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A M o d e l a n d a S y s t e m 

f o r M a c h i n e R e c o g n i t i o n 

o f S p e e c h 

D. RAJ REDDY, LEE D. ERMAN, and RICHARD B. NEELY 

A&sfract-Tbis paper presents a model for machine recogni­
tion of connected speech and the detail* of a specific imple­
mentation of the model, the H E A H S A Y system. The model 
consists of a small set of cooperating independent parallel pro­
cesses that are capable of helping in the decoding of a spoken 
utterance either individually or collectively. The processes use 
the "hypotheahce-and-test" paradigm. The structure of H E A R ­
S A Y is illustrated by considering its operation in a particular 
task situation: voice-chess. The task is to recognize a spoken 
move in a given board position. Procedures for determination 
of parameters, segmentation, and phonetic descriptions are 
outlined. The use of semantic, syntactic, lexical, and phono­
logical sources of knowledge in the generation and verification 
of hypotheses is described. Preliminary results of recognition 
of some utterances are given. 

Introduction 
Most papers on speech recognition conclude by say­

ing that it is necessary to use higher level linguistic 
cues to obtain acceptable recognition. The terms 
context, syntax, semantics, and phonological rules are 
used but attempts to utilize these sources of knowl­
edge have not been successful because of the ill struc-
turedness of these concepts. This paper represents a 
summary of several years of investigation to formu­
late an information processing model that would lead 
to efficient recognition of speech and in which the 
role of various sources of knowledge would be well 
defined. 

At the 1969 spring meeting of the Acoustical So­
ciety, we presented several papers on the structure of 
a speech recognition system that was used to recog­
nize a list of 5 0 0 isolated words and a syntax-directed 
connected speech-recognition system using a finite 
state grammar and a 16-word vocabulary (Vicens 
[ 3 7 ] , Reddy [ 3 1 ] , Neely [ 2 2 ] ) . Six amplitude and 
zero-crossing parameters of the incoming utterance 
were sampled every 10 ms and segmented. The seg-
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merits were labeled to specify the phonetic class; the 
syntax was used for sentence analysis and word 
boundary determination, and preleamed acoustic and 
phonetic segmental descriptions of lexical items were 
used for word recognition. 

Several inherent limitations were apparent even as 
we developed the system. First, the vocabulary had 
to be reduced to 16 words because of word boundary 
ambiguity problems. For example, the word "large-
had to be changed to "big" because of assimilation of 
the reduced vowel of "the" into the semivowel"/l/ of 
"large" in the utterance: "Pick up the large block." 

Scond, we had to overcome the limifcZns of the 
syntax-directed methods. One could not blindly 
parse from left to right; rather, we had to locate an­
chor points from which parsing could proceed both 
backwards and forwards. This was necessary to com¬ 
pensate for machine errors in earlier stages and to 
compensate for the idiosyncrasies in speaker perform­
ance such as introduction of spurious words, repeti­
tion of words, and inclusion of hmm- and ha-like 
sounds. 

Third, the simple hierarchical structure in which 
output from one process forms the input to the next 
was not adequate for the task. Errors introduced in 
each process tend to have multipUcative effect, i.e., if 
each of four processes introduced 10 percent errors, 
the cumulative error would be 34 percent. Further, 
the lack of feedback and feedforward of the simple 
hierarchical model meant any errors that got through 
were uncorrectable. The main virtue of the system 
was that it was the first demonstrable system to use 
syntactic and lexical constraints to recognize con­
nected speech sentences (such as: "Pick up the big 
block at the bottom right corner"). 

For the past four years the authors have been at­
tempting to develop a model and a system for con­
nected speech recognition that did not suffer from 
the limitations mentioned previously, and that would 
serve as a research tool for speech-recognition re­
search over a wide range of tasks. The following sec­
tions present the resulting model and an outline of 
the system implemented on a PDP-10 computer. 

The Model 

We were interested in developing a system capable 
of recognition of connected speech from several 
speakers with graceful error recovery, in close to real 
time, and easily generalizable to operate in several 
different task domains. We started with several re­
quirements for the model. 

1) Contributions of syntax, semant ic , context, 
and other sources of knowledge towards recognition 
should be clearly evaluatable. Exactly what and how 
much does each contribute towards improving the 
performance of the system? 

2) The absence of one or more sources of knowl-



edge should not have a crippling effect on the per­
formance of the model. That semantic context 
should not be essential for perception is illustrated by 
overheard conversations among strangers. That syn­
tactic or phonological context should not be essential 
is illustrated by conversations among children. That 
lexical representation is not essential is illustrated by 
our recognition of new words and nonsense syllables. 

3) When more than one source of knowledge is 
available, interactions between them should lead to a 
greater improvement in performance than is possible 
to attain by the use of any subset of sources of 
knowledge. 

4) Since the decoding process is errorful at every 
stage, the model must permit graceful error recovery. 

5) Increases in performance requirements, such as 
the real time requirement, increase in vocabulary, 
modifications to the syntax, or changes in semantic 
interpretation, should not require major reformula­
tion of the model. 

The model we have arrived at to satisfy these re­
quirements consists of a small set of cooperating inde­
pendent processes capable of helping in the decoding 
process either individually or collectively and using 
the "hypothesize-and-test" paradigm. 

Each of the processes in our model is based on a 
particular source of knowledge, e.g., syntactic, seman­
tic, or acoustic-phonetic rules. Each process uses its 
own source of knowledge in conjunction with the 
present context (i.e., the presently recognized sub­
parts of the utterance) in generating hypotheses 
about the unrecognized portions of the utterance. 
This mechanism provides a way for using (much 
talked about but rarely used) context, syntax, and 
semantics in the recognition process. 

The notion of a set of independent parallel pro­
cesses, each of which is capable of generation and 
verification of hypotheses, is needed to satisfy the 
requirements 1) and 2) mentioned previously. In our 
model, the absence of a source of knowledge implies 
deactivating that process, and recognition proceeds 
(albeit more slowly and with lower accuracy) using 
the hypotheses generated by the remaining processes. 
The independence of the processes permits us to de­
activate a source of knowledge and measure how and 
by how much that source of knowledge improves the 
system. 

The need for parallel processes can be derived from 
the real-time performance requirement. If the system 
is to ever approach human performance, it must be 
able to answer trivial questions as soon as they are 
uttered (some times even before they are completed). 
This implies that various processes of the system 
should be able to operate on the incoming data as 
soon as they are able to do so without waiting for the 
completion of the whole utterance (as in a simple 
hierarchic model). The "coroutine" model, in which 

each process passes control to the next level when a 
"chunk" is perceived and regains control when a 
new chunk is needed, would be satisfactory. But this 
organization can lead to irrevocable loss of data if a 
higher level process does not return control in time to 
process new chunks of mcoming speech. Thus, there 
must be at least two parallel processes one of which 
is continuously monitoring the inpu Speech andlhe 
other proceeding with recognition T h f f ^ addition 
to requirements 1) and 2) suggests a model wTth par­
allel processes. moaei witn par 

An important aspect of the model is the nature of 
cooperation between processes. The implication is 
that, while each of the processes is independently 
capable of decoding the mcoming utterance, they are 
also able to cooperate with each other to help recog­
nize the utterance faster and with greater accuracy. 
Process "A" can guide and/or reduce the hypothesis 
generation phase of process "B" by temporarily re­
stricting the parts of the lexicon that can be accessed 
by B, or by restricting the syntax available to process 
B, and so on. This assumes that process A has addi­
tional information that it can effectively use to pro­
vide such a restriction. For example, in a given syn­
tactic or semantic situation only a small subset of all 
the words of a language may appear. 

The need for a hVpothesize-and^est paradigm arises 
from 4). The "errorful" nature of speech processing 
at every stage implies that every source of knowledge 
has to be brought to bear to resolve ambiguities and 
errors at every stage of processing. This implies rich 
connectivity among various processes and involves 
both feedforward and feedback. The hypothesize-
and-test paradigm represents an elegant way of ob¬ 
taining this cooperation in a uniform manner 

The notion of hypothesize-and-test is not new. It 
has been used in several artificial intelligence pro­
grams (Newell [25]). It is equivalent to analysis-by-
synthesis (Halle and Stevens [10]) if the "test" 
consists of matching the incoming utterance with a 
synthesized version of the hypothesis generated. In 
most cases, however, the test is of a much simpler 
form; for example, it is not necessary to generate the 
whole formant trajectory when a simpler test of the 
slope can provide the desired verification. This not 
only has the effect of reducing the computational ef­
fort but also increases the differentiability between 
phonemically ambiguous words. 

Extendability and generalizability of the model is 
mainly an issue of implementation. It requires that 
representation of sources of knowledge be separate 
from and independent of mechanisms that operate on 
them. One way of achieving this is to represent the 
knowledge in a form most suitable for modification 
by the user and have a set of preprocessors that then 
transform the knowledge into the representation re­
quired by the system. 
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H E A R S A Y System 

h e a r s a y is a speech-recognition system that incor­
porates many of the ideas presented in the previous 
section and is presently under development at Car­
negie-Mellon University. It is not restricted to any 
particular recognition task. Given the syntax and the 
vocabulary of a language and the semantics of a task, 
h e a r s a y will attempt recognition of utterances in 
that language. 

Fig. 1 gives an overview of the h e a r s a y system. 
The EAR module accepts speech input, extracts pa¬ 
rameters, and performs some preliminary segmenta¬ 
tion, feature extraction, and labeling, generating a 
"partial symbolic utterance description." The recog­
nition overlord ( r o v e r ) controls the recognition pro¬ 
cess and coordinates the hypothesis generation and 
verification phases of various cooperating parallel pro¬ 
cesses. The t a s k provides the interface between the 
task being performed and the speech recognition and 
generation ( s p e a k - e a s y ) parts of the system. The sys­
tem overload (SOL) provides the overall control for 
the system. A more detailed, but earlier, description 
of the goals and various components of this system 
are given in Reddy et al [33] and Reddy [ 3 2 ] . 

Here we will describe the operation of the h e a r s a y 

system by considering a specific task: voice-chess. 
The task is to recognize a spoken move in a given 
board position. In any given situation there are gen¬ 
erally 20-30 legal moves and several thousand differ¬ 
ent ways of expressing these moves. The syntax, 
semantics, and vocabulary of the task are restricted, 
but the system is designed to be easily generalizable 
to larger tasks, which was not the case for our earlier 
systems. Larger syntax (e.g., a subset of English) and 
vocabularies (1000-5000 words) for a more complex 
semantic task will make h e a r s a y slower and less ac¬ 
curate but are not likely to be crippling. 

Fig. 2 shows the recognition process in greater de¬ 
tail. At present, it contains three independent pro¬ 
cesses: acoustic, syntactic, and semantic. We will give 
a short description of how these processes cooperate 
in recognizing "king bishop pawn moves to bishop 
four." Let us assume that this is a legal move (other¬ 
wise, at some stage of processing, the system will re¬ 
ject it as semantically inconsistent). 

Parametr ic Level A n a l y s i s 

The speech from the input device (microphone, 
telephone, or tape recorder) is passed through five 
octave bandpass filters (spanning the range 200-6400 
Hz) and an unfiltered band. Within each band the 
maximum intensity and the number of zero crossings 
are measured for every 10-ms interval. 

This results in a vector of 12 parameters every 10 
ms. These parameters are smoothed and log trans¬ 
formed and a subset of the parameters is chosen for 
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Fig. 1 . Overv iew of the H E A R S A Y system. 
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further processing. Fig. 3 gives the parameters used, 
at present, for part of the utterance "king bishop 
pawn . . . ." Each column represents a 10-ms time 
unit. Rows P I , P 2 , P 3 , and AU represent the log-
amplitude parameters in the frequency bands 200¬ 
400, 4 0 0 - 8 0 0 , 8 0 0 - 1 6 0 0 Hz, and the unfiltered band, 
respectively. The amplitudes are quantized to 32 
levels and represented as a single character (blank, 
0-9, A-U, and *, which represents a value greater than 
31). Rows P4 and P5 represent values that are func¬ 
tions of both amplitude and zero crossing in bands 
1600-3200 and 3200-6400 . Details of various oper¬ 
ations on these parameters are given in Erman [ 6 ] , 

This vector of parameters (P1-P5 and A U) are com¬ 
pared with a standard set of parameter vectors to ob¬ 
tain a minimum distance classification for each time 
unit using a highly modified version of a procedure 
proposed by Astrahan [ 1 ] . The row labeled PP gives 
the classification for each 10-ms unit. The standard 

DESCRIPTION 

RECOGNIZER RECOGNIZER RECOGNIZER 

1 
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set of parameters is obtained by selecting cluster cen­
ters from a training set of utterances containing vari­
ous phonemes in neutral contexts. When a phoneme 
is represented by several articulatory gestures, more 
than one cluster center may be added to the standard 
set. Speaker characteristics and the noise character­
istics of the environment or the transducer may be 
reflected in the standard set of clusters by recording 
the training set in that environment. Fig. 4 gives clus­
ter centers for several representative sounds. A com­
plete list of clusters used and the details of the 
speaker normalization program are given in Erman 
[6] . 

Remark 1: The labels in row PP of Fig. 3 are not to 
be confused with phonetic transcription. Accurate 
phonetic transcription, where possible, would require 
modifying the labels taking into account segment and 
sentence level context. 

Remark 2: If one wanted to use formant frequen­
cies and amplitudes (assuming they can be deter­
mined without mislabeling) one would reanalyze the 
training set for this parametric representation to de­
termine the new cluster centers. Representing the 
parameters as a vector with a weighted distance met­
ric defined on the vector space is all that is needed to 
use a new parametric representation in the H E A R S A Y 

svstem There are several disadvantages to this ar> 
proach e « T i r S in labels inabffityto take advaT-
ETcrf sSciSrStaMs" of a parametric representa­
tioneUThowSTCT this anmoach provides a 
convenient ^ ^ t ^ t S b S ^ ^ o ^ 
£ n toTe p T ^ t i c r S S S S o n ! ! ^ 

Remark 3: The tendency is to blame every error on 
inadequate parametric representations. We have gone 
from one set of amplitude and zero crossing param­
eters to three sets and now to five. Others divide the 
frequency range into 12, 17, 24, 32, and 48 regions 
or the full resolution given by FFT. The increase in 
noisiness of the parameters with increasing resolution 
makes it imperative that one transform the high reso­
lution data to a smaller number of robust parameters 
such as the efforts by Li et al. [16] and Pols [28] in 
dimensionality reduction of spectra. 

Remark 4: The parameters we use represent a 
crude spectrum. A mixed strategy in which finer 
analysis is performed only when necessary (Reddy 

PP PI P2 P3 P4 PS AU 

d 22 14 S S e IS 
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F i g . 4 . S e v e r a l t y p i c a l P P - c l u s t e r c e n t e r s . 

[30]) seems more appropriate for an efficient realiza­
tion of the system than obtaining every possible pa¬ 
rameter at the start. 

RemarkS: Spectral representation appears to be 
more robust than formant representation because of 
the likelihood of mislabeling a formant. 

Remark 6: Parcor parameter representation (Ita-
kura and Saito [14]) has also been used successfully 
(Nakano et al. [21]) and may have efficient machine 
realizations within the framework of the h e a r s a y 

system. 
Remark 7; Zero-crossing measurements and form­

ant frequency measurements are more prone to error 
than energy measurements in a noisy environment. 
It appears more difficult to devise noise subtraction 
algorithms for frequency than for amplitude (Neely 
and Reddy [24]). 

S e g m e n t a t i o n 

The purpose of segmentation is to divide the con­
tinuous parameter sequence into discrete phone-size 
chunks. This is usually based on an acoustic similar­
ity measure (Reddy and Vicens [34]). Labeling 
every 10-ms unit by a phone-like cluster name per­
mits the segmentation to be divided in terms of these 
labels. Fig. 3 shows two levels of segmentation for 
"king bishop pawn " The first level is derived by 
doing a local "smoothing" of the PP names assigned 
to each of the 10-ms segments; this is displayed on 
the row labeled SP. A segment is defined to be a con­
tiguous run of a single PP, flanked by PP's not the 
same as those in the run. This segmentation is ap­
proximately at the phoneme level but is, by itself, 
very unreliable. 

A second level of segmentation is derived by associ­
ating a voiced/unvoiced decision and a fricated/non-
fricated decision with each PP. These binary deci­
sions, when applied to the SP's (and modified with a 
few simple rules for smoothing and breaking of long 
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segments according to significant local amplitude 
peaks), segment the signal very reliably. The row in 
Fig. 3 labeled VF indicates this segmentation for the 
sample. 

Remark 1: It is now commonly agreed among all 
researchers that some form of segmentation of acous­
tic signals is necessary for connected speech recogni­
tion (see Fant and Lindblom [ 8 ] , Reddy [29] , Denes 
and von Keller [ 4 ] , Broad [ 2 ] , Medress [19 ] , Dixon 
and Tappert [ 5 ] , Klatt and Stevens [15] , Stalham-
mar and Karlsson [35] , Hemami and Lehiste [11]). 
No systematic evaluation has been made of these and 
other methods of segmentation that have been pro­
posed or implemented. Our present view is that al­
most any of the schemes, given enough careful tun­
ing, will work in a large majority of the cases; the 
more important question is then not how to segment, 
but rather how to use the segmentation without being 
crippled by the inevitable errors. 

Remark 2: This use of segmentation represents a 
trend away from segmentation-free recognition 
schemes (Halle and Stevens [10]). However, segmen­
tation-free recognition still seems to be a useful con­
cept if one is mainly interested in isolated word 
recognition (Hill [12] , White [39]). 

Acoustic Recognizer 

The role of the acoustic recognizer is to predict and 
verify syllables and words based on the features pres­
ent in the incoming utterance, the present context, 
and the lexicon. The structure and phonetic descrip­
tion of syllables and words in the lexicon is prespeci-
fied. An entry for a word in the lexicon contains the 
phonemic spelling(s) of the word and annotations 
that are used to describe expected anomalies that can­
not be predicted by rule from the phonemic spelling. 
A more detailed description of the lexicon and the 
preprocessing is given in Erman [ 6 ] . 

