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Abstract 
Industrial quality is presented as a direct result of manufacturing practices (e.g. 

tolerance allocation, process selection, inspection procedures). A quality indicator is 
developed that allows for the computation of a function representing the cost of an 
industrial product versus its quality level. This cost function is then incorporated in an 
economic model that estimates the consumer's demand for the product as a function of both 
its price and quality level. The profit maximizing values of the price and quality level are 
derived, and in turn indicate the optimum production mode. 

Introduction 
More than ever, industrial quality is one of the critical elements in the fierce 

competition between inanufacturing companies. From an engineering standpoint as well as 
from a management standpoint, quality is a challenge that cannot be ignored. Yet, one 
striking feature of most economic models in firm competition theory is the absence of 
quality considerations. The prevailing assumption is that competing products are standard 
commodities for which the consumer's demand is a function only of the price charged by 
the manufacturer. A possible explanation is that quality is often thought of as a qualitative 
variable, and is therefore difficult to include in an economic analysis: the benefits in terms 
of market share or profit resulting from tightening a process or screening a production 
cannot be easily estimated. For that matter, our paper presents a model quantifying quality 
at the engineering level in order to provide an evaluation of its impact on the financial 
results of a firm. The methodology can be used for assessing manufacturing practices as 
well as for guiding company policy and resource allocation. The model is exemplified by 
the study of the production of a simple three component assembly. 

1. The Cost of Quality 

1.1 What Is Industrial Quality ? 

Since the beginning of mass production, manufacturers have been struggling with 
the variability inherent in any manufacturing operation. Because no production process can 
produce any two items that are exactly identical, there is a need to. spot and isolate 
"defective products". On one hand the basic requirement for mass production is that all 



parts of a kind must be interchangeable and functionally equivalent, yet, on the other hand, 
it is not necessary or cost effective to try to make things exactly alike. It is therefore 
common to pomU constrained variations in part characteristics by allocating tolerances and 
removing out^f-tolerance parts. The most widely used format for these specifications is 

Nominal Value ± Tolerance. 

Traditionally, quality was defined as conformance to specifications where manufacturers 
measure the quality of their production by the percentage of defective items produced. This 
approach is reasonable when defective items have a significant probability of being shipped 
to customers. When the rate of defects is reduced significantly, or when the final products 
are inspected, quality cannot be assessed solely by the percentage of defective items 
produced; this measurement does not differentiate between items that possess 
characteristics near to the design nominal values and those that, despite being within 
specifications, deviate significantly from those target values. In many cases, the nominal 
value is that which provides the desired performance and, thus, the best product (Taguchi, 
86). Tolerances exist only to limit the degradation of the rjerfonnanee. An item off target 
may involve later costs because is it more likely to break down than a product that has 
parameters closer to the target values. Therefore, it is important to determine if a product is 
within specifications, and if so, how far it is from the target value. Because we address 
mass production problems, it is necessary to be able to assess the quality of an entire 
population of products. It seems therefore natural to study a production with statistical 
means and estimate the average deviation of the characteristics of the products with respect 
to the target value. Considering the characteristic of a product as a random variable, the 
standard deviation of this variable provides a reasonable amount of information on the 
variable spread. Therefore, rather than the percentage of defects, we will use as an 
indicator of quality, the ratio 

Quality Indicator = , (El) 
A 

commonly referred to as process capability, where o o u t is the standard deviation of the 
population of products shipped to the customers and A the tolerance. It is clear that the 
smaller this ratio, the better the quality of the products. 

1.2 The Cost of Producing at a Given Quality Level 

As described in the previous section, process variability is a major cause of quality 
problems in manufacturing. The performance or characteristics of the assemblies produced 



may vary and deteriorate because it is impossible to make all similar parts exactly alike. 
This degradation can be reduced if the part characteristics vary within constrained limits. 
Thus, it is believed that quality may be improved by improving the accuracy of the 
manufacturing processes, minimizing variations. Unfortunately, an accurate process is 
more likely to require more expensive machines, more complex setups, more maintenance, 
longer processing times, and better skilled workers; the more precise a process, the higher 
the cost per part. Several papers have presented the machining cost as a function of the 
tolerance held on a part (e.g. Peat 68, Spotts 73, Wilde and Prentice 75, Lee and Woo 90). 
Various representations of the cost of an individual item have been used. Generally, the 
cost is decomposed into the sum of a constant part (Fixed cost, cost of raw material, FO 
and a variable part (cost of holding the tolerance Ai). The functions most commonly used 
are: 

