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Abstract 

In a previous report, it was suggested that the Medial Axis Transform (MAT) would 
be an extremely useful design tool, if only algorithms could be defined for transforming a 
conventional geometric representation to one using MAT's. Certain specific properties of the 
MAT were shown to be the useful ones. It was also pointed out that the MAT can be regarded 
as a special case of a class of objects called skeletons, based upon the euclidean metric. We 
then proposed that a different set, denned using the box metric, can be used in place of the 
MAT for at least some engineering applications. 

In that report, a procedure was defined which, we claimed, identified the box skeleton. The 
purpose of this report is to prove that claim. 

This report describes the procedure, and then proves that the procedure yields the box 
skeleton. 

An NSF Engineering Research Center at Carnegie Mellon University 



1 Introduction and Terminology 
An object to be represented in any geometric model is assumed to be sufficiently well-behaved. 
Our purpose here is to exclude arbitrarily convoluted boundaries, such as of the function sin(i), 
since an object bounded by such a function has non-intuitive topological properties. It is probably 
sufficient to say that an object in our modeling (flat) space is a regular, semi-analytic set (after [4]). 
A discrete object is defined to be (the closure of) the union of a finite number of pixels/voxels. We 
make no assumptions about any "continuous" object underlying the discrete one: all our work will 
concentrate on the derivation of a skeletal set abstracting the shape of the given discrete object. 

The following terms are taken to be well-understood; the reader is referred to standard texts on 
geometry, topology and homotopy theory, as also our previous reports, [2] [3] [1]: 
flat space, open set, closed set, closure, interior, neighborhood, norm, Lx (diamond) norm, U. 
(euclidean) norm, L«, (box) norm, flat span (afflne hull), pixel, voxel. 

Ris the set of real numbers 
P = {xeR\x>0},P* = P\{0}. 
€ is the modeling (flat) space, one of Rz OTRK We shall sometimes refer to Rn, but it should be 

understood in such cases that n G {2,3}. 
If/ : A - » B denotes a mapping, and if Ax C A and£i C B, t h e n / > ( A I ) denotes the image of 

Ax unde r / , a n d / <(Bi) denotes the pre-image or inverse image of fit unde r / . 
The symbol CIo is used to denote the closure, Int to denote the interior, and Bdy to denote the 

boundary of a set. 
An object is the closure of some open set in £, with a restriction on the convolution of the 

boundary as mentioned above. We usually denote objects by O, perhaps with a subscript. Thus, 
0 = Clo(lnt(0)). The term discrete object is used to refer to objects which are (the closure of) the 
union of some finite number of pixels or voxels in space. 

Given a norm d : £ x £ -» P x , a norming cell based on that norm is the set {x | d(0,x) < 1}. 
A cell is defined as the set C(d, c, r) = {x\ d(x, c) < r } , where d is a given norm, c is the center 

of the cell, and r € P*, generically called the radius, is specified somehow. 
A cell contained in some object O is a cell which is a subset of O. A maximal cell contained 

in O is any cell, contained in O, which is not a subset of any other cell also contained in O. 
Since, for the most part, we shall use the box norm, we define Box(x, r) to refer to a cell, based 

on the box norm, with center* and radius r. 

Definition 1: Given an object and a norm, the closure of the set of centers of maximal cells 
contained in the object is defined to be the skeleton of the object, denoted by S. Associated with 
this skeleton is a function r : S -* P, called the radius junction, which gives the radius of the 
maximal cell at each point in the skeleton. 

We shall concentrate on the euclidean skeleton (the MAT), defined using the euclidean norm, 
and the box skeleton, defined using the box norm. 



2 Graphs, Dual Graphs 
In order to present a procedure for obtaining the box skeleton of a discrete object, the following 
terms and notation are introduced. 2 

A unit box is a pixel if £ is 2D, and a voxel if it is 3D. 
A space graph G* is a partition of the space, £. The subsets under this partition, called the 

elements of G*, are all connected components, and furthermore are restricted to being open boxes 
in their flat spans in £. These elements are required to be mutually exclusive and collectively 
exhaustive. 

