NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Addressing the Tradeoff Between Standard and Custom ICs in
System Level Design
Jay K. Adams, Donald E. Thomas
EDRC 18-28-92

Addressing the Tradeoff Between Standard and Custom ICs in
System Level Design *

Jay K. Adams and Donald E. Thomas

February 1992

Abstract

Drigital design at the system level considers the implementation of a sysiem with some mix
of standard ICs, custom ICs, and scfiware. In the early stages of design the system is described
by a set of descripitions which may include software, hardware bebavioral descriptions, and
specifications for standard parts. The implementation implied by the initinl set of descriptions,
however, may not meet system performance goals (i.e. cost, throughpat, physical sise). The
challenge of the early design stages, then, is to rework the set of descriptions into ome whose
implementation meets the performance goals. One possibilily is to consider designing custom
ICs for some parts of the system, This may be an atiractive sliernative when only a subset of the
functionslity of a standard IC is needed by the system, or when the standard IC implementation
represents & poor use of PC board space {i.e. many S5I ar MSI parts}. This paper formalizes
the tradeoff between using s custom IC and weing standard ICs to implement part of & system.
The new design tool described in this paper brings together system-level and behavioral-level
synthesis paradigms and is capable of designing microprocessor-based computer systerns which
include an ASIC. Effective use of the ASIC's gate capacity and 1/Ox results in designs which
require as little as 62% of the PC board ares needed by designs with no ASIC.

I Introduction

Digital design at the system level considers the implementation of 8 system with some mix of
standard ICs, custom ICs, and sofiware. In the early stages of design the system is described
by a set of behavioral descriptions which may include software {using » programming language),
hardware (described behavicrally), and specifications for standard parts (e.g. memory: 32K by
8). The implementation implied by the initial set of descriptions, however, may not mect system
performance goals (i.e. cost, throughput, physical sizse). The challenge of the eazly design stages,
then, is to rework the set of descriptions intoc one whose implementation meets the performance
goals. Several possibilities exist: re-forming processes, reconsidering which processes should be
implemented in hardwaze and which should be implemented in software, repartitioning the hardware,
and designing custom ICs for some paris of the system.
Even though the initial description of the system suggests the logical stru-ctu:e of abstract parts,

the structure of the physical parts in the implementation may be quite different. Two abstract

*This work has been supported by the Engineering Design Research Center, 8 NSF Engineering Center

1

University 1 iy~
Carneg:e i raties

lttSburgh PA 1...|£1 iy Brsitg

b2

I INTRODUCTION

parts may be combined when a single physical part subsumes their functions, a single abstract part
may bc decomposed when no standard part performs its function; or the abstract part may be
implemented as part of a custom [C. The last siluation may arisc when only a portion ol a standard
part's functionality is needed, thus it could be more efficiently implemented using an ASIC. It may
also arise when the standard part alternative represents a poor use of PC board space; such is often
the case for interface or "glue” logic,

In this paper we begin to explore the issues involved in choosing between standard and custom
[Cs [or part ol a syslem. By combining and cxlending the capabilitics ol lwo existing digital design
tools. the Svstem Architget's Workbench (SAW) |1] and the MICON System |2] 3], we have created
a tool capable of addressing these issues. The new tool is able to design single board computer
systems according to high level specifications which among others include: the target system cost,
the available PC board area, the target power dissipation, and the sise of an ASIC (in terms of gate
capacity and I[/O count) that may be used in the design. The ASIC may be used to implement a
number of [unctions that would otherwise require the use ol standard parts. The result is the design
of a processor board (a part list. a description of the ASIC behavior, and a nct list) that meets the
specifications.

The new design tool brings together two synthesis paradigms. svstem-level synthesis and compon-
ent-level behavioral synthesis, Figure 1 shows how the system-level and component-level synthesis
tools interact. At various points in its design process the system-level synthesis tool must decide
between using onc or morc standard parts and iucorporating their behavior into an ASIC. In or-
der to make a decision the system-level tool provides specilications lor a new component (o the
component-level synthesis tool. The component-level svnthesis tool creates a compoenent that meets
the specifications and reports to the system-level synthesis tool the characteristics (e.g. circuit area)
of the new component. The system-level tool then makes its decision based on the characteristics of
the new-component and those of the standard parts.

The specifications for a new component censist of a behavioral description, clock frequency
rcquirements, timing constraints, and fumctional parameters. Functional parameters describe how
the component is 10 be used in the svstem and may implicitly or explicitly declare that some of the
functionality included in the behavioral description is not used. The functional parameters. then.
allow the component-level syvnthesis tool to make use of knowledge about how the component is to
be used in the system.