Q (Ai) = Fi + SL, or Q (AJ = F ; + J L , or Q (AJ = F4 + X, e- M , 
A? (Pi - Aj 

where ai, ft, X\ and xt are problem dependent parameters. We believe that this 
representation may camouflage part of the problem because the tolerance on a part is often 
an arbitrary number, chosen by the designer, that has nothing to do with the process itself. 
This model is based on the implicit, arbitrary relationship between the tolerance and the 
yield of the process (i.e. the famous relationship A = 3o) on which the theory of statistical 
process control is based. In fact, there is no reason why there should be a constant linear 
relationship between A and CT. Moreover, it is very likely that the coefficient 3 was 
originally chosen only because it is simple and "probably" not too far from the optimal. 

A better model would view machining cost as a function of the process output 
spread, rather than the tolerance on the part. Since we are addressing industrial mass 
production, processes produce part populations that are approximately spread about a 
nominal target value: unavoidable sporadic trends are eventually detected, corrected and 
averaged to the nominal value. Because of the high quantities produced it is also 
reasonable to assume that the parts are normally distributed. The standard deviation of the 
part population can then be easily estimated, and constitutes an intrinsic representation of 
the process quality. Therefore, our model treats the cost of machining a part with a given 
process as a decreasing function of the standard deviation of the pan population produced 
by the process. There is usually a best possible accuracy for which the cost is maximum,. 
and the cost decreases to become almost constant. Tolerances and process accuracies are 



thus decoupled independent variables. Once their values are determined, the resulting scrap 
rates can be calculated. 

1.3 The Coat of Inspecting 

Inspecting is the second means that can be employed to assure consistency in 
production quality. The idea is to allow constrained variations in part dimensions by 
allocating tolerances and removing out-of-tolerance parts. The allocation of these 
tolerances has a dramatic impact on the cost and quality of the final product. By the old 
quality standards (percentage of defective items produced) inspection improves the quality 
of a product since it removes defects. However, when quality is more accurately measured 

by the ratio , inspecting a production does not really change its average quality level 

unless the rate of defect is important (Taguchi 86). This is particularly true when 
inspection is performed only on the final products, but as will be seen in the example, 
locating inspection at various production steps may significantly affect the distribution of 
the final products and thus their quality. 

Inspection is a costly procedure involving two separate costs. The first is a fixed 
cost and corresponds to the wages and equipment of the people that actually inspect the 
parts. This cost is proportional to the number of inspections performed. The second type 
of cost is due to the loss incurred when a part, sub-assembly, or final assembly is found 
defective and has to be scrapped. This loss is equal to the value of the raw materials used 
to produce the defective item, plus the value that has been added to the material during its 
manufacture. Based on this, it would seem suitable to locate the inspection at the beginning 
of the fabrication process in order to avoid scrapping a part with substantial added value. 
Similarly, it would seem that assemblies should be made of reliable components in order to 
avoid scrapping an entire assembly because of a single defective component 

One approach, therefore, is to allocate tolerances on the components in such a way 
that an assembly made out of components within specifications is never defective. 
Stringent inspection procedures at the beginning of the fabrication could, therefore, assure 
essentially defect free assemblies. This strategy results in considerable costs because of the 
random nature of the distribution of the part populations. Indeed, in many cases, there are 
tolerance accumulation effects: a part too short on its tolerance has a significant chance of 
being assembled with another part that will make up for the defect of the first one. The 
probability for an assembly to actually be. made out of parts, each at the limit of the 
tolerances, is very low. Thus, it may not be cost effective to allocate tolerances based on 



the unlikely occurrence that all of the actual dimensions are at the limits of the specified 
toknnoe ZOM; die interactions between geometric deviations which may negate each other 
mostbecunridftird Therefore, a cost-effective tolerance allocation procedure may permit a 
percentage of defects in the final assemblies; a properly chosen manufacturing process will 
then yield a low defect percentage. 

It must be understood that inspection has a double purpose: it is used to generate 
feedback on the behavior of a process and to filter out bad parts. The first type of 
inspection requires only sampling procedures providing estimations used to check whether 
a process is under control or not, and possibly take a corrective action. The use of this 
inspection type is always recommended; the study of optimal sampling procedures is out of 
the scope of this paper (some important results can be found in Taguchi 86, 89). This 
paper deals with the second type of inspection, used when the defect rate of a process is too 
high to be acceptable. 

