
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



The Constrained Geometric Knapsack Problem 
and its Shape Annealing Solution 

Jonathan Cagan 

EDRC 24-86-92 



The Constrained Geometric Knapsack Problem 
and its Shape Annealing Solution 

by 

Jonathan Cagan 

Department of Mechanical Engineering 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Phone: (412) 268-3713 
E-mail (internet): jcag-H@andrew.cmu.edu 

University Libraries 
Carnegie Mellon Umve- 1 

Pittsburgh, Pennsylvania u , j 

mailto:jcag-f@andrew.cmu.edu


Abstract 

This paper introduces a technique called shape annealing as a solution to an extension of 
the knapsack problem which we refer to as the constrained geometric knapsack problem. 
The constrained geometric knapsack problem includes geometric constraints and reduces in 
zero dimensions to the ordinary knapsack problem. Shape annealing, a variation of the 
simulated annealing stochastic optimization technique, is introduced to produce packing 
solutions. Shape annealing incorporates shape grammars to dictate permissible item 
orientations. Stochastic mutation based on a potential function creates a packing which 
converges toward the optimum. Results are generally sub-optimal although acceptable and 
the algorithm runs in polynomial time and space complexity. 

Introduction 

Knapsack problems have received wide attention in the literature as discussed in Martello 
and Toth [1]. The problem, which occurs in layout, cutting stock, scheduling and capital 
budgeting contexts, is to pack as many of a set of items into a knapsack as possible, 
bounded by some scalar quantity such as weight, to maximize the knapsack value; each 
packed item has a specified value itself. The knapsack problem has been shown to be NP-
hard. In this paper we address a more complicated problem, called the constrained 
geometric knapsack problem where the boundary of the geometric space of the knapsack 
must not be violated and, further, the items of the knapsack must not overlap and must 
orient themselves to each other in a pre-specified way. Such a problem may arise in layout 
problems where surface interactions of components are pertinent 

We propose a solution to the constrained geometric knapsack problem called shape 
annealing, originally introduced in the architecture literature by Cagan and Mitchell [2] to 
evaluate and control the generation of shapes. Shape annealing combines the concepts of 
the stochastic optimization technique of simulated annealing [3] with shape grammars [41 
which specify relations between geometric shapes. The resulting algorithm runs in 
polynomial time and space complexity and produces solutions which arc sub-optimal but 
acceptable. 

The following section will discuss the constrained geometric knapsack problem. Next 



simulated annealing and shape grammars are discussed. The shape annealing algorithm is 
• then introduced and applied to a simple geometric knapsack problem with an exponentially 

large number of possible solutions. 

1. The Constrained Geometric Knapsack Problem 

Knapsack problems have received wide attention in the literature. Given decision variables 
(XO of available items, each with its own weight (Wj) and value (Vj), and each which can 
be instantiated as many times as necessary, the knapsack problem is to maximize the value 
in the knapsack such that the weight of the n objects does not violate its capacity. 
Formally, the knapsack problem is defined as: 

n 

max: £ v * x k . 
k = 1 

s.t.: £ W k X k £ W m a x , 

X k e Z + , 

where Z+ is the set of positive integers. The knapsack problem has been shown to be NP-
hard [1]. For small n, the problem can be directly solved with integer programing 
techniques. For large n, however, bounding techniques and approximation techniques 
have been used to determine a solution. Martello and Toth [1] present a thorough 
discussion of the class of knapsack problems and both exact and approximate solution 
algorithms. 

The knapsack problem considers only the weight and value components of the items, 
important aspects in scheduling and resource allocation problems. A more difficult 
problem evolves by consideration of geometry. Suppose that the available space in which 
the items can be placed is fixed, as are the dimensions of the knapsack. Also, suppose that 
the items cannot overlap (i.e., occupy the same space). This more complex problem is 
called the geometric knapsack problem. Let Xi^ indicate a specific item (p) in the class of 
items X k . Also, let Stotal be the space bounding the knapsack in 9 ? , and S(X^ be the 
space of the k p * item in S # . The geometric knapsack problem is formulated as: 



max: £ V k X k , 
k = 1 

s.t.: X W k X k 5 W , ^ , 
k = 1 
X k e Z+, 

S ( X k p ) a S i X ^ . k , , 

{5 ( X ^ j v ^ c S t o t a l . 