The exchange of information between the two tools allows the component-level synthesis tool to
specialize the component for its intended use while allowing the system-level synthesis tool to reason
aboul the exact cost of implementing the new component. [t is the job of the component-level 1ool
to clficiently synthesize a component which meets the specilications; and the job of the system-level

tool to determine whether or not the new component should be included in the system.

system specifications

\

component
System-Level specifications Component-Level
Synthesis - IS‘ymhesis
component
characteristics

system design

Figure 1: The interaction between aystem-level and component-level synthesis tools.

As an example of the interaction between the two synthesis tools, suppose that the sysiem-level
tool needs to implement a serial 1/0 controller. It knows that the Inte] 8251 will suffice. In order
to find out how much eirenit ares wonld be used if the serial /0 controller were imcorporated into
the ASIC, the aystem-level tool passes s behavioral description of the i8251 to the component-level
synihesis tool along with the clock frequency requirements {e.g. maximum baud ratc). Suppose
further that the i8251 will always be operated in asynchronous mode. The sysiem.level tool could
pass that information along in the form of a functional parameter. The component-level tool would
then synthesise an ASIC veorsion of the 18251 which only supports asynchronouns mode and report
its characteristics back to the system-level tool. The system-level tool would then choose between
using the i3251 and including its fancticnality on an ASIC.

The system-level synthesis tool may alsc choose to include the functionality of an SSI or MSI
part on the ASIC. In thai case we assume that & macro exists for the ASIC version of the SSI or
MSI part and that no synthesis is necessary; the system-level tool simply makes its choite based on
the characteristics of the macro and those of the SSI or MSI part.

Given that the component-level and sysicm-level synthesis tcols exist, only two issnes remain:
how the component-level synthesis tool can make use of functional parameters to customize a design
for a given application, and how the system-level synthesis tool chooses between the new component

and standard ICs.

The following section brielly discusses previous research along these lines. Section IIT describes

4 HI FUNCTIONAL PARAMETERS

how functional parameters axe handled by the component-level synthesis tool. Section IV describes
how the system-level synthesis tool scleets between the standard and custom 1C allernatives. Scclion
V describes the results of experiments with the new design tool. Finally, Section VI offers some

conclusions as well as indications of future directions.

II Related Research

System level synthesis has been the focus of the MICON project [2] [3] for several years. MICON is
a knowledge-based expert syvstemi capable of producing designs for single-board computer svstems
based on system-level goals such as the total amount of PC board area. svstem cost, and power
dissipation. MICON, however, is currently only able to use standard, off-the-shelf components in
the systems it designs. This paper will show how adding a high-level svnthesis engine to a svstem-
level synthesis tool such as MICON allows it to design systems which include custom ICs.

High level synthesis (register-transfer level synthesis from a behavioral description) has been an
active area of research for some time. The System Architect's Workbench (SAW) [1]. for instance. is
able to design an ASIC according to a high-level behavioral description. High-level synthesis systems
are able to take into account performance goals such as timing constraints [4]. clock speed. and circuit
area. They are also able to partition functionality among several physical components [5] [6]. Current
high-level synthesis techniques are inappropriate for system-level design, however. because of their
inability to reason about complex physical compenents (e.g. memories, microprocessors). This
paper builds on previous high level synthesis work by incorporating it into system-level synthesis
and adding partial evaluation as a way of synthesizing a subset of a behavior.

Partial evaluation. especially as it applies to compiling and compiler generation. has also been an
active topic of research [7]. Recently. Berlin [8] and Weise [9] reported the use of partial evaluation
as a way of specialising scientific code for a given situation (e.g. turning a program for solving the n-
body problem into a more efficient one for selving the 3-body problem). We apply partial evaluation
in order to produce a specialized component from a general behavioral description. Although the
goal of the Berlin and Weise use of partial evaluation is similar to ours. partial evaluation. to our

knowledge, has never been used to specialize a hardware description prior to synthesis.

II1 Functional Parameters

The purpose of functional parameters is (o allow the component-level synthesis tool to make use of
knowledge about how the component is to be used in the system. Functional parameters appear
in g behavioral description as constant declarations. The values that are declared to be constant
may cither be inputs to the component (¢.g. a pin on the component that mcans "operate in mode

A" or "operate in mode B") or "flags" in the behavioral description (i.e. a variable that means "is

function X required”). For example, if the behavioral description described an up/down counter, a
functional parameter might imply that the “count up” input is always false. In that case, the parts
of the behavioral description that deal with counting up could be eliminated.

