
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Intersection Algorithms
for Nonlinear Geometric Modeling: Part I

J. Chen

EDRC 24-75-91

Intersection Algorithms
for Nonlinear Geometric Modeling *

Part I

Jyun-Ming Chen
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

November 1, 1991

Abstract

The next generation geometric modeling systems have higher requirements on the
reliability and the efficiency of Boolean operations. The two parts of these technical re­
ports describe the details of the nonlinear intersection algorithms developed at EDRC.
The prototype of the algorithms has been shown to be robust, accurate, and efficient,
without the overhead of subdivision.

The first part of this report describes the intersection routines of lower dimensions.

' T h i s work has been supported by the Engineering Design Research Center, an NSF Engineering Research

Center.

1

1 Introduction
The next generation computer aided geometric modelers will combine the paradigms
of wireframe, surface and solid modeling. A designer will be able to incrementally
convert a wireframe sketch into a solid representation. In order to achieve this goal,
the underlying modeling system must be able to automatically classify the modeling
space as the geometric entities are updated. Systems with such capabilities have been
developed recently ([12, 2]), but the domains are limited to objects bounded by planar
facets and natural quadrics (e.g., cylinder, cone and sphere). This limited geometric
coverage is not sufficient for more sophisticated applications, such as automobile design
(e.g., designing the hood of a car). One of the major obstacles for extending the
geometric coverage to include parametric curves and surfaces is the computation of
the intersections among entities of different dimensionalities.

Before going into the details of these algorithms, we would like to discuss the
similarities and the differences between the nonlinear and the linear algorithms. In a
B-rep geometric modeler, an object is represented by vertices, edges, faces, solids, and
the connections among the entities. In order to perform the basic Boolean operations
between two objects, one needs to carry out the intersection tasks on the entities
of different dimensionality from the two objects. It has been shown that it is more
desirable to perform the intersections in a bottom-up order [3]. The reason is that
the operations in lower dimensions are faster than those in higher dimensions. Also,
the results in lower dimensional intersection is essential for the intersection of higher
dimensional intersection routines. This principle is true for both linear and nonlinear
algorithms. However, the difference between the linear and nonlinear algorithms is
that the intersection of nonlinear entities is less predictable than that of the linear
ones. For instance, in linear geometry, if two edges have the same end vertices, we can
deduce that the two edges coincide. However, this is not true in nonlinear geometry.
Furthermore, the result of face/face intersection is deductible from the results of lower
dimensionality (edge/face, vertex/face, etc.). But, nonlinear face/face intersection is
much more difficult, and less predictable. In fact, it is due to this very fact that
people have devoted their efforts on the problem of loop detection, which deals with
the intersection curves that are not predictable from the lower dimensional results ([7],
[10]).

In these two technical reports, we will describe the intersection routines developed
at Engineering Design Research Center of Carnegie Mellon University. The need for
extending the geometric coverage of the non-manifold geometric modeler Noodles [2]
initiates the development of this work. We choose the Non-Uniform Rational B-Spline
(NURBS) to be the major representation for the nonlinear geometry. The reasons of
this choice are the completeness and the popularity of this representation. Frequently
used entities, such as the natural quadrics and the torus, will be approximated using
NURBS. Note that the NURBS representation of those entities can be exact if rational
arithmetic is used. The linear entities (i.e., line segments and polygons) still remain
their linear representations. In part one of the report, we will concentrate on the
intersection of dimensions lower than one. In part two, we will discuss the intersection
of two dimensional entities.

2

G e n e r a l C o m m e n t s :

• Trimmed entities are those which have the same mathematical mapping between
the parametric space and R3 , but only have a subset of the regular parametric
domain as their domain. This type of entity is commonly used in design, and
is also used to represent the result of the Boolean operations. The intersection
algorithms presented in these two reports are for untrimmed entities only. Post
processing needs to be employed to adjust the results to the appropriate domain.
The handling of trimmed curves is trivial. The handling of trimmed surfaces is
more complicated. One needs to classify the intersection curves obtained in the
untrimmed surface with respect to the trimmed domain.

• Continuation method, in these reports, refers to the method for solving a series
of solution points to a problem with n variables and n - 1 equations [6]. This
type of formulation occurs in several places of the work (e.g., CCI, CSI, SPI and
SSI).

• The references mentioned in these reports are for comparisons only. The more
complete literature survey will appear in a later report.