The last two constraints respectively state that any one component cannot occupy the same 
space as any other component and that each component must fall within the space of the 
knapsack. 

This problem, in three dimensions, can be seen as a problem where objects are placed 
in a container, and the items settle into a tight packing. For two dimensions, we have a sort 
of "cookie-cutter" problem where cookies of a certain type each have their own utility, the 
cookie dough is rolled Hat and cookies are cut to get the most value of the dough (the 
closest planar packing is desired). For one dimension, the problem is like laying out pieces 
of wire on a given line. Finally, for zero dimensions the problem reduces to the knapsack 
problem because the bounded space becomes irrelevant. Thus the geometric problem is 
much harder to solve than the traditional knapsack problem and thus certainly remains NP-
hard. 

There is an even more specific problem than the geometric knapsack problem that 
considers geometric orientation. Suppose that in addition to the space being fixed, there is 
some criteria on the items based on their orientation. In particular, the items must fit into 
the knapsack with a certain orientation to each other. This may be required because of 
magnetic properties of the objects, relative surface roughness, or even aesthetic reasons, 
among others. This more complex problem is called the constrained geometric knapsack 
problem. Let O be a function relating the orientation of item j to that of item k via 
orientation relation-type Ox. Let L(X q ) be the label of X q indicating the unique 
characteristics of that class of items. Also, let Oy q be a description of allowable orientation 
Oj between the classes of items Xj and items Xq; Ojjq* is a variable, one of whose discrete 
values may be selected as the desired orientation. There are a prescribed set of orientation 
relation-types between each class of items, and a prescribed set of classes of items 
available. Finally, let Oi} be the orientation relation function between items in the classes of 



items Xj and items Xq which chooses one of the orientations O i j q . The constrained 
geometric knapsack problem is formulated as: 

n 

max: £ v k x k . 

s.t.: £ W k X k £ W ^ , 

The last two constraints state that there are i pre-defined orientations between classes of 
items Xj and items Xq, and that the orientation between items in the two classes is specified 
by those orientations. In practice the constraints need to specify enough geometric 
information to model the relative orientations. Also, it should be noted that the last 
constraint will actually be a disjunction of orientations Oyq. Section 3 will give an example 
of these orientations. 

In this reformulated problem, if Oijq is specified such that all possible orientations are 
included, then the problem reduces to the geometric knapsack problem; if all possible 
orientations are included and in addition S t o t a i is not specified, then the problem reduces to 
the traditional knapsack problem. However, the heuristic techniques presented in the 
literature for the knapsack problem are ineffective for the extended problem because they do 
not take geometry into account We introduce a technique called shape annealing to 
determine a good solution to this constrained problem. Shape annealing is an extension of 
the simulated annealing stochastic optimization technique of Kirkpatrick, et aL, [3]. 
Instead of using simulated annealing to determine values for variables in a pre-defined 
space, shape annealing actually generates the configuration solution. To do this, the X, 
items are represented as shapes and their orientation relative to each other is specified by 
shape grammars (section 3) as introduced by Stiny [4]. 

Shape annealing is shown to produce a good solution to this combinatoric problem 
based on a time and space complexity polynomial in the number of items, n. Shape 



annealing was originally presented by Cagan and Mitchell [2] in the architecture literature to 
propose a method to evaluate and control the generation of shapes. In this paper we show 
how the algorithm can be used to solve the constrained geometric knapsack problem. 