The dimension of an element is understood to be the dimension of its flat span. Then, the OD 
subsets are called vertices, the ID subsets are called edges, 2D ones are faces, and 3D ones are 
solids. Thus, £ = \JAG**A* 

Edges of a space graph are parallel to one of the principal axes, and faces are parallel to one 
of the principal planes. Two elements of a space graph are said to be adjacent if their closures 
have points in common. Two distinct, adjacent edges have exactly one vertex in common. Two 
distinct, adjacent faces have exacdy one edge and two vertices, or exactly one vertex in common, 
and so forth. Thus, a space graph in 3D space consists of points, line segments of unit length, unit 
squares, and unit cubes. 

V(A) is the set of all subsets of A. 
VG(£) is the set of all space graphs of £. 
The dual mapping V* : G* —• G**, where G** e VG(£), is an adjacency- preserving mapping. 

The image of G* under this mapping, 2>*>(G*), is also a graph. For the case where £ is 2D, the 
mapping, and hence G**, is specified as follows (see figure 1): 

1. The image of every face is a dual vertex at the centroid of the face. 

2. The image of every edge is a dual edge crossing the given edge. The end-points of the dual 
edge are the dual images of the two faces adjacent to the given edge. 

3. The image of every vertex is a dual face in which the vertex lies. The corners of this dual 
face are the dual images of faces adjacent the given vertex. 

This can be extended to 3D as below: 

1. The image of every solid is a dual vertex at the centroid the of solid. 

2. The image of every face is a dual edge through the face. The ends of this dual are the images 
of the two solids on either side of the face. 

3. The image of every edge is a dual face through which it passes. The corners of this dual face 
are the images of the solids adjacent to the edge. 

4. The image of every vertex is a dual solid, bounded by the images of the edges adjacent to 
the vertex. 

2This terminology is largely consistent with [1], except that certain problems with the presentation there have been 
addressed. 
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Figure 1: Graphs and duals. 



That V* is adjacency preserving can be seen by constructing an adjacency graph, as follows. 
The elements of the adjacency graph are termed nodes and links, to avoid confusion. Each element 
of G* has a corresponding (unique) node in the adjacency graph. The links of the adjacency graph 
join two nodes whose corresponding elements in G* are adjacent. Then it is easy to see that the 
adjacency graph of any G* and that of X>*>(G*) are isomorphic. It is thus apparent that the dual 
graph of any G* is an abstract representation of the adjacencies of elements in G*. 

Given any object O, the restriction of any G* <E VG{£) to the object O is defined to be the 
subgraph of G* whose vertices are in O, and denote it by G* \ 0 . We use the notation VG \0 to 
denote the set of all such restrictions. 

If a restriction to O, G = G* \0, is such that O = (JAGG A, then G* is said to be compatible with 
O, and the restriction G is called the object graph of O. 

We use the notation U G to represent the union of all elements of G. Thus, if O is an object, G* 
is a space graph compatible with O, and G = G* \0, then O = U G. 

Let O be an object, let G* e VG(£), and G = G* \ 0 . Then it is of interest to examine the 
restriction of the dual to O, V*(G*) \0. Since this will be of great use later, a new mapping is 
defined from VG \o to itself, 

V : VG \o~* VG \O 

which associates each element G € VG \0 with an image, also in VG | 0 , such that this image is the 
restriction of P*(G*) to O. 

It is not difficult to see that given any space graph G\ the dual V*(G*) is also a graph. 
Furthermore, the second dual of a graph is the graph itself. That is, V*(V*(G')) = G \ 

Given a discrete object, it is immediately obvious that the set of pixels/voxels and their boundary 
elements gives the discrete object the structure of an object graph. We can then speak of the space 
graph of which this object graph is a restriction. 

3 Dual-based Thinning Procedure T 
Based on the definition of the dual mapping above, we define a thinning procedure, called procedure 
T , as follows: the procedure starts with some object O, and an associated object graph G. Let G* 
denote the space graph of which G is a restriction. We define O0 = O,G0= G, S0 = <j>, and i = 0. 
Then the following steps are applied: 

1. If Oij<j>, identify 2>(G;). 

2. Let0; + i =CIo(Int (UW t ) ) ) , 

3. Si+i = \\ V(GD\Oi+x. 

4. If i is odd, G J + 1 = G* \ 0 m . If i is even, GM = V*(G*) \ 0 m . 

5. If <91+i i 4>, increment i by 1, and repeat from step 1. 

Proposition 1: Procedure T terminates for every discrete object O. 