Two remarks on inspection are in order. First, because of economic constraints it 
is not always recommended that inspection occur after all of the stages of the manufacturing 
process. Rather, inspection procedures should be employed at strategic points in the 
production process. The example presented below considers four possible scenarios for 
inspection of assembled products: L) no inspection at all, ii.) inspection of the components 
only, Hi.) inspection of the assemblies only, iv.) inspection of both components and 
assemblies. To determine the optimal inspection strategy, mathematical models of the 
assembly fabrication are required. Once these models are defined, optimal use of 
inspection systems may be determined by cost considerations. Second, tolerance allocation 
and inspection procedures are intimately related and must be determined concurrently for an 
optimal strategy. This also enhances the need for a mathematical model of the fabrication. 

1.4 The Key Cost Funct ion 

Any attempt to incorporate quality in an economic model requires a cost analysis. 

For the quality indicator we defined ( E l ) , it is necessary to have an estimation of the 

production cost for all feasible values of the ratio —. Except for products made of a 

single component, product performance Y is usually influenced by several variables x i , x2, 
. . .xn, corresponding to the characteristics of different components of the product. A 
mathematical model is necessary to define the influence of each component on product 
performance: 

Y = F(xi, X2, ...Xn). 



Since the xi's are random variables, Y is also random. Each xi has a probability density 
function which depends on the manufacturing process and possibly the inspection strategy 
used to produce component L Once the production mode of each component is determined, 
the probability density function of Y is theoretically known as well as its standard deviation 
a. In fact, except for special cases (e.g. F is a linear function), statistical difficulties arise 
when computing a and it may be necessary to linearize F or use other methods like Monte 
Carlo simulations (Grossman 76). The computation of the cost function 

Cost = C ( A ) (E2) 

is therefore not a simple task but this cost function is the most important one. It is the only 
tool to assess the benefits of tightening a process or inspecting a production. Depending on 
production opportunities, C may be continuous or discrete. 

2. The Model 
We investigate the case where customer expectations or requirements for a given 

industrial product can be measured in terms of performance. The performance can be the 
geometry of the product, or any other measurable characteristic (e.g. speed, torque, power, 
composition, hardness, noise, weight). It must be clear that this paper addresses quality in 
the manufacturing domain. We do not address the problem of quality of design. The 
design of the product is assumed given and we want to determine the best possible way to 
manufacture it. Extensions to concurrent design issues are considered for future work. As 
stated in a previous section, the assumption of mass production is needed to provide 
meaningful average process accuracies. 

2.1 Benefits of Quality 

The ratio is useful to compare different quality levels but still does not allow 

for a monetary quantification of the quality benefits. This ratio can be used for a cost 
comparison between quality levels using the cost function developed above (E2) but this 
information is not sufficient to determine the optimal quality level from an economic 
standpoint. In order to do so, it is necessary to relate the quality and price of a product to 
the customer's demand for this product. A simple observation of the market for most 
industrial products reveals that different manufacturing firms selling roughly the same 
products have different market shares, depending on the price and quality of their products. 



Given different qualities, we believe that advertising campaigns can induce short term 
fluctuation tat caniiot account Therefore a firm 
has to take account of demand behavior when determining its pricing and production 
policies. 

Let us denote by N the demand for a given product, in a given market N denotes 
the number of products the consumers are willing to purchase, given the price charged by 
the firm and of the average quality level of the products. The price paid by a customer 
cannot exceed the highest price he would be willing to pay rather than make do without the 
product "The excess price which he would be willing to pay rather than go without the 
thing, over that which he actually does pay, is the economic measure of [the] surplus 
satisfaction. It may be called consumer's surplus" (Marshall 47). Let us denote by V the 
first price for which the consumers surplus is 0. For this price called the resistance price, 
the consumer's demand vanishes: a transaction at this price does not make any consumer 
better off. This resistance price can be considered as the value of the product (Cook 91). 
V, as a measure of the value given by customers to a product is a function of the average 
quality level of the product Let us compute an approximation of the function V for an 
individual product If the product performance Y deviates from the target value T, a second 
order Taylor expansion of V about T provides the following approximation: 

V(Y) - V(T) + V<T)(Y-T) + ^pOf-T)2. 