2. Simulated Annealing 

Simulated annealing is a stochastic optimization technique which has been demonstrated to 
solve continuous (e.g., [5-7]) or ordered discrete (e.g., [3, 8]) optimization problems of 
fixed structure. Kirkpatrick, etal.9 [3] developed the simulating annealing algorithm based 
on the Monte-Carlo technique by Metropolis, et al.$ [9], referred to as the Metropolis 
Algorithm. The idea is analogous to the annealing of metals. A cooling schedule is defined 
giving a temperature reduction over a certain number of iterations. Temperature (T) is a 
potential function with no physical meaning; the variable is called temperature to maintain 
the analogy with metal annealing. At high temperatures selection of a solution point is qute 
random while at lower temperatures the solution is more stable; the metal annealing analogy 
is that at high temperatures the molecules are at a highly random state while at lower 
temperatures they reach a stable minimum energy state. 

With simulated annealing, a feasible solution, si, is randomly selected and the "energy" 
(i.e., the objective) at that state, Esy is evaluated. A different feasible state, S2, is then 
selected and the solution objective is evaluated to £52* */ A 2> A 7 ' A c n S 2 becomes the 
new solution state. If Es2 £ Es,, then there is a probability based on the temperature that 
the new state will be accepted anyhow. Acceptance is determined by the probability 
calculation: 

where Z(T) is a normalization factor. A random number, r, between 0 and 1 is generated 

otherwise the old state is retained. The "temperature" (potential function) is reduced and 
the process continues until convergence is reached or the temperature reaches zero. 
Generally, the size of the mutation space is also reduced and asymptotes to zero. In this 
case, it can be proven that if equilibrium (i.e., convergence) is reached at each temperature 

Pr [Esi) 

and compared with P r { £ 5 2 ) - If r < P r f A J * ;}C c n c w s t a t c % p t e d anyhow; 



and if the temperature is reduced slowly enough, then the algorithm is guaranteed to 
determine the global optimum [10]. Because sufficient time cannot be guaranteed for large 
problems, simulated annealing is used to search only for a good solution and the precise 
globally optimal solution is often sacrificed. 

Generally the algorithm is run for several iterations at a given temperature until 
equilibrium is reached or until a certain number of iterations has occurred. The temperature 
is then reduced by a fixed amount and the algorithm is again run until convergence or an 
iteration limit is achieved. When there is no accepted new solution at a given temperature 
the minimum has been found. 

3. Shape Grammars 

Shape grammars were introduced in the architecture literature by Stiny [4] as a formalism 
for shape generation. A simple set of grammatical rules are defined which map one shape 
into a different shape. Only modifications specified by shape rules are permitted. What is 
most interesting is that from very simple shape grammars, quite elegant architectural 
layouts have been generated. Examples include villas in the style of Palladio [11], Mughul 
gardens [12], prairie houses in the style of Frank Lloyd Wright [13], Greek meander 
patterns [14], and suburban Queen Anne Houses [15]. 

Stiny [4] defines shapes as limited arrangements of straight lines in a Cartesian 
coordinate system with real axes and an associated euclidean metric. Boolean operations of 
union and difference are defined on these shapes, as weU as the transformation properties 
of translation, rotation, reflection, scale, and composition. Finally, distinguishing 
information about an individual shape can be associated through labels. This results in an 
algebra of shapes and a grammar formalism for algorithms from which languages of shapes 
are derived 

A shape grammar has four components: A finite set of geometric shapes (S), a finite set 
of label symbols (L) which specify additional characteristics about the shape, a finite set of 
shape rules (R) which can manipulate the shape, and an initial shape (I) which can be 
manipulated to form a new shape. Thus, from I, R transforms the set (I, L) into a new set 
(S, L), and, in general, R transforms one set of shapes, (S, L)", into another, (S, L)+, as: 



(S ,L)- * (S,L)+. 

An important issue in shapes and their grammars is that of emergence; by representing a 
shape as a set of maximal lines, new shapes that were not originally modelled can emerge 
from the intended shape description. Issues of emergence are not relevant to the current 
application and will not be pursued further. It should be realized, however, that from a 
formal description of shape, this issue is important 

An example shape grammar, which will be employed as an example in section 5, is 
shown in Figure 1 from Mitchell [16]. This grammar can transform a half-hexagon into 
three different shapes specified by Rules 1,2 and 3; Rule 4 is given for completeness and 
indicates termination of the grammar. From any one of the new shapes, the rules can be 
applied to a half hexagon within the shape to create a different shape. Given this language, 
a countably infinite number of shapes can be generated. 

