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Figure 1: Examples of visible and invisible curves 

1 Introduction 
In the second part of this technical report, we will describe the intersection algorithms 
involving two dimensional entities (i.e., surfaces and planes). These problems are more 
complicated (than the ones described in part I) because the search spaces are two 
dimensional and more sophisticated algorithms are required to find the intersection. 
In this report, we will limit the discussion to transversal intersection [3] only. In 
a nut sheU, transversal intersection excludes the cases of tangential contacts, which 
mathematically correspond higher order singularities. Non-transversal intersection is 
stiU under research and will be discussed in a later report. 

The (transversal) intersection in SPI and SSI can be classified into two categories: 
visible and invisible curves (see figure 1). For the former, the intersection curve starts 
from and/or ends at the boundary of the domain. In other words, the intersection 
curve is visible from the boundary and can be obtained once the boundary intersection 
point is found. For the latter, the intersection curve is totally embedded in the domain, 
thus invisible from the domain boundary. In the literature, this problem is sometimes 
referred as loop detection ([14], [12]). 

As mentioned in the part one of this report, here we only discuss the intersection 
algorithms for untrimmed entities. For example, a planar face, which can be a non­
uniform multiply-connected polygon, is generalized to an infinite plane for the SPI 
operation. All the free-form surfaces are assumed to have the unit square as its domain. 
Post processing will be employed to adjust the intersection result to the appropriate 
domain. A more efficient way is to consider the effect of the trimmed domain in the 
preprocessing. The algorithms described in this paper can be easily modified if desired. 



2 SPI 
2.1 General Description 
The problem is to find the intersection between a parametric surface and an infinite 
plane, ax + by + cz + d = 0. From the convex hull property of B-spline surfaces, we can 
easily exclude the non-intersecting case by inspecting the location of the control points 
of the surface. This inspection can be further simplified by applying a transformation 
to the surface and the plane such that the plane equation is equal to z - 0. As will be 
shown later, this simplification also unifies the treatment of rational and non-rational 
surfaces. 

2.2 Mathematical Details 
2 . 2 . 1 T r a n s f o r m i n g a p l a n e t o t h e nominal p o s i t i o n ( z = 0 ) : 

This operation contains two transformations: translating the plane such that it passes 
the origin, and orienting the plane such that the normal is aligned with the Z-axis. 
This is exactly the same operation as in CPI. Please refer to part I of the report. 

2 . 2 . 2 D e r i v a t i o n o f t h e i n t e r s e c t i o n c u r v e / ( u , u ) = 0: 

Plugging in the component functions of the parametric surface (x(u, u), y(u, v), z(u, v)) 
into the plane equation (the nominal formulation), we get: 

z{u,v) = Z{u,v)/W(u,v) = 0 

Therefore, 

f(u,v) = Z(u,v) = 0 

Note that if the surface is rational, in which case W{u,v) is no longer a constant 
function, the formulation is still the same. That is, Z-component is the only effective 
term. 

From the above, we know that SPI has a close form solution f(u,v) = 0. However, 
in geometric modeling, it is more important to know the trace of the intersection curve 
than the exact algebraic representation. Since this is a problem with one equation 
and two variables, continuation method [11] can be applied to trace the solution set 
f(u,v) = 0. 

The evaluations of function, Jacobian, and Hessian of the function f{u,v) come 
from the Z-components of surface evaluation, first derivatives, and second derivatives 
respectively. However, there are some important issues: 

• There may be more than one components in / ( u , v) = 0. How to make sure that 
enough starting points have been located such that no component is missing. 

• How to realize whether a starting point has been traced by other branches such 
that no repetitive effort is spent on that point. 



For the former issue, our approach can find all the necessary points of the visible 
curves, thanks to the robust CPI solver. Starting points for invisible curves are also 
found using a robust algorithm, which will be discussed later (section 2.2.4). For the 
second issue, the intersection curves are separated at the characteristic points. The 
bookkeeping of tracing record at these points is the key of our method. 

