
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Use of System Level Synthesis Tools
in Education

Allen Dutoit, Janaki Akella, Daniel Siewiorek
EDRC18-26-92

The Use of System Level
Synthesis Tools

in Education

Allen Dutoit
adlh@edrc.cmu.edu

Janaki Akella
jak@edrc.cmu.edu

Prof. Daniel P. Siewiorek
dps@cs.cmu.edu

December 1991

Abstract'

This document describes the use of system level synthesis tools in a post
college, industrial course taught over a twelve week period during the
summer of 1991. The course was offered by the Engineering Design
Research Center and the Carnegie Bosch Institute, both at Carnegie Mellon
University. The course was intended for technical and high-level managers
interested in improving their knowledge about design theory and software
tools to support the design process.

The course was divided into a lecture pan and a project part. During the
project, the participants were to design, manufacture and test a small
computer for displaying blueprints. This report focuses on the requirements,
the preparation and the implementation of the project part of such a course.

This work has been supported by the Engineering Design Research Center,
a NSF Engineering Research Center.

University Libraries

mailto:adlh@edrc.cmu.edu
mailto:jak@edrc.cmu.edu
mailto:dps@cs.cmu.edu

Table of Content

1 Introduction 1
1.1 Motivation 1
1.2 Structure 1

2 Background 2
2.1 Goal of the course and the project 2
2.2 Terms used in this document 2
2.3 Participants 3
2.4 Target project 5

2.4.1 Philosophy 5
2.4.2 Artifact 7
2.4.3 Tools 8
2.4.4 Project team organization 9

3 Design Process 10
3.1 Overview 10
3.2 Project design team 10
3.3 Artifact 11
3.4 Personpower 12
3.5 Haws and unforeseen problems 19
3.6 Manufacture off campus 21
3.7 Towards a better design process 23

4 Tool Preparation 25
4.1 Overview 25
4.2 Tool preparation team 25
4.3 Task organization and personpower 26
4.4 Haws and unforeseen problems 30
4.5 Towards better tools 31

4.5.1 Short term solutions 31
4.5.2 Long term solutions 34

5 Teaching 38
5.1 Overview ., 38
5.2 Project organization 38
5.3 Visual aids 43
5.4 Towards better solutions 44

6 Towards a better project organization 46
6.1 Overview 46
6.2 Task assignment 46
6.3 Relation ship with the rest of the course 46
6.4 Interaction between design processes 47
6.5 Tool providers 47

7 Conclusion ;. 48
8 Bibliography 49

List of Figures

Figure 1 Participants by staff size 3

Figure 2 Participants by academic background 3

Figure 3 Participants by age 4

Figure 4 Participants by task 4

Figure 5 Interactions between design processes 6

Figure 6 Personpower per task 9

Figure 7 Project design team organization 10

Figure 8 Disassembled view of the artifact 11

Figure 9 Design process and personpower 13

Figure 10 Design task graph and communication errors 14

Figure 11 Reset button misplacement 17

Figure 12 Battery compartment and heat sink 18

Figure 13 Cost and contingencies 22

Figure 14 Tool preparation tool organization 25

Figure 15 Personpower spent on tool preparation 26

Figure 16 Target environment 27

Figure 17 Project schedule 39

List of Tables

Table 1

Table 2

Problems encountered during the design process

Order times

20

21

Introduction

1 Introduction

1.1 Motivation

The main purpose of this report is to record and to transmit information. The Bosch course 91 was
the first of its kind at Carnegie Mellon University, with respect to goals, the number and the
background of participants, the number of people involved in preparation, and the amount of
resources consumed. Most of the people who worked for this course had little experience in
teaching an industrial course and acquired on-the-job training. Our goal is to record the experience
learned during this course and to transmit this knowledge to the people who want to organize a
similar course in the future.

A second goal of this document is to initiate a discussion on the relationship of technology transfer
courses and research at EDRC. Such courses can be valuable for obtaining early feedback on the
results of research and providing comments on how such results can be applied in an industrial
context. However taking advantage of this feedback is far from being a trivial task.

The authors of this document are respectively the student who was responsible for the tool
preparation, the student responsible for the design of the artifact, and the faculty member in charge
of the project part of the course.

1.2 Structure

Section 2 defines the terms used in this report and gives some background information on the
course.

Section 3 , 4 and 5 focus respectively on the design process, the tool preparation and the teaching
aspects of the project. These sections contain data on the resources required and the problems
encountered during the preparation of each of these aspects of the project. They also propose
alternates for solving and preventing the identified problems. The purpose of these sections is
twofold. First to provide enough data to allow an estimation of the time and resources needed to
prepare a similar course. Second, to simplify an estimation of contingency resources.

Section 6 contains remarks on the overall project preparation. We conclude in Section 7 by
including some thoughts on the relationship of such courses to research.

2 Background

2.1 Goal of the course and the project

As stated in the brochure distributed to the participants of the course1, the goal of the program was:

• "to supplement the participants' personal knowledge and experience in engineering
design with that of leading scientists,

• to introduce state-of-the-art tools and methods, and

• to help the participants explore new approaches to the design process itself and to the
management and organization of design teams."

A significant part of the program was a project performed by the participants in small groups (six
participants). The purpose of the project was to provide the participants with an environment for
experimenting with various approaches to design and different team organizations. The
participants designed a prototype of a small portable computer intended to display blueprints for
construction workers (described in Sections 2.4.2 and 3.3). Both commercial software packages
and software tools developed at EDRC were used.

A secondary goal was to test individual tools developed at EDRC in a larger scale environment,
and to accelerate the integration of tools from different projects into a single design environment

2.2 Terms used in this document

The faculty and students who prepared and executed the course are referred as the project team.
The subset of the project team who designed and manufactured the prototype is referred as the
project design team. Similarly, the students and the tool providers who prepared the tools for the
course are referred as the tool preparation team.

The industrials who attended the course are referred as the participants. The participants were also
divided into teams we call participant design teams.

Tool refers to any in-house or commercial piece of software which was used during any of the
design processes. Tool integration refers to the effort of bringing the tools into a single software
environment, in which some of the interactions between tools are hidden from the user.

The term artifact refers to the result of any of the design processes. The artifact produced by the
project design team is often referred as the golden solution.

1. Carnegie Bosch Institute, Advanced Programs for Technical Managers, Program in Engineering Design.
May 13-August 23. 1991

2.3 Participants

The course targeted technical and high-level managers seeking to improve their knowledge about
design theory and practice. Twenty six participants from North American and European industries
attended the course. Figure 1 classifies the participants by their staff sizes. Each category
corresponds to a staff size, and not to a job title.

Total number of participants: 26

Figure 1 Participants by staff size

Figure 2 describes the academic background of the participants, i.e. the engineering field they
studied last in college. In most of the cases, this also represents the field which they are currently
working in.

Figure 2 Participants by academic background

Background

Figure 3 shows the participants by age. Except for people working in software, we found that the
level of computer skills of the participants varied inversely with their age. One purpose of some
participants at the high end of the scale for attending the course was to improve their specific
knowledge about the current capabilities of CAD tools.

35% 31% 35% 31% 27% 35% 31% 27% 35% 7%
36 40 45 50 55 years

Figure 3 Participants by age

Figure 4 classifies the participants by activity. Many participants were managing design and
development teams. Surprisingly, few of them were directly connected to CAD.

Preliminary design

Research

Design/Development

Test

CAD/CAM

Support/Marketing

Figure 4 Participants by task

Background

2.4 Target project

2.4.1 Philosophy
The intent of the project was to lead the participants through a complete design and manufacture
process in order to give them an environment to experiment with the ideas and methods presented
during the lecture part of the course. The course lectures were given six mornings per week, the
project took place five afternoons per week . The course lasted twelve weeks, the project ten.

The project design team started to design the artifact prior to the beginning of the course. The
design process consisted of five steps:

• product concept

• electronic specification

• electronic design

• housing specification

• housing design

The participants were divided into four teams of six members . The team assignment was done
according to the background of each participant. Each team was to design a similar artifact from
the same set of requirements. The structure of their design processes was similar to the project team
design process.

Figure 5 shows the interactions between the design processes of the project team and the
participant teams. At each step, the participant teams solved a problem. The four different solutions
were then critiqued. The solution of the project design team (called the golden solution) was then
used as the starting point of the next step of the part icipants ' design processes. In a few cases (e.g.
the housing specification), we included some aspects of the part icipants ' solution into the golden
solution.

The reason for bringing all the teams back to the same starting point for the next step, was to not
spend an enormous amount of personpower in supervising diverging projects. The design process
steps occurred sequentially, again to conserve instruction effort.

Once the design was completed, the participants were to participate in the manufacture and test of
the golden solution. Since the teams were refocused at each step, the manufactured artifact would
be similar to the one they would have designed.

Project team design process Sample participant team design process

Product
conctptualzatbn

Electronic
conceptualization

Product
conceptualization

Housing
conceptualization

Homing design

Manufacture Manufacture

Legend

Process step

Document

Critique
Figure 5 Interactions between design processes

Background

2.4.2 Artifact

The artifact the participants were to design was a small computer for displaying blueprints. The
initial specification was to display maps in an automobile. Shortly after the beginning of the course,
the artifact was changed from a map display to a construction blueprint display. Some of the
participants were involved in the design of an automobile map reader in their company. They did
not want to work on the design of such an artifact in the context of a course, claiming that any idea
they had on this subject was the intellectual property of the company they were working for.
However, the requirements of the electronic portion of the design did not change.