Two relationships allow for the determination of the derivatives of V: because V is 
maximum for Y = T, V(T) = 0. For Y = T + A, the product is defective therefore its value 
is 0, hence the approximation for V: 

V(Y) = V(T) 
1 A 2 . 

Because we are addressing mass production issues, we will consider the expected value of 
V: 

H V ( Y ) ] - V ( | l - ^ 5 
A 

where Vo is the maximum possible product value. The average product value can be seen 

as a function of the quality indicator—: 
A 



V(^») = V 0 

A 

If P is the price of a product, the consumer's surplus becomes 

V - P = V 0 

2 
i . 5 = - p . 

This approach is similar to that taken by Taguchi (Taguchi 86) to model his loss function. 
When quality is not modelled, consumer's choices are based on prices alone since 
maximizing the surplus means picking the lowest price. Surplus rnaximizing when quality 
is odelled, involves a maximization of V - P, and therefore does not necessarily favor the 
lowest price. 

2.2 Case of the Monopolistic Firm 

Let us consider a market dominated by a single enterprise manufacturing and selling 
a single product Let us determine the profit maximizing values of the price P and the 

average quality level ^ o f the product. If Fc is the fixed cost of production, N the 

demand and C the variable cost of production of a single product, the profit n of the firm 
can be expressed as 

A 
P-C(S=S) 

A 
-Fc 

(E3) 

To keep the model simple, we describe the demand as a linear function of the consumer's 
surplus: 

N = a V 0 

2 
Ooul 

A 
-P 

Under the assumption of differentiability for C, the profit maximizing values have to 
satisfy: 

^ . 0 f v ( S D H l ) + C(SQUt)-2P 
3P L A A J 

= 0 , 

which sets the optimal price at 



V(Sail) + Or**) 
A A . 

and 

a 
i«out 2 

V ( 5 * ) . C ( ? 2 ! » ) 
A A 

= 0, 

(E4) 

which sets the quality level at the value of for which the expression 

V'(°jn») _ C*(^OPt) 
A A (E5) 

is zero (V - C = 0 is obviously not a profit maxiimzing solution). The optinial quality level 
maximizes the value created per product, which for the value of the price P defined above is 
nothing but the consumer's surplus. 

3 . Example Application 
The example consists of the study of the industrial production of a set of three 

friction wheels. The wheels have different diameters and, therefore, different production 
costs. Each wheel, from largest to smallest, has a given nominal diameter of: 4,3, and 1 
inches. The assembly specifications require that its total length must be the sum of the 
three nominal wheel diameters, with a given overall tolerance, A, of 0.2 inches. The 
quality of the product depends on the deviation of the average length of an assembly from 
the nominal value. Each wheel is manufactured with an accuracy that has to be determined 
(see Figure 1), and that influences the distribution of the assembly lengths. We use the 
model developed in the previous section to determine i) the optimal quality level of this 
product and f&the cheapest way to reach this quality leveL 
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Figure 1: System of friction wheels. 

The wheels can be manufactured by three different processes: sawing, turning on a 
lathe, or grinding. For each of those processes, there is a best possible accuracy involving 
the highest cost Decreasing the processing times decreases the accuracy as well as the cost 
per part Each machine is best suited for a given range of accuracy over which the 
manufacturing cost per part can be represented as a hyperbolic function of the standard 
deviation of the population of parts produced (see Figure 2) (Cagan and Kurfess, 91). The 
global curve representing the wheel rnanufacturing cost as a function of process accuracy is 
found by taking the minimum of the three possible costs for any accuracy. Each wheel has 
its own cost function due to the different sizes of the wheels: the larger the diameter, the 
more expensive the pan. We are addressing a two step production process of 
manufacturing components and assembling them; therefore, inspection may or may not be 
utilized. If employed, it can take place after manufacturing the components, after 
assembling the wheels, or after both. For each strategy, we determine the cost, C, of an 
assembly within specifications by suiriming the costs of machining the individual wheels, 
Q(Oi), with a process of accuracy oj. When inspection is performed, additional costs are 
taken into account: cost of scrapping and cost of inspecting. The cost of inspecting an 
individual wheel is almost negligible ($ 0.05) since it can be done with a go-no go type 
gauge. Inspecting an assembly is more time consuming and therefore more expensive 
($0.20). We denote the tolerance on the i* wheel by Aj, the variance of the population of 
the final assemblies o 2 a n d that of the final assemblies shipped by o*2 0 U t (these two 
variances may be different due to inspection). The populations of parts are assumed to be 
normally distributed about their nominal or target diameters. 
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Figure 2: Cost functions of the components for different processes 