2 . 2 . 3 N u m e r i c a l C o m p u t a t i o n o f C h a r a c t e r i s t i c P o i n t s : 

Since the intersection branches start from characteristic points, accurate computation 
of the characteristic points is crucial to curve tracing. The accuracy is achieved by 
numerical computation at these points. In the following, we wiU describe the definition 
and the formulation used in Newton iteration at each type of points. 

border p o i n t s : the intersection points at the boundary of the surface. Numerical 
computation of these points is actually an one-dimensional problem. These points 
are calculated accurately using the CPI routine. 

u - turning p o i n t s : A turning point is a point at which the tangent vector is parallel 
to either axis in the parametric space. U-turning points (with tangent parallel 
to v-axis) are the key to our curve tracing processing (see section 2.2.4). V-
turning points (with tangent parallel to u-axis) are only useful in the case of 
the complication of border points (section 4). The following two equations are 
satisfied at a u-turning point: 

With two variables and two equations, we can compute a turning point accurately 
using the Newton iteration, provided that a good initial guess is given. Note that 
if we use Newton-Raphson iteration, the function, and therefore the surface is 
assumed to be at least twice differ en tiable ( C 2 ) . 

Continuity in general will not be an issue, unless the point happens to be exactly 
located at the boundary of a component subpatch where the continuity condition 
is not guaranteed. In that case, we need to break the surface into its component 
patches such that the continuity condition is satisfied \ 

s ingular p o i n t s ( n o d e s ) : Nodes are the points at which the intersection curve 
crosses itself. At these points, three conditions are satisfied: / = fu = /„ = 0. 
We formulate the problem to be the gradient map of the objective function 
P + f u 2 + A2- That is, 

f fu+fu fuu + fv fw = 0 (3) 

/ / « + /« fuv + fv fvv = 0 (4) 

In this formulation, we have the same concern of continuity. Actually, this for­
mulation requires one order higher of continuity ( C 3 ) . 

iNote that in general continuity should also be a concern for curve tracing. However, in continuation 
method, the requirement is onlv C1 (Jacobian is needed for correctors in curve tracing). Based on the prop­
erties of B-spline surface, we can have a simple preprocessing routine to detect the tangential discontinuous 

f(u,v) = 0 

/„ (* ,» ) = 0 
(1) 
(2) 

features. 



Figure 2: Schematic d iagram of characteris t ic points 

singular points (cusps) : the higher order singularity that forms a cusp. At these 
points, same conditions of nodes are satisfied: / = f = f = 0. Thus, the 
numerical formulation is the same as those of nodes. The important issue of cusp 
handling is to obtain the starting points for the branches emanating from the 
point. This will be discussed in a later section. 

2.2 .4 F i n d i n g all U - t u r n i n g p o i n t s : 

As was previous mentioned, intersection curves are categorized into visible and invis¬ 
ible. Visible curves are easily discovered by solving the border points. For invisible 
curves, we utilize the following simple fact: 

On every invisible curve, there is at least one u-turntng point or one singular 
point. 

Thus, the solution strategy is to find all the u-turning points and singular points. 
That is, find all the points that satisfy / = fv = 0. The nature of this problem is to 
find a methodology to solve all the roots in a system of equations. We have reviewed 
several methods: homotopy, interval arithmetic, and trajectory methods ([2], [5], [7], 
[9]). In the current implementation, we have experimented the following package: 
CONSOL developed by Dr. Alexander Morgan in General Motors Research Labora¬ 
tory [9]. The package uses the homotopy concept and perfects its implementation in 
polynomial system. As is well known, finding the appropriate homotopy formulation is 
the most difficult problem. He has developed a systematic way of finding the homotopy 
equation that will solve the polynomial system. 

To use this package, we need to formulate the problem as a polynomial system. 
If the surface is not a Bezier surface, we need to subdivide the surface into Bezier 
subpatches, which are by definition polynomials. Although the subdivision might 
create a lot more subpatches to be considered, many subpatches can be excluded 
because either they have no intersection with the plane, or it is possible to have invisible 



curves in them. The time and storage spent on the overhead of subdivision is moderate, 
but the robustness is greatly enhanced. 

The system is formulated as follows: This is a two-variable, two-equation problem. 
The equations are of the form: 

f(u,v) = 0 
fv(u,v) = 0 

By expanding the first one into monomial form 2 , the first equation can be express 

as 

f(u,v) = Um{u)KVn(v)T = 0 

where 

Um{u) = (luu2 ... um), 

Vn{v) = (l vv2 ... vn), 

and K is (m + 1) x (n + 1) coefficient matrix. 
The efficiency of the homotopy method in this case is directly proportional to the 

number of paths explored, which is proportional to the total degree of the system. 
The foUowing preprocessing routines are employed to reduce the degree, and thus to 
increase the efficiency. 

• Delete the terms that are negligible because of small coefficients. 

• Factor out any variable in each equation. Make su~e that in every equation, the 
term of lowest degree in each variable is a constant. 