The computer was specified to be small enough to carry in the field. The functionality of the
computer were to include: switching between two different blueprints, scrolling, and zooming. The
user interface of the computer had to be simple enough to be operated safely while walking.

Another requirement of the artifact was that it should use a Private Eye as the display. The Private
Eye is a 3/4 by 3/4 inch screen, mounted on a headset. Held close to the eye, it gives the illusion of
a regular 12 inch monitor screen floating in the air. The Private Eye has similar properties as bifocal
glasses: the user can either look at the outside world or at the screen with minimum eye focusing.

The Private Eye was not included in the first specification, but introduced as an 'arbitrary and
managerial' decision in the second phase, in order not to constrain the design from the beginning.

2.4.3 Tools

The following suite of tools were selected for inclusion into the course.

MICON (Board synthesis).

MICON is a tool suite for design of digital electronic systems. Ml is a knowledge-based synthesis
engine for generating boards. CGEN is a knowledge acquisition tool that allows hardware
designers to increase the knowledge base of Ml . From high-level specifications, a set of constraints
and a knowledge base, Ml can generate a complete netlist. In the past few years, MICON was used
to generate computer workstation sized board designs. The MICON tool suite also includes a
commercial schematic editor. [Birmingham et al, 1989] [Gupta et al, 1990]

ABLOOS (Placement).

ABLOOS is a framework for 2-D layout design. ABLOOS uses a graph representation of spatial
relationships between rectangles and generation rules to produce alternative arrangements. It then
uses a knowledge base evaluation module and a branch and bound search technique to find layouts
minimizing the number of constraint violations. Unlike optimization tools, ABLOOS provides
users with more than one solution, allowing them to visualize possible trade-offs. ABLOOS also
allows hierarchical decompositions of layout problems along with various solution policies (e.g.
top down, bottom up, etc.). ABLOOS is used in various domains, such as the layout of analog
circuits boards and service cores in high-rise office buildings. [Coyne, 1991]

NOODLES (Solid modeling).

NOODLES is a non-homogenous, non-manifold solid modeler. It allows the representation of one,
two and three dimensional objects. It is currently used as a representation for various tools such as
an injection molding critique, an assembly analyzer and an assembly robot arm trajectory planer.
The NOODLES calculator allows users to describe solid models in a CSG (constructive solid
grammar) representation, translate them to a boundary representation, and visualize the results.
[Gursoz, 1991] [Gursozetal, 1991]

GENESIS (Solid generation).

GENESIS is a tool for generating classes of solids from a boundary solid grammar. A boundary
solid grammar is a set of rules whose left hand side is a predicate describing a property of a solid
model and whose right hand side is an operation on the boundary of the solid. Boundary solid
grammars have been written to describe Queen Ann houses, support structures for injection
molding, etc. [Heisserman, 1991]

Other tools would be used in demonstration mode because of the unavailability of multiple copies
of their computing platform, or their relative immaturity and lack of robustness1. The tools to be
demonstrated included a thermal analyzer, an assembly analyzer, and an injection molding critique.

1. In this document, we define robustness as the inverse of the average number of failures experienced by a
novice user while using the tool. By failures, we mean every failure experienced by the user during the
operation of the tool, whether it was caused by the tool, the system or the user itself. See Section 4.5.1 for
a complete definition.

2.5 Project team organization

The preparation and teaching of the project involved one senior faculty member, a secretary, three
full time TA (teaching assistants), an industrial designer, three undergraduate REUs (Research
Experience for Undergraduates) and up to six other graduate students at various phases of the
project.

The three TAs also functioned during the design process as an electronic designer, a mechanical
designer and a software designer. The electronic designer was responsible for coordination during
the design process. Each of the TAs and the industrial designer were responsible for presenting in
the lectures the portion of the artifact they designed. The software designer was also responsible
for the tool integration effort and the coordination between tool providers. The REUs were
involved at various points in the manufacture process and the development of the software of the
artifact. The faculty member was responsible for the project lectures and the coordination with the
rest of the course.

The on campus personpower needed for the whole project added up to 468 person days (pd) (1
person day ~ 10 hours), split as depicted by Figure 6.

Total personpower: 468 person days

Figure 6 Personpower per task

3 Design Process

3.1 Overview

This section describes and analyzes the project team design process. This section is structured as
follows. First a brief description of the project design team and the final version of the artifact are
given. The resources and personpower required to complete the artifact are described next. Then
the chronology of the design process and the interactions between the designers is discussed.
Finally, the flaws encountered during the design process, a brief discussion of their cause and
alternate solutions are presented.

The purpose of this section is twofold. First, to provide enough data to allow an estimation of the
time and resource needed to design an artifact of similar size. Second, to identify common
problems encountered during a design process.

The data presented in this section has been collected from various sources, such as e-mail messages
exchanged between designers, field notes, time stamps of data files and informal interviews of the
designers.

3.2 Project design team

The project design team was composed of seven students and one faculty member (see Figure 7).
The electronic designer was responsible for the coordination of the design process. The faculty
member made cost sensitive decisions from a set of proposals provided by the electronic designer.
The mechanical designer and the industrial designer worked together on the design of the housing.
The three REUs were involved at various points in the manufacture process and during software
development.

3REUs)

Figure 7 Project design team organization

3.3 Artifact

The final version of the artifact, depicted in Figure 8, had the following characteristics:

. CPU board:

• 80188 CPU

• A T bus

• 8kBytes RAM

• up to 8 x 64kBytes EPROMs

• 12 chips of random logic

• Private Eye CGA adaptor board (purchased with the Private Eye)

• 2m x 5i/2 x 12 inch vacuum molded enclosure

• Powered by 8 x 1.5 V batteries or a 12 V DC source

• Three application push buttons, one on/off power switch, and one reset push button

Enclosure

Figure S Disassembled view of the artifact

3.4 Personpower

The complete design and manufacture process took 229 person days. This number includes the
early prototypes whose development was interrupted (such as the first prototype housing and the
first version of the software), but does not include the time spent to present the various design
phases in the project lectures. In other words, this number can be interpreted as the personpower
required to complete the design and manufacture of an artifact of this scale, independently from
the fact that this design was completed in the context of a course.

Figure 9 shows the various tasks and the personpower involved in the design and manufacture of
the artifact. The vertical axis represents calendar time. Each bubble is a task. The width of the
bubble is the maximum number of persons who worked on the same task. Bubbles next to each
other represent concurrent tasks. The area of the bubbles does not direcdy correspond to their
personpower, since there was not usually someone working full time on a single task from start to
completion. The gray rectangles below the bubbles corresponds to the two six week segments of
the course.

Figure 10 shows the main tasks of the design process with respect to the designers responsible for
them. The vertical axis represents time, but unlike in Figure 9, the height of the bubble has no
meaning. Each bubble represents a task. An arrow between two tasks represents both a
precondition in time and a communication point between designers (or manufacturers). An arrow
interrupted by a lightening symbol represents a communication point where information was
misunderstood or incomplete. The thick gray arrow lines represent the critical path of the design
process.

Total personpower: 229 person days

May Bus debug 13%

Jtin*

July

Misc debug 10%

{Housing I 3 ^

jfroOOLESmtf/3%)' \

»W>I^NI 11 i iji^Sji n ,i i| m\ Hi w i

Thrm. anlysis

Routing 2%1 M1 Synth. Hous/ng// 5* S o f f tvare / 4%

AugMSt
£ Populate 2%)

Quest for components

9%

[software II 2%)
y^semWy 13%

+ +
Number of people 1 2

Figure 9 Design process and personpower

http://MlSynth.ll

PCB
manufacturer

Electronic
designer

Software
designers

Figure 10 Design task graph and communication errors

Electronic design, MICON workshop and M1 synthesis

The design process started with the hand design of the electronic portion of the artifact. An initial
hand design was used to estimate the materials cost for the project. This design was improved after
the critique of off campus personnel w ho had previous design experience with the AT bus.

The resultant design served as the basis for training cases on parts not already in the M I C O N
knowledge base. In March , the designer attended a workshop given to an industrial affiliate, and
then synthesized a second design using MICON.

Wlrewrap and first prototype

A first prototype was realized as a wire wrap board. The wirewrap took two weeks , followed by a
one month debugging period before the board was able to draw lines on the display. The main
problem encountered during this first debugging period was incorrect bus t iming. Accurate timing
information of the Private Eye adaptor board was initially not available, and was later provided by
Reflection Technology.

It took one more calendar month before the first prototype was declared working. The personpower
available for the design during this period decreased, because the main designer was involved in
the course.

The knowledge base of Ml was updated in July to reflect the changes made during the debugging
period and a second synthesis of the board was performed in two days.

Placement, routing and second prototype

The chip placement was done by hand and the routing by a commercial tool. The layout task lasted
four days. The person who performed this task was an expert in placement and routing, which
explains the short t ime needed to complete the task. The C A D / C A M files were then sent to a
printed circuit board manufacturer. Three boards were manufactured in four days, the remaining
twenty in two weeks .