The acoustic recognizer has three sources of knowl­
edge available for the generation and verification of 
hypotheses: acoustic, phonological, and vocabulary 
restrictions. The acoustic knowledge appears in the 
form of expected parameters (or features) for a pho­
neme in a neutral context. The phonological knowl­
edge appears in the form of a coarticulation model 
that modifies the expected features based on context. 
The between-word coarticulation effects have to be 
determined wherever applicable through the use of 
the "currently accepted partially recognized utter­
ance" (Fig. 2), which provides the boundary pho­
nemes. The vocabulary restriction appears in the 
form of a valid subset of words in the lexicon that 
contain a given sequence of features. 

The acoustic recognizer uses these sources of knowl­
edge in two stages: the hypothesis and the verifica­
tion. The acoustic hypothesizer does not have any 
knowledge of the syntax or semantics of the situa­
tion, but can use the gross features (such as / / / of 

"bishop") in the "partial symbolic utterance descrip­
tion" (Fig. 2) to retrieve those words of the lexicon 
that are consistent within the features present. 

The task of a verifier is to determine whether a 
given hypothesis is consistent with the context pres­
ently available to it. For example, let us assume that 
alternative hypotheses of the words "king's," "pawn," 
"bishop," "queen's," and "knight" have been made 
in the context "king — pawn • •" (where "—" repre­
sents the hypothesized words) and that the word 
actually spoken was "bishop." Detailed verification, 
by the acoustic verifier, of every phoneme of every 
option word is not necessary. All that is needed, in 
this example, are some simple tests that notice that 
there is a strong fricative indicated near the middle of 
the area of interest, which causes "pawn" and 
"knight" to be rejected, and some other simple tests 
on the vowel portion, e.g., duration, high/low, and 
front/back, which would indicate that both "queen's" 
and "king's" are unlikely, whereas "bishop" is highly 
likely. 

A more detailed matching of features and the use of 
coarticulation rules at the word boundaries may, of 
course, be needed for other cases. Detailed matching 
often implies generation of a test. For example, if the 
verification to be made is among "sit," "spit," and 
"split," the presence of /s/, /I/, /t/ and the transitions 
between /I/ and /t/ are irrelevant. What is needed is 
the test for the presence or absence of a stopgap and 
for the presence of /l/-like formant structure follow­
ing the stopgap. 

Remark: That some form of hypothesization and 
verification is needed seems to be recognized by 
many researchers at this point. Halle and Stevens 
[10] proposed synthesis and match as a means of 
verification in their analysis-by-synthesis model. Hy­
pothesis and verification for isolated word recogni­
tion was used in the Vicens-Reddy system (Vicens 
[38]). More recently, similar techniques have also 
been used by Klatt and Stevens [15] , Lindblom and 
Svensson [18] , Tappert et al. [36] , and Itahashi et 
al. [13] . 

Syntactic Recognizer 

The role of the syntactic recognizer is to predict 
phrases based on the syntactic structure of the lan­
guage to be recognized and the context. The pre­
dicted phrases induce (specify) words that might ap­
pear in that context. The grammar for the voice-chess 
language is context free. The voice-chess grammar, 
specified as a set of BNF productions, is given in Fig. 
5. For example, in this grammar, "<move>" is de­
fined to be either "<movel>" followed by "< check-
word^' or "<movel>." The total number of differ­
ent utterances permitted by this grammar is about 
five million. 

The role of the syntax hypothesizer is to use the 
syntactic source of knowledge to predict words. In 



1 . < M o v e > 

2. <aoval> 

3. <caotle> 

4. 

5. 

<ro Sular-»o*e> ! : -

<capture> : i . 

G. <caatle-uord> n -

7. <aove-uwd> : i -

8. <capture-uord> n -

9. <checK-uord> n-

18. <aan-(oc> : : -

1 1 . <nan-spec> i : -

12. <squara> 

13. <«an> 

14. <unii-oUal> 

15. <unipiece» 

inovel:. <check-uord> I <aovel> 

•sragu I ar-»ova> I <capture> I <eastla> 

<ca«tla-uord> ON <un>roual> SIDE 
I <csatle-uord> *uniroyal> SIDE 
I «a8tla-.wrd> 

<aan-foc> <aove-word» <square* 

<aan-loc> <caplure-uord> PAUN EN-PASSENT 
I <aan-loc> <capture-uord> <aan-loc> 

CASTLE I CASTLES 

• TO I riOVES-TO I GOES-TO 

• TAKES I CAPTURES 

i CHECK RATE I CHECK 

<nan-apec> ON <aquara> I <a.ari-«pac> 

<uniroyal> <unipiece> PAW 
I <uniroual> <piaca> I <rUnir-oual> pawn 
I <unipiace> paun 1 <aan> 

<uniroyal:. <piaca> <rank» I tnopaMn> <rank> 

KING I QUEEN I BISHOP I KNICHT I ROOK I PAUN 

KING I QUEEN I KING'S I QUEEN'S -

BISHOP I KNIGHT I ROOK 
I BISHOP'S I KNIGHT'S I ROOK'S 

16* <nopawf» 

17. <plece> 

IS . <rank> 

KING 1 OUEEN I BISHOP I KNIGHT I ROOK 

::. BISHOP I KNIGHT I ROOK 

;: - ONE I TWO I THREE I FOUR 
I FIVE I SIX I SEVEN I EIGHT 

Fig. 5 . Voice-chess syntax. 

hypothesization the syntax recognizer uses only very 
local context to predict words. Predictions may be 
made either to the right or the left of already existing 
words. For example, if "— moves-to —" is given, 
then words may be hypothesized to the left of 
"moves-to" or to the right of "moves-to." Hypoth­
esization uses only inexpensive methods, and often 
generates words that would not fit in the complete 
context of the sentence. 

Traditional parsing schemes are not very useful in 
generating hypotheses. Further, the syntax recog­
nizer must be capable of processing errorful strings 
containing spurious words and repetition of words. 
This implies that it must be capable of working both 
forwards and backwards. This is achieved in h e a r ­

s a y by the use of antiproductions. 
Antiproductions act as a concordance for the gram­

mar giving all the contexts for every symbol appear­
ing in the grammar. They are used to predict words 
that are likely to occur following or preceding a 
word using only limited context. Fig. 6 gives anti-
productions for productions 1-6 of the grammar of 
Fig. 5. These are produced automatically by a pre­
processing program. In this figure, the symbols in the 
column labeled c e n t e r are the entries in the concor­
dance. Each symbol in the subset of the grammar ap­
pears in this column once for each occurrence of it in 
the subset. The entries in the l e f t and r i g h t columns 
denote symbols that can appear to the left and right 
of the entry in the center column. When an + appears 

CENTER 
CASTLE 
CASTLES 
EN-PASSENT 
ON 
PAUN 
SIDE 
SIDE 
<maval> 
<movcl> 
<chack-uord> 
<regular-«ove> 
<captura> 
<castla> 
«caaHa-uord> 
<caatla-uord> 
<ca*tle-uord> 
<un\rouaI> 
<uniro U al> 
<«an-Ioc> 
<*an-loc> 
<«an-loc> 
<man-loc> 
<move-uord> 
<aquara> 
<capture-uord> 
<cap*uro-uprd> 

LEFT 

t 
PAUN 
<caatla-uord> 
<csptura-uord> 
<unlroyal> 
<urui*eyal> 
t 
t 
<aov«l> 
t 
f 
t 
t 
t 
T 
ON ' 
<ea»tla-HOrd> 
t 
t 
t 
<cap ture-u4rd> 
<aan-loc> 
<mava-uorti> 
<aan-loc> 
<aan-Ioc> 

RIGHT 

t 
t 
<unrrofjal> 
EN-PASSENT 
t 
t 
<checK-word> 
t 
t 
t 
t 
t 
ON 
<uniroyal> 
t 
SIDE 
SIDE 
<»oife-uord> 
<capture-uord> 
<captura-uord> 
t 
<aquara> 
t 
PAUN 
<aan-loc> 

<caatle-uord> 
<caetla-uord> 
<capture> 
<caatla> 
<captura> 
<caatta> 
<caatle> 
<aova> 
<aova> 
<aova> 
<aoval> 
<aoval> 
<movel> 
<caotla> 
<cattla> 
<ca»tla> 
<ca«tle» 
<ca«tte> 
<regular-aova> 
<capture» 
<captura> 
<captura> 
<ragular-«ave> 
<regular-.ove> 
<captura> 
<captura> 

Fig. 6. Antiproductions for a subset of the syntax of Fig. 5 . 
(The subset consists of productions 1-6.) 

in the l e f t or r i g h t column, it indicates that the 
original production did not have an entry to the left 
or right of that symbol. 

When the l e f t (or r i g h t ) context given in an anti-
production is satisfied, then the r i g h t (or l e f t ) con­
text is hypothesized for recognition. If the hypoth­
esized symbol happens to be a nonterminal, then all 
the possible terminal symbols that can appear at the 
left of this nonterminal are hypothesized. Detailed 
descriptions of the structure and use of antiproduc­
tions will be given in Neely [23] . 

The role of the syntactic verifier is to accept or dis­
card hypotheses using syntactic consistency checks. 
This is usually a more expensive process than hypoth­
esization because it involves complete parsing of the 
partially recognized sentences. The verifier may work 
both on hypotheses that the syntactic hypothesizer 
has generated, as well as those generated by other 
hypothesizes 

Semantic Recognizer 

The role of the semantic recognizer is to predict 
concepts based on the semantics of the task and se­
mantics of the preceding utterance. A predicted 
concept (a legal move for voice-chess) is used in con­
junction with the present context to predict a word 
that might appear in the utterance. The semantics of 
the task and the preceding utterances are captured 
for chess by the current board position. The board 
position for the utterance in discussion, "king bishop 
pawn moves to bishop four," is shown in Fig. 7. 

h e a r s a y has, as a subpart, a chess program (Gil-
logly [9]) that generates an ordered list of moves that 
are possible in that situation. A partial list of legal 
moves with numbers representing the likelihood of 
occurrence is given in Fig. 8. 

HEAD 



REDDY et al,: MACHINE SPEECH RECOGNITION 23S 

1 I E3 

EE3 

a CM a E A 8 
ftSCDEFGH 

Fig. 7. Board position for utterance in discussion. 

KBP/KB3XKP/K4 
0P/Q2-Q4 
DN/0N1-QB3 
KB/KB1-0B4 
KN/KN1-K2 
OP/Q2-03 
KB/KB1-K2 
0./Q1-K2 
QBP/QB2-CIB4 
OBP/QB2-OB3 
K/K1-KBZ 

KRP/KR2-KR4 
KNP/KN2-KN4 
QNP/QN2-QN4 
0RP/QRZ-QR4 
KN/KN1-KR3 
KNP/KN2-KN3 
QNP/0N2-QN3 
KRP/KR2-i:R3 
QRP/QR2-QR3 
0N/ON1-QR3 
KB/KB1-0NECH 
KBP/KB3-KB4 
KB/KBl-ORe 
KB/KB1-Q3 

58 
43 
48 
47 
4E 
4S 
44 
43 
42 
41 
40 
33 
38 
37 
36 
35 
34 
33 
32 
31 
3B 
ZS 
24 
12 
S 

Fig. 8. Ordered list of legal moves supplied by the chess-play­
ing program for the board position of Fig. 7. 

The semantic hypothesizer uses the ordered list of 
moves for hypothesis generation. In our example the 
hypothesizer would concentrate only on the "non-
capture" moves that start with the word "king." If 
there are none, then there is an inconsistency in the 
currently accepted partially recognized utterance. 
This may be due to an illegal statement or incorrect 
recognition. In the latter case, the partially recog-

bishop 
knight 
bishop's 
rook 
Oft 
knight' . 

62 
62 
44 
41 
41 
38 

ds hupothesized by w a n t if; hy 

Fig. 9. Words hypothesized by semantic hypothesizer. 

nized utterance is modified by replacing the weakest 
link by the second best choice for that position. 

Fig. 9 gives the words hypothesized by the semantic 
hypothesizer in the context of "king —." Associated 
with each hypothesis is a rating (ranging from 1 to 
100) indicating the semantic likelihood of the hy­
pothesis. This likelihood is derived from the likeli­
hoods of the projected legal moves from which the 
hypotheses are taken, and from intrasentence seman­
tic clues. The semantic hypothesizer uses word- and 
phrase-level semantic consistency checks to restrict 
hypothesization. The structure and the mechanism 
used by the semantic hypothesizer are described in 
Neely [23] . 

Control of the Processes 

Since the different recognizers are independent, the 
recognition overlord needs to synchronize the hy­
pothesis generation and verification phases of various 



processes. Synchronization ensures that hypotheses 
generated by one process will be verified by all the 
other processes in the subsequent time slice. Several 
strategies are available for deciding which subset of 
the processes generates the hypotheses and which 
verify. At present this is done by polling the pro­
cesses to decide which process is most confident 
about generating the correct hypothesis. In voice-
chess, where the semantic source of knowledge is 
dominant, that module usually generates the hypoth­
eses. These are then verified by the syntactic and 
acoustic recognizers. However, when robust acoustic 
cues are present in the incoming utterance, the roles 
are reversed with the acoustic recognizer generating 
the hypotheses. 

The verification process continues until a hypothe­
sis is found that is acceptable to all the verifiers with 
a high enough level of confidence. All the unverified 
hypotheses are stored on a stack for the purpose of 
backtracking at a later stage. Given an acceptable hy­
pothesis, r o v e r updates the currently accepted par­
tially recognized utterance and updates the partial 
symbolic utterance description with additional fea­
tures that were discovered during the process of hv-
pothesis generation and verification. If the utterance 
still has unrecognized portions of speech and if the 
interpretation of the utterance is still unclear, then all 
the active processes are reactivated to generate hy­
potheses in the new context. If there are no unrecog­
nized portions of speech in the utterance and the 
sentence is uninterpretable, the knowledge acquisition 
part of the system (unimplemented in the present 
system and not shown in Fig. 2) is activated to up­
date the lexicon and the acoustic, syntactic, and/or 
semantic rules. 

Preliminary Results 

The system described in the preceeding sections has 
been operational since June 1972. We view h e a r ­

s a y as a continually evolving system that is expected 
to serve as a research tool for explorations in speech-
recognition research at Carnegie-Mellon University. 
Fig. 10 gives some preliminary results of recognition 
by the system. More comprehensive results contain­
ing time, accuracy, and error analyses will be given in 
Erman [6] and Neely [23] . 

Discussion 

Models of Speech Perception 

This paper presents a model of speech perception 
that has been arrived at not so much by conducting 
experiments on how humans perceive speech but in 
the process of constructing several speech-recognition 
systems using computers. The emphasis has been on 
developing efficient recognition algorithms, with little 
attention to modeling of known human perceptual 
behavior. The general framework (for a model) that 
evolved is different from some previously proposed 

5s Actually spoken 
R: Recognized by HEARSAY 

1 . S: PAUN TO KING FOUR 
R: PAUN TO QUEEN FOLD 

2. S: KNIGHT TO KING'S BISHOP THREE 
R: PAUN TO QUEEN'S BISHOP THREE 

3. S: BISHOP TO KNIGHT FIVE 
R: PAUN TO QUEEN THREE 

4. S: KNIGHT TO QUEEN BISHOP THREE 
R: KNIGHT TO QUEEN BISHOP THREE 

5. S: PAUN TO QUEEN FOUR 
R: PAUN TO QUEEN FOUR 

G. S; KNIGHT TAKES PAUN 
R; KNIGHT TAKES PAWN 

Fig. 10. Some preliminary results from one run. (Approxi­
mately 4-7 times real-time processing on a PDP-10 computer.) 

models by Liberman et at., [17] and Halle and 
Stevens [10] , which imply that perception takes 
place through the active mediation of motor centers 
associated with speech production. Our results tend 
to support "sensory" theories advanced by Fant [7 ] , 
and others, in which speech decoding proceeds with­
out the active mediation of speech motor centers. 

If one eliminates the synthesis part of analysis-by-
synthesis, then our model is most similar to that of 
Halle and Stevens [10] . The important distinction to 
remember is that once a hypothesis is generated, say 
of the words "sit," "slit," and "split," one should 
never want to verify the hypotheses by generating 
formant trajectories for the word or phrase. That 
phonemes /s/, /I/, /t/ occur in the hypothesized words 
is no longer relevant. All that is needed is a verifica­
tion of the presence of stopgap and the /l/-like for­
mant transition preceding the vowel. Another limita­
tion of synthesis and match is that the noise might 
swamp the finer distinction required, i.e., the variabil­
ity in speaker performance of /s/, III, Itl might over­
shadow the positive contributions of a /p/ or an /l/. 

Information-Processing Models 

The model proposed in this paper raises several is­
sues that may be of interest to speech scientists and 
cognitive psychologists interested in human speech 
perception. We would like to propose that, in addi­
tion to stimulus-response studies and neuro-physio-
logical models, speech scientists should also make 
extensive use of information-processing models in the 
study of speech perception. The notion of an infor­
mation-processing model reflects a current trend in 
cognitive psychology to view man as an information 
processor, i.e., that his behavior can be seen as the 
result of a system consisting of memories containing 
discrete symbols and symbolic expressions and pro­
cesses that manipulate these symbols (Newell [26]). 
The main advantage of this approach to speech per­
ception studies is that it permits a researcher to look 
at the total problem of speech perception at a higher 
functional and conceptual level than is possible with 
the other two approaches. (To attempt to study the 
total problem of speech perception by formulating a 
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neurophysiological model would be like attempting 
to understand the workings of a TV set by looking at 
the flow of electrons through a transistor.) 

