
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Genesis
Reference Manual

J.A. Heisserman

EDRC 48-23-91

Genesis
Reference Manual

Jeff Heisserman

August 1991

Engineering Design Research Center
Carngie Mellon University

Pittsburgh, PA 15213

C a r n e ^ r ^ L L ^ i e S

Abstrac t

Boundary solid grammars is a rule-based formalism for generating complex models of rigid solid
objects. Solids are represented by their boundary elements, i.e. vertices, edges, and faces, with
coordinate geometry associated with the vertices. Non-geometric data may be associated with any
of these elements. Rules are used to match conditions of a solid or collection of solids and then
modify them or create additional solids. A boundary solid grammar consists of an initial solid and
a set of rules. It produces a language or family of solid models.

The boundary solid grammar formalism is implemented in the Genes i s boundary solid gram
mar interpreter. G e n e s i s provides facilities for representation and display of solids, match condi
tions, solid modeling operations, rule and grammar definition, and searching through the language
of a grammar.

This reference manual details the facilities provided by the Genes i s boundary solid grammar
interpreter.

Contents

1 I n t r o d u c t i o n 4

2 R u n n i n g G e n e s i s 5

2.1 Setting the Environment 5

2.2 Loading G e n e s i s 5

2.3 Options 6

2.4 Exiting G e n e s i s 7

3 C o n s t r u c t i n g a n d U s i n g G r a m m a r s 8

3.1 Initial Solids 8

3.2 Reasoning About Solids 9

3.3 Constructing Rules 9

3.4 Applying Rules 11

3.5 Searching 13

3.6 Generating Models 13

4 M a t c h i n g o n T o p o l o g y 14

4.1 Matching on Topological Elements 14

4.2 Matching on Topological Adjacencies 15

4.3 Counting Topological Elements 17

5 M a t c h i n g o n G e o m e t r y 18

5.1 Primitive Matching 18

5.2 Composite Conditions 18

5.3 Integral Properties 19

5.4 Orientations 20

6 Crea t ing and Modi fy ing Sol ids 22

6.1 Constructing Primitive Solids 22

6.2 Modifying Solids 23

6.3 Moving Vertices 25

6.4 Transforming Solids 25

6.5 Unary and Boolean Operations 26

7 Euler O p e r a t i o n s 27

7.1 Manifold Euler Operations 28

7.2 Inverse Manifold Euler Operations 32

7.3 Nonmanifold Euler Operations 37

8 Labels a n d S t a t e s 41

8.1 Querying and Modifying Labels 41

8.2 Querying and Modifying the State 41

9 Graphics 4 3

9.1 Graphical Display 43

9.2 Display of Solids ! . . 44

9.3 Highlighting. 44

10 I n p u t / O u t p u t 45

10.1 Display and Debugging 45

10.2 File Input/Output 47

10.3 Saving and Restoring Bitmaps .47

11 Mathemat ica l Predicates 48

11.1 Basic Functions .48

11.2 Matrix and Vector Operations 48

12 Supplemental Predicates 51

12.1 Miscellaneous System Predicates 51

12.2 Standard Predicates 51

Chapter 1

Introduction

Boundary solid grammars [4] is a rule-based formalism for generating complex models of rigid solid
objects. Solids are represented by their boundary elements, i.e. vertices, edges, and faces, with
coordinate geometry associated with the vertices. Non-geometric data may be associated with any
of these elements. Rules are used to match conditions of a solid or coUection of solids and then
modify them or create additional solids. A boundary solid grammar consists of an initial solid and
a set of rules, and produces a language or family of solid models.

The boundary solid grammar formalism is implemented in the G e n e s i s boundary solid gram
mar interpreter. G e n e s i s provides facilities for representation and display of solids, match condi
tions, solid modeling operations, rule and grammar definition, and searching through the language
of a grammar. G e n e s i s consists of a logic programming language interpreter allowing keyboard
input and the description of solid rules and grammars, a solid modeling database, a label database
for non-geometric data, and interactive graphics for display and manipulation of solid models.

The current version of Genes i s is constructed on IBM's compiler-based implementation of
the C L P (T e) programming language [5]. Models in the solid modeling and label databases are
constructed, modified and accessed with built-in predicates connected within the C L P (f t) compiler.
Graphics routines are called as built-in predicates and access these databases directly to display
the models. Additional predicates for matching features of the models, applying operations, and
applying rules are written in CLP(72) .

This reference manual details the facilities provided by the Genes i s boundary solid grammar
interpreter.

Chapter 2

R u n n i n g Genesis

For the purposes of this discussion, Genes i s is composed of t w o parts: the CLP(TZ) interpreter
and Genesis modeler and graphics routines (written in C) ; and Genesis predicates (written in
C L P (7 £)) . To run Genesis , the user must run the CLP(7£) / Genesis executable code, then
load the Genesis predicates. This chapter describes this process.

2.1 Setting the Environment

In order for the C L P (T J) system to find the correct initialization file, set the CLPRLIB environment
variable to the directory containing the CLP(TJ)init ial ization file in i t . c lpr . The initialization
file is generally located in the /usr/misc/ .genesis/prolog directory, and the following command
will set the correct path:

setenv CLPRLIB / u s r / m i s c / . g e n e s i s / p r o l o g

This command may be inserted in your . login file.

2.2 Loading Genesis

The C L P (7 £) / Genesis executable code is generally located in

/ u s r / m i s c / . g e n e s i s / b i n / g e n e s i s

When this is executed, the C L P (T S) interpreter will respond with the following header and prompt:

CLP(R) Vers ion 1.0
(c) Copyright I n t e r n a t i o n a l Bus iness Machines Corporation 1989
A l l Rights Reserved

1 ?-

At this point the user should set any desired options (described in the next section), and load
the Genes i s predicates with load_load followed by load (Rules) .

l oad- load

Loads the predicates that load the rest of the Genes i s system (CLP(7£) portion).

l o a d (R u l e s)
Loads the Genes i s system including the given rule set^ l o a d (R u l e s) uses the graphics
and backtrack predicates to load the appropriate hies. Rules may be a grammar from the
rnisc coUection or a user created fUe specified relative to the users current directory (e.g.
loa<K . /myruies/ t f i is_grammar.cipr) .) .

2.3 Options

G e n e s i s can run with or without graphics, and with forward solid rule application or with undo
capability for searching the derivations of a grammar. The predicates in this section allow the user
to load the G e n e s i s system with the desired settings.

graphics
Is the graphics switch turned on? If so, the system will return "Yes", otherwise, it will return
"No".

se t_graphics (X)
Turns the graphics switch on (X = 1) or off (X = 0).

backtrack
Is backtracking of the solid rules turned on?

set_backtrack(X)
Turns solid rule backtracking switch on (X = 1) or off (X = 0).

The graph ics and backtrack switches must be set prior to loading the Genes i s predicates,
and will have no effect if changed later during the session. Once the graphics and backtrack
switches are set properly, the user should execute a loadJLoad, followed by l o a d (R u l e s) .