Figure 2: Growing boxes. 

The term facet is used to refer to the n - 1 dimensional fiat components of the boundary of a 
box. Three-dimensional boxes have six facets (which are the faces of the boundary), and 2D boxes 
have four facets (which are the edges of its boundary). 

A facet / is said to be constrained in O if / n Bdy(O) i <j>. 
In three dimensions, a cycle of facets at a vertex is defined to be the set which includes a vertex, 

the edges adjacent to the vertex, and the faces adjacent to the vertex. In two dimensions, this 
reduces to a vertex and the two edges adjacent to it. 

A cycle C of facets of some box in O is said to be constrained if for some element A e C, 
A n Bdy(O) i <j>. 

Given some box, it is possible to construct another box which contains the given box as follows: 
keeping one vertex (say v) fixed, expand the given box such that the vertex at the other end of the 
body diagonal at v moves along this diagonal by some distance, say 6r*. If the given box was 
Box(jc,r), then the new box is Box(y,r + Sr), where y is at distance ^ from x along the body 
diagonal at x (see figure 2). 

The important thing to note is that every box is a scaled version of every other box. Hence it is 
clear that if two boxes of unequal radius are aligned at a vertex (as in the figure), then the larger one 
can be obtained by "pulling" the diagonally opposite vertex along the diagonal, while preserving 
the shape of the box. 

This suggests an interesting property of maximal boxes in discrete objects, and motivates the 
following proposition: 

Proposition 2: A box Box(;c, r)<zO is maximal in O if and only if the cycle of facets at every 
vertex of the box is constrained. 

Corollary 2.1: A box Box(JC, r) C O is maximalin O if at least one pair of non-adjacent facets 
is constrained. 

Corollary 22: A box Box(x, r) c O is maximal in O if all the vertices of the box are on the 
boundary of O. 

Proposition 3: Let 0 „ ieN be an object at some stage i of procedure T. Then Si+i C SB(Od. 

3nole that all distances are measured using the box norm. 



Proof: By definition, no point of Si+\ is adjacent to a solid (face in 2D) in OM. We use this to 
show that for each x 6 S;+i, Box(x, \) is maximal in <9„ and hence that C S°(Qi). 

For any x G S,+i, exactly one of the following is true: 

1. x is on a vertex of V(Gi). 

2. x is on an edge of 2>(G,). 

3. (3D only) x is on a face of V(Gi). 

We consider each in turn. 
Case 1: If x is on a vertex of X>(G;), say v, then 

(2T) - (v ) = Int(Box(;t, 1)) 

i.e., v is the dual of a solid (face in 2D), centered at v, and of radius ~. Now for any vertex v* 
of Box(v, £), 2>*(v*) is a solid adjacent to v. Since v 6 SM,w© conclude that Z>*(v*) £ X>(G,), 
and hence every vertex of BOX(JC, 1) is in Bdy(0/ ) . Then, by Corollary 2.2 above, Box(x, 1) is 
maximal in G£. 

Case 2: Let x be on an edge of T>(Gi), say e*. We break this into two situations, 2D and 3D. 
2 D : e* is the dual of some edge in G„ say e. The end points of e are vertices of G t. Call these 
vertices Vi and V2. Clearly, the images of these vertices under V* cannot be in X>(G,), since 
otherwise e* would be adjacent to some face of V(Gi). 
Hence we conclude that V i , V2 6 Bdy(0 , ) . It is evident that V i , V2 € Bdy(Box(jc, £ ) ) . 
Furthermore, since the definition of an edge excludes the endpoints, it is also evident that vi, V2 
are on opposite facets of BOX(JC, | ) . By Corollary 2.1 we conclude that BOX(JC, £) is maximal. 
3 D : e* is the dual of some face of G,-, s a y / . Once again, we can see that the corners of/ must 
be in Bdy(Oi), and hence we conclude that every cycle of facets of BOX(JC, \) is constrained, 
and the box is therefore maximal. 

