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Abstract 

The next generation geometric modeling systems have higher requirements on the 
reliability and the efficiency of Boolean operations. The two parts of these technical re­
ports describe the details of the nonlinear intersection algorithms developed at EDRC. 
The prototype of the algorithms has been shown to be robust, accurate, and efficient, 
without the overhead of subdivision. 

The first part of this report describes the intersection routines of lower dimensions. 

' T h i s work has been supported by the Engineering Design Research Center, an NSF Engineering Research 

Center. 
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1 Introduction 
The next generation computer aided geometric modelers will combine the paradigms 
of wireframe, surface and solid modeling. A designer will be able to incrementally 
convert a wireframe sketch into a solid representation. In order to achieve this goal, 
the underlying modeling system must be able to automatically classify the modeling 
space as the geometric entities are updated. Systems with such capabilities have been 
developed recently ([12, 2]), but the domains are limited to objects bounded by planar 
facets and natural quadrics (e.g., cylinder, cone and sphere). This limited geometric 
coverage is not sufficient for more sophisticated applications, such as automobile design 
(e.g., designing the hood of a car). One of the major obstacles for extending the 
geometric coverage to include parametric curves and surfaces is the computation of 
the intersections among entities of different dimensionalities. 

Before going into the details of these algorithms, we would like to discuss the 
similarities and the differences between the nonlinear and the linear algorithms. In a 
B-rep geometric modeler, an object is represented by vertices, edges, faces, solids, and 
the connections among the entities. In order to perform the basic Boolean operations 
between two objects, one needs to carry out the intersection tasks on the entities 
of different dimensionality from the two objects. It has been shown that it is more 
desirable to perform the intersections in a bottom-up order [3]. The reason is that 
the operations in lower dimensions are faster than those in higher dimensions. Also, 
the results in lower dimensional intersection is essential for the intersection of higher 
dimensional intersection routines. This principle is true for both linear and nonlinear 
algorithms. However, the difference between the linear and nonlinear algorithms is 
that the intersection of nonlinear entities is less predictable than that of the linear 
ones. For instance, in linear geometry, if two edges have the same end vertices, we can 
deduce that the two edges coincide. However, this is not true in nonlinear geometry. 
Furthermore, the result of face/face intersection is deductible from the results of lower 
dimensionality (edge/face, vertex/face, etc.). But, nonlinear face/face intersection is 
much more difficult, and less predictable. In fact, it is due to this very fact that 
people have devoted their efforts on the problem of loop detection, which deals with 
the intersection curves that are not predictable from the lower dimensional results ([7], 
[10]). 

In these two technical reports, we will describe the intersection routines developed 
at Engineering Design Research Center of Carnegie Mellon University. The need for 
extending the geometric coverage of the non-manifold geometric modeler Noodles [2] 
initiates the development of this work. We choose the Non-Uniform Rational B-Spline 
(NURBS) to be the major representation for the nonlinear geometry. The reasons of 
this choice are the completeness and the popularity of this representation. Frequently 
used entities, such as the natural quadrics and the torus, will be approximated using 
NURBS. Note that the NURBS representation of those entities can be exact if rational 
arithmetic is used. The linear entities (i.e., line segments and polygons) still remain 
their linear representations. In part one of the report, we will concentrate on the 
intersection of dimensions lower than one. In part two, we will discuss the intersection 
of two dimensional entities. 
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G e n e r a l C o m m e n t s : 

• Trimmed entities are those which have the same mathematical mapping between 
the parametric space and R3 , but only have a subset of the regular parametric 
domain as their domain. This type of entity is commonly used in design, and 
is also used to represent the result of the Boolean operations. The intersection 
algorithms presented in these two reports are for untrimmed entities only. Post 
processing needs to be employed to adjust the results to the appropriate domain. 
The handling of trimmed curves is trivial. The handling of trimmed surfaces is 
more complicated. One needs to classify the intersection curves obtained in the 
untrimmed surface with respect to the trimmed domain. 