One question that arises in this context is the na¬ 
ture of serial and parallel processing mechanisms used 
by humans. It is known that, at a higher problem-
solving level, a human being behaves essentially as a 
serial information processor (Newell and Simon 
[27] ) . It is also known that parallel processing occurs 
at the preprocessing levels of vision and speech. What 
is not known is whether there are several independent 
processes or a single sophisticated process at the per¬ 
ceptual level that can use effectively all the available 
sources of knowledge. 

The second question is how various sources of 
knowledge cooperate with each other. There are 
experiments (Miller and Isard [ 2 0 ] , Collins and Quil-
lian [3]) that can be interpreted to show that percep¬ 
tion is faster or more intelligible depending on the 
number of available sources of knowledge. Any 
model of speech perception must deal with the nature 
and structure of the interaction between various 
sources of knowledge. Earlier models tend to ignore 
this question. 

S u m m a r y and C o n c l u s i o n s 

A casual reader of this paper would probably only 
notice the superficial aspects of the system: that it 
accepts voice commands to play chess, uses crude pa¬ 
rameters, and is not very smart at using the acoustic-
phonetic and other sources of knowledge. That is 
beside the point. The main contribution of this re¬ 
search is to provide a model and a framework in 
which the role of phonology, syntax, semantics, and 
other sources of knowledge can be systematically 
studied and evaluated. It is no longer necessary for 
us to be content with vacuous statements about the 
importance of syntax or semantics. 

We chose voice-chess as a task not because it is im¬ 
portant to play chess with a computer over tele¬ 
phone, but because chess provides a good area to eval¬ 
uate our ideas about the role of various sources of 
knowledge in speech perception. Chess plays the role 
in our system that the fruit fly plays in genetics. Just 
as the genetics of drosophila are studied not to 
breed better flies, but to learn the laws of heredity, 
so we choose chess as a task because the syntax, se¬ 
mantics, and vocabulary of discourse are well defined 
and are amenable to systematic study. 

Similarly, the acoustic parameters and phonologi¬ 
cal, syntactic, and semantic rules currently used by 
the h e a r s a y system are n o t particularly important or 
interesting. What is important to note is that while 
each module is "stupid," the system still works and 
does do a creditable job in spite of its weaknesses. 
The interesting features are the interaction and coop¬ 
eration among various modules and the correction of 
errors by various sources of knowledge. 

The system described in this paper was demon-

strated in June 1972, at a workshop on speech recog¬ 
nition. It represents the first system to demonstrate 
live, connected speech recognition using nontrivial 
syntax and semantics. We expect to actively modify 
the system to greatly increase its performance, as well 
as use it as an experimental tool for studying speech 
understanding, recognition, and perception. 

A c k n o w l e d g m e n t 

The authors wish to thank A. Newell whose intel¬ 
lectual and moral support has been essential to sus¬ 
tain a long-term research effort of this kind in the 
midst of pessimistic predictions. We wish to acknowl­
edge the important contributions of R. Fennell in the 
design and programming of ROVER and the global 
data structure. P. Karlton and B. Lowerre also helped 
in programming parts of the system. B. Broadley, 
P. Newbury, and J. Teter interfaced the speech de¬ 
vices to the PDP-10. G. Robertson and H. Wactlar 
made the necessary modifications to the PDP-10 
monitor. 

References 

[1] M. Astrakhan, "Speech analysis by clustering or the hy-
perphoneme method," Dep. Comput. Sci., Stanford 
Univ., Stanford. Calif., AI Memo 1 2 4 , 1 9 7 0 . 

[2] D. J. Broad, Formants in automatic speech recogni­
t i o n , " in Proc. Int. Conf. Speech Commun. Processing, 
1972 , pp. 2 9 5 - 2 9 8 . 

[3] A. M. Collins and M. R. Quillan, "Retrieval t ime from 
semantic memory ," J. Verbal Learn. Behav., vol. 8, 
1969 , pp. 2 0 4 - 2 6 7 . 

[4] P. B. Denes and T. G. von Keller, "Articulatory segmen¬ 
tation for automatic recognition of speech, in Proc. 
6th Int. Congr. Acoust. vol. B, 1968 , pp. 1 4 3 - 1 4 6 . 

[5] N. R. Dixon and C. C. Tappert, "Derivation of phonetic 
representation by combining steady-state and transemic 
classification in automatic recognition of continuous 
s p e e c h , " in Proc. Int. Conf. Speech Commun. Process­
ing, 1 9 7 2 , pp. 3 1 9 - 3 2 1 . 

[6] L. D. Erman, Ph.D. dissertation, in preparation. 
[7] G. Fant, "Auditory patterns of speech," in Models for 

the Perception of Speech and Visual Form, W. Wathen-
Dunn, Ed. Cambridge, Mass.: M.I.T. Press, 1964. 

[8] C. G. M. Fant and B. Lindblom, "Studies of minimal 
speech sound units ," Speech Transmission Lab., Quar¬ 
terly Prog. Stat. Rep. , vol. 2, pp. 1 - 1 1 , 1 9 6 1 . 

[9] J. J. Gillogly, "The TECHNOLOGY chess program," 
Artif. Intel., vol . 3 , pp . 1 4 5 - 1 6 3 , 1 9 7 2 . 

[10] M. Halle and K. Stevens, "Speech recognition: A model 
and a program for research A" IRE Trans. Inform. The­
ory, vol. IT-8, pp. 1 5 5 - 1 5 9 , Feb. 1962 . 

[11 ] H. Hemani and I. Lehiste, "Interactive automatic speech 
s e g m e n t a t i o n . " in Proc. Int. Conf. Speech Commun. 

I Processing, 1 9 7 2 , pp. 2 9 1 - 2 9 4 . 
[12] D. R. Hill, "Man-machine interaction using speech," in 

Advances in Computers, vol. 1 1 , F. L. Ait et al., Ed. 
New York: Academic, 1 9 7 1 , pp. 1 6 5 - 2 3 0 . 

[13] S. Itahashi, S. Makino, and K. Kido, "Automatic recog­
nition of spoken words utilizing dictionary and phono­
logical rule ." in Proc. Int. Conf. Speech Commun. Pro¬ 
cessing, 1972 , pp. 3 2 7 - 3 3 0 . 

[14] F. Itak ura and S. Saito. "Speech analysis-synthesis sys¬ 
tem based on the partial autocorrelation coefficient," 
presented at the 1969 Acoust. Soc. Jap. Meeting 
(see also "On the opt imum quantization of feature 
parameters in the parcor speech synthesizer," in Proc. 
Int. Conf. Speech Commun. Processing, 1 9 7 2 , pp. 434— 
4 3 7 ) , 

[15] D. H. Klatt and K. N. Stevens, "Sentence recognition 
form visual examination of spectrograms and machine-
aided lexical searching," in Proc. Int. Conf. Speech 
Commun. Processing, 1 9 7 2 , pp. 3 1 5 - 3 1 8 . 

[16] K.-P. Li, G. W. Hughes, and A. S. House, "Correlation 
characteristics and dimensionality of speech spectra," 
J. Acoust Soc. Amer., vol. 46, pp. 1 0 1 9 - 1 0 2 5 , 1969. 



238 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, JUNE 1973 

[17] A. M. Liber man, F. S. Cooper, K. S. Harris, and P. F. 
MacNeilage, "A motor theory of speech perception," 
in Proc. Speech Commun. Seminar, vol™2,1962. 

[18] B. Lindblom and S.-G. Svensson, "Interaction between 
segmental and non-segmental factors in speech recogni­
tion," in Proc. Int. Conf. Speech Commun. Processing, 
1972. pp. 331-333. 

[19] M. Medress, "A procedure for the machine recognition 
of speech,'' in Proc. Int. Conf. Speech Commun. Pro­
cessing, 1972, pp. 113-116. 

[20] G. A. Miller and S. Isard. "Some perceptual conse­
quences of linguistic rules,'' J. Verbal Learn. Behav., 
vol. 2, pp. 2 1 7 - W 1963. 

[21] Y. Nakano, A. Ichikawa, and K. Nakata, "Evaluation of 
various parameters in spoken digits recognition," in 
Proc. IntConf. Speech Commun. Processing, 1972, pp. 
101-104. 

[22] R. B. Neely, "Experimental conversational computer 
system," J . Acoust. Soc. Amer., vol. 46, p. 89(A), 1969. 

[23] ——, Ph.D. dissertation, in preparation. 
[24] R. B. Neely and R. D. Reddy, "Speech recognition in 

the presence of noise," in Proc. 7th Int. Congr. Acoust. 
(Budapest, Hungary), vol. 3, 1971, pp. 177-180. 

[25] X. Newell, "Heuristic programming: Ill^tructured prob­
lems," in Progress in Operations Research, vol. 3, J. S. 
Aronofsky, e 3 . New York: Wiley, 1971. 

[26] , "Remarks on the relationship between artificial in­
telligence and cognitive psychology," in Non-Numerical 
Problem Solving, R. Banerji and M. D. Mesarovic, Ed. 
Berlin, W. Germany: Springer-Verlag, 1970, pp. 363¬ 
400. . 

[27] A. Newell and H. A. Simon, Human Problem Solving. 
Englewood Cliffs, N.J.: Prentice-Hall, 1972. 

[28] L. C. W. Pols, "Dimensional representation of speech 
spectra," in Proc. 7th Int. Congr. Acoust. (Budapest, 
Hungary), vol. 3, 1971, pp. 281-284. 

[29] D. ft. Reddy, "Segmentation of speech sounds," J. 
Acoust. Soc. Amer., vol. 40, pp. 307-312, 1966. 

[30 ] — "Computer recognition of connected speech," J. 
Acoust. Soc Amer., vol. 42, pp. 329-347,196%! 

(31 ] , "Segmenwynchronization problem in speech recog­
nition," J. Acodst. Soc. Amer., vol. 46, p. &>(A), 196§. 

[32 ] — , "Speech recognition: Prospects for the seventies," in 
Proc. IFIP, vol. 71, 1971, pp. I-5-I-3. 

[33 ] D. R. Reddy, L. D. Erman, and R. B. Neely, "The C-MU 
speech recognition project," in Proc. IE%E Syst. Sci 
Cybern. Conf., 1970. 

[34 ] D. R. Reddy and P. J. Vicens, "A procedure for seg­
mentation of connected speech," J. Audio Eng. Soc, 
vol. 16, pp. 404-412, 1968. 

[35] U. Stalhammar and I. Karlsson, "A phonetic approach 
to ASR," in Proc. Int. Conf. Speech Vommun. Process­
ing, 1972, pp. 125-128. 

[36] C. C. Tappert, N. R. Dixon, and A. S. Rabinowitz, 
"Application of sequential decoding for converting 
phonetic to graphenuc representation in automatic rec­
ognition of continuous speech," in Proc. Int. Conf. 
Speech Commun. Processing, 1972. pp. 322-326. 

[37] P. J. Vicens, "Use of syntax in the analysis of con­
nected speech," J. Acoust. Soc. Amer., vol. 46, p. 89(A), 
1969. 

[38] , "Aspects of speech recognition by computer," Dep. 
Cornput. Sci., Stanford Univ., Stanford, Calif., Al Memo 
85, Plh.D. dissertation, 1969. 

[39] G. White, private communication, Xerox Palo Alto Res. 
Cen., Palo Alto, Calif., 1972. 

Reprinted by permission from IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS 
Vol. Au-21, No. 3, June 1973, pp. 229-238 

Copyright 1973, by the Institute of Electrical andElectronics Engineers, Inc. 
PRINTED IN THE U.S.A. 



THE HEARSAY SPEECH UNDERSTANDING SYSTEM: 
An Example of the Recognition Process 

D.R. Reddy, L.D. Erman, R.D. Fennel!, and R.B. Neely« 
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Pittsburgh, Pa. 15213 

ABSTRACT 

This paper describes the structure and operation of the Hearsay speech 
understanding system by the use of a specific example illustrating the various stages 
of recognition. The system consists of a set of cooperating independent processes, 
each representing a source of Knowledge. The knowledge is used either to predict 
what may appear in a given context or to verify hypotheses resulting from a 
prediction. The structure of the system is illustrated by considering its operation in a 
particular task situation: Voice-Chess. The representation and use of various sources 
of knowledge are outlined. Preliminary results of the reduction in search resulting 
from the use of various sources of knowledge are given. 

Keywords: speech recognition, understanding, hypothesize-end-test. 

INTRODUCTION 

The factors influencing the structure and operation of a 
speech understanding system are many and complex. The report 
of Newell et al. (1971) discusses these issues in detail. Our own 
goals and efforts in this area have been described in several 
earlier papers (Reddy et al., 1972). The goats for our present 
effort were outlined in Reddy, Erman, and Neely (1970). The 
initial structural description of the Hearsay system was given in 
Reddy (1971). The model and the system that evoived after 
several design iterations were described in Reddy, Erman, and 
Neely (1972a).* The main additions to the initial proposed 
system were in the specification of the interactions among 
various sources of knowledge. In this paper, we describe the 
structure and operation of the Hearsay system from a different 
point of view, i.e., by considering a specific example to illustrate 
the various stages of the recognition process. 

Machine perception of speech differs from many other 
problems in artificial intelligence in that it is characterized by 
high data rates, large amounts of data, and the availability of 
many sources of knowledge. Thus, the techniques that must be 

* The general framework that evolved for the model is different 
from some previously proposed models by Liberman et al. 
(1962) and Halle and Stevens (1962) which imply that 
perception takes place through the active mediation of motor 
centers. Our efforts tend to support "sensory" theories 
advanced by Fant (1964) and others. If one modifies the 
"synthesis" part of analysis-by-synthesis, then our model is 
most similar to that of Halle and Stevens. 

employed differ from other problem-solving systems in which 
weaker and weaker methods are used to solve a problem using 
less and less information about the actual task. In addition, there 
is a marked difference in the expectations for system 
performance. In tasks such as chess and theorem-proving, the 
human has sufficient trouble himself so as to make reasonably 
crude programs of interest. But humans perform effortlessly 
(and with only modest error) in speech or visual perception 
tasks, and they demand comparable performance from a machine. 
Thus, it is important that the structure and organization of a 
system be such that it is not a dead-end effort, i.e., it should be 
capable of approaching human performance without major 
reformulation of the problem solution. The Hearsay system effort 
represents an attempt to produce one such system. The main 
distinguishing characteristic of this system is that diverse sources 
of knowledge can be represented as cooperating independent 
parallel processes which help in the decoding of the utterances 
using the hypothesize-and-test paradigm. 

The system is designed for the recognition of connected 
speech, from several speakers, with graceful error recovery, 
performing the recognition in close to real-time. The structure 
and implementation of the system are to a large extent dictated 
by these concerns. One feature that characterizes a speech 
understanding system is the existence of errors at every level of 
analysis. The errorful nature of processing implies that every 
source of knowledge has to be invoked to resolve ambiguities 
and errors at every stage of the processing. One way to 
accomplish this is through the use of the hypothesize-and-test 
paradigm, where each source of knowledge can accept, reject, or 
re-order the hypotheses produced by other sources of 
knowledge. For example, in the Voice-Chess task, if the word 
"captures" appears in a partially-recognized utterance, the 

» Present address: Xerox Palo Alto Research Center, Palo Alto, Ca. 94305. 

* * This research was supported in part by the Advanced Research Projects Agency of 
the Department of Defense under contract no. F44620-70-C-0107 and monitored by 
the Air Force Office of Scientific Research. 



semant ic s o u r c e of know ledge can reject all the h y p o t h e s e s that 
do not lead to a cap tu re move. 

The Hea rsay sys tem is not res t r i c ted to any pa r t i cu la r 
r e c o g n i t i o n task. G iven the syn tax and the v o c a b u l a r y of a 
l anguage and the semant ics of the task , it a t tempts r e c o g n i t i o n of 
u t t e r a n c e s in that language. It is d e s i g n e d to s e r v e as a 
r e s e a r c h tool in wh i ch the con t r ibu t ions of va r i ous s o u r c e s of 
k n o w l e d g e t o w a r d s recogn i t i on can be c lear ly e v a l u a t e d . S i n c e 
e a c h s o u r c e of know ledge is r e p r e s e n t e d as an i n d e p e n d e n t 
p r o c e s s , it can be removed wi thout c r i pp l i ng the s y s t e m . 

F igu re 1 g ives an o v e r v i e w of the Hearsay s y s t e m . The E A R 
module accep ts s p e e c h input , ex t rac ts p a r a m e t e r s , and p e r f o r m s 
some pre l im inary segmen ta t i on , f ea tu re ex t r ac t i on and l a b e l i n g , 
g e n e r a t i n g a "par t ia l symbo l ic u t te rance d e s c r i p t i o n . " R O V E R 
( R e c o g n i t i o n OVERIord ) con t ro ls the recogn i t i on p r o c e s s and 
c o o r d i n a t e s the hypo thes is gene ra t i on and v e r i f i c a t i o n ( t es t i ng ) 
phases of the var ious c o o p e r a t i n g k n o w l e d g e p r o c e s s e s . The 
T A S K p rov i des the in ter face b e t w e e n the task be ing p e r f o r m e d 
and the s p e e c h recogn i t i on and g e n e r a t i o n ( S P E A K - E A S Y ) parts 
of the s y s t e m . SOL, the Sys tem O v e r L o r d , p r o v i d e s the message 
c o m m u n i c a t i o n fac i l i t ies for the sys tem. 

SYNTActtcl 
RECOGNIZER! 

SEMANTIC I 
iRE A NI f fR l 

F igure 1 : S t ruc tu re of the Hearsay s y s t e m . 

AN EXAMPLE OF RECOGNITION 

Here we wi l l i l lustrate the o p e r a t i o n of the Hearsay s y s t e m 
by c o n s i d e r i n g in detai l the recogn i t i on p rocess of an u t t e r a n c e 
w i t h i n a spec i f i c task env i ronmen t : V o i c e - C h e s s . T h e task is to 
r e c o g n i z e a s p o k e n chess move in a g i ven b o a r d pos i t i on and 
r e s p o n d w i th the c o u n t e r - m o v e . 