2.4 Exiting Genesis

The user may exit from G e n e s i s and terminate the process using the h a l t predicate, as is standard
for Prolog and logic programming systems. The "D (Control D) keystroke serves as an abbreviated
form of the h a l t predictate.

It is occasionally useful to terminate a query during its execution with the ~C (Control C)
keystroke. ~C will return control to the top level of the interpreter.

Chapter 3

Constructing and Using Grammars

Users interact with Genes i s in several ways. They may use G e n e s i s as a boundary represen
tation solid modeler, using local operations, unary shape operations, and Boolean operations.
G e n e s i s provides facilities for denning matching conditions and operations, defining rules, con
structing initial solids, applying rules, and searching for derivations in the language of a grammar.
These facilities allow the user to experiment with generative grammars, creating alternative initial
solids, defining new rules, and applying rules in different ways to generate interesting and useful
models.

The focus of this chapter is on the construction of grammars, and the facilities provided by
G e n e s i s for exploring the space of derivations of these grammars.

3.1 Initial Solids

vl vl: (0,0,2.8)
v2: (0,2,0)
v3: (1.7, -1,0)
v4: (-1.7,-1,0)

state: done

v4

v3

v2
fl23: ((maik.a)}
fl24: {(maik,a)]
fl34: {(maik.a)}
f234: ((marica)}

Figure 3 .1 : An initial solid.

The initial solid of a solid grammar is a topological^ valid solid or collection of solids. An initial
solid may be an empty solid (nothing there) and rules can be used to create solids. An initial solid
may be created "by hand" with Genes i s , using the operations presented in Chapters 6, 7, and
8. An initial soUd created on a different solid modeling system, and loaded into Genes i s using
the faculties described in Chapter 10. A solid could be generated by one grammar and used as an
initial solid in another grammar.

Modifications of the initial solid, and subsequent-solids, may be accomplished by the application
of the set of solid rules.

3.2 Reasoning About Solids

Conditions or features of solids are expressed as clauses in first order logic. Explicit conditions
of a given solid correspond to axioms about the boundary representation. Clauses (in the form
of Horn clauses) allow deduction of complex conditions of the solids from simpler conditions. In
this way, arbitrarily complex conditions may be specified using deductive reasoning on the solid
representation. Locating a condition of a solid then becomes a matter of satisfying a goal clause
that specifies the desired condition.

A user may locate any of the existing topological elements using the provided predicates. For
example, a user may locate any vertex using ver tex (V) , where V becomes bound to the identifier
of an existing vertex. A user may also find elements related by any of the topological adjacency
relations. For example, a user may locate an edge-half associated with a given vertex using the
vertex_eh(V,E) relation.

A large number of conditions are provided in Genes i s . The queries on topological elements and
topological adjacency relations are described in Chapter 4. The queries on the geometry associated
with topological elements are described in Chapter 5. The queries on labels on topological elements
and the current state are described in Chapter 8.

Using these conditions and operations, users can interactively locate features of solids, and
modify solids with operations. They can construct their own conditions and operations. A user
can use any of these conditions and operations to define solid rules.

3.3 Constructing Rules

Solid rules are described with three components: a description, a left-hand side, and a right-hand
side. The description is a textual description of the rule that will be presented to the user as the
rule is matched. The left-hand side is the set of match conditions that must be satisfied in order
to apply the rule. The right-hand side is the sequence of operations and match conditions that
transform the matched solids.

descript ion(RuleName, D e s c r i p t i o n)
The description of a rule that will be presented to the user when the rule is applied.

lhs(RuleName, V a r i a b l e L i s t , D i s p l a y L i s t)
The match conditions of a rule. Free variables that are needed for the rhs are passed through
Var iab leLi s t . Elements may be highlighted to show the user where the rule is being applied.
These elements should be listed in D i sp layLi s t .

rhsCRuleName, V a r i a b l e L i s t)
The operations of the rule. Free variables are passed via Var iab leL i s t and operations are
applied to transform the model(s).

d e s c r i b e (R u l e)
Print the rule name and description to the screen.

A simple rule is presented below.

d e s c r i p t i o n (p o i n t . 1 , 'Bu i ld a po in t on a f a c e . 1) .

l h s (p o i n t _ i , [F123] , [F 1 2 3]) : -
f a c e (F 1 2 3) .

r h s (p o i n t . 1 , [F 1 2 3]) : -
face_eh(F123 , F i r s t E h) ,
c w . n o n _ c o l i n e a r . e h (F i r s t E h , E h l 2) ,
cw_non_col inear_eh(Ehl2 , Eh23),
e h _ d i s t a n c e (E h l 2 , Eh23, Length) ,
f a c e _ m i d p o i n t _ e s p l i t (F 1 2 3) ,
p o i n t _ f a c e (F 1 2 3 , L e n g t h / 2 . 4 4 9 4 9) . *

point. 1

point_l

point_l

Figure 3 .3: The generalized snowflake rule applied to various faces.

3.4 Applying Rules

There are several ways to generate solids using the rules that users have defined. The primary
facilities are describe below.

F i g u r e 3.4: A portion of the language of snowflakes.

• Apply a specific rule once and display the results. This is useful primarily for debugging new
rules.

• Apply the applicable rules to the current solids. Genes i s displays the current solids with the
matched elements highlighted for a given match, and the user is queried to allow or disallow
the application of the rule.

• Apply any applicable rules a given number of times (depth-first) and display the result after
each rule application.

apply

Apply the rules to the (previously loaded) initial solid(s).

s l oves t_app ly

Show everything and check with user at every step - debugging,

f a s t e r . a p p l y
Ask no questions, but update the display after each rule application.

fastest.apply
No questions asked, display only when completely done.

applyjru le (Rule)
Apply the given rule once and display results.

apply_n(M)
Apply rules N times and display the result after each rule application.

3.5 Searching

Genes i s provides several ways to search through the space of derivations of a grammar.

• Search depth-first for a member of the language of the grammar (which occurs when the
current state equal to done).

• Search depth-first for a derivation of the grammar with has a given state S t a t e as the current
state.

• Search randomly for a member of the language of the grammar (with the current state equal
to done). A given rule is applied if a random number is (between 0 and 1) is less than
P r o b a b i l i t y .

• Search randomly for a derivation of a grammar which has a given state S t a t e as the current
state.

The predicates in this section generate derivations from the grammar.

search

Explore the search space of solutions and find a derivation of the grammar (in the done state),

s s&xch (S"t A "to)
Explore the search space of solutions and find a derivation of the grammar with S t a t e as the
current state.

random_search(Probabi l i ty)
Find a random derivation of a grammar. A given rule is applied if a random number is
(between 0 and 1) is less than P r o b a b i l i t y .

random_search(Probabi l i ty , S t a t e)
Find a random derivation of a grammar with S t a t e as the current state. A given rule is
applied if a random number is (between 0 and 1) is less than P r o b a b i l i t y .