• Continuation method, in these reports, refers to the method for solving a series 
of solution points to a problem with n variables and n - 1 equations [6]. This 
type of formulation occurs in several places of the work (e.g., CCI, CSI, SPI and 
SSI). 

• The references mentioned in these reports are for comparisons only. The more 
complete literature survey will appear in a later report. 

In the following two sections, we will describe the intersection algorithms involv­
ing one-dimensional entities only, namely CLI and CCI. These problems are in general 
easier than the higher dimensional ones (e.g., CSI and SPI), since the search spaces are 
only one-dimensional. Two types of intersection can occur in this category: (geometri­
cally) isolated intersection points, or tangentiaUy contac; segments. In the literature, 
most of the work is devoted to finding solutions of the former type. However, in de­
veloping a nonlinear geometric modeler, the capability of handling tangential contact 
is equally important. 

2 CLI 

2.1 General Description 
If the curve and the line are not tangentiaUy contact, the solution of CLI is geometri­
cally isolated. For this type of solution, the CLI problem can be solved as the following: 

• The line segment is first extended to an infinite line. 

• Find two planes such that the line corresponds to the intersection of the planes. 

• Solve the CPI problem with one of the planes obtained in the previous step. 

• Check the result against the second plane. 

The advantage of this approach is that the CPI subproblem has the most robust 
and efficient algorithm among all the intersection algorithms (see section 4). However, 
some other useful information is not available in this efficient implementation, e.g., 
the closest point (and distance) between the line and the curve. If such information is 
desired, one can transform the line into a parametric curve and use the more elaborate 
(and less efficient) CCI algorithm in the next section. 
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To find the embedding planes for CPI subproblem, we want to avoid picking a plane 
which the curve lies exactly on. Since we have already excluded the case of tangential 
contact between the line and the curve, it is always possible to find such a plane. 

The tangential contact in CLI can be easUy detected if the curve is represented 
in NURBS. In general, a Bezier curve can not be linear unless all the control points 
are aligned with some certain line. However, since a B-spline curve is composed of 
several pieces of curve, it is possible to have linear components within its domain. 
The detection of linearity can be done by decomposing a NURBS curve into its Bezier 
components, and then apply the same check as in the Bezier curve. 

2.2 Mathematical Details: 
2 . 2 . 1 G e n e r a t i n g t h e e m b e d d i n g p l a n e s : 

A plane can be denned by a face normal and a point. In the present case, we know that 
the plane must pass through one end point of the line segment, and the face normal 
must be perpendicular to the tangent of the line. To ensure that the embedding plane 
will not be in tangential contact with the curve, we obtain the face normal by 

normal = CrossProduct(TangentOfLine,RandomVector) 

By the independence principle mentioned in [4], a random vector is not possible 
to align with the line; thus the normal is valid. Using the same argument, we have 
assured that that plane will not include the curve. 

2 . 2 . 2 P o s t P r o c e s s i n g : 

After the CPI subproblem is solved, the results are tested to see whether it is in 
the given line segment. This is done by checking the intersection point against the 
parametric equation of the line segment. 

3 CCI 
3.1 General Description 
Let us first discuss the intersection of planar curves. Since the problem forms a system 
of two variables, one might consider using the linear approximation method: calculate 
the initial guesses of the intersection from the intersection of the linear approximations, 
and then use numerical method to obtain more accurate solutions. However, this is 
not reliable as shown in figure 1. Recently, there is another approach proposed in the 
literature, Bezier Clipping [8]. The basic idea is to use the divide-and-conquer scheme 
with the geometric insight of convex hull property of the Bezier curves. The perfor­
mance is quite impressive for solving regular intersection points, but is not extendible 
to higher order tangential contact. 

For the case of space curves, one solution is to solve the intersection of the three 
planar projected curve, and post-process the results. This is a feasible solution because 
of the following fact: if two space curves intersect, the two projected curves pairs must 
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Figure 1: Linear approximation may miss the intersection. 

also intersect Mathematically, this corresponds to solving an overdetermined system 
by ignoring one of the equations. However, there are two disadvantages to this method. 
First, the projected curve might have undesirable features, e.g., self intersection \ 
Second, it is difficult to address the problem of tangential contacts of higher order by 
the projected curves. In the following, we will propose a projection method to solve 
the CCI problem, for both planar and space curves. The key ideas are the following: 

• The first curve is projected onto the second one. 