Case 3: (3D only) Let x be on a face of s a y / *. / * is the dual of some edge of G,-, say e. Once 
again, it is clear that the ends of e must be on Bdy(G £ ) , and by Corollary 2.1 we conclude that 
BOX(JC, \) is maximal in 0 ; . 
Hence we conclude that 

SM C SB(OdM 

Proposition 4: Let i e N+ 1 be some stage in procedure T. Then 

1. 0 , - C O M . 

2. The minimum distance from any point on the boundary ofO, to the boundary ofOAi is \. 

Proof: Let G* and G** be the space graphs compatible with and G„ respectively. Then it 
is clear that all the elements of G** with all adjacent vertices in 0 , -1 are themselves also in 
Since Ot is (by definition) the union of all such elements, it follows that Oi C O-\. 

Now consider any point x € Bdy(<9;). Then exactly one of the following is true: 



1. x is on a vertex of G,. 

2. x is on an edge of G,. 

3. x is on a face of G,. Note that this is possible only in 3D. 

We consider each in turn. 
Case 1: x is on a vertex (say v) of G t . Consider the solid (face in 2D) of G,_, of which this vertex 

is a dual. Since v is on Bdy(0,), it is clear that atleast one of the vertices of (D*r(v) must be 
on the boundary of <9,_i. Since this is a discrete object, we conclude that minimum distance 
from v to the boundary of G,_i is ±. 

Case 2: x is on an edge of G (. 
We first present our arguments for the 2D case. Let e be the edge of G, on which x lies. Then 
e is the dual of some edge in G,--i, say e'. Then, since e € Bdy(0,), it is clear that exactly one 
of the endpoints of e> is in B d y ^ . - O . Under the box norm, the distance from any point on e 
to each of the endpoints of e' is precisely \ . Since all the <Ts are discrete, it is not hard to see 
that this is also the nearest point on the boundary of O.-j . 
In 3D, the edge (say e) is the dual of some face of G,-_i. Once again, it is clear that atleast one 
of the vertices of the face must be in Bdy(G,_i). Also, these vertices are the nearest points on 
BdytO,. ,) from any point on e, with distance \ . 

Case 3 : (3D only) x is on a face of G,. This face (say / ) is the dual of some edge in G,-_i. 
Once again, precisely one of the endpoints of this edge must be on the boundary of O^, and 
(since On is discrete) this is also the nearest point of Bdy(0,-_i) from any point off , and the 
distance is J. • 

Proposition 5: Leti e N + 1 be some stage in procedure T. Then 

SB(Qi) C S B (0 ( _i ) . 

Proof: We shall show that 

and hence conclude that SB(Oi) c S B (0,_i) . 
To show this, let x be some point in the interior of 0 , such that 

x $ S"(G,-i). 

Then, by definition, there is no box centered a t * which is maximal in O f _,. Let BOX(JC, r)be the 
largest box, centered at x, which can be fit into G ;_i. 

Since x € lnt(0;) , it is clear (since the object 0 is discrete) that r must be strictiy greater than 
l 

Since Box(x r)is not maximal, then by Proposition 2 there must be one vertex of Box(x, r)such 
that the cycle ot facets at tnat vertex is unconstrained. Let v be that vertex, and. let C be the 
corresponding cycle of facets 

Since C is an unconstrained cycle at v it is clear that each point in each member of C has a 
strictly positive distance to the boundary ot G,-_i. 



Now consider Box(x, r - \). This is possible, since r is strictly greater than I . Since this box 
has the same center as BOX(JC, r), there is a natural homeomorphism between the two boxes, and 
for any point of one box we can unambiguously refer to the "corresponding" point on the other 
box. Then it is clear that the boundary of Oit which consists of points in O t_i with distance ±to 
the boundary of O.-i, has strictly positive distance to each point in each member of the cycle of 
BOX(JC, r - J) corresponding to C. This means that the vertex of Box(;c, r - \ ) corresponding to v 
has an unconstrained cycle, and hence BOX(JC, r - 1) is not maximal in Ou 

Furthermore, it is clear that SB(Qi) n Bdy(0.) = <j>. Hence we conclude that SB(Od C S f l(G,_i). 
• 

Proposition 6: Let Ohi e N, be a non-empty object at some stage i of procedure T. If 
Box(;c, i ) C Oi is maximal in Oit thenx e Si+i. 