Our approach to making use of functional Parameters relies on partial evaluation to eliminate
parts of a behavioral description which are not need. The goal of partial evaluation, as it is imple-
mented here, is to remove paths in the control fiow that cannot be executed. Specifically, we wish to
determine, for every n-way branch in the behavioral description, which alternatives cannot be taken
in light of functional ﬁunmeten.

First, we define an n-bit partial constant, P, to be p1p;...pa where p € {0,1, —}. We say that a
constant, 4 = a1a3...ax where a € {0, 1}, is consistent with a partial constant, P, if and only if for
every i for which p; € {0,1}, a; = p;. Intuitively, a partial constant represents a binary number in
which some of the bits are constant and some are variable.

Let C(P) be the set of all constants that are consistent with P. If P is an m-bit partial constant
and Q is an n-bit partial constant, then a partial evaluation, PE, of an n-bit function applied to P
is is defined to be

PE(f,P) = Qifft VA € C(B): f(4) € C(Q)

This definition guarantees that a PE operator preserves the semantics of the function. It says nothing
about the ability of a PE to propagate constant information.

In order to make use of the constants in P we define PE so0 that “1” OR’ed with “1,” “),” or “-”
yields a “1™; and “0” AND’ed with “1,” “0,” or “-" yields a “0.” Using similar reasoning, we define
PE to take advantage of constant bits in the inputs of any logical or arithmetic operation. Figure 2
shows examples of our PE applied to AND (&), OR (1), GREATER (>), and PLUS (+).

We assume that an n-way branch construct (analogous to a CASE or IF-THEN-ELSE statement)
consists of a selector and a number of alternatives. The selector is a function and a set of inputs;
and each alternative is a constant and a list of operations. The semantics of an n-way branch are
such that an alternative is active when its constant equals the value of the selector function applied
to the inputs. When an alternative is active, control passes fiom evaluating the selector function to
the list of operations associated with that alternative.

Unreachable branch alternatives are removed by considering each n-way branch in the behavioral
description. The selector function of the branch is evaluated with the inputs (a partial constant) to
obtain the selecting partial constant. Then, any branch alternatives whose constant is not consistent
with the selecting partial constant can be removed. If only one alternative is left, we remove the
branch construct itself, and replace it wit.h the operations associated with the alternative. The
definition of a PE operator given above, ensures that removing branch alternatives in this way will

not alter tﬁe semantics of the branch. An example is shown in Figure 3.

0100 | ---1
010- & 0--1
1-11 > 10-C

00-1 + 16-0

II FUNCTIONAL PARAMETERS

1 (true)

sum=1--1, carty=0

Figure 2: Partial Evaluation: Even though some of the bits in the operands are unknown, some

conclusions can be drawn about the result.

010;
inputi;

e
nu

case (P | Q)

0:

begin .
1:

begin .
2;
begin .
3:

4
5

6:

begin ..

T:

begin ...

endcase;

begin ...
begin ...

begin ...

end
end
end

end

end
end

end

— 2

010;
inputi;

D
noa

case (P | Q)

begin ... end
3:
begin ... end

6:
begin ... end
7:
begin ... end
endcase;

- Figure 3: PE applied to “P ! Q” results in the partial constant “-1-". The alternatives that are
inconsistent with “-1-" are removed.

IV Standard versus Custom ICs

The system-level design tool must be able to choose between ASIC-based and a standard part
based implementations. Our approach to this problem is similar to that used by MICON to choose
among altemative standard parts[10]. The system-level syathesis tool calculates what impact each
alternative will have on the physical sise, dollar cost, total power dissipation, available ASIC ares,
and avnilable ASIC 1/0s of the evolving design. Standard ICs will contribuie to the physical size,
dollar cost, and power dissipation of the design bat will not affect the available ASIC area oz 1/0s.
An ASIC-based implementation, on the other hand, will affect the available ASIC ares and I/0s
but will not contribute to the physical sise, dollar cost, or power dissipation of the design.