3.6 Generating Models

A user may mix these various interaction modes. For example, one may apply rules to generate
a model, then manually modify the model using solid modeling operations. The new model may
then be used as an initial solid for further detailing and development with another rule set. A user
may also generate a model with another solid modeler, read it into Genes i s from a file, and use it
as an initial solid in a grammar to generate additional detail, or related solids.

Chapter 4

Matching on Topology

The queries described here match on the topological elements and adjacencies of the generalized
split edge data structure [4].

4.1 Matching on Topological Elements

A user may use these relations to locate topological elements of a given type, or to determine the
type of a given topological element,

vertex(V)
Find a vertex / Is V a vertex?

edge-half (Eh)
Find an edge half / Is Eh an edge half?

loop(L)
Find a loop / Is L a loop?

face(F)
Find a face / Is F a face?

s h e l l (S h)
Find a shell / Is Sh a shell?

s o l i d (S)
Find a solid / Is S a solid?

4.2 Matching on Topological Adjacencies

G e n e s i s provides access to a variety of adjacency relations between topological elements. A user
may use these facilities to locate a topological element related by a given adjacency relation to a
given topological element, or to determine if two given topological elements are related by a given
adjacency relation.

vertex_eh(V,Eh)
An edge half adjacent to the given vertex / the vertex of a given edge half.

ver tex_ l (V,L)
A vertex of a given loop / The loop of a given vertex.

vertex_sh(V,Sh)
A vertex of a given shell / The shell of a given shell.

v e r t e x _ s o l i d (V , S)
A vertex of a given solid / The solid of a given vertex.

edgeh_v(Eh,V)
The vertex of a given edge half / An edge half of a given vertex.

o ther vCEh.V)
l n e vertex 0 1 a given edge nail / An edge nail ot a given vertex.

othervCEh.V)
l n e vertex ui a. given euge iiau / A H euge nau ui a given vencA.

cw_eh(Eh,Eh2)
The next edge half clockwise.

ccv_eh(Eh,Eh2)
The last edge half clockwise.

other_eh(Eh,Eh2)
The opposite half of a given edge.

other.cw.eh(Eh,Eh2)
The next edge half (clockwise) of the other edge half.

other_ccw_eh(Eh,Eh2)
The last edge half (clockwise) of the other edge half.

edgehJLCEh.L)
An edge half of a given loop / The loop of a given edge half.

6 d S S h ^ (E ? ' F)

 f • A L I L F / A A V I L F - F ' f
J. 116 0 1 3. g lVCIl 6 Q g € l l c u l / A H EQGG IlELil OI 31 G L V 6 N I3 IC€ ,

otherehjf (Eh,F)
The face of the other edge half from a given edge half / An edge half of a face adjacent to a
given face.

edgeh_sh(Eh,Sh)
An edge half of a given shell / The shell of a given edge half.

edgeh_sol id(Eh,S)
An edge half of a given solid / The solid of a given edge half.

loop.v(L,V)
The first vertex of a given loop.

loop_eh(L,Eh)
The first edge half of a given loop.

loop_f (L,F)
The face of a given loop / A loop of a given face.

loop_sh(L,Sh)
A loop of a given shell / The shell of a given loop.

l o o p _ s o l i d (L , S)
A loop of a given solid / The solid of a given loop.

face_eh(F,Eh)
The first edge half of a given face.

f a c e J . (F , L)
The first loop of a given face.

f ace - f (F ,F2)
A face adjacent to the given face.

face_sh(F,Sh)
A face of a given shell / The shell of a given face.

f a c e _ s o l i d (F , S)
A face of a given solid / The solid of a given face.

shel l .vCSh.V)
A vertex of the given shell.

she l l_eh(Sh ,Eh)
A edge half of the given shell.

s h e l l _ l (S h , L)
A loop of the given shell.

s h e l U (S h . F)
A face of the given shell.

s h e l l _ s o l i d (S h , S)
A shell of a given solid / The solid of a given shell.

s o l i d - s h (S , S h)
The first shell of a given solid.

4.3 Counting Topological Elements

A user may wish to know the number of elements of a given type. For example, find the number
of faces that are represented, the number of vertices of a solid, or the number of edges adjacent to
a vertex. The count .element relation provides this utility.

count -e l ements (Id , Type, Use , Count)
Count the number of elements of the given type and use within / associated with a given
topological element, and return the number as the value of Count. To find the number of
elements of all the existing solids, use Id = 0.

Chapter 5

Matching on Geometry

This chapter describes the queries on the geometric information associated with various topological
elements.

5.1 Primitive Matching
v .coord(V, [X.Y.Z])

Find the coordinate of the given vertex / Find a vertex with the given coordinates.

face-normal<F,[A,B,C])
Find the normal of the given face (extracted from the face equation).

f ace_equat ion(F, [A,B,C,D])
Find the equation of the given face.

e l e m e n t _ b b o x (I d , [X l . Y l . Z l] , [X 2 , Y 2 , Z 2])
Find the bounding box of the given element.

5.2 Composite Conditions
dis tance_v(Vl ,V2,D)

The Euclidean distance between two vertices.

d i s t ance^ehC Eh 1 ,Eh2 .Length)
The distance between the vertices of two distinct edge-halves.

eh _length(Eh,Length)
The length of an edge half.

Figure 5.1: The length of an edge-half.

ehjnidpoint(Eh,Midpoint)
The coordinates of the midpoint of an edge half.

co l inear_v([Vl ,V2 ,V3 I R e s t])
Are these vertices colinear.

vertex_onjface(V,F)
Does the given vertex lie on the given face.

point_on_face(C,F)
Does the given point lie on the given face.

point_on_plane([X,Y, Z] , [A,B, C, D])
Does the given point lie on the given plane.

cw_non_col inear .eh (Eh, CwNCEh)
Finds the clockwise non-colinear edge half from the current one.

a d j a c e n t _ s o l i d s (S l , S2)
Determine whether two solids are adjacent.

5.3 Integral Properties
f a c e . c e n t e r (F , C e n t e r)

The center of a face, calculated as an average of the coordinates of the vertices.

element .area (I d , Area)
Compute the surface area of a given element.

s o l i d _ c e n t r o i d (S , [X , Y , Z])
Compute the center of the given solid.

s o l id-volume (S .Volume)
Compute the volume of the given solid.

so l id .moment_of_ inert ia .po int (S , [X.Y.Z] .Moment)
Compute a moment of inertia about the given point.

solid_moment-of_inertiaJLineCS, [X I , Y l . Z l] , [X2.Y2.Z2] .Moment)
Compute a moment of inertia about the given line.

sol id.moment_of_inert ia_plane(S, [A.B.C.D] .Moment)
Compute a moment of inertia about the given plane.

5.4 Orientations

A number of queries are provide by Genes i s to locate faces that are oriented along the coordinate
axes. The orientations are indicated by f ront , back, l e f t , r i g h t , top, and bottom, with the idea
that the viewer is standing within the solid and looking down the negative y-axis (and up is in the
direction of the positive z-axis).

•ill:
The orthogonal vectors for determining orientations.