A second prototype was built with the printed circuit board in order to uncover any errors
introduced during the layout phase. One major error was discovered: the pinout of the processor
was incorrect. This was due to a human error while entering the pinout of the processor part in the
database. Since the printed circuit board could not be manufactured again, a small board (called the
daughter board, see Figure 8) about twice the size of the processor was then designed and
manufactured off campus . The daughter board was composed of two chip sockets, one for the
processor, and the other for the original chip holder in the board.

A third board (called the connector board, see Figure 8) was ordered and manufactured off campus.
The connector board formed a short AT bus between the main C P U board and the adaptor card.
After the order was shipped, one more error was discovered. Two bus lines unused by the main
board were not connected. A figure describing which lines to ground was faxed to the
manufacturer. Unfortunately, the manufacturer incorrectly interpreted the figure as a mirror image.
The connector boards were repaired on campus.

Population and soldering

The boards were populated in one day by three R E U s who worked at E D R C during the summer.
The boards where then sent off campus for wave soldering. The daughter boards were also sent off
campus for wave soldering. The daughter board, unlike the main board did not have a soldering
mask. The manufacturer wave soldered one side, and hand soldered the other side, resulting in a
longer manufacturing t ime. Out of thirty daughter boards, only eleven were working after the wave
soldering. The remaining boards had solder bridges which shorted processor signals. The non-
functioning boards were repaired on campus by hand.

Housing, NOODLES model and SLA

An initial requirement of the artifact was to be able to fit in a radio/cassette car rack. The initial
design of the enclosure included an off the shelf metal cage and a front piece manufactured by the
SLA. Shortly after the beginning of the course, it was decided that the artifact would not be a
display for road maps , but for blueprints instead (see Section 2.4.2). The requirements of the
enclosure changed and the requirements that the product is carried over the shoulder was added to
the artifact specification.

A second design was done, based on a plastic housing purchased off campus which would be
completed with a front piece including a three dimensional E D R C logo. A N O O D L E S model of
the front panel was built and sent to the SLA for manufacturing. After one week, it was realized
that the SLA was not accurate enough along the vertical axis for the E D R C logo. The manufacture
of thirty copies would also have posed a problem with respect to time.

A third design was constructed from styrofoam by the participants of the course, and sent off
campus for manufacturing by vacuum molding manufacture. Two full t ime people then spent 10
days looking for off the shelf components such as switches, push buttons and shoulder straps.
Fol lowing that period the location and dimension of the holes were sent to the manufacturer of the
housing.

Software

The first version of the software was developed in C on a workstation, before the main CPU board
was fully functional. An R E U scanned a blueprint, translated it into a reasonable format and wrote
scaling and scrolling software functions.

The board was fully debugged only shortly before the R E U left E D R C . The software port to the
board was done by a second person. Two days were spent porting the software. Following this
period, it was decided to start the software over, because of the slow performance of the first
version. The development of the second version required four days. Because of the lack of time,
the functionality of the software was reduced. Only one bitmap was stored in the artifact, and the
"zoom in" function was suppressed (i.e. it was not possible to display the blueprint in a larger scale
than the scanned bi tmap).

Assembly

Twenty five artifacts were manufactured. Up to seven persons worked for one week on the
assembly process. By the end of the course twelve artifacts were fully functional.

The low yield was primarily due to the lack of quality control during the manufacturing process.
Fragile parts such as the daughter boards and the processors were the only ones tested before
assembly. Later, it was realized that the main board should have been tested at every step of the
assembly. For example, about a third of the assembled artifacts had a non-functioning RAM or a
non-functioning processor. Both components were probably damaged by static electricity.

Most of the mechanical errors were discovered during assembly. The most annoying (and time
consuming) flaws were the omission of the reset button, the battery compartment hd design flaw,
and the size of the heat sink.

The reset button is one piece of information which slipped between the cracks when the electronic
designer passed the digital design to the industrial designer. The electronic designer probably did
not mention the existence of the reset button since it was something obvious in the electronic
domain. The industrial designer did not think about it because of its non-obvious function in the
mechanical domain. The result of this misunderstanding was that the design of the enclosure did
not include this button. An emergency order was given to the mechanical shop of the ECE
department to drill an additional hole in the enclosures. Because of the rush associated with this
patching, the location of the new hole was inappropriate: the pins of the reset button were touching
the program EPROM and threatened the correct functioning of the artifact (see Figure 11). The pins
of the reset button were bent, and a piece of tape was attached to the EPROM to avoid short circuits.
After the pin bending was done, the wires connecting the switches had to be resoldered.

Private Eye connector

Private Eye adaptor board

CPU board EPROMs

Figure U Reset button misplacement

The initial design of the battery compartment planned to glue the battery holder to the lid, and
attach two stripes of velcro on the bottom of the compartment and the battery holder. A glue could
not be found which would bind the lid to the battery holder with more strength than the battery
holder was bound to the battery compartment. A quick solution to this problem was to wrap a logo
sticker around the lid in order to slightly increase its width. The problem with this solution is that
the lid is difficult to remove without tools (see Figure 12).

The heat sink component is located at the end of the CPU board near the battery compartment. The
component specified during layout and mechanical design was not available during the
manufacturing process. Instead, a larger component was order. During the assembly, it was realized
that the wings of the new component prevented its insertion on the board. The wings were bent (see
also Figure 12).

CPU board

Velcro

Battery holder

Battery compartment lid

Figure 12 Battery compartment and heat sink

3.5 Flaws and unforeseen problems

Electrical flaws Cause Immediate solution Time lost [days]

Processor pinout Incorrect entry in database Daughterboard 7

Low yield of the
daughterboards

Lack of soldering mask Manual cutting of
solder bridges

1

Connector board bug Wrong interpretation of
spec, by the manufacturer

Manual addition of
components to connector bd.

1

Capacitors polarities reversed Human error during
board layout

Swapped capacitors 0.5

Pinout of the switches Human error during
assembly

Resoldered switches 2

Mechanical flaws Cause Immediate solution Time lost [days]

Battery compartment lid Design error None

Reset button omission Misunderstanding between
designers

Drilled additional hole
on campus

0.5

Reset button pins touching
pgm EEPROM

Cascaded from previous
problem

Taped EEPROM 0.2

On/off labels (or LED)
on power switch missing

Design error None

Heat sink too wide Unavailable component Bent heat sink wings 0.2

Software flaws Cause Immediate solution Time lost [days]

Poor portability between
workstation and PC

Lack of software experience Second version of software 12

Poor portability between PC
and CPU board

Compiler bug Hack around 1

General flaws

Quality control Lack experience in manufacturing 10

Spares Underestimation of the number of defective components 15

Total time lost [days]: 50.4

Table 1 Problems encountered during the design process

3.6 Manufacture outside campus

Item ordered Out In Time [days]

Private Eyes 4/1 4/12 11

21 80188 processors 4/3 4/5 2

9 80188 processors 4/3 4/8 5

Parts (w/o processor) 7/2 7/12 10

Capacitors/resistors 7/12 7/17 5

Spares 8/27 9/6 10

3 main boards 7/9 7/13 4

27 main boards 7/9 7/17 8

6 main boards 7/9 7/24 15
Daughter boards 7/29 8/5 7

Connector boards 7/19 7/26 7

Wave soldering 7/27 7/30 3

Housing 7/29 8/19 21

Table 2 Order times

Table 2 describes the delivery times for the parts and work performed off campus. Dates do not
include the lead time needed to obtain a purchase order. In the case of the Bosch course 91, the lead
time was shorter than average (two days; average: one week). The high variance on the delivery of
digital components (two days for the first batch of processors, ten days for the spare parts) was due
to the unavailability of parts in stock.

The main board was manufactured in three batches. Three boards were ordered with a three day
delivery and were used for testing purposes. By the time the testing was completed, twenty seven
more boards were received. Six additional spare boards were manufactured with a regular three
week delivery. Initially, the main boards were to be manufactured in a single three week delivery
batch, which would have been cheaper (see Figure 13). The delays in the design process and the
approaching end of the course dictated the accelerated delivery strategy.

The housing was vacuum molded off campus. The manufacturer was provided with drawings of
the housing without the specification of the holes. At the time the specification was handed to the
manufacturer, the industrial designer and the mechanical designer were still looking for switches
and shoulder straps (see Figure 9). The hole specification was sent later, which delayed the delivery
of the housings for one week.

Figure 13 represents the cost of the material and off campus personpower spent for the manufacture
of the artifact The black bars represent the costs as they were planned before May 91; the erav bars
represent cost incurred by contingencies or design flaws. Twenty nine artifacts were e J S u a S
manufactured. e eventually

The additional costs for the processors, RAMs and miscellaneous parts were caused by an
unexpected number of damaged parts during the assembly process. Ten processors and seven
RAMSwere damaged by static electricity.

Private Eyes

Processors

EPROMs

Misc. parts

RAMs

Switches/Sockets

Main boards*

Connector boards*

Daughter boards*

Housing

Planned/unplanned cost [dollars]

12,000/0

960/345

748/0

1,554/454

95/132

828/0

5,451/4,014

645/0

0/808

1,728/0

'Includes wav* •oldM-ing

Total COSt: $24,009 + $5,753 = $29,762

Cost per artifact: $29,762/29 = $1,027

Figure 13 Cost and contingencies

3.7 Towards a better design process

Coordination

An unusual aspect of the design process was that no design meeting involving all the designers ever
took place. The first time the design team was assembled in its entirety to discuss the artifact was
at the beginning of the manufacture process. Most of the coordination of the project was done
through bilateral communication between the designers (often by e-mail), which induced a smaller
overhead.