The actual choice is made by computing & cost for each alternative then choosing the alternative
with the lowest cost. The cost is a weighted sum of the percentage of each system resource (i.e. PC
board area, cost, power dissipation, ASIC area, and ASIC [/Cs} consumed by the alternative. The
cost is determined by

N;
Cost = mzm .w;"i..'.'
where N is the amount of rescurce 1 required by the part, T; is the initiai amount of resource 1 in
the system, and W; is the variable weight factor. As the design evolves, W; changes to express how
important it is to conserve resource i. W) increases as resource i is consumed. If W; for & particular
resource becomes larger tham the weight factors of the other resources, it indicates that resource 4
is in relatively short supply and, consequently, resource i should be conserved if possible.
The weight factor for each resource, W, is given by

_ T,
T Ai+{o.onT;

where A; is the amount of each resource that is currentiy available and S; is a constant scale factor

W 5

for ench resource. The scale factor addresses the fact that the use of some percentage of one resource
may not be comparable to the nse of the same perceniage of another resource. For example, it may
be desirable to choose a component that requires 10% of the ASIC resoutces and no additional boazd
area over one that requires 5% of the board area and no ASIC resources. While there will usually
be onky enough ASIC resonrces to implement a fraction of the entire system, there must be enough
board area to implement the entire sysiem, including parts for which no ASIC alternative exisis
{e.g. the CPU or the memory). Thus, we expect that the amouné of ASIC resources needed to
implement some function will be a larger fraction of the total than that of the board atea needed to
implement the same function. Experiments have shown that when the scale factors for board ares,
cost, and power dissipation are unity, ASIC area and ASIC I/O scale factors of 0.05-0.10 work weil.

In order for ASIC I/0 usage to be figured into the cost function, the system-level synthesis tool
must be able to determine, at any point in the design, how many I/O's aze available on the ASIC

8 V RESULTS

120 count = 3 IO count =4 IO count =2

Function implemented

D with the ASIC
@)

Funection for which no
decision has yet been made

Figure 4: An example of how ASIC 1/0s are counted by the system-level synthesis tool. -

and how many will be consumed if some function is added to the ASIC. We assume that an ASIC
I/O must be used for every signal that connects an ASIC circuit to a non-ASIC circuit (i.e. I/Os
are not multiplexed). At any point in the design process, the number of I/Os in use is determined

by two rules:
1. Count one I/Q for each net which connects to both an ASIC circuit a non-ASIC circuit.

2, If the design of any component on a net is unfinished, assume the net is connected to a

non-ASIC circuit.

Rule 2 ensures that the /O count is always pessimistic. It also ensures that, at any point in the
design, the decision to use a standard IC does not impact the ASIC I/0 availability. Figure 4 shows

an example of how the ASIC I/O count progresses as the design evolves.

V Results

SAW and MICON enhanced and combined to implement the design tool described in the previous
sections. The new tool is capable of designing single-board computer systems which may contain
a single ASIC. We limit the design to a single ASIC in order to avoid the problem of partitioning
functionality among ASICs. The design tool takes as input the target system cost, the available
PC board area, the system I/0O requirements, the target power dissipation, the gate capacity of an
ASIC, and the I/0O count of an ASIC. Its output is the design of a single-board computer system
system, which includes a part list, a description of the ASIC, and a net list.

Partial Evaluation

Figure 5 shows the results obiained when partial evaluation was applied to several behavioral de-
scriptions prior to synthesis. The physical sise of the design is shown in terms of controller states,
register bite, functional unit gates, and MUX inputs. The CDP1802 is an 8-bit microprocessor. It
was synthesised for the case in which the interrupi and DMA imputs were declared to be inactive.
The AM2003 is a 4-bit processor bitslice. The AM2903 was synthesised for three cases: one in which
the part was to be the least significant slice, one in which the part was ic be the most significant
slice, one in which the part was to be an intexmediate slice. The i8251 is a serial I/ interface whose
behavioral description consists of three processes. The results shown are for the transmitier process
only. It was synthesized for two cases: one in which the only synchronous mode was enabled and one
in which only asynchronous mode was enabled. ATBI is a memory and I/O bus interface designed
for an £0336-based workstation. ATBI may or may not include a write buffer. It was synthesized
for the two cases in which a single write buffer entry is and is not required. All descriptions were
also synthesised without using partial evaluation so that hardware would be created for all of the
behavior in the original description. In all examples, partial evaluation was able to 1educe the size
of the resulting hardware by eliminating those parts of the behavior which are not needed.