We need to develop a cost function representing the mmimum possible cost of 

production as a function of the quality level ^ . Each point on this curve can be found 

by minimizing the cost of production under a constraint fixing the value of The 

assembly can be produced using different inspection strategies for which the cost of 
production has different expressions. Therefore, we use a two step immmization method: 
the first step minimizes the cost of production for a given inspection strategy, and the 
second step consists of choosing the lowest cost over all the inspection strategies. Because 
of the complexity or non-differentiability of certain functions, the stochastic optimization 
technique of simulated annealing (Kirkpatrick 83) is selected to perform the optimization. 

Inspection of the Final AMffmh'r* ° " { v 

This strategy requires inspection of the final assemblies only. Components are 
manufactured, assembled and the assemblies are tested. A defective assembly is entirely 
scrapped, no matter what causes the defect This model consists of compounding 
independent normal distributions. The resulting distribution is truncated to simulate the 
inspection. Since there is no inspection of the components, there is no need for assigning 
tolerances on the components. Therefore, the only variables are the oYs (accuracies of the 
processes with which the parts are manufactured). The cost of an assembly (good or bad) 
is the cost of production of the components and the inspection cost The proportion of 



good assemblies produced, A, is a function of A and a. If Ic denotes the fixed inspection 
cost, the cost of an assembly within specifications is 

C = 
A(a, A) 

X Q ( t T i ) + l c 

The inspection also changes the population variance of the final assemblies. The 
population variance of the assemblies produced is 

3 

S 

but after inspection, it can be proven that the new variance is 

2AG 

- 2 = £ Q 2 

2 _ 2 
O0ut — & ' 

A(0,A)V2jc 

Therefore, the optimization problem consists of finding the values of the Oi's that nunimize 
C, under the constraint that o o u t is given. Once the values of the Oi's are determined, the 
processes to be used are easily found 

Process 
Accuracy 

0.00 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

1 

Rgure 3: Optimal process accuracies versus the quality level of the assembly 

The results of the optimization for this problem are presented in Figures 3,4 and 5. 
Figure 3 shows some trends common to all the inspection strategies. The components with 
the highest manufacturing costs (the largest wheels) are manufactured with the cheapest 
processes (the less accurate), and the components with the lowest manufacturing costs are 



required to be accurately manufactured. This is due to the fact that it is cheaper to hold 
tighter toleraace* on the smaller components. Note that the abrupt changes in the process 
accuracies in Figure 3 relate to production process changes (from grinding to turning to 
saw cutting with increasing overall tolerance). 

As shown in Figure 5, the cost of producing high quality items (small ratio ^ ) 

A 

decreases as — increases, up to a point where the manufacturing cost becomes constant 

nr , X \ h 1 /XI' A\ W h 
(Figure 2), whereas the scrap rate increases sharply (Figure 4) which causes the 
production cost to go up again. The use of normal distributions (with infinite tails) 
probabty leads to an overestimate of the scrap rate. Sttll, it is mteresung to nonce that the 
optimal values for the process accuracies sometimes involve a significant scrap rate (see 
Figure 4). 
Zero Defect Output 

Having a final output without any defect is the recent trend in industry. In our case, 
it can be achieved if and only if any combination of components meant for assembly 
provides an assembly within specifications. Therefore, any component that may lead to a 
defective assembly must be removed before the assembly stage. This requires a total 
inspection of the components. The variables that can be controlled are the accuracy of the 
manufacturing processes used and the tolerance assigned to the components. The cost of 
the i * wheel is: 

Cifra + dcj) 
A(Oi Ai) 

where A(Oi, AO is the proportion of wheels that pass the inspection, and Iq the fixed cost 
of inspection. From a statistical point of view, this model consists of compounding 
truncated normal distributions. It can be proven that the variance of the final assembly 
population is 

3 

i=l 
o? 2 A i q i _ e ^ ' * f t 

A(o% Ai)ViJi" 

The optimization problem consists of finding the values of the Oi's and Ai's that rninimize 

i=i A(CfcAi) 



under the constraint that <xout is given. The zero defect requirement induces a constraint 
stipulating that the sum of the tolerances on the components has to be less than the overall 
tolerance. The tmnimization of C shows that the zero defect requirement generates large 
costs. It is an expensive strategy because it requires accurate processes while resulting in 
substantial scrap rates. It is a worst case analysis: the tolerance allocation is based on the 
unlikely assumption that all the components of an assembly can be at the limit of the 
allowed variations. 