A drawback of this policy was that the redundancy in the communication was small, allowing some
important information to slip between the cracks. A third peer present during these communication
exchange could have allowed additional cross-checking and recording of the information
transmitted. Flaws such as the omission of the reset button were probably due to this lack of
verification. Another drawback of the peer to peer communication was that the time to update other
members of the team about less important issues was long, which slowed the design process when
any of the designers was absent (e.g. conference trip, job quest, etc.).

An immediate solution for improving consistency, completeness and recording of the information
exchanged between designers would be to restrict the medium of communication to e-mail, and,
for a small design team, to broadcast messages to all members of the team. If the mail traffic
becomes too high, the designers might not read all the messages as thoroughly as they should, thus
reducing the benefits of the redundancy. This problem could then be solved by having the chief
designer (or any member of the team who has a multidisciplinary background) responsible for
centralizing all the messages and forwarding them to the persons of interests. The chief designer
could also create a taxonomy of messages by importance and domains in order to mechanize the
forwarding process.

A potential second solution is to make available to the designers the structure of the design
information space. An example of this approach adopted by the n-Dim project [Subrahmanian et
al, 1989] could serve as a test bed for sharing and structuring of the design information. In this
scenario, the designers would be able to access the information they need and would also be
notified of changes in the information that they choose to monitor.

Any proposed solutions would have to be tested and refined before substantiating any claims of
reduction in overhead to traditional methods. Such issues as how easily designers would adapt
themselves to new communication schemes are not easily predictable.

Consistency

Many flaws were the result of an incorrect change of the design after a previous flaw. The pins of
the reset button were bent and taped due to a misplacement of the reset button; the heat sink wings
were bent due to the change in choice of a component. Generally, late changes of a design are more
likely to introduce errors because they are often made outside the original context of the design.
Many assumptions made by the designer are no longer available at the time of the change. In the
case of the heat sink, the electronic designer did not know that the heat sink was located adjacent
to the battery compartment, and thus failed to update the mechanical designer about the change.

Both solutions proposed in the previous subsection (e-mail and nDim) would provide the designers
with a history of their decisions and assumptions. However, nDim would allow a more efficient
retrieval, since nDim allows structuring of the design information. In either case, the designers will
be able to maintain the consistency of the design only if they state explicitly as many assumptions
as possible. This task is not trivial, since the designers do not know in advance which constraints
are likely to be violated in the future.

Confidence In tools and databases

Most of the CAD tools used during a design process are complex and hard-to-use pieces of
software. The consequence is a non zero probability of introducing errors in the design information
base either because of software bugs or operational errors. This probability is even higher for
research software such as that used during our design process. For example, the most costly design
flaw was the processor pinout error.

These types of flaws are hard to detect before the manufacture of a prototype. For a design process
which would involve more than one person of a domain, a solution would be to introduce a cross
verification mechanism. In the example of the processor pinout flaw, the person who would do a
sanity check before sending a netlist to the routing could be a designer different from the one who
entered the pinout information in the database.

Another class of time consuming faults was caused by the confidence in the tools we used. A
simple compiler bug delayed the software development for two full days, mainly because the
software developer assumed the compiler was bug free.

Prototypes

Some flaws were time consuming not because of their seriousness, but because they were
discovered late in the manufacturing process. For example in order to overcome the heat sink flaw,
we only needed to bend the wings of the component. However, we had to bend thirty heat sinks. A
similar case was the floating lines of the connector board.

A possible solution to detect more design flaws before manufacture would be to build more
prototypes. We limited the number of prototypes because of the lack of time, but in hindsight, we
believe we wasted almost as much time correcting late design flaws than we saved.

From our previous experiences in design, the danger of a prototype based design process is the
temptation of degrading to a 'trial-and-error' methodology. Introducing more prototypes increases
the level of confidence of the designer in the early discovery of design flaws, thus lowering his use
of other fault prevention mechanism (e.g. peer verification). Protoypes should be viewed as an
additional test rather than a replacement. Another drawback of a prototype based design process is
a longer calendar time.

4 Tool Preparation

4.1 Overview

This section describes and analyzes the preparation of the tools for the course. A description of the
tasks and personpower performed during the tool preparation is given first. Next, the problems
encountered are presented along with a brief discussion of their cause. The remainder of the section
proposes a few short term and long term problem solutions.

The purpose of this section is multiple. First, to provide enough data to allow a more accurate
estimation of the personpower and resources involved in the preparation and development of CAD
tools for a similar course. Second, to identify common problems encountered during a software
integration process. Although research software was being integrated for a course, we claim that
similar problems can be encountered in an integration effort which would take place in industry.
The third purpose of this section is to identify problems and solutions in the development process
of the tools themselves.

The data presented in this section was collected from documents written during the integration
evaluation, e-mail messages, field notes and source code file time stamps.

4.2 Tool preparation team

The tool preparation team was composed of two graduate students and a faculty member (see
Figure 14). At various points of the tool preparation, the developers of the tools were also involved.
The software designer was responsible for the tools and the integration effort, while the tool
providers were responsible for bug fixes and the implementation of new features. The mechanical
designer participated in the integration evaluation. The EDRC faculty made the choice of tools and
architecture from a set of proposals provided by the software designer.

6 tool providers

Mechanical designer

Figure 14 Tool preparation team organization

Tool Preparation

4.3 Task organization and personpower

Figure 15 shows the personpower spent for preparing the tools for the course. The vertical axis
represents calendar time. The gray area in the background corresponds to the two six week
segments of the course. Each bubble is a task. The width of the bubble is the maximum number of
persons who worked on the same task. Bubbles next to each other represent concurrent tasks. The
area of the bubbles does not directly correspond to their personpower, since there was not usually
someone working full time on a single task until its completion. The task names with a superscript
star corresponds to tasks which were interrupted before completion.

Total personpower: 196person days

March Q Intgr. eval.

April
ABLOOSI 10%J

Q GENESIS ~4%)

/ \
Netlinks 18%

May
Entry

(MICON) 22 h

{ Envnt.*

J u n e MV

Calculator
July (NOODLES) 31 *

C ABLOOS II 7%

I 2
 4 ~

Number of people
Figure 15 Personpower spent on tool preparation

Tool Preparation

The tool preparation took 196 person days. This number includes the t ime spent on tools which
were eventually not used in the course. It includes the t ime needed for the development, test and
port. The following paragraphs discuss each bubble individually.

Integration evaluation

The initial target was to build a single environment in which the participants would design the
artifact presented in the previous section. The first step of the tool preparation was to collect the
following information about each of the candidate tools :

• tasks performed

• architecture requirement

• operating system requirement

• display requirement

• input/output formats

The architecture/operating system/display requirements were needed to select a platform to use for
the course. W e also wanted to know the input and output formats of the tools to estimate the number
of translators that needed to be written.

Workshop Demonstration
H 1

Q Tango (routing) A

[N O O D L E S c a t e u l a A A A A a a n t s | s)

Assembly critique)

Translator
Hand translation

Figure 16 Target environment

The evaluation was solely based on the information collected from thetool providers. We did not
have time to actually be trained on the tools and use them before the decision was made. At the end
of the evaluation period, we decided to realize the environment depicted by Figure 16.

MICON would be used to synthesize a digital design. Geometric information about the parts and
their connectivity would then be sent to ABLOOS for placement. Once the dimensions of the board
were known, an enclosure would be generated with GENESIS. The participants would also be able
to hand build an enclosure with the NOODLES calculator. The final NOODLES model would then
be sent to the injection molding critique, the assembly critique and to thermal analysis. The tools
in the right column were tools to be demonstrated only.

We decided to use as a platform a DEC 3100 running AndrewOS with a monochrome display.
Performance critical tools such as ABLOOS would be run remotely on a higher performance
workstation (e.g. a DEC5000 with 40MBytes of memory). Four color monitors were purchased for
the tools requiring color.

The environment needed the following software work to be completed:

• Ml , update knowledge base

• ABLOOS, develop a constraint base

• GENESIS, port from HP to AndrewOS (wireframe display) and develop a grammar

• NOODLES, finish development of the calculator

• GENESIS to NOODLES translator

• MICON to ABLOOS translator

• NETLINKS, cleanup

At this point in development, we did not know the computer expertise of the participants. Some of
the tools we investigated had a complex interface. They required the user to write constraints or
rules in a programming language (e.g. GENESIS: Prolog; ABLOOS: Lisp), or they required the
user to do "file reshuffling" (i.e. explicitly invoking translators, moving or renaming files, etc.). We
decided to built an environment displaying files and tools graphically, in which translators
invocation and file renaming would happen transparently. We also planned to provide a graphical
user interface for the tools which required it the most. We started to work on the tools which
presented the most uncertainties.

ABLOOS I and H

The ABLOOS I block represents the time needed to learn about its mechanics and to built a reduced
placement example based on the hand design of the board. The ABLOOS II bubble is the time
needed to upgrade the first example to the final design of the board. During this phase the tool
provider also rewrote the knowledge base we developed in a more robust and generic fashion. The
CPU time needed to find a good solution was also reduced.