Proof: Since the diameter of the box is unity, it immediately follows that the solids (faces in 
2 D ) with which BOX(JC, | ) has a non-empty intersection can be in only a few configurations. We 
explore these configurations, and show that in each case x e SM. 
2 D : The only possible configurations of pixels which overlap with a maximal box of radius unity 
are shown in figure 3 . 

Consider the first case (figure 3(a)), in which the box precisely overlaps the pixel. Since x is 
now the center of the pixel, x e [J £>(G(). To show that x is in 5 „ we need to show that JC is not 
adjacent to any face of Om . We do this by contradiction. Assume, then, that there is a face of 0 M 

adjacent to*. There are four possible configurations; without loss of generality, we can choose any 
one of these as representative. Figure 3(c) shows the point JC, the maximal box (shown shaded), 
the dual face which we assume to be adjacent to x (shown with vertical hatching), and the faces 
which must be present in G, (shown with horizontal hatching) for the dual face assumed to exist. 
It is then clear that the southeast vertex of Box(x, \) does not have a constrained cycle of facets, 
and by proposition 2 we conclude that Box(x, j ) is not maximal. 

Now consider the second case, shown in figure 3(b). It is immediately apparent that x is on 
the dual edge joining the centers of the two pixels, and is thus in some element of P(G;). Once 
again, we assume that this edge of 2>(G.) is, in fact, adjacent to some face of 0 M . Without loss 
of generality, we consider the case when this face of G ( + i is below the edge in figure 3(d), shown 
with vertical hatching. Then, for this dual face to exist, several other faces of G, must exist, shown 
with horizontal hatching in the figure. Once again, it is clear that the southeast vertex of BOX(JC, | ) 
is seen to have an unconstrained facet cycle, and hence cannot be maximal. 

In both the 2 D cases, we thus conclude that x e (J W , ) , and also that x is not adjacent to any 
face of Oi. Then by definition x e 
3 D : In 3 D , there are three possible configurations, shown in figure 4 (a), (b) and (c). In each case, : 
it is not difficult to see that the point* € Z>(G,). The question is, is this point adjacent to some 
solid of 

In each case, the assumption that the center of the Box(*, J) (the box is shown shaded in figure 
4(a), (b), (c)) is adjacent to some solid of Z>(G.) immediately leads to the conclusion that some 
corner of the box of must have at least one vertex with an unconstrained cycle, which violates the 
assumption of maxirnality of Box(x, | ) . 

This concludes the proof.• 



Box(x, l /2) and a pixel coincide 

(a) 

(c) 

Box(x, l /2) lies across two edge-
neighboring pixels 

-Maximal box 

Dual face, assumed to be 
adjacent to x 

Neighboring pixels which must 
be present for point x to be adjacent 
to a face in the dual 

Parts (c) and (d) show configurations 
which must exist if it is assumed that the 
point x is adjacent to a face in the dual. 

Figure 3: Figure for 2D case of Proposition 6. 
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Figure 4: Figure for 3D case of Proposition 6. 



Proposition 7: Let OiandOi+1,i G N, be non-empty objects at stages i andi + \ of procedure 
T. Then the following are equivalent statements: 

1. Box(x, r + \) C Oi is maximal in 0{. 

2. Box(x,r) C Oi+i is maximal in OM. 

Proof: Consider the two boxes, Box(jc,r+ ±) and Box(x,r). It is clear that there is a natural -
homeomorphism between these, associating each point in one with a unique point in the other. 

Now assume that one of these boxes is maximal, corresponding to one of the statements of 
the proposition. Proposition 2 gives necessary and sufficient conditions for the common boundary 
between the given box and its object. Then from proposition 4 it is not hard to show that for each 
point in this common boundary, the corresponding point on the boundary of the other box is also 
on the boundary of its containing object, and hence that the other box is also maximal.! 

Definition: ST=C\o(\jieNSd. 

From propositions 1-7 above and the principle of mathematical induction, the theorem below 
immediately follows: 

Theorem: Let Obea discrete object. If procedure T is applied starting with O0 = O, then 

ST(0) = S\0). 
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