F igu re 2 g ives the board pos i t ion and a list of legal moves in 
that pos i t i on at the time the move is s p o k e n . The s p e a k e r , 
p l ay ing w h i t e , w i shes to move his b i shop on q u e e n ' s - b i s h o p one 
to k ing knight f ive. This is one of 46 d i f fe ren t legal m o v e s . 
T h e s e moves have been o r d e r e d on the basis of thei r g o o d n e s s 
in the g i ven boa rd pos i t ion . This judgment was b a s e d on a t a s k -
d e p e n d e n t sou rce of know ledge avai lab le to the p r o g r a m 
(Gi l log ly , 1972). Note that the move c h o s e n by the s p e a k e r w a s 
on ly the f ou r t h best move in that s i tuat ion. 

Hav ing c h o s e n the move, there are many poss ib le w a y s of 
u t te r ing the move. The syntax of the language permi ts many 
v a r i a t i o n s , usual ly of the form <piece> <action> <posi t ion>. T h e 
p iece can have qual i f ie rs to indicate the locat ion. The ac t ion may 
be of the f o r m : " to" , " m o v e s - t o " , " g o e s - t o " , " t akes " , " cap tu res ' * , 
and so on . The pos i t ion can be of the f o r m : "k ing t h r e e " , " k ing 
b i s h o p four " , or "queen 's knight f i ve" , and so on . The ac tua l 
move s p o k e n in this context was "b i shop m o v e s - t o king kn ight 
f i ve " . Note that " queen b ishop on queen b i shop o n e " can be 
s p e c i f i e d as just " b i s h o p " because there is no ambigu i ty in th is 
case. 

S i m&m * 

m m w n 

n mm rna 

0-0 *NfVKN2-KN3 
QBQB1-IC3 0NP,QN2-0TN3 
Q6/QB1-KB4 0RR0R2-QR3 
QB/QB1-KNS KN̂ I-K2 
KB/QNS-QB4 CN/O4-0N3 
KR/KR1 -KB1 0N/QBB3-QS 
Q/Q1-Q3 KPKft-KS 
KBQNSXQN/GB6 K/KI-K2 
KBP/KB2-KB4 0TNQ83K2 
KR/KR1-KN1 KMPKrN2-TrN4 
KBP/KB2-KB3 0*PAON2-0N4 
Q/Ql-02 ON083QR4 
0R/GR1-0N1 0tNQB3flN1 
K/K1-KB1 OBQBI-02 
KB/0NS-K2 KBQNS-Q3 
KN/Q4-KBS Q01-KB3 
KB0N50R4 Q01-IT2 
KN/04XQN/QB6 OBOB 1ITR6 
KN/Q4-KB3 K/Kl-02 
KRP/KR2-rR4 KWD4K6 
QRP/0fl2-0R« KB/QNS-QR6 
KBQNS-KB1 Q̂ 1-KN4 
KRP/KR2-KR3 0/01-KRS 

F igure 2: The chess board pos i t ion and the o r d e r e d list 
of legal moves for Wh i te . 

s e g m e n t a t i o n and label ing ind icated in this and s u c c e e d i n g f i g u r e s 
is for our benef i t only — it is not avai lab le to the s y s t e m wh i l e it 
is a t tempt ing recogni t ion.) The u t te rance was about 2 s e c o n d s in 
d u r a t i o n and the w a v e f o r m is d i sp l ayed on ten c o n s e c u t i v e r o w s , 
e a c h row con ta in ing 200 mi l l iseconds of the u t te rance . T h e f i rs t 
l ine of text under each row contains the w o r d be ing a r t i c u l a t e d . 
T h e w o r d label is r epea ted for the dura t ion of the w o r d . T h u s , 
the w o r d " b i s h o p " was ar t icu la ted for 400 mi l l i seconds and 
o c c u p i e s the f irst two rows of the w a v e f o r m . The s e c o n d line of 
text under each row contains the in tended p h o n e m e b e i n g 
a r t i cu la ted . The phoneme ( r e p r e s e n t e d in IPA nota t ion) is 
r e p e a t e d for the dura t ion of the phoneme. 

S e v e r a l in te res t ing prob lems of s p e e c h r e c o g n i t i o n ar ise in 
the con tex t of recogn i t ion of this u t te rance. The end of Row 2 of 
F igu re 3 shows the junc ture b e t w e e n " b i s h o p " and " m o v e s " . 
Note that the end ing / p / in " b i s h o p " and the beg inn ing nasal / m / 
in " m o v e s " are homorganic , i.e., they both have the same 
a r t i cu la to ry pos i t ion . This results in the a b s e n c e of the r e l e a s e 
and the asp i ra t i on that normally cha rac te r i zes the s o u n d / p / . 
Row 6 of F igure 3 i l lustrates a w o r d bounda ry p r o b l e m . T h e 
e n d i n g nasal of " k i n g " and the beg inn ing nasal of " kn igh t " t e n d to 
be a r t i cu la ted f rom the same tongue pos i t ion e v e n t h o u g h in 
i so la t ion they w o u l d have been ar t icu la ted f rom two d i f f e ren t 
pos i t i ons . This resul ts in a single segment r e p r e s e n t i n g t w o 
d i f f e ren t phonemes in two adjacent w o r d s . Fu r t he r , it is 
imposs ib le tc spec i f y the exact locat ion of the w o r d b o u n d a r y . In 
the manual segmenta t ion , the boundary was p l a c e d at an 
a r b i t r a r y pos i t ion . Ano ther t ype of j unc tu re p rob lem a p p e a r s on 
Row 8 of F igure 3 at the boundary of "knight f i ve" . T h e r e l e a s e 
and asp i ra t i on of the phoneme / t / are ass imi la ted into the /f/ of 
" f i ve " . 

Feature Extraction and Segmentation 

The s p e e c h input f rom the mic rophone is p a s s e d t h r o u g h f i ve 
b a n d - p a s s f i l ters (spanning the range 2 0 0 - 6 4 0 0 Hz) and t h r o u g h 
an un f i l t e red band. Wi th in each band the maximum in tens i ty is 
m e a s u r e d for eve ry 10 mi l l iseconds (the z e r o c r o s s i n g s are also 
m e a s u r e d in each of the bands but they do not play an impor tan t 
ro le in the recogn i t ion process at p resent ) . Th is resu l ts in a 
v e c t o r of 6 ampl i tude parameters eve ry 10 mi l l i seconds . T h e s e 
p a r a m e t e r s are smoo thed and l o g - t r a n s f o r m e d . F igure 4 s h o w s a 
plot of these parameters as a func t ion of t ime for part of the 
u t t e rance of F igure 3. The top line shows the u t t e rance s p o k e n . 
T h e s e c o n d line of text indicates w h e r e the w o r d b o u n d a r i e s 
w e r e marked dur ing the manual segmenta t ion p r o c e s s (this wi l l 
permit manual ve r i f i ca t ion of the accuracy of the mach ine 
r e c o g n i t i o n p rocess in the later stages). 

F igu re 3 shows the s p e e c h w a v e f o r m of the u t t e rance w i t h 
manual s e g m e n t a t i o n , show ing the beg inn ing and end ing of e a c h 
w o r d and each phoneme wi th in the w o r d . (The manua l 

Th is vec tor of parameters ( labeled 1, 2, 3, 4, 5, and U in 
F igu re 4) is, for each c e n t i s e c o n d , compa red w i th a s t a n d a r d set 
of parameter vec to rs to obta in a minimum d is tance c l a s s i f i c a t i o n 
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Figure 3 : Waveform of the utterance with the "actual" word and phoneme boundaries. 

It 3 



ill** novif-ro (ttMt iBI*«T JSwt 

Figure 4 . Parametric representation of the utterance showing the 
resul ts of feature extraction and segmentation 

using a modified nearest-neighbor classification technique. The 
purpose o; this operation is to assign a {single character) label to 
each ceniisecond of speech using a compact pseudo-phonetic 
notation representing the actual local characteristics of the 
sssec.-. signal The line of text labeled P in Figure 4 gives the 
cessificatior: for every 10-nilliseeond unit. 

The classification of labels for each centisecond obtained by 
this rr.aich procedure (row P ir. figure 4) is then used to specify 
a us- of features, such as voicing and fricatson, which are then 
used in the segmentation of the utterance, shown in Figure 4. 
The boundaries of segments are indicated by veriica' lines 
through the parameters, and the letter at the center of each 
segment (foliowing the row P in Figure 4) indicates the type of 
segment that is present. The "A" indicates a sOnorant segment, 
i.e., all the voiced unfricated segments; the "S" indicates a 
fricated segment, and the period <".") indicates a siSence segment. 
The first use of an acoustic-phonetic source of knowledge can be 
seen in the handling of the "king knight" word boundary problem 
mentioned earlier. A long sonorant segment is subdivided into 
two segments to indicate the presence of two different syllables. 
The syllable juncture is determined in this case by the presence 
Of a significant local minimum in an overall intensity plot (line 
labeled U on Figure 4). 

Tha Bacognitian Praea« 

The Hearsay system, at present, has three cooperating 
independent processes which help in the decoding of the 
utterances. These represent acoustic, syntactic, and semantic 
sources of knowledge: 

1. The acoustic-phonetic domain, which we refer to as 
just acoustics, deals with the sounds of the language 
era how ih3y re,ate to the speech signal produced 
by the speaker. Tnis domain of knowledge has 
traditionally been the only one used in most previous 
attempts at speech recognition. 

2. The syntax domain deals with the ordering of words 
in the utterance according to the grammar of the 
input language. 

3. The semantic domain considers the meaning of the 
utterances of the language, in the context of the task. 

The actual number and nature ot these sources of knowledge is 
somewhat arbitrary. What is important to notice is that there can 
be several cooperating independent processes. 

These processes cooperate by means of a hypothesize-and-
test paradigm. This paradigm consists of one or more sources of 
knowledge looking at the unrecognizeo portion of the utterance 
and generating an ordered list o( hypotheses. These hypotheses 
may then be verified by one or more of the sources of 
knowledge; the verification may accept, reject, or re-order the 
hypotheses. The same source ot knowledge may be used in 

different ways both to generate hypotheses and to verify (or 
reject) hypotheses. 

We wiii illustrate this recognition process by following 
through variojs stages O T recognition for the utterance given in 
Figures 3 and 4. Figures 5 through 12 illustrate several of these 
stages of the recognition. In each figure, we have four kinds of 
information in aadition to what was shown in Figure 4: the 
current sentence hypothesis (immediately below the P and 
segmentation rows), the processes acting on the current sentence 
hypothesis and their effec; (e.g., SVN HYPOTHESIZED.-, ACO 
REJECTED...), the acceptable option words with their ratings and 
word boundaries (e.g., T...T 500 Rook's), and the four best 
sentence hypotheses which result by adding the possible option 
words to the current best sentence hypothesis. When there are 
more than eisht Option words onlv the best einht are shown 
When there are more than four sentence hypotheses, only the 
best four are shown. The symbol <UV> within the current 
sentence hypothesis gives the location of t h© sst of fi©w words 
being hypothesized and verified. The " t„ t" arrows indicate the 
possible beginnine and ending for each option word. 

Figure 5 shows ins firs: cycle of the recognition process. At 
this point none of the words in the sentence have been 
recognized and the processing begins left to right. The Syntax 
module chooses to hypothesize and generates 13 possible words, 
implying that the sentence can begin with "rook's", "rook", 
"queen's", etc. Of these, the Acoustics module absolutely rejects 
the word "bishop's" as being severely inconsistent with the 
acoustic-phonetic evidence. The Semantics module rejects 
"castle" and "castles" as being illegal in this board position. The 
remaining 10 words are rated by each of the sources of 
knowledge. The composite rating and the word beginning and 
ending markers for the eight best words are shown in Figure 5. 
The words "rook", "rook's", "queen's" and "queen" all get a rating 
of 500. "3ishop", Vr.e correct word, gets a rating of 513. These 
words are then usee to form the beginning sentence hypotheses, 
the top four of which are shown at the bottom of Figure 5. 

Figure 6 shows the second cycle of the recognition process. 
The top sentence hypothesis is "bishop —" . An attempt is being 
made tc recognize the word following "bishop". Again Syntax 
generates the hypotheses. Given that "bishop" is the preceding 
wore, the syntactic source cf knowiedge proposes only 7 options 
out of the-possible 31 words in the lexicon — a reduction in 
search space by a factor ot 4. Of these possible 7 words, 
Acoustics rejects "captures" ar.o Semantics rejects none. The 
remaining six words are ratsd by each of the sources of 
knowledge and a composite rating along with word boundaries is 
shown in Figure 6 for each of the acceptable words ("to" has a 
rating of 443, etc.). The correct word, "moves-to", happens to 
get the highest rating of 525. The new top sentence hypothesis 
is "bishop mcves-to — " , with a composite sentence rating of 
547. 

Figure 7 shows the third cycle of the recognition process. 
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Given the top sentence hypothesis "bishop moves-to — " , the 
Syntax module hypothesizes 7 option words. None of these were 
rejected by Acoustics or Semantics. "King - and "King's" both get 
the highest score of 513. The first error in the recognition 
process occurs at this point. As new sentence hypotheses are 
created based on the ratings of individual words, both "bishop 
moves-to king's — " and "bishop moves-to king — " have the 
same rating, with the former appearing at the top of the list. At 
this point it is instructive to see why the error was made in the 
first place. The phonemic description of "king's" causes a search 
for a stop followed by a vowel-like segment followed by a stop 
and fricative. This sequence of segments occurs in "king knight 
five" as can be seen from Figure 4 (improvements currently 
being made to the system will result in "king's* getting a much 
lower score). The important thing to observe is how the system 
recovers from errors of this type. 

Figure 8 shows the system attempting to associate a 
meaningful word to the unverified part of the utterance, i.e., the 
/a lv / part of the word "live" in the original utterance. Syntax 
proposes 3 possible option words (out of a possible 3 1 , giving a 
factor of 10 reduction). One is rejected and the other two get 
very low ratings. The corresponding sentence hypotheses also 
get low composite ratings and end up at the bottom of the stack 
(not visible in Figure 8). 

Now we see an interesting feature of the system. In the 
preceding cycle (Figure 8) Syntax generated the hypotheses. It 
is possible that that source of knowledge is incomplete and did 
not generate the correct word as a possible hypothesis. 
Therefore, in this cycle (Figure 9), the Semantic module is given a 
chance to hypothesize. It hypothesizes 9 option words (a 
reduction of search by a factor of 3) all of which are rejected by 
Syntax and Acoustics. When both attempts to make a meaningful 
completion of the utterance fail, this particular sentence 
hypothesis, "bishop moves to king's-", is removed from the 
candidate list. 

Now the top sentence hypothesis is "bishop moves-to king--" 
(Figure 10). Syntax hypothesizes 11 option words. Acoustics 
rejects six of them and Semantics rejects two. Of the remaining 
words, the correct word, "knight", gets the second best rating 
after "bishop". Again there is an errorful path, because the top 
sentence hypothesis now happens to be "bishop moves-to king 
bishop — " . This sentence hypothesis is rejected immediately in 
the next cycle because there is no more utterance to be 
recognized and "bishop moves-to king bishop" is not • legal 
move. Note that the correct sentence hypothesis is not at the 
top of the stack. Its rating of 550 is not as good as "bishop 
moves-to king — " (see Figure 10). 

The processing in the next cycle is illustrated in Figure 11 . 
Note that in Figure 10, this same sentence hypothesis was used 
when the Syntax module hypothesized. Now Semantics is given 
an option to hypothesize and proposes 3 words. All Of these are 
rejected by Syntax and Acoustics. 

Finally, the correct partial sentence hypothesis, "bishop 
moves-to king knight — g e t s to the top (Figure 12). Syntax 
hypothesizes 17 option words. Of these Semantics rejects 16 as 
being incorrect, leaving only "five" as a possibility. This results 
in the correct complete sentence hypothesis of "bishop moves-to 
king knight five". Bui the composite rating for this sentence is 
only 545 and there are other partial sentence hypotheses with 
higher ratings. At this point, the system cycles eight more times 
before rejecting all of them and accepting the correct sentence 
hypothesis. 

Figure 13 shows the accuracy of the system in recognizing 
some typical sentences. An attempt was made to estimate the 
effect of syntax and semantics. Using Syntax only, the average 
number of words analyzed was reduced to 9.4 out of the possible 

31 words in the lexicon - a reduction in search space by a 
factor of 3. Using Semantics only, the reduction of search space 
was about the same. Using both knowledge sources results in a 
reduction in the search space by a factor of 5. 
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Figure 13: Examples of results for one run. 

SOURCES OF KNOWIFDRE: 
Their Representation and Use in tha Hearsay System 

Several sources of knowledge are used in the Hearsay 
system at present: speaker- and environment-dependent 
knowledge, acoustic-phonetic rules, vocabulary restrictions, and 
syntactic and semantic knowledge. The knowledge used at 
present represents only a small part of all the available 
knowledge. We expect to be adding to the knowledge base of 
the system for many years to come. The difficulties in 
representation and use of knowledge within the system are 
manifold. Even when rules exist which express pertinent 
knowledge, their applicability seems very limited and the effort 
involved to make effective use of them within the system is very 
large. Rules that exist are scattered in the literature. Many have 
not been written down and exist only in the heads of some 
scientists, and many are yet to be discovered. In this section, we 
will restrict ourselves to the discussion of the knowledge that is 
incorporated into the present Hearsay system. 

Speaker and Environment Dapandant Know lad f 

The characteristics of speech vary, depending on the 
speaker, age, sex, and physical condition. In addition, the 
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Figure 9: Fifth stage of the recognition process. 
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characteristics of the environment isLch as background noise) 
and the characteristics of the transducer (such as the frequency 
response characteristics of the microphone) also cause variability 
in speech characteristics. 

In the Hearsay system an attempt is made to correct for 
these variables through the use of a EE table. This table 
contains a standard set of parameters for various phones uttered 
by the speaker in a neutral phonetic context. This set of 
parameters also accounts for the characteristics of the room 
noise and the characteristics Ot the microphone in that the 
neutral phones were uttered in the very same environment. A 
complete list of the clusters used and the details of the speaker 
and environment normalization are given in Erman (1973). 