Inspection of the Final Assemblies and Components 

In this scenario, the components are inspected as well as the final assemblies. The 
control variables are the accuracies of the manufacturing processes used to make the 
components (Oj's), and the tolerances allocated to each component (Aj's). The model 
compounds truncated normal distributions into a resulting distribution that also must be 
truncated. The resulting distribution cannot be simply expressed and must be numerically 
computed. 

Figure 4: Percentage of defective items for final assembly inspection 

The cost minimization gives interesting results, This inspection strategy provides 
the lowest manufacturing cost of all the strategies modeled when viewed without fixed 
inspection cost. However, burdened by the fixed inspection costs, this strategy is efficient 
only for low quality items (see Figure 5). The optimal values for the process accuracies are 
similar to that of the previous strategies. The difference is, therefore, due to the inspection. 



The scrap rate of assemblies in the case of double inspection is much lower than in the 
other case (see Figure 4). This is due to the fact that the first inspection removes the 
components that deviate from target significantly and that are likely to result in a defective 
assembly. Concerning the components, the more expensive the parts, the lower the scrap 
rate* 

The global cost versus quality curve 

The global cost versus quality curve is simply obtained by taking the minimum 

production cost over the three strategies, for any given value of . For high quality 

assemblies (— < 0.2), no inspection is required since the values of the scrap rates are 0. 

Inspection in this case can be performed as a control procedure to make sure that the 
processes behave as they are supposed to, but inspection is not part of the actual production 
process. The differences between the three curves are due only to the fixed inspection 
costs. For quality levels between 0.2 and 0.275, inspecting the components only is the 
best procedure. Then, inspecting the final products is the optimal strategy until the quality 
level reaches 0.55 where a double inspection is necessary. It is interesting to notice that the 
higher the quality, the less inspection is necessary. 

4.5 < i • i - i • i O I A 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 5: Cost versus quality for various inspection policies 

i of the optimal quality level 

The determination of the optimal quality level requires the value of the resistance 
price of the assembly (first price for which the demand is zero). The friction wheels 



assembly is used as a component of high precision machines, to avoid the backlash 
produced by regular gears. The same desired effect can be obtained with high precision 
gears but at a higher cost It can therefore be assumed that if the price of the friction wheels 
reached that of high precision gears, the demand would fall dramatically. Let us assume 
that the price of high precision gears is $20.00 which can then be taken as the resistance 

price for the friction wheels. Because of the non differentiability of the cost function 

C A T 2 ) , the profit is directly maximized using (E3). For each value of the ratio —, the 
A A 

profit is a function only of the price and is maximum for 

V ( A ) + C ( A ) , 

A A 

as found in (E4). Since the function C ( I 2 H i ) had to be discretized for computation, the 

maximum profit is computed for each value of the ratio A3 The highest profit is still 

reached for the quality level that maximizes V - C, as given in (E5) for a differentiable 

function. The optimal quality level found is around — =0.1 (very high quality level). 

A 

Therefore, the assembly should be manufactured with a grinder with this high precision. 
Inspecting the parts and/or the final products is not necessary. The optimal price to charge 
is $12.6. 

Concluding Remarks 
We developed a model that allows for quantification of industrial quality by 

considering the statistical distribution of a production. The potential impact of inspection, 
tolerance allocation and process selection on the quality of a product was illustrated in the 
friction wheels example. Moreover, the consumer's behavior is modeled as a maximization 
of the surplus, function of price and quality. The producer's decisions for producing and 
pricing a product can be easily related to the consumer's behavior. This model is therefore 
a useful extension of conventional price theory for which industrial products are standard 
commodities with a constant quality level. 

The scope of the model is limited to products with precise specifications. The 

format studied in this paper was the classical 



Nominal Value ± Tolerance, 

but other formats can be investigated (e.g. one-sided tolerances, tolerances with different 
boundaries), using the formalism of the Taguchi methods. A similar approach can also be 
developed for products with several specifications. 
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