Standard versus Custom ICs

The new tool was used to produce designs for an §0386.-based processor board in & variety of
scenarios. The scenazios differ only in the specifications aupplied for the available PC board area,
ASIC gate capacity, and ASIC I/Q count. The design of the processor board is such that the
keyboard controfler and the serial I/Q (SIO) controller may be implemented either by a standard
part or as part of an ASIC. Also, the memory bus interface may be implemented either as part of
the ASIC or with standard SSI and MSI T'TL parts. In addition to these subsysiems, some of the
processor’s glue logic may also be implemented with the ASIC, eliminating the need for it to be
realised with discrete TTL parts.

Early experiments revealed that better results are obtained when the Jdecisions were made in
otder of their impact on the final board area. Since implementing the bus interface using the ASIC
rather than discrete TTL components results in the greatest reduction in board ares, the sysiem-
level tool is programmed to decide how the bus interface is implemented before considering the other
subsystems. It then makes decisions sbout how the keyboard controller and 510 controller (in that
order) are implemented.

Over the many scenarios that were attempted several tendencies, with respect to éelecting a
custom rather than a standard IC, were cbserved. The tool chose to implement the bus interface
with the ASIC in all vases in which the ASIC had sufficient aren and I/0Os. This is clearly due to

10 V RESULTS

(a) CDP1802 (b) AM2903
1.0 -

0.8 -
0.6
0.4 4

0.2 <

AR
DANAINNRNNNNR

AR

ctrl states reg. bits FU gatesMUX inputs 0.0 4
ctrl states reg, bits FU gates MUX inputs

Bl Entirc behavior INT,
@ who DMA H Entire behavior I intermed. slice

B LS slice MS slice
(c) i8251 (d) ATBI

ctrl states reg. bits FU gates MUX inputs ctrl states reg. bits FU gates MUX inputs
B Entre behavior M Entire behavior
B Sync mode only B No WB entrics
B Async mode only B Onc WB enry

Figure 5: Partial evaluation results. The amount of hardware produced is normalised to the sise of
the “entire behavior™ case.

11

the fact that implementing the memoty bus interface with the ASIC saves a considerable amount of
board area. The keyboard controller was usually realised with the ASIC if encugh area and I/0s
were available. Since the keyboard controller shares many I/Q’s with the bus interface, adding it
o the ASIC requires nsing only a few additional ASIC I/0Os (provided that the bus interface is also
being implemented by the ASIC). The tool chose to use the ASIC for the SIO controller only when
ASIC area was in ample supply, either becanse a large ASIC was specified or becanse the ASIC
was not used to implement the bus interface or keyboard controller, This too was expected since,
due to the small physical sise of the standard component that may be used to implement the 5i0
controller, it does not provide as much opportunity for saving board arca.

We belicve that in general our tool wili always choose an ASIC implementation over one composed
of many discrete logic parts (provided that the ASIC has sufficient gate capacity and number of
[/Os) because of the amount of board area that is saved. When the choice is between uxing a single
standard part snd adding to the ASIC, the use of the ASIC does not offer as much reduction in
board aren. We believe that in these cases, our tool will choose to nse the ASIC only if doing so
does not ¢consume & great deal of the ASIC I/Os and gates. This may he the case when, as in the
case of the keyboard controller, relatively few additional ASIC I/Os are needed due to sharing I/0s
with other functions implemented by the ASIC,

ASIC versus Discrete Logic

In order to observe how efficiently the new tool uses the ASIC to implement glue logic we observe
how the physical sixe of the resulting design varies with the number of ASIC I/0s used. Early
experiments showed that the amount of glue logic that could be implemented with the ASIC was
primarily a fanction of the number of I/Os on the ASIC.

Figures 6 and 7 show how the final PC board area of the system varies with the number of ASIC
pins used when the ASIC gate capacity is fixed at 8000 and 12000 gates, respectively. Without
using an ASIC, the system would require 185in? of board ares. In some cases the board area does
not change even though more ASIC pins are used. Such is the case in Figure 6 when the number
of ASIC pins goes from 8% to 97 and in Figure 7 when the number of pins goes from 87 to 108.
This happens when the ASIC is used to implement one or more logic gates which would otherwise
be part of some other multiple-gnte package. For instance, suppose a design contains four NAND
gates. They may all be implemented either with a single 7400 or an equivalent part. If, however,
the ASIC were used to implement three of the NAND gaies, a 7400 would still be nesded for the
remaining NAND gate and no improvement in board arca would be seen.

Closer examination of the results reveals that parts which represent a high board area to I/0
count ratio (the amount of board area needed to implement the function with discrete parts versus

the number of additional ASIC I/Os needed to implement the function with the ASIC) are Likely

12

78

76

T4

72

board area (sq, in.)

