable.)

• solution
x launch point

X \ / \ ? * * probe trajectory
— > • voyager trajectory

Fig 2: A voyager conducts a coarse search which
takes it close to solutions of problem BH-2 (described in
the appendix). Its purpose is to find starting (launch)
points from which conventional nonlinear programming
algorithms (called probes) can begin fine searches for
the solutions.

Fig 3: The vector field for the problem in Fig. 2

4.2 The Vector Field
The process for replacing (IPn') by a vector field is

as follows. First, the equality constraints: G n (X n .
D')=0 are approximated by inequalities:

G n (X n ,D ')sa
Gn(X n ,D')£-a

where a is a non-negative, user-selected parameter.
Thus (IPn') is replaced by a problem with only
inequality constraints which, for the purposes of
rotational brevity, we wii write as follows:
(VP): Min f(X)

S.t. Cj(X)S0, H M
where M is the total number of inequality constraints.
Let: n'(X) be the field vector at point X; I be the set of
constraints that are violated at X, that is, I = { j | Cj(X) >
0}; 0 be the null set; V be the gradient operator; and
| j . | | be the Euclidean norm. Then:

r -£cj{X)Vq(X)

T1'(X) =

IE I. i f l * 0
]|Iq(X)Vq(X)||

-Vf(X)

|]Vf(X)||

if 1 = 0
and
||vT(X)H*0

if 1 *0
and
| |VKX) | | -0

In words, the field iT is of unit magnitude
everywhere except at solutions to (VP). Also, at
infeasible points the field is directed towards feasible
regions; at feasible points, it is directed towards
solutions of (VP).

4.3 Voyager Dynamics
The dynamics of the voyager are described by the

following differential equations:
^Vi x i - l (B 1 (X) + B2(X))

dt x
V(X)

dt
where:

Bi (X)= |n (X)-V(X)| |N(X)

B^X) = W (E - | | V (X) | |) r t y ^ !

n(X) - TV(X) l|V(X)||; x is the mass of the voyager; N(X)
is a unit vector that is normal to V(X) and in the plane
of V(X) and T)'(X); E is the speed to be maintained;
and W is a constant.

In words, the force Bi is normal to V in direction
and proportional to the angle between V and r\' in
magnitude. Bi acts to align V with i\\ In contrast, the

force B 2 is co-linear with V and proportional to the
difference between ||V|| and E in magnitude. B 2 acts
to make ||V|| equal to the desired speed, E.

4.4 Discussion
By using only the direction, not the magnitude, of

the vector field as a guide, the voyager is able to
travel at near constant speed and thereby, keep from
being trapped by minima. This feature distinguishes
voyagers from other trajectory based algorithms [17,
1 8] .

Besides voyagers, how can one pick starting
points for nonlinear programming codes? Perhaps
the most widely applicable technique is to pick the
points randomly. Tablel compares the results
obtained from starting points generated by a voyager
to starting points generated randomly (random multi-
start or RMS). The results were calculated by a
nonlinear programming code (SQP routine V F 1 3
from the Harwell Library) for several small but difficult
optimization problems that are described in the
Appendix. Calculations were continued until the
global optimum was found. The results shown are
the averages over three trials. The "function
evaluation" counts include both function and
gradient evaluations. "Good solutions" are those
within 3 0 % of the global optimum.

Table 1 : Voyagers vs. random selection (RMS) for
generating starting points for optimization problems. The
problems increase in size from He-6 to Gr-20.

Problem Starting
point

generation

No. of
function

evaluations

No. of
solutions

found

No. of
good

solutions
found

He-6 Voyager 36,587 13 7 He-6

RMS 44.030 10 3

Gr-10 Voyager 217,963 49 47 Gr-10

RMS 659.853 48 38

Gr-15 Voyager 467,653 49 49 Gr-15

RMS 1,850,368 45 38

Gr-20 Voyager 1,454,397 86 85 Gr-20

RMS 5,916,456 85 71

Notice that the voyager picks better starting points
than RMS and its advantage increases with problem
size and dimension.

5. A SMALL POWER SYSTEM EXAMPLE
Some results from tests on a system with 6 buses,

1 1 lines and 3 generators [19] are reported here.
Nine contingencies were considered, each involving
the outage of a single line. Operating cost was
approximated by a weighted sum of generations.
Correction times were those required to make the
generation shifts necessitated by each contingency.