Rulel 

Rule 2 

Rule 3 

Rule 4 

Figure 1 Example Shape Grammar (from Mitchell [16]). 



1 

Figure 2 Description of half-hexagon. 

This shape grammar can be represented by orientation functions, O*, which give all 

necessary geometric information about x-y coordinate and angle, 8, locations. Here, the* 

is only one class of elements ( X k = Xi) and there are three orientations for Rules 1,2 and 

3. In reference to the orientations described in section 1, these orientations are respectively 

called O i n , 0 U 2 , O n 3 , where items of class X! can be related to each other by orientation 

relation-type Oi, O2, O3. We formulate this grammar based on the midline of the half-

hexagons: 

O m « 0*(l, 0., width*cos(G), width*sin(6), -1 ,0 . ) , 

O112 = 0*(l, -sign*60., width*cos(6), width*sin(9), 1,0.), 

On3 = <9*(1, 0., height*sm(8), height*cos(6), -1,0.) , 

where the 6-tuple orientation function O* indicates for each rule: a sign orientation change 

prior to the x-y adjustment, an angle update prior to the x-y adjustment, the x-adjustment, 

the y-adjustmem, a sign orientation change after the x-y adjustment, and an angle update 

after the x-y adjustment. Width indicates the length of the mid-line and height indicates the 

short distance of the half-hexagon. For example, O*(1, -sign*60., width*cos(6). 

width*sin(6), 1,0.) for rule O m means to multiply a-sign variable by 1 and add -sign*60° 

to the orientation angle; next adjust the x-position by width times cos(8) and the y-position 

by width times sin(6); when finished, multiply the sign variable by 1 and make no 

adjustments on angle orientation. This keeps track of x and y positions, angle, and an 



orientation sign. Figure 2a shows a half-hexagon with indication of sign direction, angle 
or ientate , (x, y) positioning, height, and width. Figure 2b shows the same item but with 
the oppoatc sign orientation {i.e., -sign). 

We propose to represent knapsack items as shapes. The legal orientation of those 
shapes with respect to each other for the constrained geometric knapsack problem are 
represented by the shape grammar. Thus a very simple geometric representation can 
generate all constrained geometric knapsack configurations. This is important; we provide 
an environment in which a simple and complete shape grammar must be specified from 
which the problem solution will then be generated with a simple algorithm. Only the local 
grammar information is required; the maximal solution will be found independent of the 
engineer's understanding of the global intricacies. The remaining issue, then, is how to 
generate a good solution to the problem. 

4. Shape Annealing 

As presented in Cagan and Mitchell [2], shape annealing utilizes the simulated annealing 
algorithm to determine whether a randomly selected shape rule should be applied at a given 
configuration state. Given a current configuration state, an eligible rule is selected and 
applied to the pattern. If the new design does not violate any constraints then it is sent to 
the Metropolis algorithm which compares the new state to the old state and, based on the 
temperature profile, determines whether to accept it or not. If the rule violates a constraint 
then the old state is maintained as the current 

By only applying additive rules {i.e., those rules which add a new piece onto the 
solution), the design may rapidly converge on an inferior solution because it can work itself 
into a stale where no rule can be applied without a constraint violation. Shape annealing 
can back itself out of these local solutions by reversing the previous rule. For every 
additive rule, there exists a subtractivc opposite which removes the piece from the solution; 
if the subtractive rule is fired immediaicly following its companion additive rule (called rule 
reversal) then the effect of the additive rule is removed. 