GENESIS

Although GENESIS was one of the most robust tool of the environment, it needed significant work
for integration. The original version of GENESIS uses specific 3D graphics hardware and runs
under HP/UX. The software needed to be ported to the platform used in the course. The user
interface and a wireframe rendering module were upgraded. The bubble also include the time
needed for the tool provider to write a translator to the NOODLES file format.

Entry (MICON) and M1

The MICON tool suite did not need to be ported. On the other hand, the MICON tool suite does
not provide much support for correcting the knowledge base of Ml . Since we expected an iterative
design cycle in the framework of the course (the participants did not have much experience with
either digital design or the MICON tool suite), we decided to write a graphical browser to access
the database components. This tool allows an easier visualization and correction of the information
stored in the database. Although the time needed to develop this tool was shorter than usual, it was
still significant. The browsing functionaUty of the tool was ready for the MICON workshop, but
the tool was fully functional only two weeks later.

Pan of the user interface of the browsing tool was to be reused for Ml. The development of the
user interface of Ml was interrupted after it was realized that it could not be completed on time.

NOODLES calculator

The NOODLES calculator is a graphical interface allowing the user to specify a solid in terms of
a CSG tree and visualize it. When the tool evaluation period started, a prototype of the NOODLES
calculator built on top of Motif1 was already available. The tool presented many robustness
problems, and later, its developer stopped working at EDRC. It was then decided to rewrite a
second version on top of a more robust user interface library. Its development was completed only
after it was decided to reduce the number of workshops in the course (see Section 5.2).

NETLINKS and Environment

The target environment planned a mini framework including functionality to remotely invoke
tools, manage data files and translators. NETLINKS is a library providing functionality for remote
process and file management which needed to be cleaned up before it could be used in the course.
NETLINKS was completed on schedule.

The development of the graphical interface to the environment and the control portion of the mini
framework was interrupted after it was realized it would not be completed on time. Only the
GENESIS to NOODLES translator was realized.

1. Mouf is a toolkit from the Open System Foundation for building graphical user interfaces.

4.4 Flaws and unforeseen problems

The password file on the Andrew workstation is stored on the local disk. This file is updated
whenever the workstation is rebooted (which happens often). The first day of class, some of the
Andrew workstation had not been rebooted since the creation of the participants accounts, who
were unable to login on some of the workstations. The problem was identified and solved about an
hour after the class started.

The performance requirements of the tools were not taken into account during the integration
evaluation. In the case of the MICON database, this lead to serious robustness and performance
problems. The database server usually runs on an Ultrix/DEC3100. The database was duplicated
four times and each database server was assigned a different Andrew workstation. The synthesis
process was about two to three times slower than usual. The next lecture, we run the four database
servers on the original DEC3100 and increased performance. The workstation crashed after twenty
four hours. Doubting that the database servers were the main reason of the crash, we rebooted the
machine and restarted the database servers. After another twenty four hours, a user of this machine
asked the facilities to kill the database server processes, because they were occupying a large disk
swap space and seemed abandoned. Neither the user nor the teaching assistants of the course were
aware of the others' use of the workstation.

The commercial schematic editor used by MICON had a license for 30 sites. A license server was
running on a separate machine. It would give out a token to any starting copy of the editor, and get
the token back when the editor was exited. On the first day of the MICON workshop, the
participants exited the editor by killing the process from the shell. In such cases the token are only
released after a certain time-out (set by default to twenty four hours). Before the end of the class,
no more license token were available, and none of the participants were able to start a new copy.
After reading the aciministrator's manual of the schematic editor, we decreased the time-out to five
minutes.

Some of the tools we used (such as the OPS83 compiler for MICON) use the /tmp directory on the
local disk as a temporary storage. On Andrew workstations, there is no /tmp directory, and the users
account is used instead. The quota of the participants' accounts was limited to 1 MByte, which was
insufficient for most of the tools. We instead used an Andrew file server partition instead as
temporary storage, but forgot to modify the access privilege to allow the participants to access it.

The initial estimation of the personpower needed for preparing the tools for the course was well
underestimated (famous last words). Most of the work was done by students who were initially not
related to the tools used. For example, the tool providers of GENESIS and ABLOOS were
defending or finishing their thesis, thus they could not spend a long time in the preparation of those
tools. Another reason is that the robustness of all the tools was overestimated, partly because we
did not spend the time during the evaluation process to become familiar with and use the tools
ourselves. Lastly the people (among which, the authors) who did the personpower estimation tend
to make optimistic estimations and did not take into account contingencies. See Section 3 for a
discussion of this problem.

4.5 Towards better tools

4.5.1 Short term solutions

The major problem in the tool preparation was that we made several decisions (e.g. choice of tools,
choice of architecture) with incorrect and insufficient information. This led to incorrect estimation
of person power requirements and in software that was not robust enough for teaching. The next
paragraphs focus on which information would have been useful to those decisions, and how to
collect it.

Integration evaluation

Even if the tools used in a course project are not to be integrated into a software backplane, an
integration evaluation is still necessary. It is likely that a project will make use of only one kind of
workstation, first because the availability of resources, second because there is not enough time for
participants to become familiar with more than one environment.

Information to be collected are:

• Operating systems/architectures the tool can run on

• Display required (color, monochrome, which version and release of the window man­
ager, etc.)

• Load requirements (memory and CPU time)

• Disk space requirements

We did not collect precise information about the last two items. Collecting those would have
prevented the MICON database crash (see Section 4.4), which was due to a full disk partition.

All the coUected information has to be verified carefully. For example, knowing that a tool should
run under Ultrix 4.0, because it was developed under Ultrix 3.1 and Ultrix is upward compatible,
is not sufficient. There exists incompatibilities between successive releases of any software or
architecture, and there are often hidden bugs which may be triggered in a different environment.

The load and disk space requirements have to be evaluated in the context of a class. For one tool
suite, having twenty six people using a tool may mean twenty six copies of a tool accessing the
same database. Extrapolating the performance requirements of twenty six copies of a tool from a
single copy is misleading. Even though the use of the tool is distributed, the database becomes the
bottleneck. This situation may actually degrade the performance with respect to a single user to the
point of a system crash.

In the event of integration into a software environment, the following additional information is also
needed:

. Tool invocation sequence

. Data file formats

The invocation sequence will determine whether the tool invocation can be automated or not. In
some tools, specifying an input file can only be done interactively (i.e. by the user after the
invocation of the tool). Knowing the data file formats determines how many translators are
missing. One should keep in mind that developing a correct translator may take as long as the
development of a tool. The test of a translator is long, because of the large number of special cases,
and the frequent unavailability of a precise specification of the formats involved.

Robustness evaluation

After the Bosch course 91, the project team agreed that the robustness of tools is an important
factor in efficient teaching. The equivalent of a few classes were lost because of system crashes,
without mentioning the frustration experienced by the participants. Most of the participants of the
course had little or no recent experience of CAD tools, which caused (from our point of view) them
to have an ideal view of the robustness of tools in general.

The concept of robustness and its measure has yet to be defined. This paragraph proposes a few
metrics for measuring robustness in the early preparation of the course. A common metric for
evaluating the robustness of a system is the measured mean time to failure (MTTF). However, the
MTTF of software is highly dependent on its use, and the expertise of the user. One can expect that
the developer of a tool will experience a longer MTTF during operational use since they have a
good insight into which portions of the software are fragile. Novice users often show behaviors
unexpected by the tool developer (e.g. during the REU training on the MICON database browser,
one REU repeatedly double clicked on some areas of the window, expecting a behavior similar to
some Macintosh applications; this action caused the tool to crash; this sequence of mouse clicks
was never tested by the developer, since this behavior did not correspond to a tool command).

Another issue related to robustness is the behavior of the system in case of user errors. Although
the system may not crash in case of an incorrect behavior of the user, it may sometimes either not
report the error or report it incorrectly, leading to unexpected responses to the novice user.

To measure the robustness of a tool in the context of a class, we propose to measure the time
between hard and soft failures during the operation of the tool by a person external to the project.
We define a hard failure as a failure which leads to the loss of data (e.g. tool crash, system crash,
etc.). By soft failure, we mean any behavior of the tool which confuses the user, either because of
a faulty behavior of the tool, or a faulty behavior of the user (e.g. non-reported errors,
misunderstanding of the documentation by the user, etc.). Every failure should be counted, whether
the tool was responsible or not (e.g. kernel crashes). To approximate as much as possible a class
workshop, this evaluation should include the training sessions. The robustness evaluation would
have to be repeated if the tool is modified before the course (e.g. the port to a new architecture).

Other less time consuming but also more inaccurate metrics for measuring robustness could be
used in early phases of the evaluation, such as

the evaluation of the software development process (how many designers, how many
programmers, is any methodology used, which technical documentation is available,
etc.),
the personpower already invested in the tool, and

the number of non expert users who already used the tool.

Learning curve evaluation

The Bosch course 91 also showed that the robustness of a tool is not a sufficient criteria. A tool
may be robust and still hard to use for novices.