Atoustic-phormtjc Knnwladf 

This knowledge is used in several places within the system to 
perform different functions. Knowledge related to syllabic 
structure is used in the segmentation. For each segment, 
knowledge related to voicing, frication, and syllable junction (a 
local minimum Of energy) is used to assign labels to each 
segment. An example of segmentation and labeling obtained by 
this type of knowledge is given in Figure 4. 

The acoustic-phonetic knowledge is used in the recognition 
process in two ways: to generate hypotheses about possible 
words that may be present in the incoming utterance; and to 
reject, accept, or re-order the hypotheses generated by other 
sources of knowledge. 

The hypothesization is based on the fact that certain sounds 
within an utterance, e.g., stressed vowels, sibilants, and unvoiced 
stops, can usually be uniquely recognized. These features of the 
incoming utterance can then be used as an acoustic-phonetic 
filter on the lexicon to hypothesize only those words that are 
appropriate in this acoustic context. 

When the acoustic-phonetic knowledge is used to verify 
hypotheses, it performs a more thorough analysis. Given a 
hypothesized word, its phonetic description is located in the 
lexicon. This description is used to guide the search for the 
word by means of phoneme procedures. That is, the expected 
characteristics of a given phoneme in various contexts are 
represented as a procedure; this procedure is activated to see if 
the expected features are present, and to provide a confidence 
rating based on the acoustic evidence. There are several 
increasingly more sophisticated verification procedures that can 
be used to verify proposed hypotheses. These sophisticated 
procedures are only invoked if word ambiguity exists at the 
preceding level. 

following or preceding a word using only a limited context. 
Examples of anti-productions and their use are given by Neely 
(1973). The role of the syntactic verifier is to accept or discard 
hypotheses by using syntactic consistency checks based on the 
partial parse of the utterance. While the knowledge used for 
hypothesization and verification are the same, the representation 
and the mechanisms used in the hypothesization and verification 
are different. Figures 5 and 6 give examples Of constraints 
provided by the syntactic knowledge during hypothesizatidn. 
Figure 9 illustrates its use in verification. 

The semantic source of knowledge for Voice-Chess is based 
on the semantics of the task, the current board position, and the 
likelihood Of the move. This knowledge is used to predict likely 
legal moves; these moves are then used in conjunction with the 
partially-recognized utterance to predict a word that might 
appear in the utterance. The same knowledge is also used to 
verify hypotheses generated by other sources of knowledge. 
Figure 9 illustrates the use of semantic knowledge to generate 
hypotheses. In the context of "bishop moves-to king", Semantics 
hypothesizes nine possible words. It hypothesizes all the words 
that might appear in the utterance in positions allowed by the 
semantic knowledge, given the partial recognition. Figure 12 
shows the use of Semantics in the verification. Syntax 
hypothesizes 17 possible words. The semantic knowledge, given 
the partially recognized utterance "bishop moves to king knight", 
indicates that only "five" is legal in that context by rejecting all 
others. 

BUUUARY 

This paper reports o., research in progress on the Hearsay 
speech understanding system. The system has been operational 
since June, 1972. At present we are attempting to improve the 
accuracy and performance of the system by adding to and 
improving the knowledge base. This is being done by an analysis 
of errors made by the system on seven sets of data from five 
male speakers in four different task domains. This process of 
modification and improvement is expected to continue for several 
years, using increasingly complex vocabularies, syntax, and task 
environments. The Hearsay system will be used primarily as a 
research tool to evaluate the contributions of various sources of 
knowledge, as wall as serving as an information processing model 
ot speech perception. 

We wish particularly to acknowledge the efforts of Bruce 
Lower re who has increased the acoustic-phonetic knowledge 
base in Hearsay, thereby greatly improving the system's 
performance. 

Syntactic »nd <Umintie Knawledae 

Conventional parsing techniques are not very useful to direct 
the search within a speech understanding system. The 
recognizer must be capable of processing errorful strings 
containing spurious and repeated words. This implies that the 
parser must be capable Of starting in the middle of the utterance 
where a word might be recognized uniquely and parse both 
forwards and backwards. The goal of parsing Is not so much to 
generate a parse tree, but to predict what terminal symbol might 
appear to the left or to the right of a given context. 

The predictive parsing for hypothesization is achieved in the 
Hearsay system by the use of anti-productions. Anti-productions 
act as a concordance for the grammar giving all the contexts for 
every symbol appearing in the grammar; they are generated from 
a BNF description of the language to be recognized. The anti-
productions are used to predict words that are likely to occur 
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ABSTRACT 

This paper considers various factors affecting system organization for speech 
understanding research. The structure of the Hearsay system based on a set of 
cooperating, independent processes using the hypothesize-and-test paradigm is 
presented. Design considerations for the effective use of multiprocessor and network 
architectures in speech understanding systems are presented: control of processes, 
interprocess communication and data sharing, resource allocation, and debugging are 
discussed. 
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INTRODUCTION 

System organizations for speech understanding systems must 
address many problems: effective use of multiple sources of 
knowledge, anticipation and goal-direction in the analysis of the 
incoming utterance, real-time response, continuous monitoring of 
input device(s), errorful nature of the recognition process, 
exponential increase of processing requirements with the 
increase of desired accuracy, and so on. A particular model of 
speech perception (Reddy et al., 1973) which attempts to solve 
the above problems involves the use of cooperating independent 
processes using a hypothesize-and-test paradigm. This paper 
examines the effect of the problem constraints and the model on 
system organizations, presents the structure of a system 
currently operational On a POP-10 computer, and discusses the 
implications of multiprocessor and network architectures. 

Unlike many other problems in artificial intelligence, speech 
understanding systems are characterized by the availability of 
diverse sources of knowledge, e.g., acoustic-phonetic rules, 
phonological rules, articulator models of speech production, 
vocabulary and syntactic constraints, semantics of the task 
domain, user models, and so on. A major problem, then, is to 
develop paradigms which can make use of all the available 
sources of knowledge in the problem solution. At the same time, 
absence of one or more sources of knowledge should not cripple 
the system. Suppose each source of knowledge is represented 
within the system as a process. In order to remove or add 
sources of knowledge, each process must be independent, i.e., it 
must not require the presence of other processes in the system. 
But at the same time each process must cooperate with the other 

processes, i.e., it must be able to effectively use the information 
gathered by them about the incoming utterance. Thus, a major 
design step is to establish what information is to be shared 
among processes and how this information is to be communicated 
so as to maintain the independence of individual processes while 
still allowing for necessary process cooperation. 

Knowledge available in the acoustic signal represents only 
one part of the total knowledge that is brought to bear in 
understanding a conversation. A good example of this is when 
one is interrupted by an appropriate response from the listener 
to a question that is as yet incomplete. In general, a human 
listener can tolerate a great deal of sloppiness and variability in 
speech because his knowledge base permits him to eliminate most 
of the possibilities even as he hears the first few words of the 
utterance (if not before!). We feel that this notion of anticipation, 
prediction, and hypothesis generation is essential for machine 
perception systems as well. In general, we expect every source 
of knowledge to be able to generate hypotheses in a given 
context, or verify hypotheses generated by others using 
different representations of knowledge, if necessary. The 
implication is that knowledge processes be organized within the 
system so as to reduce the problem of recognition and 
understanding to one of prediction and verification. 

In tasks such as chess and theorem-proving, the human has 
sufficient trouble himself so as to make reasonably crude 
computer programs of interest. But, because humans seem to 
perform effortlessly (and with only modest error) in speech (and 
visual) perception tasks, similar performance is expected from 
machines, i.e., one expects an immediate response and will not 
tolerate any errors. To equal human performance, a speech 
understanding system must be able to understand trivial 

* This research was supported in part by the Advanced Research Projects Agency of 
the Department of Defense under contract no. F44620-70-C-0107 and monitored by 
the Air Force Office of Scientific Research. 



questions as soon as they are uttered. This implies that various 
processes within the system should be allowed to operate as 
soon as there is sufficient incoming data, without waiting for the 
completion of the whole utterance. If the processes within the 
system are independent and unaware of the existence of each 
other, then the system must provide facilities for activation, 
termination, and resource allocation for each of the processes. 
Further, if a process can be deactivated before it reaches a 
natural termination point, provision must be made to preserve the 
state of the process until it is reactivated. Also, it is necessary 
to provide interlocks on the data that are shared among many 
processes. 

This has several implications for system organization. The 
system must monitor the input device continuously to determine 
whether speech is present! this requires non-trivial processing. 
If the system is unable to process the incoming data, automatic 
buffering must be provided. If the system is to run on a time­
sharing system, provision must be made to ensure that no data is 
lost because the program is swapped out for a period of time. If 
the speech understanding system is to consist of a set of 
cooperating independent processes, it is further necessary that 
they be able to be interrupted at unpreprogrammed points — if 
the microphone monitoring program is not activated in time to 
process the incoming utterance, it could lead to irrevocable loss 
of data. These considerations lead to two additional requirements 
that are not commonly available on existing time-sharing systems, 
viz., process-generated interrupts ot other processes and user 
servicing of interrupts. 

One of the characteristics of speech understanding systems is 
the presence of error at every level of analysis. To control such 
errors and permit recycling with improved definitions of the 
situation, one uses techniques such as feedforward, feedback, and 
probabalistic backtracking. If such facilities do not exist within 
the system, they have to be programmed explicitly. 

Speech, by its nature, appears to be computer intensive. A 
substantially unrestricted system capable of reliably 
understanding connected speech of many speakers using a large 
vocabulary is likeiy to require systems of the order of a 
proposed Ai machine (Bel!, Freeman, et al., 1971a), i.e., processing 
power of 10 to 100 million instructions per secona and memory 
of 100 to 1000 million bits.* To obtain such processing power, it 
appears necessary to consider multiprocessor architectures. 
Decomposition of speech processing systems to effectively use 
distributed processing power requires careful consideration even 
with primitive systems. Our model of cooperating independent 
processes, each representing a source of knowledge, leads to a 
natural, decomposition of the algorithms for such machine 
architectures. 

THE CURRENT Hearsay 5V5TEU 

In this section we briefly describe the Hearsay speech 
understanding system as it now exists at C-MU. (More detailed 
descriptions of the system are given in Reddy et al., 1973,1973a 
(this volume); Erman, 1973; and Neely, 1973.) We shall stress 
those aspects of its organization which are responsive to the 
constraints and model outlined above. This system represents a 
first attempt to solve those problems; thus, some Of the 
constraints are only partially or poorly met, while others are 
satisfied in a more constricted way than necessary. We shall 
point out these limitations as they are described; later sections 
on ciosely-coupled and loosely-coupled processor network 
architectures describe possible corrections and improvements of 
the system. 

* Smaller and substantially cheaper systems can be built to 
perform useful but restricted speech understanding tasks. 

E 

The Hearsay system is implemented as a small number of 
parallel coroutines (see figure). Each coroutine (module) is 
realized as a separate job in the POP-10 time-sharing system; 
thus the time-sharing monitor is the primary scheduler for the 
modules. In general, the modules may achieve a high degree of 
(pseudo-) parallel activity (through the use of shared memory 
and a flexible inter-process message system*), but, in practice, 
we limit the parallelism to a very modest amount. This limitation 
is imposed for two reasons: first, since the POP-10 is a 
uniprocessor system, there is nothing to be gained (in the time 
domain) by increasing the parallelism; and, second, the greater 
the amount of parallelism, the more difficult it is to control and 
debug the programs within a time-sharing system that is not 
designed for cooperating processes (jobs). 

Mm*?* CoMunication 
and 

Shared ttoaery 

- ' ' * v — 

Spuch Recognition Sfwach 
Input t w Ovwlord no*il . Output tar 

Decomposition of processes in the current Hearsay system. 

The model of recognition specifies that there be separate 
processes, each representing a different domain of knowledge. 
We have chosen three major domains of knowledge: acoustic-
phonetics, syntax, and semantics: 

1. The acoustic-phonetic domain, which we refer to 
as just acoustics, deals with the sounds of the 
language and how they relate to the speech signal 
produced by the speaker. This domain of 
knowledge has traditionally been the only one 
used in most previous attempts at speech 
recognition. 

2. The syntax domain deals with the ordering of 
words in the utterance according to the grammar 
of the input language. 

3. The semantic domain considers the meaning of the 
utterances ot the language, in the context of the 
task that is specified for the speech 
understanding system. 

These processes, according to the model, are to be 
independent and removable; therefore the functioning (and very 
existence) of each must not be necessary or crucial to the others. 
On the other hand, the model also requires that the processes 
cooperate and that the recognition should run efficiently and with 

* The facilities provided for inter-job control and communication 
are similar to those developed for the Stanford Hand-Eye 
system (Feldman and Sproull, 1971). 



g o o d e r ro r r e c o v e r y ; these d ic tates imply that t he re be a g rea t 
dea l of i n te rac t i on among the p r o c e s s e s . Thus we s e e m to have 
o p p o s i n g requ i r emen ts for the sys tem. T h e s e o p p o s i n g 
r e q u i r e m e n t s led to the des ign of the f o l l ow ing s t r u c t u r e : 

E a c h p r o c e s s in te r faces ex te rna l l y in a un i fo rm w a y 
that is ident ica l ac ross p r o c e s s e s ; no p r o c e s s Knows 
wha t or how many other recogn i t i on p r o c e s s e s exist . 

A media tor , ROVER (Recogn i t ion OVERIord) , handles the 
i n t e r f ace to each of the p rocesses and thus s e r v e s as 
the l inkage c o n n e c t i n g the p r o c e s s e s ; the p r o c e s s e s 
are cal led ROVER's "sons." 

T h e i n te r face is imp lemented as a g loba l data s t r uc tu re w h i c h 
is ma in ta ined by ROVER. Each of ROVER's sons puts i n fo rma t ion 
into th is data s t r uc tu re in a un i form way . Each may a c c e s s 
i n f o rma t i on submi t t ed by its b ro the rs , but in a manner w h i c h 
l eaves the s o u r c e of that in format ion a n o n y m o u s . Th i s 
m e c h a n i s m is ana logous to a bul let in boa rd on w h i c h m e s s a g e s 
can be left by s e v e r a l peop le and for w h i c h t he re is a moni tor 
w h o a c c e p t s the message and a r ranges them in a p p r o p r i a t e 
p l aces on the b o a r d for o thers to react. 

Th i s a n o n y m o u s in te r face s t ruc tu re is a p p r o p r i a t e on ly if the 
g l o b a l da ta s t r u c t u r e can be d e s i g n e d in such a w a y as to a l low 
the p r o c e s s e s to communica te meaningfu l ly ; i.e. t he re must be a 
c o m m o n language w h i c h a l lows them to t ransmit the k ind of 
i n f o r m a t i o n t h e y n e e d to help each other to w o r k on the p r o b l e m . 
We r e s o l v e this p rob lem by using the w o r d as the basic unit of 
d i s c o u r s e among the p r o c e s s e s . 

T h e bas ic e lement of the g loba l data s t ruc tu re is the w o r d 
hypo thes is w h i c h r e p r e s e n t s an asse r t i on that a par t i cu la r w o r d 
(of the input language lexicon) occurs in a s p e c i f i e d pos i t i on in 
the s p o k e n input. A sentence hypothesis is an o r d e r e d l inear 
s e q u e n c e of w o r d h y p o t h e s e s ; it r e p r e s e n t s an a s s e r t i o n that the 
w o r d s occu r in the sen tence in the o rder that the w o r d 
h y p o t h e s e s appea r in the sen tence hypo thes i s . In add i t i on , the 
un ique " w o r d " FILLER may appear as a w o r d h y p o t h e s i s ; th is is a 
p l a c e h o l d e r and r e p r e s e n t s the asse r t i on that z e r o or more as 
ye t u n s p e c i f i e d w o r d s occur in this pos i t ion in the s p o k e n 
s e n t e n c e . In g e n e r a l , t he re may be any number of s e n t e n c e 
h y p o t h e s e s ex i s t i ng at any one t ime. 

T h e in te rac t i ons among the s o u r c e - o f - k n o w l e d g e p r o c e s s e s 
are c a r r i e d out using the h y p o t h e s i z e - a n d - t e s t pa rad igm 
p r e s c r i b e d by the model . In gene ra l , any p r o c e s s may make a 
set of h y p o t h e s e s about the u t te rance ; all the p r o c e s s e s 
( i nc lud ing the h y p o t h e s i z e r ) may then ve r i f y (i.e. re jec t , a c c e p t , 
or r e - o r d e r ) these hypo theses . In par t icu lar , h y p o t h e s i z a t i o n 
o c c u r s w h e n a recogn i t i on p rocess (Acous t i cs , Syn tax , or 
Seman t i cs ) c h o o s e s a F ILLER w o r d f rom a sen tence h y p o t h e s i s 
and a s s o c i a t e s w i th it one or more opt ion words , each of w h i c h it 
a s s e r t s is a cand ida te to rep lace all or part of the F ILLER. 
V e r i f i c a t i o n cons i s t s of each p rocess examin ing the o p t i o n w o r d s 
and ra t ing them in the context of the rest of the s e n t e n c e 
h y p o t h e s i s . 