Determines if the face is a top (upward oriented) face.

bottom(F)
bottom(F.S)

Determines if the face is a bottom (downward oriented) face.

f r o n t (F)
f r o n t (F , S)

Determines if the face is a front face.

back(F)
back(F.S)

Determines if the face is a back face.

l e f t (F)
l e f t (F . S)

Determines if the face is a left face.

Determines if the face is a right face.

s i d e (F)

http://solid.moment-.of

s i d e (F , S)
Determines if the face is a side face.

s ide_not j front (F)
s i de_not . f ron t (F, S)

Determines if the face is a side face, but not a front face.

Chapter 6

Creating and Modifying Solids

Genes i s provides a multitude of operations to create and modify solid models. This chapter
describes operations that are used to create primitive solids and laminae, and modify, transform,
and combine existing solids, The Euler operations are also available in G e n e s i s , and are described
in Chapter 7.

6.1 Constructing Primitive Solids

Figure 6.1: The Platonic solids.

make.tetrahedron (Radius , NewS)
Create a tetrahedron with a given radius, and the center of the bottom face at the origin.

make-orthogonal_cuboid([Xlo ,Ylo ,Zlo] , [Xhi .Yhi .Zhi] ,NewS)
Create an orthogonal solid at [Xlo,Ylo,Zlo] with its distant corner at [Xhi,Yhi,Zhi].

raake.octahedron(Radius,NewS)
Create a octahedron with a given radius, and its center located at the origin.

raakeJ.cosahedron(Radius,NewS)
Create a icosahedron with a given radius, and its center located at the origin.

make_dodecahedron(Radius,NewS)
Create a dodecahedron with a given radius, and its center located at the origin.

make-lamina (NumV, Radius, NewS)
Create a lamina with a given number of vertices and radius, oriented with the barycenter at
the origin, and lying in the xy-plane.

make_random-lamina(NumV,MaxRadius .MinRadius ,NewS)
Create a random-shaped lamina with the given number of vertices. The vertices will be
lying in the xy-plane, oriented about the origin, and between MinRadius and MaxRadius in
distance from the origin.

make_spurJ.amina(NumKnobs, Radius . Width, S o l i d)
Create a lamina in the shape of a spur, with a given number of knobs and radius, lying in
the xy-plane, and oriented with the barycenter at the origin.

make JaceJLamina(FaceEh .TopEh)
Create a (solid) lamina copy of a given face, and return the new edge-half "TopEh" corre
sponding with the given edge-half "FaceEh". The face of the edge-half "TopEh" will have
the same normal as the face of "FaceEh".

6.2 Modifying Solids
s t a c k _ s o l i d _ h e i g h t (F , Height , TopFace)

Locates a solid on the top of the existing face. The solid is extruded in the shape of the
original face, to a height of "Height" in the direction of the face's normal.

s tack_sol id(StartEh,Matr ix ,TopEh)

extrude_f ace_he i g h t (F, He i g h t , NewF)

sxtruds^f ace_eh (St ar t Eh, M a t n x , TopEh)

F i g u r e 6.2: The extrudeJace operator.

F i g u r e 6.3: The point-face operator.

ex t rude- f ace J ionplanar_eh(S ta r tEh ,Mat r ix ,TopEh)

p o i n t - f a c e (F , He igh t)
Extrudes the existing face of a solid (in the shape of the original face) in the direction of the
normal and to a height of "Height".

s t ack-po i n t ed_s ol id (F, He i g h t , NewS)
Locates a solid on the top of the existing face. The solid has a bot tom face matching the
original face and extends to a point to a height of "Height" in the direction of the face's
normal.

pu l l_ face (F .Height)
Pulls the existing face of a solid (in the shape of the original face) in the direction of the
normal and to a height of "Height".

p u l l _f ace .vec t or (F , Vec tor)

p u l l - f a ce_ma t r ix (F , Mat r ix)

s p l i t - S o l i d (F , N e w S)

s p l i t _ s o l i d (F , H « i g h t , N e w S)
Splits the existing solid into two solids, with the new solid "NewS" as an extruded version of
the original face with height of "Height".

6.3 Moving Vertices

The coordinates of a vertex can be changed to locally transform the surface of a solid. This section
describes various operations that modify the coordinates of a vertex.

se t_vertex<V, [X,Y,Z])
Set the coordinates of the given vertex to [X, Y, Z] .

move-vertex(V,[X,Y,Z])
Move a vertex by the amount of the given vector.

transform_vertex (V, Matrix)
Transforms the coordinates of a vertex with the given matrix.

move_vertex _random(V .MaxRadius)
Move the given vertex a random amount in any direction a random amount less than MaxRa-
dius.

move.vert ex_random_xy (V, MaxRadius)
Move the given vertex in the x-y plane a random amount less than MaxRadius.

move.vertexjrandom_eh(Eh)
Move the vertex of the given edgehalf a random amount in any direction a random amount
less than one third of the length of the edge.

6.4 Transforming Solids
t r a n s f orm_solidCS .Matrix)

Transform the coordinates of all the vertices of a solid with the given matrix.

t r a n s l a t e - a o l i d C S , [X.Y.Z])
Translate all the vertices of a solid.

r o t a t e - s o l i d (S , [P h i . T h e t a . P s i])
Rotates all the vertices of a soUd.

s c a l e - S o l i d C S , [S x , S y . S z])
Scales all the vertices of a solid.

http://move-vertex.randonL.eh

t r a n s f orm_vertices (Matrix)
Transforms all vertices of all solids with the given transformation matrix.

t r a n s l a t e _ v e r t i c e s ([Tx.Ty.Tz])
Translates all vertices by the given vector.

r o t a t e _ v e r t i c e s ([Phi . T h e t a . P s i])
Rotates all vertices by Phi radians about the z-axis, then Theta radians about the x-axis,
followed by Psi radians about the z-axis.

s c a l e - v e r t i c e s ([Sx, Sy ,Sz])
Scales all vertices by the given scaling.

6.5 Unary and Boolean Operations
unary_union(S,NewS)

Copies the solid, constructs the unary union of a given solid and returns the resulting solid
as "NewSolid".

unary- in tersec t ion(S .NewS)
Copies the solid, constructs the intersection of a given solid and returns the resulting solid as
"NewSolid".

unary(N,S,NewS)
Copies the solid, constructs the generalized unary intersection and returns the resulting solid
as "NewSolid". "N" is an integer indicating the enclosing number for classifying the shells,
where 1 corresponds to unary union and 2 corresponds to unary intersection.

union(Sl ,S2 ,NewS)
Computes the boolean union of two solids and returns the resulting solid as "NewSolid".

i n t e r s e c t i o n (S l , S 2 , N e w S)
Computes the boolean intersection of two solids and returns the resulting solid as "NewSolid".

d i f f e r e n c e s , S 2 , N e w S)
Computes the boolean difference of two solids and returns the resulting solid as "NewSolid".

copy-sol id(S,NewS)
duplicates a solid and all of its elements and geometry. "NewS" is the identifier of the copy
of solid "S".