• Introduce a new variable x 3 = tit;, if this substitution can reduce the total degree. 
Notice that this substitution will increase the system size to three, but at this 
point, we assume that the total is the dominant factor of execution time. 3 

I n t e r p r e t a t i o n o f t h e resul t s : CONSOL will calculate all the roots (real and 
imaginary) in the system. In general, we are only interested in the real roots that are 
inside the domain. However, the tolerance used forjudging whether a root is real might 
vary depending on the type of the solution. For a regular simple solution (e.g. the 
u-turning point in a circle), the imaginary part is quite small ( l f r 1 5 ) . As the degree 
of singularity gets larger (e.g, nodes and cusps), the imaginary part is also larger. It 
might be as large as 10" 3 . Thus, the choice of the threshold of real roots needs to take 
the type of roots into consideration. 

Infinite n u m b e r of roots : CONSOL is designed to solve the system with (ge­
ometrically) isolated roots. Thus, we need to make an effort to exclude the case of 

2We found that the numerical precision is not a big problem for this expansion if we use double precision 
arithmetics. 

3Although this is the conclusion we drew from several experiments, this conjecture needs to confirmed. 



Discontinuity 

Figure 3: It is impossible to have a hidden straight segment in SPI. 

non-isolated roots as best as we can 4 . In the current context, this effort is translated 
to extracting the presence of every non-isolated u-turning points. We claim that this 
task can be achieved if we can extract all the vertical straight component in the so¬ 
lution set. Furthermore, the extraction can be done by checking the location of the 
border points. Here are the explanations: 

• The intersection between a Bezier surface and a plane is an algebraic curve. 
Thus, it is impossible to have a straight vertical segment connected to some 
curve branches, as shown in figure 3. 

• If we ever discover some u-turning point belonging to part of vertical intersection 
line (with zero curvature), this point must belong to a visible vertical component 
of the intersection curve. And this intersection component must be of the form 
u = ti*, where u* is a border point we discovered in CPI. 

The extraction is implemented numerically. Our experience showed that with dou­
ble precision arithmetic, it is quite reliable. 

2 .2 .5 M o r e on c u r v e t r a c i n g : 

There are two issues that we need to consider. First, usually we get more than enough 
starting points to complete all components of the intersection curve. In order to avoid 
tracing the same branch many times, we need to do some bookkeeping on the starting 
points (i.e., the characteristic points). That is, we need to turn off the appropriate 

4 In Chapter 4 of Morgan's book[9], it was mentioned that CONSOL will solve all other isolated roots, 
even with the presence of the non-isolated roots. However, this does pose some complexity of the solution 
process, which we want to avoid. 



Divergent Corrector 

Inappropriate predictor size 

Figure 4: Inappropriate Predictor Size 

starting directions during the curve tracing. The choice of the direction depends on 
the type of the characteristic point. For simple border points where only one branch 
can start, the choice is obvious. For the turning point, because its tangent is parallel 
to one of the coordinate axis, the choice of the branch is determined by comparing 
the position of previous points on this branch with the position of the turning point. 
For nodes, the choice is determined by comparing the incoming direction of the branch 
with the four branches emanating from the node. The choice for cusps is the most 
difficult. This will be discussed in a later section. 

Second, there are some features that might hinder the efficiency of curve tracing. 
The curve tracing process employs the predictor-corrector method to follow the curve. 
If we use a big predictor to start off a small loop, the corrector step in continuation 
might fail to converge. In that case, we need to reduce the size of the predictor until 
the corrector behaves satisfactorily. This iteration process can be costly if we are 
dealing with high order surfaces. A better solution is to start off with the predictor 
of appropriate size determined from on the local geometry, e.g. the magnitude of the 
curvature at that point. 

2 . 2 . 6 C u r r e n t D e v e l o p m e n t 

In addition to CONSOL , we are experimenting another root solution package using 
interval arithmetic, GENBIS [7]. The initial experiments show that GENBIS is in 
general a lot more efficient. However, as reported in [7], GENBIS is poor in handling 
singular solutions. In our experience, for the configurations with nodes and cusps, 
the solution process will not stop until reaching the prescribed number of evaluations. 
Moreover, the robustness (in terms of the capability of solving every root) is sometimes 
worse than CONSOL . Since interval arithmetic method is used, it is especially vul­
nerable to the cases where there might be infinite number of roots. Thus, extracting 
non-isolated roots becomes crucial in applying this method. Because the efficiency gain 
of using GENBIS for the cases that worked is quite big, we are contemplating writing 
a high level decision routine to choose the appropriate solution methodology. 



2.3 An Application — Slicing 
Slicing is an operation to calculate a set of cross sections of a solid object. It is useful 
in many applications. For example, these cross sections are used in rapid prototyping 
technologies for constructing the layers of the model. 