S e v e r a l res t r i c t ions have been p laced on the imp lemen ta t i on 
of th is g e n e r a l scheme. First , at any time only one part of the 
s h a r e d , g l oba l data s t ruc tu re (i.e., one sen tence hypo thes i s ) is 
a c c e s s i b l e to the p r o c e s s e s for hypo thes i za t i on and v e r i f i c a t i o n . 
S e c o n d , the p r o c e s s e s go t h r o u g h the h y p o t h e s i z a t i o n and 
v e r i f i c a t i o n s tages (and severa l o ther subs id i a r y s tages ) in a 
s y n c h r o n i z e d and non - i n t e r r up tab l e manner. F ina l ly , only one 
p r o c e s s is a l l o w e d to h y p o t h e s i z e at any one t ime. A g a i n , t h e s e 
r e s t r i c t i o n s were imposed both because para l le l i sm on a 
u n i p r o c e s s o r does not accompl ish any t h roughpu t i nc rease and 
b e c a u s e the ava i lab le p rog ramming and o p e r a t i n g sys tems make a 
more g e n e r a l imp lementa t ion di f f icul t to spec i f y , d e b u g , and 
ins t rumen t . T h e s e res t r ic t ions are mi t igated s o m e w h a t by 

c a r e f u l l y ad jus t ing the time gra in of the p r o c e s s i n g so that e a c h 
n o n - i n t e r r u p t a b l e phase is not "excess i ve l y la rge . " 

Each s e n t e n c e hypo thes is has a con f i dence rat ing a s s o c i a t e d 
w i t h it w h i c h is an est imate of how wel l it d e s c r i b e s the s p o k e n 
u t t e r a n c e . This rat ing is ca lcu la ted by ROVER, b a s e d on 
i n f o rma t i on s u p p l i e d by the recogn i t ion p r o c e s s e s . E r ro rs in 
p r o c e s s i n g become ev ident w h e n the overa l l rat ing g i ven to a 
s e n t e n c e hypo thes i s beg ins to d r o p ; at that point, a t ten t ion is 
f o c u s e d on some other sen tence hypothes is w i th a h igher ra t ing . 
Th is s w i t c h i n g of focus is the mechanism that p rov ides the e r ro r 
r e c o v e r y and back t rack ing that is necessa ry in any s p e e c h 
u n d e r s t a n d i n g s y s t e m . 

CLOSELY-COUPLED PROCESSOR SYSTEM ORGANIZATIONS 

As d i s c u s s e d in the in t roduc t ion , in o rder to do rea l - t ime 
s p e e c h u n d e r s t a n d i n g a substant ia l amount of compu t ing p o w e r is 
r e q u i r e d . Recent t rends in t echno logy indicate that this 
c o m p u t i n g p o w e r can be economica l ly ob ta ined t h r o u g h a c l o s e l y -
c o u p l e d n e t w o r k of " s i m p l e " p r o c e s s o r s , w h e r e these p r o c e s s o r s 
can be i n t e r c o n n e c t e d to communicate in a var ie ty of w a y s (e.g., 
d i r e c t l y w i t h e a c h other th rough a highly mu l t ip lexed s w i t c h 
c o n n e c t e d to a large sha red memory (Bell et a l . , 1971) , or 
t h r o u g h a regu lar or i r regular ne twork of busses (Bell et a l . , 
1973)) . H o w e v e r , the major p rob lem w i th this ne two rk a p p r o a c h 
to g e n e r a t i n g compu t ing power is f ind ing a lgor i thms w h i c h have 
the a p p r o p r i a t e cont ro l and data s t ruc tu res for exp lo i t i ng the 
pa ra l l e l i sm ava i lab le in the network . The model for a s p e e c h 
u n d e r s t a n d i n g sys tem as p rev ious ly d i s c u s s e d , w h i c h is 
d e c o m p o s e d into a set of independent p rocesses c o o p e r a t i n g 
t h r o u g h a h y p o t h e s i z e - a n d - t e s t parad igm, r e p r e s e n t s a natura l 
s t r u c t u r e for exp lo i t i ng this ne twork para l le l ism. 

T h e r e exist th ree major areas for exp lo i ta t ion of pa ra l l e l i sm 
in the s t r uc tu re of this s p e e c h unde rs tand ing s y s t e m : 
p r e p r o c e s s i n g , hypo thes i za t i on and ve r i f i ca t i on , and the 
p r o c e s s i n g spec i f i c to each source of k n o w l e d g e . T h e 
p r e p r o c e s s i n g task invo lves the repet i t ion of a s e q u e n c e of s imp le 
t r a n s f o r m a t i o n s on the acoust ic data , e.g., de tec t i on of the 
b e g i n n i n g and end of s p e e c h , ampl i tude norma l i za t ion , a s imp le 
p h o n e m e - l i k e labe l ing , smooth ing , etc. This s e q u e n c e of 
t r a n s f o r m a t i o n s can be s t ruc tu red as a p ipe l ine compu ta t i on in 
w h i c h e a c h t r ans fo rma t i on is a stage in the p ipe. T h u s , t h r o u g h 
this p i pe l i ne d e c o m p o s i t i o n of the p r e p r o c e s s i n g task, a l imi ted 
amount (i.e., 4) of paral le l act iv i ty is g e n e r a t e d . 

T h e hypo thes ize -and- tes t paradigm for s e q u e n c i n g the act iv i ty 
of the d i f fe ren t sou rces of knowledge can also be s t r u c t u r e d so 
as to exh ib i t para l le l i sm, but the amount of para l le l i sm is 
po ten t ia l l y much greater . This paral lel act iv i ty is g e n e r a t e d by 
the s imu l taneous processing of multiple sentence hypotheses and 
the s imu l taneous hypothesization and verification by all s o u r c e s 
of k n o w l e d g e . The s imul taneous processing of multiple s e n t e n c e 
h y p o t h e s e s , rather than processing just the currently most l ikely 
c a n d i d a t e , can conceptually introduce unnecessary work . But in 
p r a c t i c e , b e c a u s e of the errorfui nature of the p r o c e s s i n g , t he re 
may be a c o n s i d e r a b l e amount of necessa ry back t rack ing to f i nd 
the best match ing sen tence hypo thes is . It is a p p r o p r i a t e to 
q u o t e a c o n j e c t u r e of Mlnsky and Paper t (1969, Sec t ion 12.7.6) 
on th is po in t : 

[Whi le for the exact match problem] re la t ive ly small 
f a c t o r s of redundancy in memory size yieid very large 
i n c r e a s e s in speed, . . . [for the best match problem ] . 
. . for large data sets with long word lengths t he re are 
no p rac t i ca l a l ternat ives to large searches that inspect 
la rge par ts of the memory. 

T h u s , the para l le l act iv i ty gene ra ted by s imul taneous p r o c e s s i n g 
of more than one sen tence hypothes is can result in a 



proportional speed-up of the recognition process.* 
Correspondingly, simultaneous hypothesization and verification 
by all sources of Knowledge also results in a proportional speed­
up of the recognition process because each source of knowledge 
is independent and is designed so that its knowledge contirbution 
is additive. 

Finally, the verification algorithm of each source of knowledge 
can be decomposed into a set of parallel processes in two ways: 
The first kind of decomposition is based on the fact that 
verifications are performed on a set of option words rather than 
a single word at a time. Thus, for each source of knowledge 
there can be multiple instantiations of its verification process, 
each operating on a different option word. The second kind of 
decomposition involves the parallelizing of the verification 
algorithms themselves; thus, each instantiation of a verification 
process may itself be composed of a set of parallel processes. 
However, this set of instantiations may not be totally independent 
because the rating produced by the verification process may be 
dependent on the particular set of option words to be verified 
and also on the local data base which is common to all the 
instantiations. For example, the acoustic verification process is a 
hierarchical series of progressively more sophisticated tests. 
The first few levels of testing look only at the context of a single 
Option word, while the more sophisticated tests compare one 
option word against another. Thus, only at the first few levels of 
tests can the acoustic verification algorithm be parallelized in a 
straightforward manner. 

The parallelism generated by parallelizing the hypothesize-
and-test control structure and the verification processes are 
multiplicative in their parallel activity (i.e. performing in parallel 
the updating of n sentence hypothesis where each hypothesis 
invokes m verification processes and each verification process 
operates on o option words leads to a potential parallelism of 
n*m*o). This parallelism, together with the pipeline parallelism of 
the preprocessing, leads to what appears to be a large amount of 
potential parallelism to be exploited by a closely-coupled 
network. However, it is still not clear just haw much potential 
parallel activity exists over the entire recognition system; nor is 
it known how much of this potential will be dissipated because of 
software and hardware overhead. 

In order to answer these questions, a parallel decomposition 
of the Hearsay speech understanding system is now being 
implemented on C.mmp, a closely-coupled network of POP-l l 's 
which communicate through a large shared memory (Bell et al., 
1971). The C.mmp hardware configuration can contain up to 16 
PDP- l l ' s ; the highly multiplexed switch that connects processors 
to memory permits up to 16 simultaneous memory references if 
these references are not to the same memory module. Thus, if 
processors are referencing different memory modules, then each 
processor can run at full speed. In addition, C.mmp can be 
configured for a specific application (e.g., speech) by replacing a 
processor by a special purpose hardware device which directly 
accesses memory (e.g., a signal processor). 

The HYDRA software operating system (Wulf, 1972), which is 
associated with C.mmp, provides an appropriate kernel set of 
facilities for implementing the parallel version of the speech 
system. These facilities permit control of real-time devices, 
convenient building of a tree of processes, message queues and 
shared data base communication among processes," user-defined 
scheduling strategies, arbitrary interruption of running processes, 
and dynamic creation of new processes. Building up from this 
base, a debugging system wilt be constructed which, in addition 
to the normal features, will permit the recording of all 
communication among processes, the tracing of alt process 

* Simulation studies are currently being carried out on evaluating 
this speed-up factor. These studies are based on data 
generated from the current version of the Hearsay system. 
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activity, and the monitoring of global variables (including a 
recording of which processes have modified them). These 
additional capabilities are crucial for isolating errors and 
understanding the dynamic behavior patterns of the parallel 
system. 

The major software problem to be investigated in this 
parallel implementation of the Hearsay system is how to 
efficiently map virtual parallelism (process activity) into actual 
parallelism (processor activity). This mapping problem in turn 
centers on three design issues, each of which relates to how 
processes interact: 

1. the design of the interlock structure for a shared 
data base, 

2. the choice of the smallest computational grain at 
which the system exhibits parallel activity, and 

3. the techniques for scheduling a large number of 
closely-coupled processes. 

The first design issue is important because in a closely-
coupled process structure many processes may attempt to access 
a shared data base at the same time. In a uniprocessor system, 
the sequentialization of access to this shared data base does not 
significantly affect performance because there is only one 
process running at a time. In a multiprocessor system, however, 
if the interlock structure for a shared data base is not properly 
designed so as to permit as many non-interfering accesses as 
possible, then access to the shared data base becomes a 
significant bottleneck in the system's performance (McCredie, 
1972). 

The second issue relates to how closely-coupled processes 
can interact. If the grain of decomposition is such that the 
overhead involved in process communication is significant in 
relation to the amount of computation done by the process, then 
the added virtual parallelism achieved by a finer decomposition 
can decrease, rather than increase, the perlormar.ee of the 
system. Thus, understanding the relationship between the grain 
of decomposition and the overhead of communication is an 
important design parameter. 

The third issue relates to a phenomenon called the "control 
working set" (Lesser, 1972). This phenomenon predicts that the 
execution of a closely-coupled process structure on a 
multiprocessor may result in a significant amount of supervisory 
overhead caused by a large number of process context switches. 
The reason for this high number of process context switches is 
analogous to the reason for "thrashing" within a data working set 
(Denning, 1968). For example, in a uniprocessor system if two 
parallel processes closely interact with each other, then each 
time one process is waiting for a communication from the other it 
would have to be context switched so as to allow the other 
process to execute. If these two processes communicate often 
then there would be a large number of context switches. 
However, if there were two processors, each containing one of 
the processes, then there would be no process switching. 

The implications of this phenomenon on constructing process 
structures are the following: 

1. Processes should be formed into clusters where 
communication among cluster members is closely-
coupled whereas communication among clusters is 
loosely-coupled. This process structuring 
paradigm has also been been suggested as a 
model for the operation of complex human and 
natural systems (Simon, 1962). 

2. The size of a process cluster cannot be chosen 
independent of the particular hardware 
configuration that will be used to execute it. For 
example, a cluster size of 8 may be appropriate 
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tor a hardware system containing 16 processors 
while being inappropriate for a system containing 
6 processors. 

3. The scheduler of a multiprocessor system should 
use a strategy that schedules process clusters 
rather than single processes. (This is analogous 
to the advantage of preloading the data working 
set rather than dynamically constructing the 
working set at each context swap.) 

4. The use of process structures to implement 
inherently sequential, though complex, control 
structures (04., coroutines, etc) may lead to 
inefficient scheduling of process structures on a 
multiprocessor system (La., the scheduling 
strategy should be able to easily differentiate 
those processes that can go on in parallel from 
those that are sequentialized). 

NETWORK ORGANIZATIONS 

The multiprocessor type organization described earlier 
implies a closely-coupled set of processes on a set of closely-
coupled processors cooperating to accomplish the common goal of 
utterance recognition. The key idea in such a system is that both 
the processes and processors are closely-coupled — that is, the 
cost of communication between processes or processors Is 
relatively cheap with respect to the amount of computation to be 
done by any individual process. Indeed, in the multiprocess 
system described earlier, much interprocess communication and 
data sharing may be achieved by actually having shared physical 
address spaces. However, such a system usually also implies a 
certain homogeneity or physical proximity of the processors and 
memory. 

Consider now the task of integrating the knowledge of many 
different research groups in various widespread geographical 
locations, each with its own computing facilities a-d etch with its 
own areas of specialization. In an attempt to avoid unnecessary 
duplications of effort, one would desire a scheme whereby each 
group could develop pieces of a total recognition system (which 
pieces might represent new sources of knowledge, such as a new 
and improved vowel classification algorithm) using local computing 
resources (i.e., using an arbitrary machine configuration and 
program structure). Those pieces of the system would then be 
incorporated into a distributed "total recognition system" by 
appropriate (hopefuliy minimal) linkage and protocol conventions 
and their contributions to the entire system evaluated. The 
geographical constraints suggest the use of a computer network 
facility as a means by which one might assemble this total 
recognition system. We are currently undertaking the task of 
designing and implementing such a system for use on the ARPA 
network of computing facilities (Roberts and Wessier, 1970). The 
usefulness of such a network organization for a speech 
understanding system lies in its potential ability to combine and 
evaluate the various algorithms and sources of knowledge of a 
wide variety of research groups. In particular, the objective of 
the network organization is to create a research tool rather than 
to produce a highly efficient recognition system. 

As an example, suppose a group wishes to add a new source 
ot knowledge (a new vowel classification algorithm, for instance) 
to the network system. This knowledge-source is provided in the 
form of a process (or a set of processes) running on a local 
computer connected to the ARPA network. System integration is 
then achieved by adding linking instructions to the process 
(perhaps interactively) for notifying a centralized controlling 
process of the set of pre-conditions (e.g., conditions relating to 
the incoming speech wave or the current state of the 
recognition) that must be met in order to activate this process 
(Adams, 196S), as well as the required inputs and created outputs 
(and their formats). The central controller is then responsible for 

activating the new knowledge source at appropriate times, 
supplying the requested inputs, and updating a global data base 
to reflect the results of the activated process. Knowledge source 
processes may communicate with one another via a message 
service facility provided by the central controller. The marked 
increase Of indirection with respect to communication and data 
sharing as compared with a closely-coupled multiprocessor 
approach is a result of the goal to serve a wide geographic 
region of users and to allow cooperation between essentially 
autonomous knowledge sources. 

The problems that occur in this network concept are of a 
nature different from that of those occurring in the 
multiprocessor structure described previously. The many 
sources of knowledge are no longer necessarily closely-coupled. 
In fact, we might term such a network organization to be 
"loosely-coupled" in the sense that process communication and 
data base sharing must be achieved by some form of message 
switching scheme since the system is now operating on an 
indefinite number of (nonhomogeneous) computers. In particular, 
there is no longer the ability for all processes to share data and 
communicate by sharing physical address spaces. The problems 
of data base sharing and shipping now abound: one would like 
not to have multiple copies of a given data structure due to 
updating synchronization problems, but the message switching 
involved in maintaining and updating a single, centralized data 
structure may be overwhelmingly inefficient. 

It is intended that, besides serving as a research tool for 
testing various recognition algorithms and combinations thereof, 
such a network organization will become an interesting 
experiment in its own right. There remains much investigation to 
be conducted regarding the tradeoffs involved in passing and 
sharing data through channels having low communication rates, as 
well as investigating the means of coordination of many 
autonomous knowledge sources. Points of interest for systems 
design also exist in creating the appropriate interfaces between 
any given group's knowledge source process and the central 
controlling process. Specification for data base requirements and 
formats (for both input and output) and specifications for 
determining the pre-conditions upon which a process should be 
activated must be easily specified for each new process to be 
added. In particular, the new process should not need to know 
the details of the global data structures it may need to access — 
the linkage interface should take care of such details (Parnas, 
1971,1971a). 

issues of user control ever the entire system and the human 
interface in general are considered vital, demanding much 
investigation for any system organization which intends to run as 
a set of parallel cooperating (whether closely- or loosely-
coupled) processes. The user must have the ultimate control 
over halting the entire recognition system or some subset of 
processes involved therein and interrogating (and perhaps 
altering) the instantaneous state of any given process. Protocols 
for debugging and controlling any knowledge source process 
should be provided via the interface linkage setup. Systems 
allowing the amount of user control that might be desired are not 
easily achievable given the current state of the art, primarily due 
to a general lack of experience in multiprocess environments 
(however, see Swinehart, 1973) Given a well-defined problem 
environment such as the speech understanding task, which lends 
itself readily to a multiole-orocess decomoosition investieation 
into the realms of multiprocess debugging and control might now 
be given more definite aims. Indeed, the problems Involved In 
controlling a set of independent parallel processes that are 
cooperating to solve a single problem reach beyond the issues 
raised in tr.e development of present multiprogramming systems 
(eg. , monitoring and controlling the interactions involving shared 
data structures and process intercommunications demand that 
new debugging systems and strategies be formulated). 
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SUMMARY 

The main focus of this paper has been to illustrate the issues 
of system organization that arise when one attempts to build a 
general speech understanding system which can equal human 
performance. In practice, however, one can finesse * large 
humbartrf these tssu* rby -ww 

Feldmen, J.A. and R.F. Sproull (1971), "System Support for the 
Stanford Hand-Eye System", Second Inter. Joint Con*, on 
Artificial Intelligence, 183-189. 

relaxing other requirements, such as real-time response. 
However, unless the system is organized with the eventual goals 
firmly in mind, one is likely to end up with dead-end systems, 
necessitating a complete reformulation of the problem solution. 
The complexity of the hardware and software problems raised by 
real-time requirements explains why there are very few systems 
which can accept or attempt recognition of live connected 
speech. 