Chapter 7

Euler Operations

Euler operations are a set of operators that manipulate graph representations of the topological ele
ments and adjacencies of the boundary of solids. They modify a boundary representation by adding
and removing topological elements, while maintaining consistent topological adjacency relations.
Typical Euler operations split edges (Figure 7.1), and split faces (Figure 7.2).

Figure 7 . 1 : Splitting an edge.

Figure 7.2: Splitting a face.

. The Euler operators in this manual follow the naming convention originally introduced by
Baumgart [1]. The names describe the effect the operators have on the creation and removal, of
topological elements as well as the genus of the solid. An m stands for "make" or create, and k

stands for "kill" or remove. Each of these is followed by the letters signifying the types of topological
elements created or removed, v , e , 1 , f, s and g stand for vertex, edge, loop, face, shell, and
genus. Thus, mov stands for "make edge, vertex", and keml stands for "kill edge, make loop". A
few operators, such as g l u e and e s p l i t , have more descriptive names.

7.1 Manifold Euler Operations

< Nothing >

F igure 7.3: The mssflv operator

mssflv(NewS,NewSh,NewF,NewL,NewV)
"make solid, shell, face, loop, vertex" creates a new solid topology with a single shell (manifold
surface) with one face (containing a single loop) and one vertex. No edges are created.
This is the minimal topology needed to represent a shell, but is not sufficient to represent
a polyhedron. The identifiers of the new elements are returned as the values of "NewS",
"NewSh", "NewF", "NewL", and "NewV".

m e r g e _ s o l i d s (S l , S 2)
merges the shells of two solids. The shells of "S2" are added to the solid "SI", and the record
of "S2" is removed.

F igure 7.4: The msflv operator

msflv(S,NewSh,NewF,NewL,NewV)
"make shell, face, loop, vertex" adds a new shell (manifold surface) to an existing solid. The
new shell "NewSh" is added to the given solid "S". The new shell, face, loop and vertex are

returned as the values of "NewSh", "NewF", "NewL", and "NewV". As in mssf lv , the new
sheU consists of a single face, loop and vertex.

F igure 7.5: The mev operator

mev(V,Eh,NewV,NewEh)
"make edge, vertex" creates a new edge and vertex as a strut edge in a face (see Figure 7.5).
For a shell with no edges, mev creates the first edge in the shell's single face and loop. Both
sides of the new edge will be adjacent to the same face.

"V" is the existing vertex which will be at one end of the new edge. "Eh" is the edge-half
that is counterclockwise from the edge-half of vertex "V". If there are no edges adjacent to
vertex "V", "Eh" will be null.

When mev is complete:

• the new edge-half "NewEh" will be clockwise to the given edge-half "Eh";

• the new vertex "NewV" wUl be the vertex of the other.eh and the cw.eh of the new
edge-half "NewEh".

esplitCEh,NewEh,NewV)
"edge split" splits a given edge "Eh", creating a new edge and vertex, e s p l i t is a form of
mev.

When e s p l i t is complete:

• the new edge-half "NewEh" will be clockwise to the given edge-half "Eh";

• the second new edge-half will be the other^eh of the given edge-half "Eh";

NewF

Figure 7.7: The men operator

raef1(VI,PradEh,V2,SuccEh,NewEh,NewL,NewF)
"make edge, face, loop" splits a face and loop, creating .a new face, loop, and an edge sepa
rating the new and old faces.

The vertex "VI" belongs to the clockwise edge-half of "PredEh". If the vertex "Vl" has

30

no edge-halves, "PredEh" will be null. The vertex "V2" belongs to "SuccEh". If the vertex
"V2" has no edge-halves, "SuccEh" will be null.

When mef 1 is complete:

« the new edge-half "NewEh" will connect the vertices "VI" and "V2", and will be clock
wise to "PredEh", and counterclockwise to "SuccEh";

• the second new edge-half wiU be the other_eh of "NewEh";

• the loop of the other.eh of "NewEh" wiU be the new loop "NewL";

• the face of the new loop "NewL" will be the new face "NewF".

If the vertices are the same ("VI" = "V2"), mef 1 creates an edge with the same vertex at
each end.

F igure 7.8: The keml operator

keml(Eh,NewL)
"kill edge, make loop" removes an edge on a face splitting one loop into two separate loops,
creating a new loop of edges. If the edge is the only one in the loop, the result will be two
loops, each containing a single vertex. If the edge is a strut edge, one of the loops will contain
a single vertex.

The edge-halves "Eh" and its other.eh will be removed. The counterclockwise edge-half of
"Eh" (or the vertex of "Eh") will be contained in the new loop "NewL".

g l u e (F l , F 2)
"kill faces, loops" glues two faces together. The faces must have the same number of loops,
and the corresponding loops must have the same number of edges and vertices.

Figure 7.9: The glue operator

7.2 Inverse Manifold Euler Operations

Figure 7.10: The kssflevs operator

ks s f l evsCS)
"kill solid, shells, faces, loops, edges, vertices" deletes the existing solid "S" and all of its
elements.

F igure 7 .11: The ksflevs operator

k s f l e v s (S h)
"kill shell, faces, loops, edges, vertices" Remove the shell "Sh" and all its elements from an
existing solid.

Figure 7.12: The kev operator

kev(Eh)
"kill edge, vertex" removes a "strut" edge from a face, and the vertex belonging to it.

F igure 7.13: The ejoin operator

ejoinCEh)
"edge split" joins an edge, creating a new edge and vertex, e j o i n is a form of kev.

e j o i n applies when the vertex of "Eh" is adjacent to only two edge-halves, "Eh" and the

33

cw.eh of the other .eh of "Eh". When e jo in is complete, "Eh" and the cw_eh of the other.eh
of "Eh" will be removed, as well as the vertex adjacent to these two edge-halves.

Figure 7.14: The esqueeze operator

esqueeze(Eh)
"edge squeeze" joins two vertices, removing the edge between, esqueeze is a form of kev.

"Eh" and its other .eh will be removed, as well as the vertex belonging to "Eh". The other
edge-halves adjacent to the vertex of "Eh" will now be adjacent to the vertex that belonged
to the other-eh of "Eh".

ke f l (Eh)
"kill edge, face, loop" joins a face and loop, removing the edge separating the two faces, and
the face and loop of that edge.

mekl(VI,PredEh,V2,SuccEh,NewEh)
"make edge, kill loop" adds an edge between two vertices, VI and V2, on different loops of a
face.

The vertex "VI" belongs to the clockwise edge-half of "PredEh". If the vertex "VI" has
no edge-halves, "PredEh" will be null. The vertex "V2" belongs to "SuccEh". If the vertex
"V2" has no edge-halves, "SuccEh" will be null.