The criteria of a good slicing algorithm are twofold: The cross sections calculated 
must be accurate, and the operation must be reasonably efficient. Most of the parts 
that we want to deal with are described in free form geometry. We have two options of 
handling this kind of object: linearize the part (i.e., approximate the free form surface 
by linear facets) and employ linear intersection algorithms, or calculate the intersec­
tion directly for the free form geometry. For the former, the efficiency of intersection 
algorithm is in general better, but the accuracy depends on the approximation of the 
linear facets. To generate a good linear approximation of a free form object is quite 
costly, both in terms of creating and handling of the data. Thus, we have decided to 
tackle the problem by the latter option. With the SPI algorithm described in the pre­
vious section, we believe we can accomplish an accurate slicing result with reasonable 
efficiency. 

There are two steps to generate a slice : Calculate the intersection curves between 
the plane and all the surfaces in the model, and then connect the intersection curves 
to form a loop 5 . In the following, we will discuss only the computation of intersection 
curves. Since we have to intersect the same surface with a set of parallel planes, we 
need to make some modification to the general SPI algorithm. Without the loss of 
generality, we assume that the plane and the surface have been transformed such that 
the plane is parallel to XY plane. That is, the cutting planes are of the equations 
z = C J , where a is a distinct constant for each plane. 

Plugging in the component functions of the surface r(u,v), we get: 

z{uyv) = Z(u,v)/W(u,v) = a 

Or, 

/ ( u , t>) = Z(u, v) - aW{u, v) = 0 
The critical points are the points at which the following equations are satisfied: 

/„ = /„ = 0. It is clear that within each invisible loop, there must be at least one 
critical point. If r(«,tr) is a non-rational surface, W(u,v) is a constant. Thus, the 
critical points for every slice will be the same (independent of c.) . Thus, the time-
consuming critical point calculation wiU only be necessary for the first slice. The slicing 
operation can be described in the following: 

• Solve the visible curves using the same routines as in SPI. 

• Trace the u-characteristic curve (fv = 0) from each critical point computed in 
the first slice. The tracing stops when the point goes out of the boundary of the 
domain. 

• Each intersection point ( / = 0) discovered along the u-characteristic lines is a 
u-turning point. If this point has not been visited by the visible curves, start 
tracing the invisible segment of the intersection. 

sSince the slices are taken from a solid, the contours for each slice are loops. 



For rational surfaces where the homogeneous coordinate term W(u,v) is a function 
of u and v, the critical points for each slice will be different. The general SPI algorithm 
has to be used for each slice. 



3 SSI 
3.1 General Description 
There are three requirements for a surface-surface intersection (SSI) algorithm: accu­
racy, efficiency, and robustness. Accuracy is measured by the deviation between the 
derived intersection curve and the actual curve lying on the participating surfaces. Effi­
ciency is measured by the time and space needed for the operation. A robust algorithm 
should correctly identify every segment of the intersection curve. In the following, we 
review several types of SSI algorithms, and compare their achievements in these three 
requirements. 

• A n a l y t i c approaches seek analytic expressions for the intersection of two alge­
braic surfaces [13]. Although it can reliably provide a closed form representation 
of the intersection, the complexity of the representation makes it impractical for 
the application of moderately high order parametric polynomial patches. 

• S u b d i v i s i o n methods [6] decompose the surfaces into polygons or triangles and 
an approximation of the intersection is calculated from intersections of the lin­
ear facets. These methods may fail to compute all loops and branches for the 
intersections, due to the finite level of subdivision. Further increase of the subdi­
vision level does not assure correct topology of the intersection, and can rather 
result in excessive computation. One advantage of the subdivision method is that 
bounding boxes for subpatches can be built on the basis of control polyhedra [15]. 
Further subdivision of subpatches can be eliminated if the bounding boxes do not 
intersect. 

• The basic idea of the lat t ice method is to reduce the dimensions of the operand 
of the intersection ([1], [16]). A set of spatial curves lying on one surface (e.g., 
isoparametric curves) is defined and their intersection points with the other sur­
face can be computed. These points are then sorted and connected to form an 
approximation of the intersection curve. The SSI problem is transformed into a 
series of curve-surface intersections, for which more robust algorithms are avail­
able. However, because of the discrete nature of the method, it is difficult to 
capture all small loops and singularities. 