70

66

Figure 6:

- N\

. N

.

8

H 1 v 1 1 1
80 120 160 200

ASIC pins

240

280

V RESULTS

Board area obtained versus ASIC pins used with ASIC area fixed at 8000 gates.

78

76 \

- \\&
70

68

board area (sq. in.)

80 120 160 200 240 280

ASIC pins

Figure 7: Board area obtained versus ASIC pins used with ASIC area fixed at 12000 gates.

13

14 VI CONCLUSIONS

to be implemented with the ASIC even when the availability of ASIC 1/0s is limited. Individual
logic gates are examples of functions which exhibit a high board area to I/O count ratio especially
when they share 1/0s with other functions implemented by the ASIC. Only when ASIC I/Os are
abundant are parts which represent a relatively low board area to 1/0 count ratio implemented with
the ASIC. This phenomenon is apparent in the graph shown in Figure 6. The difference in board
area between using 100 and 150 ASIC 1/0s is approximately 3.3in° while the difference between
using 200 and 250 ASIC 1/Os is only about 2.0in°. A similar observation could be made about the

graph shown in Figure 7.

VI Conclusions

The design tool described in this paper a lormalizes the decision between standard and custom
[Cs. Functional parameters allow a sysltem-level svnthesis tool 1o communicale knowledge aboul
a component's use to a component-level synthesis tool. Furthermore. partial evaluation allows a
component-level behavioral synthesis tool to use that knowledge to produce more efficient designs.
By combining the functionality of complex standard ICs and with that of low-level SSI and MSI
1Cs, the new design tool is able to specify an ASIC which subsumes the function of many standard
ICs.

This work offers some opportunity for improvement and extension. Coensidering the use of multi-
ple ASIC's, lor instance, would allow more ol the sysiem's [unclionalitly (o be inlegrated into custom
ICs. However, il would require the abilily (o clfectively partition the functionality,

Partial evaluation in high-level synthesis provides a way to specialise hardware in much the same
way it does certain types of computer programs. This capability could allow digital designers (be
they human or automatic) to tailor a fairly general hardware description to many situations. The
result could be less time spent developing hardware descriptions and the ability to use high-level
abstractions in hardware descriptions without compromising ciTiciency.

The ideas prescnted in this paper might also be extended to address the issuc of hardware versus
soltware implementations. If the specilfications [lor a syvstem include software, we could congider
designing special purpose hardware to replace the software and the processor on which it runs. The
choice between the software implementation and the special purpose hardware could then be made

in a manner similar to that used for standard versus custom [Cs.

REFERENCES 15

References

(1] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan, and R. L. Blackburn,
Algorithmic and Register- Transfer Level Synthesis: The System Architect’s Workbench. The
Kluwer International Series In Engineering and Computer Science. Kluwer Academic Publishers,
1990.

[2] W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek, “The MICON System for Computer
Design,” in Proc.eedingl of the 26th Design Automaiion Conference, IEEE Computer Society
and ACM-SIGA, 1989.

[3) A. P. Gupta and D. P. Siewiorek, “M1: A Small Computer System Synthesis Tool,” in 6tk
IEEE Conference on AI Applications Proceedings, 1990,

{4] J. A. Nestor, Specification and Synthesis of Digital Systems with Interfaces., PhD thesis,
Carnegie-Mellon University, April 1987.

[5] E. D. Lagnese, “Architectural Partitioning for System Level Synthesis of Integrated Circuits,”
IEEE Transaclions on Computer-Aided Design of Integraied Circuits and Sysiems, vol. 10, pp.
847860, July 1991.

(6] R. Gupta and G. De Micheli, “Partitioning of Functional Models of Synchronous Digital Sys-
tems,” in Digest of Technical Papers: IEEE International Conference on Computer-Aided De-
sign, (Santa Clara), November 1990, pp. 216-9.

[7] D. Bjorner, A. P. Ershov, and N. D. Jones, eds., Partial Evaluation and Mized Computiation.
North-Holland, 1988.)

(8] A. A. Berlin, “A Compilation Strategy for Numerical Programs Based on Partial Evaluation,”
Master's thesis, M.1.T., 1989.

{9] A. A. Berlin and D. Weiss, “Compiling Scientific Code Using Partial Evaluation,” Computer,
PP 25-37, December 1980.

[10] A. P. Gupta, “Private Communication,” 1991.