Bean S H A P E ANTJEAL" — 
T = 1. 
Define initial state; 
Evaluate state; 
WjBl£T>ODQE£giri 

success = 0; 
E d mutations = 1 to n Dfi Begin /* at each temperature mutate n times 

until convergence or limit reached */ 
Let temp_state = state; 
Generate rule; 
If rule is applicable 
Ugn.££gia 

Apply rule to temp.state; 
K v w ^ n s t r a i n t s of temp.state 

success = success + 1; 
End 

EM 

If success > Urrrit Then break; 

If success = 01hfin break; /* no improvement.. 
solution found */ 

T = T*reduction_factor, 
Ead m 

Figure 3 Original Shape Annealing Algorithm. 

The original shape annealing algorithm is given in Figure 3. The number of outer loop 
iterations, t, and the the number of inner loop iterations, m, need to be determined for the 
specific problem based on convergence of good solutions. The total number of loops will 
be k = (tXm). Note that in the algorithm, the shape grammar is assumed to have been 
defined, and thus any any applicable rule satisfies the orientation relations. Further, the 
step which checks for constraint violations verifies that the items do not overlap and do not 
cross the bounded knapsack space. 

Shape annealing is a sort of Monte-Carlo technique in that there is no continuum of 
solutions and thus the convergence proof of Lundy and Meese [10] is not valid. However, 
the algorithm is different than traditional Monte-Carlo in that the parameters for randomness 



are controlled via the annealing schedule, and convergence is similarly controlled. In the 
original dfeftfem, temperature is reduced by a constant reduction factor at each iteration. 
Cagan •jHftlrtj [17] demonstrate that the shape annealing algorithm is sensitive to the 
annealing schedule as well as the probability distribution of removal rules. They utilize a 
polynomial annealing function which gives a slower and smoother drop in temperature as 
well as double the probability that the most recent piece would be removed. In that 
application, the packing factor increases by 15% from the original algorithm of Cagan and 
Mitchell. 

It is interesting to note that the size of the mutation space is not reduced at each iteration; 
this again deviates from the normal simulated annealing approach but is required because 
there is no contour from which to move between nrighboring configurations. In actuality 
the size of the configuration space increases while the algorithm runs; however, the 

increase is controlled and the algorithm finds a way to generate a maximal packing from an 

exponentially large number of possible configurations. | 

At any stage the algorithm only stores the current configuration of n items, 0(n), and 
the shape grammar which is C<r) where r is the number of rules. Space complexity is thus 
0(n+r); for n » r , the space complexity becomes <Xn). 

The worst-case time complexity would have the algorithm run without convergence (k 
specified steps), where at each step one item is generated and tested to guarantee no 
overlap, 0 (n- l ) , and no violation of the b boundaries, 0(b). An upper bound on this worst 
case considers generation of the n* item at each iteration: 

0(k(n+b)). 
The best-case would generate the final solution in n iterations with one new item being 
generated and tested at each of the n iterations plus one temperature iteration (m) to test the 
solution: 

i!(i+b)M 
The ratio of the worst case to the best case gives: 



k(n+b) 

(i(i+b)J+m 

an upper bound on this ratio with n ( n + b ) » m would be: 

k(n+b) = k . 
n(n+b) n ; 

Thus the ratio and all bounds are polynomial in n. For large k, the bounds and ratio are 
dominated by the number of iterations. Note, however, that in practice the shape annealing 
algorithm is not guaranteed to find the global optimum; rather it only generates a good 
solution. By letting the algorithm run a sufficient time, our experience shows the solutions 
to be quite good. 

In this approach to constrained geometric knapsack packing, each item of the knapsack 
is considered a geometric shape and is modeled with the properties of a shape as described 
by Stiny [4]. Utilizing the shape annealing algorithm, a good solution to this problem can 
be generated in polynomial time with minimal storage capacity which readily satisfies all 
geometric constraints. The algorithm is generic in that any shape grammar and any set of 
boundaries can be used in the same implementation. Note that in the constrained geometric 
knapsack problem there is no specified order for how the items fit in the knapsack, only 
that each fits within a given set of orientations without occupying the same space. 
However, in the shape annealing solution order is specified, possibly restricting the 
solution, but guaranteeing that item orientation is valid. 