• By formulating the problem as a system of nonlinear equations, one can employ 
march ing methods to obtain the intersection curve [4]. The critical issue is to 
provide all necessary starting points for every branch of the intersection curves. 
This is commonly done by intersecting linear approximations of the two surfaces. 
These methods are usually sensitive to singularities. Small numerical perturba­
tion might result in the change of topology of the intersection curve. Nevertheless, 
since every point on the curve can be computed accurately by numerical tech­
niques, marching methods are more accurate. 

In this paper, we will describe another method we developed — the Augmented 
Lattice method. The basic idea is to discover all invisible intersection curves by locating 
the critical points of the distance function between the two surfaces. Since the distance 
function is quite complex, the powerful techniques used in SPI can no longer be applied. 
The strategy we use for exploring the nonlinear distance function is based on our 



previous work [17]. The lattice evaluation is added to increase the robustness. Also, 
the path tracker is changed to a more accurate continuation solver [11]. In summary, 
the solution procedures for solving SSI is the following: 

1. Locate all visible curves — solve the CSI subproblems. Since the operands are as­
sumed to be untrimmed surfaces, eight CSI problems need to be solved. Bounding 
boxes are used to increase the efficiency of the operation. 

2. Trace all visible curves. Record the u-turning points encountered on the paths. 

3. Augmented Lattice: 

S t e p 1 : Generate a set of sampling Unes on one surface. Explore the distance 
function along these sampling Unes. Record the positions where the gradient 
vectors (of the distance function) are perpendicular to the sampling Unes. 
The sampling lines are the isoparametric Unes at the node position of the 
more complicated surface. 

S t e p 2 : For each interval between the sampling Unes, trace the U-characteristic 
lines. The goal of this tracing is to find the u-turning points and singular 
points of the intersection curve. 

4 . Trace the invisible curves starting from the new u-tuming points. 

Comparing this approach with the criteria of a good SSI algorithm, we conclude: 

A c c u r a c y It is important to make sure that every intersection point is accurately 
computed, and that the deviation of the interpolation segment is within the 
tolerance. In the current approach, the interpolation points are calculated using 
continuation method. Thus, the accuracy is guaranteed to be satisfied (unUke 
the ODE tracing method). The deviation can be estimated using heuristic rules. 

Efficiency The performance of our prototype implementation is similar to the data 
presented in [8]. It is our opinion that the execution time is not a good compar­
ison, because the performance depends on the actual implementation. However, 
the algorithm does not use subdivision, which is always a benefit in saving the 
extra calculation and storage. Moreover, since the CSI subproblems (the border 
point computation and the sampling Unes exploration) are done independently, 
this algorithm is suitable for parallel implementation. 

R o b u s t n e s s We have successfully tested the implementations of the previous [17] 
and the current works over all the cases Usted in [8]. Moreover, because of the 
modification of additional sampUng Unes, the current implementation is more 
robust than our eariier work. 

M i s c . Since we work directly on the distance function, it can be applied to the inter­
section of offset surfaces, without much modification. 

The details of the implementation will appear in a later report. Here we only 
discuss the technical details of this problem. 



Figure 5: Orthogonal Projection from a point to the surface 

3.2 Mathematical Details 
3 . 2 . 1 P r o b l e m F o r m u l a t i o n : 

This problem can be formulated from several perspectives. Each of the foUowing 
formulations is used in the appropriate context. 

• Formulation 1 (equivalence of position in R3): 

r ( u , t ; ) - q ( M ) = 0 (5) 

This formulation has three equations and four independent variables. 

• Formulation 2 (distance function) ([10],[8]): 

4>{u,v) = n , ( Q ) - ( r ( u , t O - Q(r(tt,w))) (6) 

where Q(r (« ,o ) ) is a point on surface q(s,t) that is nearest to the point r(«,i;) , 
and n , is the unit normal vector at Q on the surface q, as shown in figure 5. 
The value of this function at a given point on surface r is the signed distance 
from that point to the corresponding Q. Note that if Q is in the interior of the 
domain, it is also an orthogonal projection point and the foUowing two equations 
are satisfied: 

( r ( « , t , ) - q ( M ) ) - q . ( * , « ) = 0 

(8) 

And the partial derivatives of the distance function <fi are 

ds 8t, , , Os Ot 
r u (9) 

Similarly, 

<f>v = n, • p„ 
The formula for higher order partial derivatives can be found in [8]. 