• The intersection point is detected by the appropriate local projection and then 
accurately calculated with the initial guess. 

The tangential contact between two curves are not as well denned as the case of CLI. 
Thus, we use the following numerical definition: After the projecting the first curve 
onto the second one, if the distance between a series of projection pairs are smaller 
than some tolerance, then we can say that the two curves are tangentiaUy contact in 
this interval. If this happens, we need to further determine the start and the end of 
this (tangentiaUy) intersecting segment. 

3.2 Mathematical Details: 
3 . 2 . 1 C o n t i n u a t i o n e q u a t i o n : 

The orthogonal projection can be formulated by the foUowing equation: 

( r ( t t ) - q ( * ) ) . q , ( * ) = 0 (1) 

where q is the curve to be projected onto. This is an one parameter problem and we 
use the standard continuation technique to solve this problem [6]. In order not to miss 

'For example, the projection of a spiral onto a plane can become a circle. 
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Figure 2: CCI projection cases: (a) orthogonal projection, (b) ill projection, and (c) multiple 
projection 

any intersection, we dynamically adjust the step size in the continuation based on the 
distance between the curves. 

We use the term projection pair to denote the point on the first curve and its 
projected image on the second curve. The projected point on the second curve is 
always the closest point to the point on the first curve. In some cases, the projected 
point might not be an orthogonal projection point. That is, eq( l ) is not satisfied at 
this projection pair. We call this pair the ill projection pair. In this situation, we will 
continue to march on the first curve until the projection status changes. Note that 
during ill projection status, the projection point will be on either end of the second 
curve. There is another exception of the projection pair. Sometimes the point on the 
first curve marches to a point where there are multiple points on the second curve 
that have the same distance. We claim that this can be detected in the continuation 
formulation. The solution to this situation is to perturb the point on the first curve 
slightly, find a new projected point on the second curve, and restart the continuation 
process. 

Although the design of the algorithm is not symmetric, the choice of the first curve 
(of the two) should not affect the validity of the algorithm. However, due to the factor 
of efficiency, the more complicated one (the one with higher order) wiU be chosen as 
the first curve. 
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Figure 3: Root Detection 

3 . 2 . 2 R o o t D e t e c t i o n : 

In this problem, mathematically we have three equations and only two unknowns. 
Thus, the intersection can be detected using two out of the three equations. Geomet­
rically, this corresponds to projecting the two curves onto one of the coordinate planes 
(XY, YZ, or ZX). The choice of the equations (or the projection plane) is determined 
dynamically based on the values of the components at that time. 

For simple roots, we record the values of the foUowing expressions for every pair of 
projection points: 

( ( r - q ) x q , ) - e „ i = 0 ,1 ,2 

Once a sign change is detected, the projection plane is determined, and we can 
use typical root finding techniques (e.g., bisection and Newton) to obtain the accurate 
solution. To catch higher order roots (tangential touching points), we need more 
sophisticated schemes (similar to the sampling method in section 4). Note that the 
solution needs to be verified for the equivalence of all three coordinates. 

3 . 2 . 3 T a n g e n t i a l c o n t a c t o f c u r v e s : 

The result of the tangential contact, as defined in the last section, should be repre­
sented as point-pairs, indicating the start and the end of the tangential segment. It is 
important to calculate the branching positions of the tangential segment. This com­
putation is done by adding an additional equation specifying the branching tolerance. 
Together with the condition orthogonal projection (eq 1), we can solve the determined 
two-variable system, using the current ending projection pairs as initial guesses. 
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In the following two sections, we will describe the intersection algorithms involving 
one-dimensional and two-dimensional entities. 

4 CPI 

4.1 General Description 
This is probably the most trivial intersection of all nonlinear algorithms. The compo­
nent functions of the curve are plugged into the plane equation. The search is then 
performed in the one-dimensional interval (the parametric space of the curve). 