In the following two sections, we will describe the intersection algorithms involv­
ing one-dimensional entities only, namely CLI and CCI. These problems are in general
easier than the higher dimensional ones (e.g., CSI and SPI), since the search spaces are
only one-dimensional. Two types of intersection can occur in this category: (geometri­
cally) isolated intersection points, or tangentiaUy contac; segments. In the literature,
most of the work is devoted to finding solutions of the former type. However, in de­
veloping a nonlinear geometric modeler, the capability of handling tangential contact
is equally important.

2 CLI

2.1 General Description
If the curve and the line are not tangentiaUy contact, the solution of CLI is geometri­
cally isolated. For this type of solution, the CLI problem can be solved as the following:

• The line segment is first extended to an infinite line.

• Find two planes such that the line corresponds to the intersection of the planes.

• Solve the CPI problem with one of the planes obtained in the previous step.

• Check the result against the second plane.

The advantage of this approach is that the CPI subproblem has the most robust
and efficient algorithm among all the intersection algorithms (see section 4). However,
some other useful information is not available in this efficient implementation, e.g.,
the closest point (and distance) between the line and the curve. If such information is
desired, one can transform the line into a parametric curve and use the more elaborate
(and less efficient) CCI algorithm in the next section.

3

To find the embedding planes for CPI subproblem, we want to avoid picking a plane
which the curve lies exactly on. Since we have already excluded the case of tangential
contact between the line and the curve, it is always possible to find such a plane.

The tangential contact in CLI can be easUy detected if the curve is represented
in NURBS. In general, a Bezier curve can not be linear unless all the control points
are aligned with some certain line. However, since a B-spline curve is composed of
several pieces of curve, it is possible to have linear components within its domain.
The detection of linearity can be done by decomposing a NURBS curve into its Bezier
components, and then apply the same check as in the Bezier curve.

2.2 Mathematical Details:
2 . 2 . 1 G e n e r a t i n g t h e e m b e d d i n g p l a n e s :

A plane can be denned by a face normal and a point. In the present case, we know that
the plane must pass through one end point of the line segment, and the face normal
must be perpendicular to the tangent of the line. To ensure that the embedding plane
will not be in tangential contact with the curve, we obtain the face normal by

normal = CrossProduct(TangentOfLine,RandomVector)

By the independence principle mentioned in [4], a random vector is not possible
to align with the line; thus the normal is valid. Using the same argument, we have
assured that that plane will not include the curve.

2 . 2 . 2 P o s t P r o c e s s i n g :

After the CPI subproblem is solved, the results are tested to see whether it is in
the given line segment. This is done by checking the intersection point against the
parametric equation of the line segment.

3 CCI
3.1 General Description
Let us first discuss the intersection of planar curves. Since the problem forms a system
of two variables, one might consider using the linear approximation method: calculate
the initial guesses of the intersection from the intersection of the linear approximations,
and then use numerical method to obtain more accurate solutions. However, this is
not reliable as shown in figure 1. Recently, there is another approach proposed in the
literature, Bezier Clipping [8]. The basic idea is to use the divide-and-conquer scheme
with the geometric insight of convex hull property of the Bezier curves. The perfor­
mance is quite impressive for solving regular intersection points, but is not extendible
to higher order tangential contact.

For the case of space curves, one solution is to solve the intersection of the three
planar projected curve, and post-process the results. This is a feasible solution because
of the following fact: if two space curves intersect, the two projected curves pairs must

4

Figure 1: Linear approximation may miss the intersection.

also intersect Mathematically, this corresponds to solving an overdetermined system
by ignoring one of the equations. However, there are two disadvantages to this method.
First, the projected curve might have undesirable features, e.g., self intersection \
Second, it is difficult to address the problem of tangential contacts of higher order by
the projected curves. In the following, we will propose a projection method to solve
the CCI problem, for both planar and space curves. The key ideas are the following:

• The first curve is projected onto the second one.

• The intersection point is detected by the appropriate local projection and then
accurately calculated with the initial guess.

The tangential contact between two curves are not as well denned as the case of CLI.
Thus, we use the following numerical definition: After the projecting the first curve
onto the second one, if the distance between a series of projection pairs are smaller
than some tolerance, then we can say that the two curves are tangentiaUy contact in
this interval. If this happens, we need to further determine the start and the end of
this (tangentiaUy) intersecting segment.