• Formulation 3: 

n , ( M ) . ( r ( U , V ) - q ( M ) ) = 0 

( r ( « t t O - q ( M ) ) - q , ( M ) = 0 

(r(u,v) -q(s,t))-qt{s,t) ~ 0 

(11) 

(12) 

(13) 

This is a more complicated way of formulating a three-variable, four-equation 
problem (as compared to formulation 1). In this formulation, the parameters 
(u,v,s,t) are regarded as i n d e p e n d e n t variables. Note that e q ( l l ) gives the 
notion of distance function as described in the second formulation, and that eqs. 
(12) and (13) are the same orthogonal conditions as in the second formulation. 

3 . 2 . 2 C o n t i n u a t i o n F o r m u l a t i o n : 

Among the formulations described above, it is important to choose the appropriate 
one for different context. 

• For tracing SSI curves, it is advantageous to choose the least expensive formula­
tion, equation (5). 

• In the exploration of the distance functions, the second and third formulations 
are more appropriate. 

• The U-characteristic Unes mentioned in section 3. 1 are important in the tracing 
of invisible intersection curves. It is defined to be the solution set of <f>v = 0. 
Between the two distance function definitions, we choose the third formulation 
for its simplicity (eqs. 11 to 13). That is, 

/ ! (u , i ; ,* , t ) = 0 v = n ( * , O T „ ( u , v ) = O 
f2(u,v,s,t) = (r(tt ,u)-q(M))-q.(*iO = 0 
h(u,v,s,t) = ( r ( « , » ) - q ( s , 0 ) - q * ( « , 0 = 0 

3 . 2 . 3 N u m e r i c a l C o m p u t a t i o n o f C h a r a c t e r i s t i c P o i n t s : 

As described in the SPI section, characteristic points are used to faciUtate the book­
keeping of the curve tracing process. Notice that we only need to define the char­
acteristic points on the first of the two operands in the Boolean operation, since the 
connectivity information can be processed with just one set of points. In the foUowing, 
we will describe the numerical formulations for different types of points in the SSI 

u- turning p o i n t s : The points on the intersection curve with vertical tangent vectors. 
From the second formulation (6), the foUowing equations are satisfied at a u-
turning point: 

context. 

<t>(u,v) = 0 (14) 

4>v(u, v) = 0 (15) 

subjected to 

(r - q) • q . = 0 (16) 



(r - q) • q t = 0 (17) 

Note that nested Newton iterations is needed in this case. That is, the outer 
iteration is designed to converge to a u-turning point by adjusting the (u,v) 
(eqs(14) and (15)), while the inner iteration is designed to maintain the orthogonal 
conditions, (eqs(16) and (17)). Another set of simpler but equivalent conditions 
can be derived using the third formulation (eqs( l l ) to (13)): 

r ( t t , i ; ) -q (5 ,0 = 0 (18) 

n ( M ) T « ( « i f ) = 0 (19) 

Here the problem is a system of four variables. No nested Newton is needed but 
the size of the system is larger than the previous one. Note that equation (19) 

, is designed to converge to a u-turning point (see eqs. 15 and 10), and the first 
three (19) will guarantee to stay on the intersection curve (thus satisfying eqs 
(15), (16) and (17)). 

S ingular p o i n t s ( n o d e s ) There is one more condition to be satisfied than the u-
turning point, <f>u = 0. This extra equation will make the system over deter mined. 
In the SPI case, we formulate the system to be the gradient map of a functional: 
f2 + Jl + f y . In the current case, we can get away in a cheaper way by some 
not-very stringent assumptions. 

We know the following equations are satisfied at a node: 

r(u,v)-q(s,t) = 0 

n ( a , O T t t ( u , t r ) = 0 

n ( M ) T „ ( u , t O = 0 

We can pick any two components of the first equation. Together with the remain­
ing two equations, we can form a four-variable system. The assumption is that 
if the initial guess is accurate, in the neighborhood of the solution, there should 
not be a pair of points which have the same projection on z-plane (i.e. same x 
and y components), but with different z values. The heuristic used in choosing 
two out of three equations is to pick the two coordinates with larger component 
in ( r - q ) . 

B i furca t ion o n U-Charac ter i s t i c Line On the U-characteristic line, <j>v = 0. Thus, 
the nodes on the line satisfy 4>v = <^uu = <f>vv = 0. This problem can be solved 
using the same method as the singular point in SPI (forming the gradient map of 
a functional). But because of the expense of calculating the high order derivatives 
of the distance function, the current implementation uses the latter two equations 
in the numerical iteration and checks the equivalence of the first equation. The 
experimental results are encouraging. The reason is that since the initial point is 
not far away from the final solution, the converged point should also be on the 
U-characteristic curve. 
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F i g u r e 6: Va l id i ty of b r a n c h e s from a b o r d e r p o i n t . D a s h e d l ines ( a r r o w s ) are inval id seg­
m e n t s ( d i r e c t i o n s ) . 