5. Example 

As an example application of the shape annealing solution to the constrained geometric 
knapsack problem, consider the 2-dimensional problem of packing as many half-hexagons 
as possible into a pre-defined volume of fixed dimensions such that the items do not 
overlap. Further, consider the problem that the half-hexagons, each of equal value, can 
only orient themselves in one of three different configurations. These configurations arc 
specified by the shape grammar discussed in section 3. Given this language, a coumably 
infinite number of shapes can be generated. Note the difference between this constrained 



geometric knapiack problem and a traditional knapsack problem: geometry adds a level of 
complexf^which makes the standard approximations ineffective. In this particular 
r ^ l e m * * values of the items (VO are all 1 and the weight constraint does not become an 
issue; note that weight, geometry, and any other problem constraints are readily 
irjcorporated into the problem formulation but do not affect the algorithm. Also, there is 
only one class of elements (Xk - Xi) and there are three orientations for the pieces with 
respect to each other. For purposes of illustration, we consider all spaces to be of a 
constant area (25 units) and the half hexagon has a long base of one unit and a short base 
of one half a unit Rule 4 is given for completeness but is actually only applied after the 
final solution is found. 

We formulate this problem as an optimization problem with geometric constraints based 

on the iridline of the half-hexagons: 

max: I X u 

p=i 
s.t.: Xi e Z+, 

midline (X l q ) -^n rnkfline(X l rV, r l. l p , 

midline (X, p ) - , n boundary ( S t o u u ) . 

O i n = 0 * ( 1 , 0 . , width*cos<e), width*sin(6), -1 ,0 . ) , 

O n 2 = 0*(h -sign*60., width*cos(6), width*sm(6), 1,0.), 

O i n = 0 * ( 1 , 0 . , height*sin(6), height*cos(6), -1,0.) , 

0 U = 0 U l v O u 2 v O n 3 , 

where the orientations O m , O112, and Oi 13 are described in section 3, and O n is an 

orientation relation function which, specifies that items in class Xi will orient themselves via 

one of the three orientations Oi i 4 (the symbol V indicates the disjunctive or). In addition, 
the itemccannot overlap as specified by tnidline(Xip) as the location of the midline of the 

half-hex^aoc X i p . Finally, the items must fit, via midline(Xi p), within the specified 

boundary, St**], by checking intersection of each midline with the boundary surfaces; in 

this example we assume the boundary to consist of any two-dimensional closed surface. 

Figure 4 shows a rectangular boundary space (Stotal) and the x-y coordinate system 



"t 

Figure 4 Description of possible boundary space. 
x 

For this example, all boundaries will be 25 square units. Typical results of the shape 
annealing algorithm on various 2-dimensional spaces are shown in Figures 5-7. The fill 
pattern indicates which rule was applied: the light fill indicates rule 1, the black fill indicates 
rule 2, and the medium fill indicates rule 3. For Figures 5 and 6, the packing starts with a 
piece (I) in the bottom left corner. For Figure 7 the packing starts toward the center of the 
circle. There is no guarantee that these solutions are optimal; rather the algorithm is run for 
a period of time and convergence is reached. 



Figure 5 Resulting packing for 5X5 square of 47 pieces. 





Figure 7 Resulting packing for circle of equivalent area to Figures 5 and 6 of 42 pieces. 

6. Conclusions 

We have introduced a method called shape annealing which combines the formalism of 
shape grammars with the stochastic optimization algorithm of simulated annealing. Shape 
annealing offers a powerful technique for solving the constrained geometric knapsack 
problem which constrains the traditional knapsack problem with space and orientation 
constraints. Shape annealing runs in polynomial time and space, generating a sub-optimal 
but acceptable solution. 

17 



Shape annealing solves the constrained geometric knapsack problem in polynomial time 
and space complexity in number of items; the time is essentially dependent on the 
temperature profile (number of iterations) and number of pieces generated. The algorithm 
is computationally efficient in space. There is no need to maintain a trace of generated 
rules; only the current state and proposed modification at each step need be stored. The 
algorithm itself will backtrack out of a configuration if required. Optimal solutions are not 
guaranteed in practice; rather a maximal solution is consistently generated, where a maximal 
solution is considered one in which a local change of adding or removing a piece will not 
improve the solution. In the example shown, a superior solution may be identified; again 
the global minimum is not guaranteed, but rather a good solution is generated 
algorithmically and a general method is presented which is useful with far more 
complicated shape grammars. A more formal analysis must still be performed to determine 
how good the shape annealing solutions are. 