3.2 Mathematical Details:
3 . 2 . 1 C o n t i n u a t i o n e q u a t i o n :

The orthogonal projection can be formulated by the foUowing equation:

(r (t t) - q (*)) . q , (*) = 0 (1)

where q is the curve to be projected onto. This is an one parameter problem and we
use the standard continuation technique to solve this problem [6]. In order not to miss

'For example, the projection of a spiral onto a plane can become a circle.

5

Figure 2: CCI projection cases: (a) orthogonal projection, (b) ill projection, and (c) multiple
projection

any intersection, we dynamically adjust the step size in the continuation based on the
distance between the curves.

We use the term projection pair to denote the point on the first curve and its
projected image on the second curve. The projected point on the second curve is
always the closest point to the point on the first curve. In some cases, the projected
point might not be an orthogonal projection point. That is, eq(l) is not satisfied at
this projection pair. We call this pair the ill projection pair. In this situation, we will
continue to march on the first curve until the projection status changes. Note that
during ill projection status, the projection point will be on either end of the second
curve. There is another exception of the projection pair. Sometimes the point on the
first curve marches to a point where there are multiple points on the second curve
that have the same distance. We claim that this can be detected in the continuation
formulation. The solution to this situation is to perturb the point on the first curve
slightly, find a new projected point on the second curve, and restart the continuation
process.

Although the design of the algorithm is not symmetric, the choice of the first curve
(of the two) should not affect the validity of the algorithm. However, due to the factor
of efficiency, the more complicated one (the one with higher order) wiU be chosen as
the first curve.

6

Figure 3: Root Detection

3 . 2 . 2 R o o t D e t e c t i o n :

In this problem, mathematically we have three equations and only two unknowns.
Thus, the intersection can be detected using two out of the three equations. Geomet­
rically, this corresponds to projecting the two curves onto one of the coordinate planes
(XY, YZ, or ZX). The choice of the equations (or the projection plane) is determined
dynamically based on the values of the components at that time.

For simple roots, we record the values of the foUowing expressions for every pair of
projection points:

((r - q) x q ,) - e „ i = 0 ,1 ,2

Once a sign change is detected, the projection plane is determined, and we can
use typical root finding techniques (e.g., bisection and Newton) to obtain the accurate
solution. To catch higher order roots (tangential touching points), we need more
sophisticated schemes (similar to the sampling method in section 4). Note that the
solution needs to be verified for the equivalence of all three coordinates.

3 . 2 . 3 T a n g e n t i a l c o n t a c t o f c u r v e s :

The result of the tangential contact, as defined in the last section, should be repre­
sented as point-pairs, indicating the start and the end of the tangential segment. It is
important to calculate the branching positions of the tangential segment. This com­
putation is done by adding an additional equation specifying the branching tolerance.
Together with the condition orthogonal projection (eq 1), we can solve the determined
two-variable system, using the current ending projection pairs as initial guesses.

7

In the following two sections, we will describe the intersection algorithms involving
one-dimensional and two-dimensional entities.

4 CPI

4.1 General Description
This is probably the most trivial intersection of all nonlinear algorithms. The compo­
nent functions of the curve are plugged into the plane equation. The search is then
performed in the one-dimensional interval (the parametric space of the curve).

A NURBS curve can be decomposed into several Bezier curves. Since Bezier curves
are (rational) polynomial curves, it is possible to solve the problem in the most robust
way, using the theories of roots of a polynomial equation [5]. Here we propose another
sampling method to solve this one-dimensional root finding problem. If the samples
can be created intelligently, all the roots can be isolated and computed. Thus, the
same robustness can be achieved without the cost of subdivision.

4.2 Mathematical Details:
Mathematically, this problem is equivalent to finding all roots in an one-dimensional
interval. We will use the root isolation technique.

4 . 2 . 1 T r a n s f o r m i n g a p l a n e to t h e nominal p o s i t i o n :

To simplify the calculation, the first step is to find a transformation such that the plane
will be transformed to z = 0. This operation contains two transformations: translating
the plane such that it passes the origin, and orienting the plane such that the normal
is aligned with the Z-axis.