A NURBS curve can be decomposed into several Bezier curves. Since Bezier curves 
are (rational) polynomial curves, it is possible to solve the problem in the most robust 
way, using the theories of roots of a polynomial equation [5]. Here we propose another 
sampling method to solve this one-dimensional root finding problem. If the samples 
can be created intelligently, all the roots can be isolated and computed. Thus, the 
same robustness can be achieved without the cost of subdivision. 

4.2 Mathematical Details: 
Mathematically, this problem is equivalent to finding all roots in an one-dimensional 
interval. We will use the root isolation technique. 

4 . 2 . 1 T r a n s f o r m i n g a p l a n e to t h e nominal p o s i t i o n : 

To simplify the calculation, the first step is to find a transformation such that the plane 
will be transformed to z = 0. This operation contains two transformations: translating 
the plane such that it passes the origin, and orienting the plane such that the normal 
is aligned with the Z-axis. 

The distance from a plane ax + by + cz + d = 0 to origin is given by: 

d 
distance = 

V a 2 + b2 + c 2 

Thus the transformation matrix for the first part is an identity orientation matrix, 
with the translation vector equals 

da db dc T 

l a a + 6 2 + c 2 a 2 + b2 + c2 a2 + b2 + c2* 

To rotate a vector into a desired orientation can be achieved by appropriate roll-
pitch-yaw angles. The mathematics can be summarized in the following: 

RPY{<f>,9,4>) [a b c]T = [0 0 l ] T 

Rot(z,<t>)Rot(y,9)Rot(x,iP) [a b c}T = [0 0 1 ] T 
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Figure 4: One dimensional root isolation method 

After some calculation, 

[a b c]T = Rot(x,-il>)Rot(y, -0)Rot(z, -<}>) [0 0 1 ] T 

= ( - s i n 0 sin tf> cos 0 c o s A c o s 0 ) T 

Thus, the orientation matrix for this part is the roll-pitch-yaw matrix, 

RPY(0.Q,sm-l(-a),Un-l(b/c)) 

Except ion: When b and c are both zero, t a n " ( 6 / c ) is set to zero. 

Combining the results from the two parts , that is premult iply the first part by the 
second part , we have got the transformation matrix to put the plane to the nominal 
position. 

4 .2 .2 R o o t I s o l a t i o n : 

The next step is to plug in the transformed curve into the plane equation. Since 
the plane has been transformed into z = 0, we just need to look at the z-component 
of the curve, for both rational and non-rational curves. Note that at this point, the 
problem is equivalent to an one-dimensional root finding problem: f(u) = 0, as shown 
in figure 4. The standard root isolation technique is to detect the sign change of the 
f(u) for simple roots, and the sign change of f(u) for singular roots. The sampling 
points are generated based on the node vector [1]. The reason of this choice is that 
the node points are located at strategic positions and the number of nodes reflects the 
complexity of the curve. The success of this root isolation technique depends on the 
sampling process. We have found the samples described above to be satisfactory and 
we are investigating the general robustness of this method. 

5 csi 
5.1 General Description 
The problem of intersecting a curve and a surface is a three-variable, three-equation 
system. Traditionally, this problem has been solved by subdivision with numerical 
correction [11]. However, subdivision is not reliable, especially when the curve and the 
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Figure 5: Orthogonal Projection from a point to the surface 

surface are closely spaced. In this paper, we propose a method based on the idea of 
generalized orthogonal projection. The basic idea is to project the curve on the surface. 
The projected point is denned to be the closest point on the surface with respect to a 
given point (see figure 5). When the projected point is in the interior of the domain, it 
can be shown that it is also an orthogonal projection. Thus the following two equations 
are satisfied: 

( r ( u ) - q ( M ) ) - q , ( * , 0 = 0 (2) 

( r ( t t ) -q (* ,* ) ) -q» (a ,* ) = 0 (3) 

The surface normal at the projected point n, and the vector (r - q) will contribute 
a sign, indicating whether that point is above or below the surface. Thus, with this 
signed distance function (distance is the magnitude of (r - q)) , we can use the same 
one-dimensional root finding techniques as we mentioned in CPI. 