Usually the term "parallel processing" is used as if it will 
resolve all of one's problems. The intent here is mainly to 
indicate that speech understanding systems naturally decompose 
into a set of cooperating, independent processes. Whether one 
uses a single processor (as we now do) or many processors (as 
we propose to do), the program structure and organization tends 
to be similar. The main question, then, is how much computational 
power is available on the system to attempt real-time recognition 
of connected speech. The multiprocessor and network 
organizations provide an opportunity to study and evaluate 
relative merits of various computer architectures in this context. 

Finally, we believe that the issues of system organization 
raised here are relevant to a large class of current problems in 
Al, e.g., vision, robotics, chess, chemistry, etc., where 
performance is the main criterion for acceptability and where 
many sources of knowledge are available. In particular, the 
notions of hypothesize-and-test and cooperating independent 
processes seem equally applicable to these areas as well. 
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T h i s p a p e r c o n c e r n s t h e a p p l i c a t i o n o f a n e w t i m e - d o m a i n t e c h n i q u e t o t h e 

a n a l y s i s o f c o m p l e x a c o u s t i c s i g n a l s s u c h as h u m a n s p e e c h . T h e c h i e f 

a d v a n t a g e o f t h i s m e t h o d is i t s p r e c i s e t e m p o r a l r e s o l u t i o n a l l o w i n g e x a c t 

t i m i n g o f ' a r t i c u l a t o r y e v e n t s w i t h i n a s a m p l e o f s p e e c h ; t h a t i s , n o b a n d w i d t h l i m i t a t i o n 

i s p r e s e n t . T h i s t e m p o r a l r e s o l u t i o n is m o s t s i g n i f i c a n t f o r c h a r a c t e r i z i n g 

f a s t t r a n s i t i o n a l r e g i o n s s u c h as o c c u r at v o w e l - c o n s o n a n t a n d c o n s o n a n t - v o w e l 

b o u n d a r i e s a n d w i t h i n s t o p c o n s o n a n t s . W e g e n e r a t e v i s u a l d i s p l a y s 

o f w a v e f o r m u p - c r o s s i n g s in t i m e , d e r i v e d d i r e c t l y f r o m t h e a c o u s t i c w a v e f o r m i t s e l f . 

T h e i m p e t u s f o r o u r w o r k c o m e s f r o m t w o s o u r c e s : D F i r s t a r e t h e s t u d i e s b y 

L i c k l i d e r a n d h i s c o l l e a g u e s w h o 2 5 y e a r s a g o d e m o n s t r a t e d t h e i n t e l l i g i b i l i t y o f 

i n f i n i t e l y c l i p p e d s p e e c h . T h i s s h o w e d t h a t s u f f i c i e n t a c o u s t i c s p e e c h i n f o r m a t i o n 

i s e n c o d e d i n t h e z e r o - c r o s s i n g s o f t h e w a v e f o r m i t s e l f . G i v e n t h e r e d u n d a n c y 

o f s p e e c h s u c h i n f o r m a t i o n is m o s t p r o b a b l y e n c o d e d b y o t h e r a s p e c t s o f t h e w a v e f o r m . 

A s i t h a p p e n s t h o u g h , z e r o - c r o s s i n g s o r u p - c r o s s i n g s a r e e a s y t o s e e a n d e x t r a c t f r o m t h e 

w a v e f o r m . 2 ) T h e s e c o n d m o t i v a t i o n f o r t h i s w o r k c o m e s f r o m n e u r o p h y s i o l o g y ! r e s e a r c h 

o n t h e a u d i t o r y i n f o r m a t i o n p r o c e s s i n g o f t h e e a r i t s e l f . B a s i c a l l y t h e e a r p r o c e s s e s 

a n i n c o m i n g s i g n a l i n a t l e a s t t w o w i d e l y r e c o g n i z e d m a n n e r s . T h e f i r s t i s 

a n a l y s i s i n t h e f r e q u e n c y - d o m a i n a n d is a n a l g o u s t o a k i n d o f f i l t e r b a n k 

w h e r e d i f f e r e n t n e u r o n s a l o n g t h e b a s i l a r m e m b r a n e r e s p o n d t o d i f f e r e n t f r e q u e n c y 

r a n g e s ; t h a t i s , a g i v e n n e u r o n f i r e s i f i t d e t e c t s a s i g n a l o f s u f f i c i e n t i n t e n s i t y 

w i t h i n a p a r t i c u l a r f r e q u e n c y r a n g e . N e u r o n s a lso c o d e i n f o r m a t i o n i n t h e t i m e - d o m a i n 

i n a m a n n e r k n o w n as p h a s e - l o c k i n g . G i v e n a w a v e f o r m , a p h a s e - l o c k i n g n e u r o n 

r e s p o n d s b y f i r i n g o n c e , p h a s e c o n s i s t e n t l y , f o r e a c h c y c l e o r i n t e g e r n u m b e r 

Of c y c l e s w i t h i n t h e w a v e f o r m . T h e t e c h n i q u e w e V e u s i n g is d i r e c t l y a n a l a g o u s 

t o t h i s l a t t e r t i m e - d o m a i n c o d i n g t e c h n i q u e . 

W e g e n e r a t e o u r v i s u a l d i s p l a y s as f o l l o w s : A z e r o - a x i s i s d r a w n h o r i z o n t a l l y 

t h r o u g h t h e c e n t e r o f t h e a c o u s t i c w a v e f o r m . W e n o t e t h e e x a c t t i m e w h e n t h e 

w a v e f o r m c r o s s e s t h i s a x i s i n a n u p w a r d d i r e c t i o n . In a c t u a l i t y , w e u s u a l l y ' r e c o r d 

o n l y t h o s e u p - c r o s s i n g s w h i c h e x c e e d s o m e t h r e s h o l d a m p l i t u d e , e p s i l o n , 

s e t s l i g h t l y a b o v e t h e h o r i z o n t a l z e r o - a x i s . T h i s t h r e s h o l d t e n d s t o p r e c l u d e l o w 

a m p l i t u d e b a c k g r o u n d n o i s e . W e m e a s u r e e a c h i n t e r v a l b e t w e e n s u c c e s s i v e u p - c r o s s i n g s 

a n d p l o t t h e s e as a f u n c t i o n o f t i m e in o u r d i s p l a y s . T h e r e f o r e e a c h u p - c r o s s i n g 



i n t h e a c o u s t i c w a v e f o r m is r e p r e s e n t e d b y a d i s c r e t e d o t i n o u r d i s p l a y s . 

I n f a c t , w e a c t u a l l y p l o t o n a l og sca le , t h e i n v e r s e Of t h e i n t e r v a l 

b e t w e e n s u c c e s s i v e u p - c r o s s i n g s a l o n g t h e v e r t i c a l Y - a x i s a n d t i m e a l o n g t h e h o r i z o n t a l 

X - a x i s . T h i s y i e l d s a d i s p l a y w h i c h s u p e r f i c i a l l y r e s e m b l e s a k i n d o f s p e c t r o g r a p h s 

d i s p l a y . ( N . B . F o r t h o s e r e a d e r s f a m i l i a r w i t h n e u r o p h y s i o l o g i e s ! s t u d i e s 

o f s i n g l e u n i t r e s p o n s e s , t h i s d i s p l a y is d i r e c t l y a n a l a g o u s t o a n " i n s t a n t a n e o u s f r e q u e n c y " 

p l o t a n d f u n c t i o n a l l y a n a l a g o u s t o a p h a s e - l o c k i n g p h e n o m e n o n . ) W e a l s o d i s p l a y a 

r o u g h i n t e n s i t y m e a s u r e b y m e a n s o f a Z - a x i s m o d u l a t i o n . T h a t i s , t h e 

s i z e o f a d o t r e p r e s e n t i n g a g i v e n c y c l e is p r o p o r t i o n a t e t o t h e l o g o f t h e g r e a t e s t 

i n t e n s i t y a c h i e v e d d u r i n g t h a t c y c l e . T h i s d o t s i z e i n t e n s i t y m e a s u r e i n o u r 

u p - c r o s s i n g d i s p l a y s is a n a l a g o u s t o t h e i n t e n s i t y m e a s u r e e x p r e s s e d i n s p e c t r o g r a m s . 
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T h e i d e a o f l o o k i n g a l z e r o - c r o s s i n g m e a s u r e s p e r s e is n o t i n i tsc-H c o n c e p ­

t u a l l y n e w . H o w e v e r , i n c o n t r a s t t o moat o t h e r i n v e s t i g a t o r s w h o h a v e u s e d z e r o - c r o s s i n g 

m e a s u r e s t o a n a l y z e s p e e c h , w e d o no t a v e r a g e o u r u p - c r o s s i n g s o v e r a f i x e d i n t e r v a l o f 

t i m e . R e a s o n s f o r t h i s w i l l b e d i s c u s s e d s h o r t l y . F i r s t o f a l l i t is i m p o r t a n t t o b e 

a w a r e t h a t t h e c h i e f m o t i v a t i o n f o r m a n y z e r o - c r o s s i n g s t u d i e s h a s b e e n i n s e a r c h i n g f a r 

a n i n e x p e n s i v e w a y t o f i n d f r e q u e n c y d o m a i n a c o u s t i c f e a t u r e s , s u c h a s f o r m a n t s . 

T h i s m e t h o d a v o i d s t h e c o m p u t a t i o n s r e q u i r e d f o r F o u r i e r t r a n s f o r m s , f o r e x a m p l e . In 

o r d e r t o d e c r e a s e t h e e x p e n s e a n d v a r i a b i l i t y i n e x a m i n i n g i n d i v i d u a l c y c l e s . i t w a s e a s y t o 

t o c o m p u t e a n a v e r a g e c y c l e l e n g t h b y s i m p l y c o u n t i n g t h e n u m b e r o f z e r o - c r o s s i n g s o c c u r ­

r i n g d u r i n g a g i v e n t i m e i n t e r v a l . T h i s p r o c e d u r e has t w o m a j o r c o n s e q u e n c e s : l ) t h e p e r f e c t 

t i m e r e s o l u t i o n i n h e r e n t i n t h e t i m e - d o m a i n is l os t w h e n c r o s s i n g s a r e a v e r a g e d ; t h a t i s , 

a b a n d w i d t h l i m i t a t i o n is i n t r o d u c e d , 2 ) t h e c o n v e n t i o n a l a c o u s t i c f e a t u r e s e x t r a c t e d 

a r e u s u a l l y l e s s p r e c i s e a n d m o r e v a r i a b l e t h a n t h e s a m e a c o u s t i c f e a t u r e s 

e x t r a c t e d d i r e c t l y w i t h a f r e q u e n c y - d o m a i n a n a l y s i s . Ou r r e a s o n f o r n o t a v e r a g i n g 

u p - c r o s s i n g s is t h a t i n t h e s p e e c h w a v e f o r m i t se l f t h e r e a r e s i g n i f i c a n t a c o u s t i c f e a t u r e s 

w h i c h o n l y l as t f o r o n e o r a f e w c y c l e s in d u r a t i o n . If c y c l e s a r e a v e r a g e d , t h i s 

i n f o r m a t i o n i s i r r e v o c a b l y l o s t . S u c h t r a n s i e n t e v e n t s f r e q u e n t l y o c c u r a t v o w e l -

c o n s o n a n t a n d c o n s o n a n t - v o w e l b o u n d a r i e s as w e l l as b e t w e e n o t h e r a c o u s t i c a l l y 

d i s t i n c t r e g i o n s , w i t h i n s t o p c o n s o n a n t s f o r e x a m p l e . In t h e w a v e f o r m s h o w n h e r e o f 

t h e n o n s e n s e w o r d "a t a t ' a " ( s t r e s s o n t h e s e c o n d s y l l a b l e ) , s o m e o f t h e s e s h o r t 

d u r a t i o n f e a t u r e s c a n b e s e e n . Fo r e x a m p l e , o n e s u c h f e a t u r e o f t e n o c c u r s a t t h e 

t r a n s i t i o n f r o m a s t o p o r f r i c a t i v e t o a f o l l o w i n g v o w e l . W e f i n d t h e r e e x i s t s a r e l a t i v e l y 

l o n g a n d i n t e n s e c y c l e b e t w e e n t h e c o n s o n a n t a n d v o w e l . S o m e t i m e s t h e r e a r e s e v e r a l 

s u c h c y c l e s b e f o r e t h e v o w e l . On o u r d i s p l a y s t h i s p h e n o m e n o n a p p e a r s as a r e l a t i v e l y 

l o w f r e q u e n c y l a r g e d o t , o r s o m e t i m e s s e v e r a l , i m m e d i a t e l y p r e c e d i n g t h e v o w e l . T h e 

o c c u r r e n c e o f t h i s t r a n s i t i o n c y c l e ( s ) c o i n c i d e s w i t h t h e u p s w i n g i n e n e r g y 

f r o m t h e c o n s o n a n t t o t h e v o w e l . In o u r u p - c r o s s i n g d i s p l a y o f t h e s a m e 

u t t e r a n c e w e h a v e c i r c l e d t h e s e t r a n s i t i o n c y c l e s a n d l a b e l e d t h e m " t r " . 
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A n o t h e r a r e a w h e r e c o n s i s t e n t t i m e - d o m a i n f e a t u r e s c a n b e s e e n is d u r i n g t h e 

c o u r s e o f s t o p c o n s o n a n t s . B o t h T s " s h o w n in th i s e x a m p l e c o n s i s t o f t h r e e d i s t i n c t 

r e g i o n s : t h e in i t ia l p a u s e , a r e l e a s e , a n d a s p i r a t i o n . T h e p a u s e is c h a r a c t e r i z e d 

in t h e w a v e f o r m a s a r e g i o n o f v e r y l o w e n e r g y , i r r e g u l a r a c t i v i t y w h i c h is t e r m i n a t e d 

a b r u p t l y b y t h e r e l e a s e c h a r a c t e r i z e d b y m a n y g r e a t e r a m p l i t u d e , h i g h f r e q u e n c y c y c l e s . 

I n t h e u p - c r o s s i n g d i s p l a y s , t h e ini t ia l p a u s e a p p e a r s a s e i t h e r o n e or a f e w o u t s t a n d i n g l y 

l o w f r e q u e n c y d o t s i m m e d i a t e l y p r e c e d i n g t h e r e l e a s e a c t i v i t y . I n o u r d i s p l a y , t h e s e 

d o t s a r e c i r c l e d a n d l a b e l e d " p " , f o r " p a u s e do t " . T h e p r e c i s e d u r a t i o n o f a n y 

u n u s u a l c y c l e o r s e q u e n c e t h e r e o f may b e t r i v i a l l y d e t e r m i n e d b y n o t i n g t h e c o r ¬ 

r e s p o n d i n g d o t ' s ( s ' ) h e i g h t ( s ) o n t h e v e r t i c a l ax i s . W e h a v e s e e n t h e s e p a u s e a n d t r a n s i t i o n 

d o t s in l i t e r a l l y t h o u s a n d s o f o u r d i s p l a y s 01 u t t e r a n c e s s p o k e n b y b o t h m e n a n d w o m e n . 

In t h e u p - c r o s s i n g d i s p l a y h e r e , t h e r e is a lso a n e x a m p l e o f a n a u t o m a t i c b o u n d a r y 

s e g m e n t a t i o n a s e v i d e n c e d b y t h e v e r t i c a l l ines d r a w n t h r o u g h t h e d i s p l a y * . T h e s e v e r t i c a l 

s e g m e n t a t i o n l i nes w e r e d r a w n au toma t i ca l l y s o l e l y o n t h e bas i s o f d i s c o n t i n u i t i e s in 

t h e s i g n a l i n t e n s i t y f u n c t i o n s . T h e s e i n t e n s i t y f u n c t i o n s w e r e c o m p u t e d p i t c h - s y n c h r o n o u s l y 

a n d a r e r e p r e s e n t e d b y t h e l ine g r a p h a t t h e b a s e o f t h e p l o t . A s e a s i l y s e e n , 

a l t h o u g h t h e d o t f e a t u r e s a n d v e r t i c a l l ine s e g m e n t a t i o n w e r e i n d e p e n d e n t l y 

d e r i v e d , t h e t i m e s a t w h i c h t h e y o c c u r r e d w e r e r a t h e r c l o s e . 

A n o t h e r f i n d i n g w i t h t h i s u n a v e r a g e d u p - c r o s s i n g a n a l y s i s is t h e p r e s e n c e o f v i s u a l l y 

e a s i l y d i s t i n g u i s h a b l e p a t t e r n s fo r f r i c a t i v e s a n d s t o p s , e . g . " p " , T \ a n d " K " d i s t i n c t i o n s . 

W e p e r f o r m e d t h e f o l l o w i n g e x p e r i m e n t w i t h 10 p e o p l e , most o f w h o m h a d n o e x p e r i e n c e 

w i t h s p e c t r o g r a m s o r o t h e r s p e e c h r e s e a r c h . F i r s t o f a l l , w e h a d a s t a c k o f 

p h o t o g r a p h s o f o u r d i s p l a y s { w i t h n o s e g m e n t a t i o n l i nes o r e v e n a n y v e r t i c a l or 

h o r i z o n t a l a x i s m a r k i n g s ) . T h e p h o t o g r a p h s s h o w e d d i s p l a y s o f n o n s e n s e w o r d s all 

in t h e f o r m o f d C V C ( s t r e s s o n t h e C V C s y l l a b l e ) , s p o k e n b y b o t h male a n d f e m a l e s p e a k e r s . 