The distance from a plane ax + by + cz + d = 0 to origin is given by:

d
distance =

V a 2 + b2 + c 2

Thus the transformation matrix for the first part is an identity orientation matrix,
with the translation vector equals

da db dc T

l a a + 6 2 + c 2 a 2 + b2 + c2 a2 + b2 + c2*

To rotate a vector into a desired orientation can be achieved by appropriate roll-
pitch-yaw angles. The mathematics can be summarized in the following:

RPY{<f>,9,4>) [a b c]T = [0 0 l] T

Rot(z,<t>)Rot(y,9)Rot(x,iP) [a b c}T = [0 0 1] T

8

Figure 4: One dimensional root isolation method

After some calculation,

[a b c]T = Rot(x,-il>)Rot(y, -0)Rot(z, -<}>) [0 0 1] T

= (- s i n 0 sin tf> cos 0 c o s A c o s 0) T

Thus, the orientation matrix for this part is the roll-pitch-yaw matrix,

RPY(0.Q,sm-l(-a),Un-l(b/c))

Except ion: When b and c are both zero, t a n " (6 / c) is set to zero.

Combining the results from the two parts , that is premult iply the first part by the
second part , we have got the transformation matrix to put the plane to the nominal
position.

4 .2 .2 R o o t I s o l a t i o n :

The next step is to plug in the transformed curve into the plane equation. Since
the plane has been transformed into z = 0, we just need to look at the z-component
of the curve, for both rational and non-rational curves. Note that at this point, the
problem is equivalent to an one-dimensional root finding problem: f(u) = 0, as shown
in figure 4. The standard root isolation technique is to detect the sign change of the
f(u) for simple roots, and the sign change of f(u) for singular roots. The sampling
points are generated based on the node vector [1]. The reason of this choice is that
the node points are located at strategic positions and the number of nodes reflects the
complexity of the curve. The success of this root isolation technique depends on the
sampling process. We have found the samples described above to be satisfactory and
we are investigating the general robustness of this method.

5 csi
5.1 General Description
The problem of intersecting a curve and a surface is a three-variable, three-equation
system. Traditionally, this problem has been solved by subdivision with numerical
correction [11]. However, subdivision is not reliable, especially when the curve and the

9

Figure 5: Orthogonal Projection from a point to the surface

surface are closely spaced. In this paper, we propose a method based on the idea of
generalized orthogonal projection. The basic idea is to project the curve on the surface.
The projected point is denned to be the closest point on the surface with respect to a
given point (see figure 5). When the projected point is in the interior of the domain, it
can be shown that it is also an orthogonal projection. Thus the following two equations
are satisfied:

(r (u) - q (M)) - q , (* , 0 = 0 (2)

(r (t t) -q (* ,*)) -q» (a ,*) = 0 (3)

The surface normal at the projected point n, and the vector (r - q) will contribute
a sign, indicating whether that point is above or below the surface. Thus, with this
signed distance function (distance is the magnitude of (r - q)) , we can use the same
one-dimensional root finding techniques as we mentioned in CPI.

The intersection between a line segment and a surface is also implemented in the
same routine, after converting the line segment into a parametric curve.

5.2 Mathematical Details:
5 . 2 . 1 M o r e o n G e n e r a l i z e d O r t h o g o n a l P r o j e c t i o n :

In the previous section, we have described the case where the projected point is in the
interior. However in some cases, the closest point on the surface to a point will not
satisfy the orthogonal projection conditions (eqs (2) and (3)). The reason is that one of
the variables is constrained by the domain of the surface. Thus, we need to generalize
the notion of orthogonal projection. We divide the domain into several regions of
different projection status, as shown in figure 6. In ST_BOTH, both parameters are
free to vary; thus, orthogonal projection can be achieved. In S_ONLY, only S can vary,
thus only the first condition (2) can be satisfied. In T.ONLY, only T can vary, thus
only the second condition (3) can be satisfied. In ST.NONE, the projected point will
stay on the corner; thus, neither condition is satisfied.

The change of the projection status is determined by the location of the projection
point and the value of the projections (left hand side of eqs(2 and 3)). When the

10

STJVONE i S.ONLY

T ONLY j ST BOTH

i T

ST NONE] S_ONLY

ST NONE

T ONLY

ST NONE

Figure 6: Projection Status Definition in CSI

projected point moves out of the domain at the four sides of the domain (excluding the
four corners), we know that the projected status will be downgraded from ST .BOTH
to X.ONLY (S-ONLY or T_ONLY). If the projected image moves out directly at the
corner, the closest point will be the corner point and the projection status wiU be
downgraded to ST-NONE. The upgrade of the projection status is determined by the
sign change of the projection values. That is, when the projection status is X.ONLY,
one of the orthogonal projections must have a nonzero value. When the status is
upgradable, this will be indicated by a sign change.