During the robustness evaluation, the tester could realize three designs of increasing size: a canned
example which needs only half an hour for the expert to build, a midsize design taking one day,
and a full size design taking one week. The ratio of the time required by the external tester and the
time needed by the expert user for the same three designs would be an indication of the learning
curve associated with the tool. If the background of the tester is representative of the background
of the participants, this time would also be an indication of how much training time should be
invested before the participants are able to realize a design on their own.

Additional remark

The solutions we proposed in this subsection will need significantly more personpower than we
spent on tool preparation. However, the robustness and learning curve evaluation would be
beneficial for research projects involving systems of tools, as they would give some insight on how
well those system would perform in an industrial context. These evaluations could be conducted
independently of whether the tool will be used for a specific class or not, thus, the results of the
evaluation would be available at the start of the tool preparation.

4.5.2 Long term solutions

This subsection considers long term solutions that would bring into the development phase
robustness, ease of use and integration concerns. These solutions are relevant only if these concerns
become a major interest of a project (which does not necessary have to be the case).

On the purpose of software prototypes

The purpose of building software in the context of a research institution may be diverse. One can
write a software prototype to verify the complexity of an algorithm, show its feasibility, test its
integration into an existing system or investigate its fitness to industrial applications. The type of
effort which is invested to meet these purposes is also different. Verifying properties of an
algorithm only requires an implementation that will be used by its developer for a limited time.
Testing the feasibility of a concept does not require a robust prototype. However, estimating how
well a new feature might be integrated into an existing system requires the original system to be
both robust and well structured. The evaluation of the usability of a system not only requires the
system to be robust, but also to be well documented and to have a well thought out user interface.

Early software developed at EDRC was intended for testing feasibility and efficiency. As different
prototypes were put together into systems, the average lifetime of a piece of software became
longer than a doctorate degree, although the robustness of the systems is comparable to the early
prototypes. As a few projects start investigating usability issues (e.g. ASCEND, nDim), and some
systems are used in classes such as the Bosch course 91, the purpose of software prototypes in
EDRC changed to the point that the way software prototypes are written should change as well. In
other words, we claim that converting a prototype intended only for the developers' use into a
robust version for evaluation purposes is not realistic.

The next subsections propose a few solutions intended for building more robust tools while not
spending personpower required to build commercial quality software.

On the costs of robust research and commercial software

One could argue that developing robust research software becomes comparable to developing
commercial quality software, which would deviate from the original goal of EDRC. We do not
think this would be the case.

The first concern of a software company is to develop software which can be sold, which does not
necessarily mean usable software. From our point of view, commercial quality software includes
countless bells and whistles intended to impress the potential buyers, who are usually not the future
users of the software. The next few paragraphs illustrate this point of view.

Commercial quality software is often able to load and store data in multiple formats, either to
preserve backward compatibility with a previous release or to be able to use data produced by the
competition. Research software does not need more than one or two input and output formats,
especially if different research projects agree on the same formats, thus decreasing the number of
parsers to be written. A commercial tool will also include printing facilities, allowing the user to
print out data in various scales and format, which is not essential to research software.

Commercial quality software has a highly customizable user interface, in order to please the largest
number of people. The user interface would also include graphic buttons with a 3D relief. Although
making a user interface customizable may increase the usability of a tool, we do not think there is
a need for providing the users of research software with as many liberties (e.g. on Macintosh, it is
possible to set the blinking speed of the caret).

Commercial quality software is sometimes driven by non-technical concerns, such as the required
use of a perceived standard. For example, motif is often referred to as an industrial standard,
however its interface is not yet robust Since developers of research software are not interested in
selling a product, they have a much broader spectrum of choices, including the use of locally
developed software.

The development of robust software is costly, whether it is research or commercial quality
software. However, we claim that the development of robust research software can be made
affordable if the development effort is concentrated on the essence of the software, rather than on
various bells and whistles which find their use only in short demos.

Where tools broke

Research software we investigated during the Bosch course 91 had common weaknesses. Those
weaknesses are typical of software prototypes intended for the use of its developer only, but which
prevents their use by novice users.

• Data storage/retrieval. The storage and retrieval portion of a tool is usually one of the
weakest points. The storage/retrieval functionality is implemented near the birth of the
tool and is upgraded every time the internal data structure of the tool is modified. Since
the kernel of the tool receives more attention at the beginning of the development pro­
cess, the storage/retrieval portion is more quickly implemented and not well tested.

• Invocation sequence. No two tools have the same invocation sequence. Input and con­
figuration files are sometimes specified at invocation, sometimes interactively, and oth-
ertimes, the tool assumes a specific file name located in a specific directory.

• Interprocess communication. The interprocess communication portion of a tool (when
applicable) presents the same types of problems as the storage/retrieval portion: chang­
ing formats, lack of testing, etc. To these problems add concurrency due to distributed
processing.

• User interface. The user interface of research software is usually the one implemented
by the developer for testing purposes. It usually requires the user to provide a sequence
of low level commands to complete one operation. Constraints and data are expressed
in a general purpose programming language. The interface tolerates few errors from the
user and does not report any errors.

• Lack of documentation. Research software is usually not intended for use by external
personnel, which explains the absence of user documentation. However, tools also lack
technical documentation, such as file formats and interprocess communication protocol
specifications, which makes it hard to integrate any pair of tools together.

Coordination between projects

Some of the problems related to tool integration are not caused by a faulty implementation, but by
the diversity of the implementations across projects. Introducing some coordination at the software
level between projects would solve most of these problems. By coordination, we mean one person
per project (or even possibly one person external to all the projects, such as a programmer, see next
paragraph) meeting regularly in order to maximize the reuse of code and experience.

Such coordination would allow sharing a single set of conventions across project for such low level
issues as how input and configuration files should be specified, which format to use or for higher
level issues like documentation. This set of conventions would apply to the problems usually
encountered during the development of a tool, which have no best solutions but many good
solutions. Sharing the same solution would possibly reduce any future tool integration effort, and
even allow code sharing.

Coordination among projects would also allow the use of a set of standards such as which toolkit
to use for building a user interface, or which communication facilities to use for building
distributed applications and interprocess communication mechanisms. For two projects which do
not conduct research in either of those areas, it does not make much sense to use two different sets
of libraries. Moreover, this would allow sharing the purchase and maintenance cost in case of
commercial software, thus allowing smaller projects to afford more robust and better documented
code.

Finally, the communication necessary for the coordination among different projects would
encourage more technical documentation to be written and updated.

Task assignment and training

Another class of problems generally encountered with research software cannot be solved only
with coordination. It can be solved only by changing the way software is developed.

Tools developed at EDRC often involved only one student at a time who would devote part of their
time to implementation. In some cases, the work of a student would be built on top of the previous
work of another student. This process usually results in relatively large and complex systems which
are unfortunately only usable by the last developer.

The main cause of the lack of basic software engineering practices is that most students are not
software engineers and do not have a formal training in writing large systems. A few different
solutions exist to that problem, unfortunately all of them cost additional resources.

The simplest one would be to limit the size of the tools developed at EDRC to a size manageable
by a developer with no formal training in software development. Systems would then be composed
of a larger number of smaller and more independent tools. In this case, the importance of
considering integration issues mentioned in the previous paragraph increases. This solution would
still require technical documentation.

Another solution would be to rearrange separate programming and research tasks, by, for example,
having Ph.D. students doing research and developing early software prototypes and master

Tool Preparation

students focusing more on a robust implementation used for educational purposes or usability
evaluation. The implementation of a robust system could then be part of a formal training in
software engineering. This solution would unfortunately result in longer masters project

Yet another possible solution would be to increase the number of persons with software training on
each project. This solution unfortunately would increase the programmers/student ratio. Moreover,
we do not believe that adding qualified personpower at the project level would significantly
increase the software quality. Instead, qualified personpower could be independent of any project
and focus more on the coordination among projects mentioned earlier. Occasionally, such
personpower could also be used for the robust implementation of general purpose software which
would be either too expensive to purchase or not available (e.g. D P S K) . Such development effort
by qualified personpower should be limited in order not to disperse the resources. W e would find
it more useful to have such personpower available for coordination, consulting, or even formal
training.

Additional remark

None of the solutions presented in the previous paragraph could solve the software quality problem
alone and for free. However, in cases where the quality of the software prototype is of interest, we
do believe that a combination of those solutions along with the awareness that the implementation
of a large system is a complex design process itself can significantly increase the benefits of the
software development effort.

1. DPSK is a package developed at EDRC providing functionality for distributed software.

Teaching

5 Teaching

5.1 Overview

This section describes the educational aspect of the project. First the schedule and the content of
the project lectures, along with the preparation t ime are described. Next the use of various visual
aids for presenting tools to the participants are discussed. The remainder of the section identifies
the problems encountered during the project lectures and proses a few alternate solutions.

The data presented in this section comes from the handouts of the lectures, e-mail messages, and
interviews conducted with four of the participants at the end of the course.

5.2 Project organization

All members of the project team participated in the preparation and the teaching of the project
lectures. The tool providers conducted a workshop or a demo of their tools. The members of the
project design team presented the part of the artifact they designed. The faculty member taught the
lectures on product concept, digital design and software engineering.

Figure 17 shows the planned and actual schedule of the project. The vertical axis represents t ime.
The gray background represents the two six week segments of the course. Every rectangle
corresponds to a topic. The rectangles with a gray outline represent topics which were planned but
not completed. The number in the rectangle is the number of afternoons spent on that t op i c For the
topics which were not completed, the number in the rectangle is the number of planned afternoons.