4 Border Point Complication 
4.1 D e s c r i p t i o n 
As m e n t i o n e d earl ier , bo rde r po in t s are the in te rsec t ion po in t s ca lcu la ted from the 
in te rsec t ion of lower d imens iona l ent i t ies . It was also men t ioned t h a t the bo rde r po in t s 
are the s t a r t i ng po in t s of the visible in tersec t ion curve . T h u s , it is i m p o r t a n t to know 
how many b ranches can e m a n a t e from a bo rde r poin t . F i r s t , some definitions: If a 
bo rde r point satisfies the condi t ion of o ther types of charac te r i s t i c point (e.g. , t u rn ing 
po in t s or s ingular p o i n t s ) , we call it a complicated bo rde r po in t ; o the rwise , we call it a 
simple b o r d e r poin t . Given a non-s ingular in tersec t ion po in t , we can always find the 
t a n g e n t d i rect ion along the in tersec t ion curve at th is point . For a s ingular po in t , we 
can find the t a n g e n t d i rec t ions for every b ranch e m a n a t i n g from t h a t poin t . 

The val idi ty of a b r a n c h is de t e rmined by checking w h e t h e r the t angen t direct ion is 
po in t ing inside the valid doma in . This check is useful for the simple bo rde r po in t s and 
the s ingular po in t s (nodes and cusps) . However , if the bo rde r point is also a t u r n i n g 
po in t s whose t a n g e n t is paral lel to the b o u n d a r y line (case (e) in f igure 6 ) , the above 
in format ion is not conclusive. Therefore we need to use the second order cr i ter ia to 
d e t e r m i n e the val idi ty of the b ranch . No te t ha t if the b ranches are not valid at a 
t u r n i n g po in t , th is in te rsec t ion point will be classified as an isolated in te rsec t ion poin t . 

4.2 The Turning Po ints 
Turn ing po in t s are the po in t s where one of <t>u and <f>v is zero, but not b o t h . T h a t is, 
the g rad ien t of the distance function at t h a t point e i ther paral lel or p e r p e n d i c u l a r to 
the b o r d e r line. If t he grad ien t is paral lel to (in the bo rde r point case, lying on) the 
bo rde r line (case (d) in figure 6 ) , it is clear t ha t only one of the b r anches goes into the 
d o m a i n , and the di rect ion is p e r p e n d i c u l a r to the bo rde r line. On the o the r hand , if 
the grad ien t is p e r p e n d i c u l a r to the bo rde r line (case (e) in f igure 6 ) , the curve touches 
at the bo rde r and the re are two cases: e i ther the curve bends inward , or the curve 
b e n d s ou tward . In the l a t t e r case, the touch point is the only valid in te rsec t ion point 
in the domain . 
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Figure 7: Complication of Border Points 

To determine whether there are valid branches out of the turning point , we employ 
the local parameterization and the curvature information as follows. 

We will explain the case of V-turning points in the following. The results of U-
turning points can be derived in a similar fashion. In a planar parametric curve, 
the principle normal direction is defined to be 90 degrees counterclockwise from the 
tangent direction [3]. In the current case, there is no particular direction associated 
with the intersection curve. We choose, without loss of generality, that the curve goes 
in increasing u direction, as shown in figure 7. 

The curvature for a planar parameterized curve 7(0(= " 

(it2 + V)2 

It is sufficient to inspect the sign of curvature only. Thus , 

Sign(k) = Sign(uv — uv) 

Since we take the local parameterization as t = u, and A = 1,6 = 1, ii = 0. Thus , 

Sign(k) = Sign(v) 

Along the intersection curve, 

/ (u ,u ) = 0, fdu + fdv = 0, A = 
da fv 

" _ ^L(^.'i.'i\ — f~du ~ f~du _ fuufy ~ 2fuvfufv + fvvfu 
~du(du'- {fv? " 



Thus, 

Sign(k) = Sign(-fuuf" " + ^ « ) ( y _ turningPoint) 

Similarly, 

Si 5n(it) = Sign(fuuf* ~ 2 / u » f u ^ + - ^ " ) ([/ _ turningPoint) 

The function f is either the Z-component of the surface evaluation in SPI, or the 
distance function 4> in SSI. 
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Figure 8: Different Types of Cusp 

5 Cusp 
5.1 Description 
Singularity can occur on the intersection curves of SPI and SSI. The dicussion of the 
self-intersecting points (nodes 6 ) can be found in [8]. Another kind of singularity may 
occur — cusps. Cusps are the singular points where the limit of tangents on the 
branches coincide. It is called a cusp of the first kind if the two branches are at the 
opposite sides of the common tangent, and a cusp of second kind if they are on the 
same side. It is a double cusp if the curves extent on both sides of the cusp. We call a 
cusp point that is not a double cusp a single cusp. 