An A-Team containing 10 voyagers (one for the
base-case and one for each contingency), 10
probes and sundry other agents (c.f. Section 3),
distributed over a net of 7 workstations was used to
produce the results given in Table 2. The four cases
vary in the weights assigned to the terms of the
objective function of (CCP2). Specifically, the
weights were chosen so only cost was minimized in
Case-1; only the correction time for contingency-2
was minimized in Case-2; cost and all correction
times were equally weighted in Case-3; and
contingency-2 was given a greater weight, than cost
or any other contingency, in Case-4. Thus, by
varying the weights it is possible to explore the
tradeoffs among cost and contingency correction
times. In an EMS an operator could conduct such an
exploration periodically and from the results, select
the tradeoff he/she liked most.

Table 2

Case-1 Case-2 Case-3 Case-4

Relative
operating

Cost

19.32 20.59 20.03 18.65

CI 4.61 29.67 5.13 0.24

C2 31.76 4.67 28.07 13.03

C3 20.41 9.75 14.32 3.78

Contingency C4 4.52 30.32 0.76 21.77

correction - CS 8.18 32.68 8.03 24.30

time(min). C6 11.90 29.41 5.97 21.20

C7 11.08 35.70 11.78 27.07

C8 28.75 30.72 6.62 22.29

09 3.24 30.42 0.82 22.02

6. CONCLUSIONS
This paper has developed a process for solving

contingency constrained optimum power flows. The
process has two main components. First, the overall
problem is decomposed into a set of N+1 loosely
coupled, smaller problems, each of the form and size
of an optimum power flow, where N is the number of
contingencies to be considered. Second, the
smaller problems are solved by an asynchronous
team of agents working in parallel. This team is open
(so new agents can be easily added), distributable
(so it can be readily implemented in a network of
computers), and effective (so it finds good solutions
quickly). The openness and distributability result
from using autonomous agents that communicate
asynchronously. The effectiveness is a result of two
factors. First, the skills of several agents (particularly,
voyagers and probes) are combined so they can find
solutions that none of them could find alone.
Second, the team maintains populations of solutions
and so has greater coverage than an approach

confined to working with a single solution. The
populations are herded in profitable directions by the
combined actions of agents that create solutions and
agents that destroy them. We believe that in dealing
with difficult problems, it is at least as important to be
able to recognize and destroy bad solutions as to
create good ones.

The solution process has, as yet, only been tested
on small problems. Many implementation questions
must be answered before the process can be
applied to full-sized power systems and real time
operations. Chief among these is: will the process
scale-up to full-sized power systems? We believe
that the answer is "yes." As a first approximation, the
computational complexity of our A-Team is the
complexity of its most complex agent. This agent is
the nonlinear programming code used to find
solutions to optimum power flows. Such codes have
been in existence for some time and are known to
perform fairly well on full-sized systems. Therefore, it
is reasonable to expect the A-Team to perform at
least as well.

7.
Ml

[2]

[3]

14]

[5]

[6]

[7]

[8]

REFERENCES
B. Stott, O. Alsac and J.L. Marinho, "The
Optimal power flow problem", Electric Power
Problems: The Mathematical Challenge,
Philadelphia, PA: SIAM Publ. 1980. pp. 327¬
351.
J. Carpentier, "Optimal power flows",
International Journal of Electrical Power
Energy Systems, Vol. 1, pp. 3-15, Apr 1979.
W.F. Tinney and D.I. Sun, "Optimal power flow:
Research and code development," EPRI
Project 1724-1, Final Report, Feb. 1987.
B. Stott, O. Alsac, and A.J. Monticelli,
"Security analysis and optimization",
Proceedings of the IEEE, Vol. 75, No. 12,
Dec. 1987, pp 1623-1644.
H.J.C.P. Pinto, M.V.F. Pereira, and M.J.
Teixeira, "New parallel algorithms for the
security constrained dispatch with post-
contingency corrective actions", Proceedings
of the 10th Power Systems Computation
Conference, Austria, August 1990,
Butterworths, pp. 848-854.
T.C. Glras, "A variable-metric method and
parallel processing for contingency-
constrained power flow optimization" PhD.
Thesis, Carnegie Mellon University,
Pittsburgh, Jan. 1984.
Christie, R.D., Talukdar, S.N. and Nixon, J.C..
"CQR: A hybrid expert system for security
assessment", IEEE Transactions on Power
Systems, Vol. 5, No. 4, November 1990, pp.
1503-1509.
V.C. Ramesh, "A parallel global optimization
approach and its application to power systems
security", Ph.D. Thesis, Dept. of Electrical and
Computer Engineering, Carnegie Mellon
University, to be submitted.