All the participants went through the introduction to the computing facilities, the product concept
and the electronic specification. The class was then split into a novice track and an expert track.
The left column represents the topics seen only in the novice track. The rectangles besides the
rectangles in the novice track are topics only seen by the expert track. The next few paragraphs
describe each topic individually.

, 2*1221
Actual

May rintroduction to 2 \
. 7J w • :ar • V computing facilities/

s , ^s I Product concept 4 fi * N - >

Electronic spec.

T ^(Electronic design 9 Y ^ # t . ^ ^ • ,

f Lectures on IjjV^ (M I C O N I W * S / * W J / _ — ^ —
\ electronic des

July

on, lectures on software 4^

V - e c f U f e s o n d e f a u g - — ,_<\pebug»ori<shop 1 0 J

^ecftwson^gLOOS j.(rtbuafiyspec. 3) -

• f Housing design 5 ^ \
ecftjfes on GENESISy , ^ ^ ^^^(NOODLES/GENESIS ws) J

^ Assembly Assembly " * i m M m

Novice track Expert track Planned &
not completed

Figure 17 Project schedule

• I

'Setup'week

The first week of the project consisted of a three day lecture on group management and
organization given by an external consulting company, and a two day introduction to the local
computing facilities. Following the 'setup' week, the participants were divided into four groups
taking into account their strengths and weaknesses in mechanical, electrical and software
engineering.

Product concept

The first problem occurred when we handed out the specification of the artifact. Some of the
participants were involved in a similar project in their company. They did not want to work on the
design of a map display in the context of a general course claiming that any idea they had on this
subject was the intellectual property of the company they were working for.

Since much time and resources had already been invested in the design of the artifact, the
specification was changed to a portable computer to display blueprints, targeting construction
workers. This slight change allowed us not to loose the time and resources already invested, while
satisfying the participants.

Once the specification was handed out, teams were allowed to ask for clarifications during a twenty
minute question and answer period. They were given three days to develop a product concept.
After three days, they handed in a product proposal and gave a presentation.

The product concepts handed in by the teams ranged from a $700 three button pocket computer to
a $10,000 PC compatible computer with an extended keyboard. All the proposals used 25x80
character LCD displays.

The first managerial decision consisted of giving the teams tight cost ($400, including $150 for the
display) and weight (1kg) constraints. The main purpose of these constraints was to bring the
participants back to a product which could be designed and manufactured within the duration of
the course. We also introduced the Private Eye display at this point

Electronic specification

Given the above mentioned constraints and some additional performance requirement ("the
prototype should be able to display at least three blue prints"), the teams had one week to develop
the electronic specifications of the product. By electronic specification, we meant processor family,
clock frequency, memory sizes and external interfaces.

The electronic specifications handed in by the teams happened to be similar, due to the small
proportion of experts in electrical engineering among the participants (see Figure 2). We
discovered that the teams would collaborate closely when they lacked information or experience.
All the teams proposed the use of the 8051 microcontroller at a clock frequency ranging from 5 to
12 MHz, a RAM of 2KBytes and a ROM of 4KBytes. In all designs, the blueprints were stored in
removable cartridges.

The reaction of the participants to the first set of constraints (after the product concept and before
the electronic specification) was frustration. Although they understood that the purpose of the
constraints was to keep the design simple, they had the impression they were designing a toy
artifact and were far from simulating a realistic design process. Along with the specification of the
golden solution, we presented the characteristics of two industrial designs of artifacts which would
have met the performance and cost requirements of the specification: the Nintendo Entertainment
System and the Commodore 64.

Lectures on digital design

The small proportion of participants with electrical engineering experience, and the weak computer
skills observed during the introduction to computing facilities, led us to split the participants into
a novice track and an expert track. The expert track consisted of the participants interested in
completing the detailed design using the CAD tools. During the expert track lab sessions, the
novice track had lectures on digital design. The goal of the lectures was to provide the novice track
with enough knowledge of digital design to understand the resulting work of the expert track.

The lectures on digital design were a condensed version of a required junior computer engineering
course taught at Carnegie Mellon (18-247: "Introduction to Computer Architecture"). The novice
track introduced basic concepts in computer architecture, memory hierarchies, I/O subsystems and
basic concepts in reliability. The lectures occupied the last two weeks of the first half of the course.

Electronic design

The expert track were trained during one week on the MICON tool suite, and spend another week
designing the electronic portion of the artifact. All teams went through the major steps of a design
process with MICON, and one team actually completed a design.

The expert track suffered two major system crashes and about four other less serious failures during
the use of the tools. The unexpected frequency of system failures, as well as the high sensitivity of
the participants to those crashes, led us to diverge from the original plan and to decrease the
involvement of the participants in computer aided design. The specifics of the system failures were
discussed in Section 4.4.

Board layout

A lecture on ABLOOS and general layout problems was given towards the end of the first six week
segment of the course. The data structures and problem solving policies used by ABLOOS were
introduced.

The initial plan of the project also included an ABLOOS workshop, in which the participants
would place and route the electronic design produced by MICON. The participants would have
been given a crude solution produced by ABLOOS with a minimum of constraints. Their tasks
would then have been to improve the quality of the layout and shorten the CPU time needed to find
it by adding constraints to the inputs to ABLOOS.

After the various system failures encountered during the MICON workshop, it was decided to
replace the ABLOOS workshop by a series of lectures and demonstrations of the tool. The main
motivation of this decision was that we considered MICON as more robust than ABLOOS.

The lectures were given in parallel with an on-line demonstration which was projected on a white
screen in the class room. Instead of modifying the input files to ABLOOS themselves, the
participants would suggest additional constraints to add on the input file.

Lectures on software

Four afternoons were spent on teaching software. The first two lectures were an introduction to
software engineering and the major issues involved in the cost and development of software in
general. The following lecture was spent discussing the program which was being developed for
the blueprint display.

Lectures on debug

The initial schedule planned a debug workshop in which the participants would populate and test
part of the board for the blueprint display. At this point of the course, the main printed circuit board
was not manufactured yet and not tested. The debug workshop was replaced by lectures which
presented debugging procedures and the detailed design of the printed circuit board. The problems
encountered during the debugging of the first prototype (i.e. the cause of the delay in the
manufacturing) were taken as an actual example (see unforeseen problems in Section 3.5). A
commercial tool for routing was also presented during one lecture.

Housing specification and design

The teams were given a set of mechanical constraints and the actual dimensions of the printed
circuit boards. Following a course on industrial design which emphasized ergonomics, the teams
were asked to realize two prototypes each, of housings using styrofoam and cardboard.

No golden solution was presented for this phase. The design used in the manufacture of the
prototype was a refinement of a design submitted by the participants.

The NOODLES and GENESIS workshop was replaced by lectures on solid modeling and solid
generation, as well as a demo of each tool.

5.3 Visual aids

Various visual aids have been used with different levels of success in presenting the tools to the
participants. The following list defines the names referring to visual aids we used in the remainder
of this document:

• Screen dump: a printed image of the workstation screen shown on an overhead trans­
parency

• Screen projection: the screen of a workstation projected on a large white screen in the
front of the classroom

• Shared window: the screen of a workstation replicated in a window on multiple other
workstations

• Demo tape: a video tape played in the classroom

• Demo in small groups: a demo on a single workstation shown to groups of five to eight
persons

Screen dumps were useful during lectures where a suite of tools was presented. They allowed us
to focus on the important points of the tools and hide irrelevant details which could distract the
participants (e.g. translator invocation, system crashes, etc.). They also allowed a more compact
presentation by removing the overhead of tool invocation. When a copy of the screen dumps was
handed out before the class, the participants also find it useful to be able to take notes directly on
the screen dump, thus serving as a permanent storage1.

Screen projection did not always meet our expectations. The screen projector used in the computer
cluster was not intended for such large rooms, and often presented focusing problems for color
screens. In other cases (e.g. Viewlogic), the font used by the tool and the dimensions of the
drawings were too small to be seen by all the participants. We found screen projection useful only
for groups of about ten persons for black and white displays.

Shared windows were used as a replacement of screen projection. Software which would replicate
the screen of the instructors workstation in a window on the participants workstations was used.
The refresh rate was too slow (about once every three seconds with a latency up to five seconds)
for this visual aid to be useful. Another problem was that the cursor information was not
propagated to the participants screen, thus making it difficult to point at a specific object on the
screen. Nevertheless, this technology seems to be promising once the performance problems were
solved (e.g. sharedX on HP700).

A demo tape was used during the first lecture of the project for introducing the tools. As with screen
dumps, a demo tape was useful for giving an overview of many different tools in a short time. It
also give the participants an insight on how those tools could be integrated into a design process.

1. This fact was mentioned by some participants during an interview. They would use a screen dump to record
the terminology used in various displays and windows of the tools, and to write down keystroke sequences.
However, some participants claimed screen dumps were not useful at all.

5.4 Towards better solutions

This section focuses on the educational aspects of the projects which could be improved. Most of
the suggestions in this section come from the results of a survey of the participants which took
place at the end of the course. Two participants from each track were interviewed by groups of two
for one hour. Questions on the content, on the structure of the project, on the use of tools and on
the use of visual aids were asked. The results of the survey on visual aids have been presented in
Section 5.3.