Just like other types of characteristic points, two issues need to be addressed in 
curve tracing: The calculation of the branches, and the termination of certain branch 
directions (see section 2.2.5). These problems are more complicated at a cusp since 
the branches near the cusp share a common tangent. In the following sections, we will 
present the numerical solutions to the above issues. 

6 In some literature, the self-intersecting point is referred as the crunode; the cusp is referred as the 
spmode. 
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Figure 9: Calculate the branch points. 

5.2 Algorithms 
5 . 2 . 1 C a l c u l a t e t h e b r a n c h p o i n t s : 

To start the curve tracing from a cusp, we need to obtain the starting points on every 
branch of the cusp. We develop a numerical method to calculate the branch point of 
a cusp as follows: 

• Perturb along the common tangent of the cusp. Unless the cusp point is on the 
boundary of the domain, this perturbation is performed on both orientations of 
the tangent (the possibility of being a double cusp). It is theoretically difficult 
to distinguish a double cusp from a single cusp. 

• For each orientation, starting from the perturbed point, search for the branches 
on both sides of the tangent along a direction perpendicular to the tangent. The 
branch points are the points that satisfy / ( « , v) = 0, where / ( « , v), as defined 
in previous sections, is either the Z-component functions in SPI, or the distance 
function <f> in SSI. This is a one dimensional search problem, since u and v are 
related by the search direction. The search implementation is similar to the one 
in CPI (see part I of the report). Note that the search is terminated once two 
branches are found. 

The success of the implementation depends on the numerical values chosen for the 
perturbation along the tangent, and the step size used in the one dimensional search. 
The perturbation has to be significantly large such that the branches are numerically 
distinguishable. A large step size in the one dimensional search is prone to missing the 
branch point, especially for the case of cusp of second kind. 

5 . 2 . 2 D e t e r m i n e t h e i n c o m i n g b r a n c h : 

As mentioned in section 2.2.5, in order to avoid duplicate tracing, we need to do the 
bookkeeping on starting points. The key to this bookkeeping is the comparison between 
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Figure 10: Determine the incoming branches of a cusp 

the incoming direction and the branch direction. However, this is not applicable for 
single cusps, since both branches of a single cusp have the same tangent orientation 
7 . Initial investigation suggests that the information of the curvature can be used to 
identify the branches for the cusp, but the usage is limited to cusps of the first kind. 
A more robust method is developed in the following such that the handling of both 
kinds of cusp is uniform. 

The basic idea to handle the branch classification is the following fact: 

For every cusp, there exists a separation line that passes through the cusp 
point, and separates the branches on both sides of the line. 

Let us discuss the concept more carefully. The intersection curve that contains the 
cusp is an instance of the level set of the function f(u,v) = 0. Observe the trace of 
the perturbed function, that is, the curve of the function f(u,v) - € = 0. It is always 
possible to find a point whose tangent is perpendicular to the common tangent of the 
cusp in the neighborhood of the cusp, as shown in figure 10. The branch on one side 
of the separation line differs from that of the other side by a sign, which denotes the 
orientation of the vector formed by the cross product of the tangent of the cusp and 
the local gradient vector. Thus, the sign for each branch can be determined by the 
branch points calculated in the last section. The incoming direction is determined by 
the sign of the last points in the curve tracing. 

5 . 2 . 3 C u s p B r a n c h H a n d l i n g : 

In section 2.2.5, we have mentioned the issue of branch management. The key idea is 
to avoid duplicate tracing by turning off the starting direction at the end of the branch. 
This method poses a problem for the cusps. The issue is that cusps are less desirable 
points to start off the curve tracing. Because the branches from a cusp are close, any 
over-sized predictor might go to another branch. On the other hand, to determine the 
incoming direction of a cusp is difficult. Although we have developed a robust method 

7However, we can use this to distinguish the orientation of a double cusp. 



in the last section, the continuation points might have already wandered to the other 
branch before we actually do this testing. There are remedies for both problems: If we 
want to start from a cusp, we need to pay extra caution on the size of the predictor 
at the beginning, until we are reasonably far away from the singularity. After we 
have decided the branch is to be terminated at a cusp, we need to check the incoming 
continuation points and decide which is actually the incoming branch that most of the 
points are foUowing. 
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