When mekl is complete:

• the new edge-half "NewEh" will connect the vertices "VI" and "V2", and will be clock¬
wise to "PredEh", and counterclockwise to "SuccEh";

• the second new edge-half will be the other_eh of "NewEh";

Figure 7.15: The kefl operator

F igure 7.16: The mekl operator

unglue(CycleOfEhs,NewF1,Ne«F2)
"make faces, loops" unglues a cycle of edges, creating two new faces and loops. CycleOf Ehs
is a list of the pairs of edge-halves to be separated.

U s i n g M a n i f o l d E u l e r O p e r a t i o n s

35

Figure 7.17: The unglue operator

Cd) <e) (f)

F i g u r e 7.18: Building a tetrahedron using Euler operations

We can illustrate the use of Euler operators with a simple example, the construction of a tetra
hedron. The steps of the construction are presented Figure 7.18, with both plane models and
three-dimensional models.

The construction begins with a minimal topology, created with mssf l v (a). The first and second
edges are then added with two applications of mev (b and c). At this point, the model has a single
face. By creating an edge between V2 and V3, we split the face using mef 1 (d). This gives us a
triangular lamina. V\ and the strut edge between VI and V4 are created with mev (e). Two more
applications of mef 1 create the remaining two faces and two vertices, completing the topology of
the tetrahedron (f). In order to complete the description of the tetrahedron, we need to assign

36

coordinates to the vertices.

7.3 Nonmanifold Euler Operations

Three nonmanifold Euler operations (and their inverses) construct explicit representations of non-
manifold solids using the generalized split-edge data structure. These maintain the additional
nonmanifold adjacency relationships: multiple loops of faces about a vertex; multiple pairs of faces
about an edge; and and multiple connected uses (components) of a shell.

Figure 7.19: The ksv operator

ksv(Vl,V2)
"kill shell, vertex" merges two vertices existing on different shells, and merges their shells.

"VI" and "V2" are the two vertices to be merged. When ksv is complete, "VI" and "V2"
will be uses of the same nonmanifold vertex, and will be on different uses of the same shell.

Figure 7.20: The kvmg operator

kvmg(Vl,V2)
"kill vertex, make genus" merges two vertices existing on the same shell. This creates a
(nonmanifold) handle and increases the genus by one.

"VI" and "V2" are the two vertices to be merged. When kvmg is complete, "Vl" and "V2"
will be uses of the same nonmanifold vertex, and will be on the same shell and shell use.

F igure 7 .21: The keg operator

keg(Ehl ,Eh2)
"kill edge, genus" merges two edges that share their two vertices. This seals a (nonmanifold)
handle and decreases the genus by one, or creates a nonmanifold chamber.

"Ehl" and "Eh2" are halves of the two edges to be merged. When keg is complete, "Ehl"
and "Eh2" will be halves of the same nonmanifold edge.

I n v e r s e N o n m a n i f o l d E u l e r O p e r a t i o n s

F igure 7.22: The msv operator

msv(Vl,V2)
'"make shell, vertex" splits two vertex-uses of a vertex. The two vertex-uses are on the same
shell, but different shell-uses, and creates a shell.

"VI" and "V2" are different uses of the same vertex that are to be separated. "VI" and "V2"
must be the only vertex uses joining their shell uses. When msv is complete, "V2" will be
removed from the vertex of "VI" and will form a separate vertex, and will be on a separate
shell.

F igure 7.23: The mvkg operator

mvkg(Vl,V2)
"make vertex, kill genus" splits two vertex-uses of a vertex that exist on the same shell and
shell-use. This removes a (nonmanifold) handle and decreases the genus by one.

F igure 7.24: The meg operator

meg(Ehl,Eh2)
"make edge, genus" splits two edge-uses of an edge. This creates a (nonmanifold) handle and
increases the genus by one, or removes a nonmanifold chamber.

U s i n g N o n m a n i f o l d E u l e r O p e r a t i o n s

F igure 7.25: A nonmanifold solid.

F igure 7.26: Building a solid using nonmanifold Euler operations

We can illustrate the use of nonmanifold Euler operators with another example, constructing the
solid in Figure 7.25. The steps of the construction are presented Figure 7.26.

The construction begins with three tetrahedra (a). The three are connected with two applica
tions of ksv (b). Two vertices are then joined with one application of kvmg, making a nonmanifold
handle (c). One application of keg joins the two edges and removes the nonmanifold handle (d),
and completes the solid.

Chapter 8

Labels and States

Labeling provides a mechanism for associating non-geometric information to topological elements.
This allows material properties and functions to be associated to solids, or attaching markers that
permit or restrict rule application to an element.

The current state of a design may be indicated with the s t a t e mechanism. The state controls
the application of rules, and determines when a derivation of a grammar is complete.

8.1 Querying and Modifying Labels

Labels may be queried, created, and removed using the following facilities.

l a b e l (I d , A t t r i b u t e . V a l u e)
Finds a label in the label database.

make . l a b e l (I d , A t t r i b u t e , V a l u e)
Add a label to the label database.

k i l l J L a b e l (I d . A t t r i b u t e , V a l u e)
Remove a label from the label database.

8.2 Querying and Modifying the State

The current state is queried with the s t a t e relation, and modified using the s e t . s t a t e operation,

s t a t e (X)
Find the current state / Is this the current state.

s e t _ s t a t e (S t a t e)
Set the current state to S t a t e .

Chapter 9

Graphics

A graphical user interface allows the user to move the position and direction of the camera and
viewpoint, modify the brightness, color, and position of directional lights, modify the brightness
and color of the ambient light, and modify the amount of specular reflection and color of specular
highlights. The user interface also controls the culling of back-facing polygons, depth-cueing, the
display of objects with wireframe or shaded surface rendering, the default color of objects, and
the background color. The graphical user interface is constructed with widgets in the X window
system.

The graphics routines are written in C. These routines access and maintain additional structures
for polygon display. Hidden surface removal is accomplished using a hardware z-buffer, and HP
Starbase graphics routines.

9.1 Graphical Display
d i s p l a y _ l i s t C L i s t)

Update the display, with the elements in L i s t highlighted, and pass control to the graphics.

Update the display and pass control to the graphics,

r e d i s p l a y
Display and pass control to the graphics without updating the graphics.

d i s p l a y and.cont inue
Update the display and continue, without passing control to the graphics.

9.2 Display of Solids

The user may control the color and transparency of the elements of solids represented in Genes i s .
These operations are listed below.

s e t _ c o l o r (I d , [Red,Green,Blue])
Set the color of the given element to the RGB values (from 0 to 1).

s e t - t ransparent (Id .Transparency)
Set the transparency of the given element to the given value (from 0 to 1, where 0 is completely
transparent and 1 is completely solid).

9.3 Highlighting

Highlighting is used to show the user where a rule may be applied during rule application and
searching. The default highlight color is red, but the user may change the highlight color at any
time. This is useful when there is little contrast between the color of the displayed solids and the
current highlight color.

s e t _ h i g h l i g h t _ c o l o r ([Red,Green,Blue])
This predicate sets the highlight color to the given RGB value.