The intersection between a line segment and a surface is also implemented in the 
same routine, after converting the line segment into a parametric curve. 

5.2 Mathematical Details: 
5 . 2 . 1 M o r e o n G e n e r a l i z e d O r t h o g o n a l P r o j e c t i o n : 

In the previous section, we have described the case where the projected point is in the 
interior. However in some cases, the closest point on the surface to a point will not 
satisfy the orthogonal projection conditions (eqs (2) and (3)). The reason is that one of 
the variables is constrained by the domain of the surface. Thus, we need to generalize 
the notion of orthogonal projection. We divide the domain into several regions of 
different projection status, as shown in figure 6. In ST_BOTH, both parameters are 
free to vary; thus, orthogonal projection can be achieved. In S_ONLY, only S can vary, 
thus only the first condition (2) can be satisfied. In T.ONLY, only T can vary, thus 
only the second condition (3) can be satisfied. In ST.NONE, the projected point will 
stay on the corner; thus, neither condition is satisfied. 

The change of the projection status is determined by the location of the projection 
point and the value of the projections (left hand side of eqs(2 and 3)). When the 
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Figure 6: Projection Status Definition in CSI 

projected point moves out of the domain at the four sides of the domain (excluding the 
four corners), we know that the projected status will be downgraded from ST .BOTH 
to X.ONLY (S-ONLY or T_ONLY). If the projected image moves out directly at the 
corner, the closest point will be the corner point and the projection status wiU be 
downgraded to ST-NONE. The upgrade of the projection status is determined by the 
sign change of the projection values. That is, when the projection status is X.ONLY, 
one of the orthogonal projections must have a nonzero value. When the status is 
upgradable, this will be indicated by a sign change. 

Whenever the projection status changes, we need to correct the starting position 
to the boundary of the domain. The reason is that the curve might intersect at the 
boundary. Although this should be classified as a lower dimensional subproblem, it is 
more efficient in a nonlinear algorithm that the higher dimensional routines can resolve 
all the lower dimensional cases. 

Some implementation details are worth mentioned: 

• When the projection remains orthogonal and stays on the border, we need to 
prevent the projection status from changing back and forth due to floating point 
calculation. This will cause infinite looping. The solution is to detect such phe­
nomenon and classify it as a special case. 

• When the projection curve happens to go out of the domain from the corner, the 
point actually goes into an ST.NONE region. In the current implementation, we 
continue to move along the curve, until the point starts to have a valid projection 
(S-ONLY, T.ONLY, or ST.BOTH). 

5 . 2 . 2 C o n t i n u a t i o n e q u a t i o n : 

We need to set up two classes of continuation formulations for both orthogonal pro­
jection, and partial projection. The former is a two-equation three-variable problem, 
and the latter is an one-equation, two-variable problem. 

S T J B O T H 

( r ( u ) - q ( M ) ) - q . ( M ) = 0 
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( r ( t i ) q ( M ) ) - q t ( M ) = 0 

S ( T ) . O N L Y 

(r(u) 

(r(u) 

q(Mt- ) ) -q , ( s , * i ) = 0 ( 5 . 0 ; v z y ) 

(T.OJVZY) 

5.2*3 F i n d i n g i n t e r s e c t i o n p o i n t : 

To solve CSI, we can find the intersection points along the curve. With the above 
definition of the signed distance function, we can use the same one dimensional root 
isolation and calculation technique as in CPL But instead of the samples created by 
the node points in CPI, here we generate the sampling projection pairs between the 
curve and the surface. The sampling process is dynamically adjusted by the magnitude 
of the distance. That is, as the point on the curve moves closer to the surface, more 
samples will be created, and vice versa. This is done by controlling the size of the 
predictor in the continuation solver. It is clear that if the intersection were to happen 
between the curve and the surface, it will occur in the interior and the boundary of 
the surface domain. Thus, we only need to pay attention when the projection status 
is STJBOTH, and when the projection status changes. 
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