Whenever the projection status changes, we need to correct the starting position
to the boundary of the domain. The reason is that the curve might intersect at the
boundary. Although this should be classified as a lower dimensional subproblem, it is
more efficient in a nonlinear algorithm that the higher dimensional routines can resolve
all the lower dimensional cases.

Some implementation details are worth mentioned:

• When the projection remains orthogonal and stays on the border, we need to
prevent the projection status from changing back and forth due to floating point
calculation. This will cause infinite looping. The solution is to detect such phe­
nomenon and classify it as a special case.

• When the projection curve happens to go out of the domain from the corner, the
point actually goes into an ST.NONE region. In the current implementation, we
continue to move along the curve, until the point starts to have a valid projection
(S-ONLY, T.ONLY, or ST.BOTH).

5 . 2 . 2 C o n t i n u a t i o n e q u a t i o n :

We need to set up two classes of continuation formulations for both orthogonal pro­
jection, and partial projection. The former is a two-equation three-variable problem,
and the latter is an one-equation, two-variable problem.

S T J B O T H

(r (u) - q (M)) - q . (M) = 0

11

(r (t i) q (M)) - q t (M) = 0

S (T) . O N L Y

(r(u)

(r(u)

q(Mt-)) -q , (s , * i) = 0 (5 . 0 ; v z y)

(T.OJVZY)

5.2*3 F i n d i n g i n t e r s e c t i o n p o i n t :

To solve CSI, we can find the intersection points along the curve. With the above
definition of the signed distance function, we can use the same one dimensional root
isolation and calculation technique as in CPL But instead of the samples created by
the node points in CPI, here we generate the sampling projection pairs between the
curve and the surface. The sampling process is dynamically adjusted by the magnitude
of the distance. That is, as the point on the curve moves closer to the surface, more
samples will be created, and vice versa. This is done by controlling the size of the
predictor in the continuation solver. It is clear that if the intersection were to happen
between the curve and the surface, it will occur in the interior and the boundary of
the surface domain. Thus, we only need to pay attention when the projection status
is STJBOTH, and when the projection status changes.

12

References
[1] E.S. Cobb. Design of Sculptured Surfaces Using the B-spline Representation. PhD

thesis, University of Utah, 1984.

[2] E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex-based representation of non-
manifold boundaries. In M. J. Wozny, J. U. Turner, and K. Preiss, editors, Ge­
ometric Modeling for Product Engineering, pages 107 - 130. North-Holland, New
York, 1990.

[3] E.L. Gursoz, Y. Choi, and F.B. Prinz. Boolean set operations on non-manifold
boundary representation objects. Computer Aided Design, 23(l):33-39, Jan­
uary/February 1991.

[4] A. Morgan. Solving Polynomial Systems Using Continuation for Engineering and
Scientific Problems. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[5] L. Redei. Algebra, volume 1. Pergamon Press, 1967.

[6] Werner C. Rheinboldt. Numerical Analysis of Parameterized Nonlinear Equations.
Wiley, New York, 1986.

[7] T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersection.
Computer Aided Geometric Design, 5:161-171, 1988.

[8] T.W. Sederberg and T. Nishita. Curve intersection using Bezier clipping. Com­
puter Aided Design, 22(9):538-549, November 1990.

[9] T.W. Sederberg and T. Nishita. Geometric hermite approximation of surface patch
intersection curves. Computer Aided Geometric Design, 22(8):97-114, November
1991.

[10] P. Sinha, E. Klassen, and K. K. Wang. Exploiting topological and geometric
properties for selective subdivision. In Proc. ACM Symposium on Computational
Geometry, pages 39-45. ACM, 1985.

[11] K.-Y. Wang. Intersections of general parametric surfaces. Technical Report
89CRD003, Automation Systems Laboratory, GE Research and Development
Center, January 1989.

[12] K. J. Weiler. Edge based data structures for solid modeling in curved-surface
environments. IEEE Computer Graphics and Applications, 5(l) :21-40, January
1985.

13