Chapter 10

Input / Output

G e n e s i s provides facilities for textual display of the topological elements, adjacencies, and associ
ated geometry of its internal representation, as well as operations for storing and retrieving these
description to / from files. This chapter describes these operations.

10.1 Display and Debugging
p r i n t - v e r t e x (V)

Print the entry for the (unique) vertex, V, in G e n e s i s format:

v e r t e x V F i r s t L o o p F i r s t E h NextVer texUse X Y Z

p r i n t . v e r t i c e s
Print all vertices.

p r i n t .eh (Eh)

Print the edge half, Eh, in the following format:

edge Eh Loop CwEh CcvEh OtherEh V e r t e x

p r i n t . e h s
Print all edge halves in G e n e s i s format.

p r i n t - l o o p (L)

Print the entry for the (unique) loop, L, in G e n e s i s format:

loop L Face F i r s t E h F i r s t V e r t e x

p r i n t - l o o p s
Print all loops in G e n e s i s format.

p r i n t - f a c e (F)
Print the entry for the (nniQue^ fdice, F, in Genes i s forms.t+

f a c e F S h e l l FirstLoop

^^VrinTaU faces in Genes i s format.

p r i n t - s h e l l CSh)

Print the entry for the (unique) shell, Sh, in Genes i s format:

s h e l l Sh S o l i d OutsideSh ConnectedSh Ins ideSh F i r s t F a c e

p r i n t _ s h e l l s
Print all shells in G e n e s i s format.

p r i n t _ s o l i d (S)
Print the entry for the (unique) solid, S, in Genes i s format:

s o l i d S F i r s t S h e l l

p r i n t - s o l i d s
Print all solids in G e n e s i s format.

p r i n t _ s o l i d ^ r o u p (G)

Print the entry for the (unique) group, G, in Genes i s format:

s o l i d . g r o u p G Parent

print-group .group (G)

Print the entry for the ^unicjuê) ^ronp^ in Crenesis form&t*

giroiip_ group G Pox ©n't

p r i n t ^ r o u p s ^
pr in tJLabe l (Id ,Va lue)

Prints only one (possibly of many) label for the (unique) element id, Id, given.

l a b e l Id Value

p r i n t _ l a b e l (I d , A t t r i b u t e . V a l u e)
Prints only one (possibly of many) label for the (unique) element id, Id, given.

l a b e l Id A t t r i b u t e Value

p r i n t _ l a b e l s
Print all labels in Genes i s format.

p r i n t - s t a t e

Prints the current state in Genes i s format:

s t a t e CurrentState

pr in t - e l ements
Print all the elements in Genes i s format.

10.2 File Input/Output
read_so l ids J romJ i l e (F i l e , NewS)

Read in a file of solids in G e n e s i s format. The solid returned is the oldest solid created from
the file.

w r i t e _ s o l i d s - t o J i l e (F i l e)
This is the top level predicate for writing all the elements of all the solids to a file in
G e n e s i s format.

w r i t e _ s o l i d s J t o _ n o o d l e s j f i l e (F i l e)
This is the top level predicate for writing all the elements of all the solids to a file in Noodles
binary format.

10.3 Saving and Restoring Bitmaps
b i t m a p . t o J i l e (F i l e)

Save the image in the frame buffer to the given file.

f i l e _ t o J > i t m a p (F i l e)
Load the stored image into the frame buffer.

i n q u i r e j f i l e (F i l e)
Inquire about the information stored in the bitmap file.

se t -colormap(Boolean)
Set the color map switch to 1 or 0 in when saving or restoring a bitmap.

Chapter 11

Mathemat ica l Predicates

The IBM CLP(7£) Interpreter provides a number of mathematical relations and functions, de
scribed in the IBM CLP(7£) Reference Manual [2]. Genes i s provides additional relations, primar
ily for vector and matrix operations. This chapter describes this additional functionality.

11.1 Basic Functions
s in(X,SinX)

Given X, computes sin(X).

cos(X,CosX)
Given X, computes cos(X).

tan(X,TanX)
Given X, computes tan(X).

atan2(X,Y,ATanX)
Given X and Y, computes a r c t a n (A) .

nea r l (X ,Y)

Determines if two scalar values are equal within the tolerance of the machine.

t runc(X,Y)
Given a scalar, X, truncates X and returns as Y.

11.2 Matrix and Vector Operations

All vectors are 3x1 (1x3 for row vectors), and all matrices are 4x4.

s c a l a r (F a c t , [X I , X 2 . X 3] , [R 1 , R 2 , R 3])
The scalar product of a scalar and a vector.

d o t ([X I , X 2 , X 3] , [Y l , Y 2 , Y 3] . R e s u l t)
The dot product of two vectors.

c ros s ([XI ,X2 .X3] , [Y1 ,Y2 ,Y3] , [R1 .R2 .R3])
The cross product of two vectors.

vecp lua([Xl ,X2 ,X3] , [Y1 ,Y2 ,Y3] , [R1 .R2 .R3])
The sum of two vectors.

v«cminus ([XI ,X2 ,X3] , [Y l ,Y2 ,Y3] , [R l ,R2 ,R3])
The difference of two vectors.

matvecmult([A1,A2.A3, [0 , 0 , 0 , 1]] , [X 1 , X 2 , X 3] , [Rl ,R2,R3])
The vector product of a matrix and a (column) vector.

vecmatmult(X,MatrixA,[Rl,R2,R3,R4]
The vector product of a (row) vector and a matrix.

m a t i d e n t i t y (I d e n t i t y M a t r i x)
The identity matrix.

mattrans1at e ([Tx ,Ty ,Tz] .Trans la t ionMatr ix)
The translation matrix from a given translation vector.

m a t r o t a t e ([P h i , T h e t a , P s i] , M)
The rotation matrix from a given Euler rotation vector.

matrotatej t (Theta .M)
The rotation matrix of Theta radians about the X axis.

matrotate_z(Theta,M)
The rotation matrix of Theta radians about the Z axis.

m a t s c a l e ([S x , S y , S z] , S c a l e M a t r i x)
The scaling matrix for a vector giving x, y, and z scaling.

matmult([A1,A2,A3,A4],B,[Ml,M2,M3,M4])
The product of two matrices.

matmult([A,B I R e s t] , R)
The product of a list of matrices.

m a t i n v e r s e a . A i n v)
The inverse of a matrix.

di s tance (CI ,C2 ,D)
The Euclidean distance between two points.

m i d p o i n t ([X I . Y l . Z l] , [X2.Y2.Z2] , Mid)
The midpoint of two points.

midpo in t (Coord inateLi s t , Hid)
The midpoint of a set of points.

d i r e c t i o n ([X i , Y l , Z l] , [X2.Y2.Z2] , D)
The normalized direction from the first to the second point.

n o r m a l i z e ([X . Y . Z] , [Nx.Ny.Nz])
Normalize a vector.

near l (X.Y)
Are the two given numbers equal, within some error measure.

n e a r ([X l , Y i , Z l] , [X2.Y2.Z2])
near ([Ci ,C2 1 R e s t])

These points are coincident within some error measure.

c o l i n e a r (C [X i , Y l , Z l] , [X 2 , Y 2 , Z 2] , [X , Y , Z] I R e s t])
Are these points coUnear?

ordered(Lis tOfCoordinates)
Are these points ordered?

b b o x _ i n t e r s e c t ([X l , Y l , Z l] , [X2.Y2.Z2] , [X3.Y3.Z3] , [X4,Y4,Z4])
Do two given bounding boxes intersect?