The use of shapes to model items and shape grammars to model their orientation makes 

for a general algorithm and simple solution approach. We have illustrated application in 
two dimensions; however, in theory, the algorithm is equally valid for three dimensions. 
Shape annealing can be used to solve many traditional and non-traditional layout problems 
such as the tiling problem, as well as find application in factory and process layout 

7. Acknowledgements 

The author would like to thank Steve Cosares and Bill Mitchell for their important 
discussions about this work, and Steve for his comments on this manuscript This work 
was partially sponsored by the Engineering Design Research Center at Carnegie Mellon 
University, an NSF sponsored research center. 



8. References 

[I] Martello, S., and P. Toth (1990), Knapsack Problems - Algorithms and Computer 
Implementations, John Wiley & Sons, New York. 

[2] Cagan, J., and W.J. Mitchell (1991), "Optimally Directed Shape Generation by Shape 
Annealing", accepted in: Environment and Planning a, 1991. 

[3] Kirkpatrick, S., C D . Gelatt, Jr., and M.P. Vecchi (1983), "Optimization by Simulated 
Annealing", Science, 220(4598):671-679. 

[4] Stiny, G. (1980), "Introduction to Shape and Shape Grammars", Environment and 
Planning B, 7:343-351. 

[5] Jain, P., P. Fenyes, and R. Richter (1990), "Optimal Blank Nesting Using Simulated 
Annealing", Proceedings of: ASME Design Automation Conference: Advances in Design 
Automation -1988 (Ravani, ed.), 2:109-116. 

[6] van Laarhoven, P.J.M., and E.H.L.Aarts (1987), Simulated Annealing: Theory and 
Applications, D.Reidel Publishing Co. 

[7] Cagan, J., and T.R. Kurfess (1991), "Optimal Design for Tolerance and Manufacturing 
Allocation", EDRC Report 24-67-91, Engineering Design Research Center, Carnegie 
Mellon University, Pittsburgh, PA 15213. 

[8] Jain, P., and A.M. Agogino (1990), "Theory of Design: An Optimization Perspective". 

Mech. Mach. Theory, 25(3):287-303. 

[9] Metropolis, N., A. Rosenbhjth, M. Rosenbluth, A. Teller, and E. Teller (1953). J 
ChemPhys., 21: 1087-1091. 

[10] Lundy, M., and A. Meese (1986), "Convergence of an Annealing algorithm". 

Mathematical Programming, 34:111-124. 

[ II ] Stiny, G., and W.J. Mitchell (1978), "The Palladian Grammar", Environment and 
Planning B, 5:5-18. 

[12] Stiny, G., and W.J. Mitchell (1980), "The Grammar of Paradise: on the Generation of 
Mughul Gardens", Environment and Planning B, 7:209-226. 



[13] Koning, R , and J. Eizenberg (1981), "The Language of the Prairie: Frank Lloyd 
Wright's Prairie Houses", Environment and Planning B, 8:295-323. 

[14] Knight, T.W. (1986), "Transformations of the Meander Motif on Greek Geometric 
Pottery", Design Computing, 1:29-67. 

[15] Hemming, U. (1987), "More than the Sum of the Parts: the grammar of Queen Anne 
Houses", Environment and Planning B, 14:323-350. 

[16] Mitchell, W.J. (1990), The Logic of Architecture, MTT Press, Cambridge, MA, 
p. 143. 

[17] Cagan, J., and G. Reddy (1991), "An Improved Shape Annealing Algorithm for 
Optimally Directed Shape Generation", to be presented at: The Second Conference on 
Artificial Intelligence in Design '92, Pittsburgh, PA, June 8-11,1992. 