Project content

All the interviewed participants expressed that they were not equally interested in all phases of the
design process. They would have preferred to spend more time on tools and methodologies related
to their field. They found it difficult to follow lectures and workshops with people of such diverse
levels and background (see Figure 2). They suggested classes should be organized with a more
homogenous set of participants, either by splitting the participants into different tracks (software,
electrical and mechanical engineering), or by organizing a course with a more focus content.

The participants also expressed their interest in a more in-depth training on each tool, i.e. they
would have preferred longer and more focused workshops at the cost of seeing fewer tools. They
suggested workshops should only be given on tools which were not available in the industry, and
not include any commercial or traditional tool.

The opinions expressed about the content of the project itself were diverse. Some participants liked
the idea of having a single global project theme (i.e. designing an artifact). One of the participants
did not find it useful and too ambitious. All of them would have preferred more freedom in
designing and manufacturing their own artifact, at the risk of realizing a nonworking design.

Project structure

All the interviewed participants found the course too long and too intense to be fully efficient. They
found themselves not being able to assimilate any new material after the eighth or ninth week. They
suggested more free time for reviewing course material, introducing homework and graded tests.
They promoted tests as being useful for providing feedback to both the instructors and the
participants.

In the context of the project, one participant suggested to provide the participants with their own
workstation for the full duration of the course. He believes the participants should spend more time
using the tools by themselves.

The interviewed participants suggested the following workshop scenario (for a single tool):

• General overview (one afternoon): its purpose, its context and its limitations are pre­
sented; user documentation is handed out

• Hands-on workshop (one afternoon): the low level details of the tool are introduced to
the participants by means of a very simple example; the lecture alternates between
course mode and workshop mode; the specification for a midsize design is handed out

• Midsize design (two afternoons): the participants are on their own and built a midsize
example; TAs are available for questions and assistance only; designs are handed in at
the end of the second afternoon

• Critique (one afternoon): the designs of the participants are graded and critiqued

One participant particularly insisted that the content of the class should be structured and exposed
in a top down fashion. For example, he did not like the overlap between the system level training
and the tool workshops.

Two participants found that the most successful classes were those which were based on a very
simple and working example. They found the worst classes to be those where time was lost because
of computer crashes. They pointed out that they were less able to recover from system crashes than
students, mainly because they were accustomed to reliable systems.

Finally, a participant pointed out the importance of the overall coherence of the project material.
They found the demonstrations which were presented out of context were not useful. This
advocates for a global project theme.

Tools

The participants found that most of the tools seen in the workshop suffered from a data
management problem. They spent a non-negligeable part of their time browsing, renaming and
moving files. They said the lack of transparency of the tools with respect to the file system would
require a more in-depth introduction to the file system. On the other hand, tools with a better
interface would decrease this learning time and allow more focused training.

Additional remark

Most of the suggestions of the participants would require more teaching assistants and resources.
Considering the time to train such personpower and the setup cost associated with a computer
cluster, we do not find making the course shorter and more focused a realistic solution. In order to
further lower the overhead, we would even suggest to reuse the same artifact and large portions of
the project material across the courses. This would be reasonable since it is not likely that the same
participants will attend such a course two consecutive years.

6 Towards a better project organization

6.1 Overview

A simplistic solution to many problems we previously mentioned could have been to add time and
personpower to the project. However, larger personpower and longer preparation time mean higher
cost, which would not have been acceptable. In this section, we focus on the problem: given a fixed
amount of resources, how productivity could have been improved, and contingencies and overhead
reduced.

6.2 Task assignment

As mentioned in Section 3.4 and Section 4.3, the calendar time of each task is usually greater than
its personpower; in other words, a task could take one calendar month and only one person week.
The reason is that each person was responsible for more than one task at any point in time. The TAs
were responsible for the design of the artifact, teaching and administering the project. The tool
preparation also overlapped with the beginning of the course. This resulted in lower productivity
and shorter deadlines.

Increasing productivity (while keeping the personpower constant) could have been achieved by
increasing either the size of the team or the preparation time. The former would have enabled the
assignment of only one task per person. The latter would have allowed the tool preparation, the
design of the artifact and the teaching to be sequential. This solution would be better because of its
lower overhead in training.

In the context of the Bosch course 91, none of those solution would have been possible. The
preparation only started in March, when the number of participants (hence the budget of the course)
was known, and the project team started to work full time by May, when the academic semester
ended. We did plan to increase personpower by training three REUs. This happened not to be a
realistic solution because of the high training overhead.

6.3 Relationship with the rest of the course

Another consequence of the late start in the preparation of the course was that the material taught
in the morning lectures was not coordinated with the project schedule. This lack of integration
often required presentation of the same background material twice. A better integrated schedule
would have aUowed for a more fruitful project execution and participation.

6.4 Interaction between design processes

Figure 5 illustrated the interaction between the design process of the project team and the design
processes of the participants. Initially, the design of the first artifact was planned to be completed
and tested before the beginning of the course. In this scenario, the first artifact would have been
used as a golden solution that the participants would manufacture instead of their designs. The
project team design process was delayed and overlapped the participants design process, to the
point that the housings designed by the participants served as a starting point for the project design
team.

Both the quality of the artifact and the interest of the participants could be increased if the
participants have some influence in the design of the artifact If the project team design process is
completed before the beginning of the course, and in the case off campus manufacturing times are
short and predictable, the ideas of the participants could be used to improve the initial design. The
trade-off is that the project design team has to be available during the course and able to modify
the initial design without introducing too many flaws.

6.5 Tool providers

Most of the work on the tools was done by the software TA, since the tool providers were
graduating. The first consequence was that the latency of bug fixes was high. The second was that
the most recent version of the tool was unstable, because it had new features added.

Having a person external to a project do low level software tasks such as porting and debugging
induces a high overhead in training. Moreover, having a single person work on many tools requires
a broad software background (knowledge of multiple programming languages, architectures,
databases, user interface toolkits, etc.), which was not always the case for the software TA.

A better solution would have been to have only the tool provider modify the code of their tool. This
suppresses any overhead in training. However, the trade-off is that the tool provider has to be
available for an extended period of time, and that he has enough programming skills to be able to
port a tool to a different architecture and a different display.

Conclusion

7 Conclusion

In this document, the preparation and implementation of the project part of the Bosch course 91
was described and analyzed. We suggested a few solutions we believe would improve the quality
and decrease the cost of a similar course. The relationship of such a course with research was also
investigated.

W e focused on the importance of the estimation of the personpower and the calendar t ime required
for such a course. W e described how delays in the preparation could significantly increase the cost
and lower the teaching efficiency.

How the organization of the team project and the task assignment could be improved in order to
increase productivity was discussed. W e came to the conclusion that a larger team would not solve
the personpower problem encountered during the course; that a team of similar size with a longer
calendar preparation t ime would be preferable.

An insight was given into the cost of integrating a tool into a course program and suggest that a
smaller number of better quality tools would be preferable. This would lower the preparation t ime
and allow a more in-depth training of the participants.

We made long term suggestion to improve the quality of research software without turning E D R C
into a software factory. We believe that if tools are to be used in a teaching environment, robustness
becomes a major concern which has to be addressed early in the development phase of the
software.

Finally the part icipants ' side of the course was presented thereby illustrating their expectations in
terms of quality and course content.

Bibliography

8 Bibliography

[Birmingham ct al, 1989a]

[Birmingham et al, 1989b]

[Coyne, 1991]

[Gupta et al, 1990]

[Gursoz, 1991]

[Gursoz et al, 1991]

[Heisserman, 1991a]

[Heisserman, 1991b]

[Subrahmanian et al, 1989]

W. P. Birmingham, A. P. Gupta and D. P. Siewiorek
The MICON System for Computer Design
IEEE Micro, Vol. 9, No . 5, October 1989

W. R Birmingham and D. P. Siewiorek
Capturing Designer Expertise -- The CGEN System
26th ACM/IEEE Design Automation Conference Proceedings, 1989

R. F. Coyne
An Evolving Hierarchical Design Framework
Ph.D. Thesis , Carnegie Mellon University, E D R C
Technical Report EDRC-02-15-91 , May 1991

A. P. Gupta and D. R Siewiorek
Ml: A Small Computer System Synthesis Tool
6th IEEE Conference on Al Applications Proceedings, 1990

E. L. Gursoz
User's Manual for Noodles Library
Carnegie Mellon University, E D R C
May 1991

E. L. Gursoz, Y. Choi and E B. Prinz
Boolean Set Operations on Non-Manifold Boundary Representation
Objects

CAD, Vol. 2 3 , N o . 1, January 1991

J. A. Heisserman
Generative Geometric Design and Boundary Solid Grammars
Ph.D. Thesis, Carnegie Mellon University, E D R C
Technical Report EDRC-02-18 -91 , May 1991
J. A. Heisserman
Genesis Reference Manual
Carnegie Mellon University, E D R C
Technical Report EDRC-48-23-91 , August 1991

E. Subrahmanian, A. Westerberg, G. Podnar
Towards a Shared Computational Support Environment for
Engineering Design
Lecture Notes in Computer Science: Collaborative Product
Development, D. Sriram, R. Logcher, S. Fukuda (eds)
Springer-Verlag, 1991