Chapter 12

Supplemental Predicates

This chapter describes a small number of relations that supplement the relations provided by the
IBM CLP (t t) Interpreter. The CLP<7c) provided relations are described in the IBM CLP(72) Reference
Manual [2]. Additional information on CLP(Tc) predicates is available in The CLP (f t) Programmer's
Manual from Monash University [3].

12.1 Miscellaneous System Predicates
systemCSyetemCall)

Presents the given command to the operating system.

abort
Breaks the evaluation and returns to the CLP(TZ) interpreter.

12.2 Standard Predicates
appendai.L2.L3)

Create a new list by concatenating two other lists.

member(M,List)
Determine if the given element is in the list.

min(X,Y,Min)
The minimum of two elements.

minCList, Hin)
The minimum element of a list.

max(X,Y,Max)
The minimum of two elements.

http://appendai.L2.L3

max(List, Max)
The maximum element of a list.

Bibliography

[1] B. G. Baumgart. A polyhedron representation for computer vision. In AFIPS Conf. Proc.,
volume 44, pages 589-596, 1975.

[2] CLP(ft) version 1.0 reference manual. Technical report, IBM T. J. Watson Research Center,
December 18 1989.

[3] Nevin Heintze, Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Rolland Yap. The CLP(»)
programmer's manual. Technical report, Department of Computer Science, Monash University,
June 1987.

[4] Jeff A. Heisserman. Generative Geometric Design and Boundary Solid Grammars. PhD thesis,
Department of Architecture, Carnegie Mellon University, May 1991.

[5] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Rolland H. C. Yap. The CLP(») language
and system. Technical Report CMU-CS-90-181, Department of Computer Science, Carnegie
Mellon University, October 1990.

Index

abort, 51
adjacent-solids, 19
append, 51
apply, 12
apply _n, 12
apply _rule, 12
atan2, 48

back, 20
backtrack, 6
bboxintersect, 50
bitmap.toJile, 47
bottom, 20

ccw_eh, 15
colinear, 50
colinear.v, 19
copy .solid, 26
cos, 48
count-elements, 17
cross, 49
cw-eh, 15
cw_non-coUnear-eh, 19

describe, 10
description, 10
difference, 26
direction, 50
display, 43
display-and-continue, 43
displayJist, 43
distance, 50
d i s t a n c e d , 18
distances , 18
dot, 49

edge-half, 14
edgehJ, 15
edgehJ, 15
edgeh-sh, 16
edgehjsolid, 16
edgeh-v, 15
ehJength, 18
eh-midpoint, 19
ejoin, 33
element_area, 19
element-bbox, 18
esplit, 29
esqueeze, 34
extrude_face.eh, 23
extrude_face_height, 23
extrude_face_nonplanar_eh, 24

face, 14
facejcenter, 19
face.eh, 16
face_equation, 18
faceJ, 16
faceJ, 16
face_normal, 18
face-sh, 16
face-soUd, 16
faster^pply, 12
fastest_apply, 12
file_to_bitmap, 47
front, 20

glue, 31
graphics, 6

inquireJile, 47

intersection, 26

kefl, 34
keg, 38
keml, 31
kev, 33
kill-label, 41
ksflevs, 32
kssflevs, 32
ksv, 37
kvmg, 38

label, 41
left, 20
lhs, 10
load, 6
load-load, 6
loop ,14
loop.eh, 16
loop_f, 16
loopjsh, 16
loop_solid, 16
loop_v, 16

makcdodecahedron, 23
makeJaceJamina, 23
makeJcosahedron, 23
makeJabel, 41
makeJamina, 23
make_octahedron, 23
make_orthogonal_cuboid, 23
make_random_lamina, 23
make^spur Jamina, 23
make-tetrahedron, 22
matidentity, 49
matinverse, 49
matmult, 49
matrotate, 49
matrotate_x, 49
matrotate_z, 49
matscale, 49
mattranslate, 49
matvecmult, 49

max, 51, 52
men, 30
meg, 39
mekl, 34
member, 51
merge-solids, 28
mev, 29
midpoint, 50
min, 51
move-vertex, 25
move_vertex_random, 25
move.vertex-randonueh, 25
move.vertexjandomjcy, 25
msflv, 28
mssflv, 28
msv, 39
mvkg, 39

near, 50
nearl, 48, 50
normalize, 50

ordered, 50
orientation, 20
other.ccw.eh, 15
other_cw.eh, 15
other-eh, 15
other_v, 15
otherehJ, 16

point-face, 24
point.onJace, 19
point_on.plane, 19
print^eh, 45
print^ehs, 45
print-elements, 47
print-face, 46
print Jaces, 46
print .group-group, 46
print-groups, 46
print Jabel, 46
print .labels, 47
print Joop, 45

http://other.ccw.eh

print Joops, 45
print_shell, 46
print .shells, 46
print-solid, 46
print_solid_group, 46
print_solids, 46
print-state, 47
print-vertex, 45
print-vertices, 45
pull_face, 24
pullface-matrix, 24
pull-face-vector, 24

random-search, 13
read-solids_fromJile, 47
redisplay, 43
rhs, 10
right, 20
rotatejsolid, 25
rotate-vertices, 26

scalar, 49
scale-solid, 25
scale-vertices, 26
search, 13
set-backtrack, 6
set-color, 44
set_colormap, 47
set-graphics, 6
set Jiighlight-color, 44
set js tate, 42
set-transparent, 44
set .vertex, 25
shell, 14
shell-eh, 16
shell-f, 17
shellJ, 16
shell-solid, 17
shell-v, 16
side, 20, 21
side-not Jront , 21
sin, 48
slowest-apply, 12

solid, 14
solid-centroid, 19
solid_moment_ofJnertiaJine, 20
solid-moment-ofJnertia-plane, 20
solid-moment-ofJnertia-point, 19
solidjsh, 17
solid-volume, 19
split-solid, 24, 25
stack-pointed_solid, 24
stack-solid, 23
stackjsolid-height, 23
state, 41
system, 51

tan, 48
top, 20
transform-solid, 25
transform_vertex, 25
transform_vertices, 26
translate-solid, 25
translate-vertices, 26
trunc, 48

unary, 26
unary-intersection, 26
unary.union, 26
unglue, 35
union, 26

v-coord, 18
vecmatmult, 49
vecminus, 49
vecplus, 49
vertex, 14
vertex-eh, 15
vertexJ, 15
vertex-on-face, 19
vertexjsh, 15
vertex-solid, 15

writejsolids-toJile, 47
writejsolids-to-noodlesJile, 47