[9] Talukdar, ST., Pyo, S.S. and Mehrotra, R.,
"Designing Algorithms & Assignments for
Distributed Processing", Final Report for EPRI
Research Project 1764-3, Nov., 1983.

[10] Talukdar, S.N., "Asynchronous Teams",
Fourth Symposium on Expert Systems
Application to Power Systems, Jan 4-8 1993,
Melbourne, Australia.

[11] Murthy, S., "Synergy in Cooperating Agents:
Designing Manipulators from Task
Specifications,", Ph.D. Dissertation, Carnegie
Mellon University, September 1992.

[12] Harwell Subroutine Library Specification
(routines VF13, VF04), 1987.

[13] F. Glover, Tabu search, part II", ORSA Journal
on Computing, Vol. 2, No. 1, pp. 4-32.

[14] Karmarker, N.. "A new polynomial-time
algorithm for linear programming",
Combinatorics 4, 1984, pp. 373-395.

[15] K.A. Clements, P.W. Davis and K.D. Frey, "An
interior point algorithm for weighted least
absolute value power system state
estimation", lEEEPaperM WM 235-2 PWRS.

[16] C.N. Lu and M.R. Unum, "Network constrained
security control using an interior point
algorithm", IEEE paper 92 SM 584-3 PWRS.

[17] A.H.G. Rinnooykan and G.T. Timer, "Global
Optimization", Handbooks in OR & MS, Vol. 1,
G.L. Nemhauser et al, Eds., Elsevier Science
Publishers B.V. (North-Holland) 1989.

[18] P.M. Pardalos and J.B. Rosen, "Constrained
Global Optimization: Algorithms and
Applications", Lecture Notes in Computer
Science, No. 268, Springer-Verlag, 1987.

[19] Wood, A.J. and Wollenberg, B.F., Power
Generation Operation and Control, John Wiley
and Sons, 1984, pg 74, Fig. 4.1.

[20] Torn, A. and Zitinskas, A., "Global
Optimization", Lecture Notes in Computer
Science, No. 350, Springer-Verlag, 1989.

APPENDIX
Some small but difficult optimization probiems,

adapted from [20], are listed below.
BH-2

M i n f x g ^ f - ^ V + I O t l ^ c o s X i + I O
4 * * 6 *

s.t. (xi-5)2 + (x 2 -10)2^52
(xi - 5) 2 + (x 2 -10)2 S 1 0 2

The problem has 3 minima at (-3.142, 12.275),
(3.142, 2.275), (9.425, 2.475) with objective 0.398.

He-6
Min - (25(xi - 2) 2 + <x2 - 2) 2 + (X3 -1) 2

+ (X 4 - 4) 2 + (X5-1)2 + (x 6-4)2
s.t. xi, x 2 a 0 , 1 5 X 3 ^ 5 , 0 ^ X 4 ^ 6 , 1 £ X S £ 5 ,

0 £ X 6 £ 1 0 , 2 £ X 1 + X 2 £ 6 , - X 1 + x 2 £ 2 ,
X i - 3 X 2 S 2 , 4 ^ (X 3 - 3) 2

 + X4,4S(X5-3)2 + x 6

There is a global minimum at x* = (5,1,5,0,5,10)
with value-310
Gr-10, Gr-15, Gr-20

Min I x i / d - n cos(Xi/Vi) + l
i-1 i-1

S.t - 6 0 0 £ X i * 6 0 0 , i = 1,2,...N

2 x % (1 8 0 0) 2

i-1
For Gr-10, d - 4000, N = 10
For Gr-15, d - 80,000, N - 1 5
For Gr-20, d = 800,000, N = 20

All three of these problems have a global minimum
at the origin with value zero. There are several
thousand local minima.