In a t y p i c a l e x p e r i m e n t , w e w o u l d g i v e a s u b j e c t t h r e e mode l p i c t u r e s , e a c h o f a 

n o n s e n s e w o r d c o n t a i n i n g " p " , " t " , a n d V in t h e ini t ial c o n s o n a n t p o s i t i o n r e s p e c t i v e l y . 

W e w o u l d t h e n s h o w h im w h e r e in t h e p i c t u r e s t h e s e c o n s o n a n t s w e r e l o c a t e d . N e x t w e 

h a n d e d h i m a s t a c k o f u n s o r t e d p i c t u r e s a n d i n s t r u c t e d h im t o s o r t t h e s e in to f o u r p i l e s , 

o n e e a c h f o r t h o s e t h a t c o n t a i n e d " p " , " t " , o r "k " in t h e s a m e p o s i t i o n a s in t h e 

m o d e l p i c t u r e s , a n d o n e p i le f o r t h o s e p i c t u r e s t ha t d id no t l ook l ike a n y o f t h e m o d e l 

• ( a u t o m a t i c s e g m e n t a t i o n a l g o r i t h m a n d imp lemen ta t i on d o n e b y J a m e s K. B a k e r ) 
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p i c t u r e s . D e s p i t e s p e a k e r , a l l o p h o n o , a n d v o w e l d i f f e r e n c e s b e t w e e n t h e m o d e l p i c t u r e s 

a n d t h o s e s o r t e d , s u b j e c t s w e r e ab le t o d i s t i n g u i s h " p V , " t ' s " , a n d " k ' s " f r o m 

e a c h o t h e r a b o u t 801 c o r r e c t l y o n a f i r s t t r y , r e g a r d l e s s o f t h e s u b j e c t ' s f a m i l i a r i t y 

w i t h s p e e c h r e s e a r c h . A d d i t i o n a l p r a c t i c e i m p r o v e d s c o r e s . 

A t t h i s p o i n t t w o i s s u e s a r i s e . F i r s t is t h e i s s u e t h a t t h e a b i l i t y o f 

h u m a n s t o d i s t i n g u i s h t h e s e p h o n e m e p a t t e r n s d o e s no t g u a r a n t e e t h a t a n a u t o m a t i c s p e e c h 

r e c o g n i z e r c a n b e p r o g r a m m e d t o d o as w e l l . T h e d o t p a t t e r n i t s e l f is c o m p l e x a n d i t 

i s n o t c l e a r e x a c t l y w h i c h v i s u a l f e a t u r e s s u b j e c t s u s e i n m a k i n g t h e i r d e c i s i o n s . 

A l t h o u g h w e d o h a v e s o m e s p e c i f i c i d e a s a b o u t w h i c h a c o u s t i c f e a t u r e s a r e m o s t r e l i a b l e 

f o r t h e s e d i s c r i m i n a t i o n s , w e h a v e n o t y e t s u b j e c t e d a l a r g e s a m p l e o f d a t a 

t o a n a u t o m a t i c t e s t i n g p r o g r a m t o d e t e r m i n e w h i c h f e a t u r e s a r e m o s t . r e l i a b l e 

a n d w h e n . T h i s b r i n g s u s t o t h e s e c o n d m a j o r i s s u e , t h e p r o b l e m o f a l l o p h o n e s a n d 

c o a r t t c u l a t i o n e f f e c t s . D i f f e r e n t a l l o p h o n e s o f t h e s a m e p h o n e m e o f t e n a r e a c o u s t i c a l l y 

v e r y d i f f e r e n t . A n e x t r e m e e x a m p l e o f t h i s p h e n o m e n o n a p p e a r s i n t h e f o l l o w i n g 

p i c t u r e s ( s p e c t r o g r a m s a n d u p - c r o s s i n g d i s p l a y s ) o f t h e c o n n e c t e d s p e e c h u t t e r a n c e s 

" P a w n t o k i n g f o u r " a n d " P a w n t o q u e e n f o u r " . T h e " k " i n " k i n g " d i f f e r s r a d i c a l l y f r o m t h e 

" k " i n " q u e e n " . T h e m o s t o b v i o u s d i f f e r e n c e is t h e l o w e r f r e q u e n c y c o m p o n e n t s i n t h e " k " 

o f " q u e e n " , p r o b a b l y d u e t o t h e l i p s ' r o u n d i n g , e f f e c t i v e l y l e n g t h e n i n g t h e v o c a ! t r a c t . 







T h e r e f o r e w e a r e s t a r t i n g an e x t e n s i v e i n v e s t i g a t i o n e x a m i n i n g t i m e - d o m a i n a c c - j s t i c 

f e a t u r e s o f a l l t h e a l l o p h o n e s o f t h e s l o p s a n d f r i c a t i v e s c o m m o n in E n g l i s h . W e w i l l 

e x a m i n e i n d e t a i l a l a r g e s a m p l e o f t h e s e u t t e r a n c e s , a b o u t 5 0 0 e a c h f r o m s e v e n o r 

e i g h t m a l e a n d f e m a l e s p e a k e r s t o d e t e r m i n e t h e m o s t r e l i a b l e c u e s f o r s t o p a n d f r i c a t i v e 

d i s c r i m i n a t i o n s a n d a s c e r t a i n w h i c h a l l o p h o n e s a n d c o a r t i c u l a t i o n e f f e c t s m u s t 

b e d e a l t w i t h e x p l i c i t l y . T h i s k i n d o f bas i c r e s e a r c h is e s s e n t i a l f o r t h e d e v e l o p m e n t o f 

a u t o m a t i c s p e e c h r e c o g n i t i o n s y s t e m s . 

I n s u m m a r y , w e f i n d t h a t , d u e t o i t s p r e c i s e t e m p o r a l r e s o l u t i o n , t h i s u p - c r o s s i n g 

a n a l y s i s ( a n d p r e s u m a b l y o t h e r r e l a t e d t i m e - d o m a i n a n a l y s e s ) is p a r t i c u l a r l y w e l l -

s u i t e d t o e x a m i n i n g f a s t t r a n s i t i o n a l r e g i o n s of a c o u s t i c s i g n a l s . In o u r d i s p l a y s 

w e o f t e n f i n d , p a r t i c u l a r l y f o r t r a d i t i o n a l l y d i f f i c u l t s t o p a n d f r i c a t i v e d i s c r i m i n a t i o n s , 

v i s u a l l y d i s t i n c t p a t t e r n s , c o n s i s t e n t a c r o s s ma le a n d f e m a l e s p e a k e r s . 

I n a d d i t i o n , t h i s t e c h n i q u e is g e n e r a l i z a b l e t o a n y w a v e f o r m a n d is p a r t i c u ­

l a r l y a p p l i c a b l e t o c o m p l e x w a v e f o r m s c h a r a c t e r i z e d b y r a p i d f r e q u e n c y c h a n g e s . 

O n t h e b a s i s o f b o t h t h e o r e t i c a l c o n s i d e r a t i o n s a n d t h e e m p i r i c a l r e s u l t s o f o u r s t u d i e s , 

i n c o n j u n c t i o n w i t h o t h e r s t u d i e s i n s p e e c h a n a l y s i s , w e f e e l t h a t f u t u r e a u t o m a t i c 

s p e e c h r e c o g n i t i o n s y s t e m s m a y b e m o r e s u c c e s s f u l b y i n c o r p o r a t i n g b o t h t i m e a n d 

f r e q u e n c y d o m a i n a n a l y s e s , r a t h e r t h a n e i t h e r s e p a r a t e l y . A l t h o u g h t h e r e is a g r e a t 

d e a l o f r e d u n d a n c y i n t e r m s o f t h e i n f o r m a t i o n y i e l d e d b y b o t h d o m a i n s , f r e q u e n c y - d o m a i n 

a n a l y s e s w i l l g e n e r a l l y b e m o r e p o w e r f u l f o r s t e a d y o r q u a s i - s t e a d y s t a t e p h e n o m e n a , e . g . 

s t r e s s e d v o w e l s , w h i l e t i m e - d o m a i n a n a l y s e s w i l l u s u a l l y b e m o s t e f f e c t i v e f o r s t u d y i n g f a s t 

t r a n s i e n t p h e n o m e n a , e . g . s t o p c o n s o n a n t s . 
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This paper presents preliminary results of a project for 

machine-aided segmentation and labeling of connected speech. The 

segmentation and label ing problent is reformulated as a problem of 

searching for a minimum cost path in a network. Such abstract 

fo rmula t ion permits the construction of a system which avoids the 

complex i t ies of a system b u i l t by ad hoc methods from the acoustic 

and phonological propert ies of speech. That such a simple abstract 

model is adequate for th is problem is demonstrated by a funct ioning 

program which is described by the pair of simple formulas (IB) and 

t i l ) . A program which uses more sophisticated acoustic observations 

and more compIicated matching procedures is under development, but i t 

is a lso an implementation of the same abstract model. 

For research in the acoustic properties of speech i t is 

imperat ive to have a large data base of speech utterances which have 

been r e l i a b l y segmented and labeled. Each important event must be 

found and labeled as to time of occurrence. Le t 's r e s t r i c t our 

a t t e n t i o n to f inding the beginning and ending time of each phone in a 

g iven ut terance. A r e l i a b l e method to do this labeling is to 

generate an appropriate display of the acoustic parameters and then 

have a t ra ined person label the phone segments. But for a large data 



base of thousands of utterances, such hand labeling can be very t i n e 

consuming. The goal of th is project is a program which can 

a u t o m a t i c a l l y assign the labels to a connected speech utterance wi th 

the need for human intervention only on special problem cases. 

Assigning labels to a speech utterance to be used in a data 

base is a very d i f f e r e n t problem from segmentation and label ing for 

automatic recogntt ion because the utterance is known. The program is 

given e i t h e r a phonetic transcript ion or can approximate one from an 

orthographic t ranscr ip t ion plus a phonemic dict ionary. On the other 

hand, the label ing must be as complete and r e l i a b l e as possible 

whereas a general recognit ion system should be able to t o l e r a t e 

incomplete label ing or even errors. 

A second goal of this project is the explorat ion of the 

a p p l i c a t i o n of stochastic models to automatic speech analys is . A 

general technique has been developed for combining information from 

several sources when each source alone would resul t in a s i g n i f i c a n t 

number of e r r o r s . Clear ly there are many problems in speech 

recogn i t ion which f i t th is general framework. The unifying p r i n c i p l e 

is a generat ive stochastic model for f i t t i n g a sequence of s tates to 

e r r o r f u l data from several sources. Machine-aided segmentation and 

l abe l ing has been approached as a specif ic appl icat ion of t h i s 

general technique. 

To r e l a t e the phones to the acoustic observations requires 

knowledge of the acoustic phenomena which are expected with each 



phone. In l ine with the probabi l is t ic approach, each phone is 

assumed to be associated with a stochastic process which produces 

acoust ic parameter values for any instance of the phone. The 

s t a t i s t i c a l propert ies of the stochastic process associated w i th any 

p a r t i c u l a r phone are to be estimated from the occurrences of the 

phone in the part of the data base which have already been segmented 

and labe led . Thus a non-negligible data base must f i r s t be analyzed 

by hand before the machine-aided system can be star ted. 

Each acoustic observation is to take a value from a f i n i t e set 

0 . Assume that for each phone P there is a posi t ive- ln teger -va lued 

random v a r i a b l e Z and a family of random variables X (1 ) , X ( 2 ) , 
P P P 

. . . , X (Z ) with values in D. Let f be the condit ional 
P P P,n 

p r o b a b i I i t y function 

(1) f (x , x , . . . , x ) 
P,n 1 2 n 

« PROBtX ( l ) - x , X (2)«x X (n)-x I Z -n) 
P I P 2 P n P 

Let g (n) - Prob(Z =n). The interpretat ion is to be that Z is the 
P P P 

dura t ion of an instance of phone P and X (1 ) , X (2) X (Z ) 
P P P P 

Si r 3̂ t 5̂ t3 ^3lJ ̂ 31 I c o l̂o S ̂ 21* V ̂ 31 I ^Jtl s \t\ ̂ ĉĴ 5 d̂ Jf* I ÎCJ t t i n s t sin^5 3̂ f t 

Lot V (1) j V (2 ) j V (3) • • • • • V (T 3 bs ths s g c j u s h c s o f 

otossrvst t ons in 3 c ] 6 for* t hs uttsrsncc bs i ncj 3 n 3 l y z & d * I—s t P (1) • P {2} j 



. Hm the êqu-:. - of phones in the utterance. list- s . - - -

n o t a t i o n V[tl:t2] as an abbreviation for the sequence V ( t l ) , V ( t l + 1 ) , 

... , VU2-1), V(t2). Let U(l), U(2) U(R) be a sequence of 
p u t a t i v e s t a r t i n g times for the phones. That is , U ( l ) < U(2> < . . . < 

U(R) and for each k, P(k) is supposed to last from observation 

V(LHk)) to observation V ( U ( k + l ) - l ) . Suppose a set of observations 

VE1:T] and times IJ[1:R] are produced by applying in succession the 

s tochast ic processes for each of the phones P ( l ) through P(R) and 
concatenat ing the observations, the individual processes being 
independent. Then the probability of producing the observed sequence 

is 

(2) PROB ( V l l : t] , U[l:rJ ) 

P[1:R] 
R, 

- I T (f (V[U(k):LHk + l ) - l f )g (U(k+1)-U(k)) 
^_ P ( k ) , U ( k + l ) - U ( k ) P(k) 

The segmentation and labeling problem consists of f inding tho 
cor rec t set of values for the sequence U t l : R l . He shall use a 

maximum l ike l ihood estimation scheme. Pick for Utl:R) that sequence 
that maximizes Prob (V [1: T], UtlsRI) for the given observations 

V t l : T J . The problem of finding Utl:R] is equivalent to finding the 
best path through a binary decision tree where each node at levei t 

represents a decision of whether or not there is a phone boundary at 
time t . Subject to the constraint that there are R phones, there are 

/ T - l \ (T - l ) ! 
(3) ) -\ R-1 / (R-1)! (T-R) ! 



paths through this tree. This number is prohibit ively large (if an 

observat ion is mads every centisscond and the utterance lasts two 

seconds, then T-280), so some reduction is necessary* 

Note that our model is such that given k and Utk:R] we can 

evaluate 

(4) PROB ( V tUOOiT l , Utk:R] ) 
P l l tR) 

- TT (f ( V t U ( j ) t U ( j + l ) - l ] )g ( U ( j 4 l ) - U ( j ) ) 
j \ \ P<J)\U(J-hl)-U(J) P(j) ; 

that i s , the probabil i ty does not depend on U t h k - l l . Also note that 

(5) PROB ( V U t T l , UtltR] ) 
Pt l iR] 

- PROB (V [ l iU (k ) - l l f UtltkDPROB (VtUOOiTl. UtkjRl) 
P t l iR] Ptl iRl 

Therefore If at any node of the tree corresponding to a part icular k 

and U(k) we have evaluated Prob(V[ l :U(k - l ) l , U11 ski) then the 

subsequent ana lys is depends only on k and U(k). That i s , for the 

purpoee of analyzing V[U(k):T] and L)[k:R] we can identify all nodes 

of the tree which correspond to ths same pair k and U(k). Since we 

are only Interested in ths b s s t U I l t R ] , we associate with this 

combination node the maximum of Prob(V[ l iU(k+ l ) - l ] , Utl ik]) over all 

the nodes which are combined. This identif ication reduces the tree 

to a network whose nodes correspond to the two-dimensional set of 



values (k, U(k)) , where 1 < k < R, 1 < U(k) < T. Procedures for 

finding the best path through such a network have been extensively 

investigated. A simple, computationally efficient, procedure is 

dynamic programming. 

To facilitate dynamic programming, introduce the function 

(6) A(k, t) « Max IPROBtVQ. t-l] ,U[l.k])} 
Utl:k] 
U(k)«t 

That is, A(k,t) is the probability along the best path leading up to 

the (k,t) node. A may be calculated by 

(7) A(k, t) - riaxi A(k-l f t-j)f (VCt-Ji t-lj )g (j)} 
j P(k),j P(k-l) 

Let J(k,t) be the value for which this maximum is achieved. Then 

after A and J have been calculated for the whole network, the best 

path through the network is obtained by 

(8) U(k) = U(k+1) - J(k + lf U(k + U) . 

If we are willing to assume that X (1),X (2), ... fX (Z ) are 
p p p p 

independent and identically distributed and that 

n 
(9) g (n) - (l-a)a , for some a independent of P, 



then an even simpler computation is possible. I t is not claimed that 

these addi t iona l assumptions are r e a l i s t l c . However, some examples 

w i l l be given to show that even with these assumptions and very crude 

acoust ic observations the model can produce reasonable segmentation 

and l a b e l i n g . 

The ex t ra assumptions allow us to ignore the durations of the 

phones by factor ing out a factor which is the same for a l l paths 

through the network. Reformulate the network, ignoring durat ion 

in format ion . Let the node (k . t ) correspond to the event U(k) 4 t < 

U(k+1) with Utk) .o therwise unrestr icted. Let B (k , t ) be the 

probabi I i ty along the best path leading t o ( k , t ) . Then B maybe 

c a l c u l a t e d by 

(18) B(k, t ) = ( Maxi B ( k - 1 , t - U , Btk, t -1) ) )PR0B(X - V ( t ) ) 
P<k) 

Then the sequence LHliRl may be calculated by 

(11) U(k) - Max! t I t<U(k+l) and B l k - 1 . t - l ) >B(k , t -1 ) ) 

Since some of the simplifying assumptions are admittedly 

u n r e a l i s t i c , the model must be tested in actual use. F i r s t we must 

f i n d some measurable parameter to use as the sequence of acoustic 

observat ions V I 1 : T ] . The better the parametric representat ion 

d is t ingu ishes the phones, the more the conditional p r o b a b i l i t y 



funct ion f w i l l be concentrated in d i f f e ren t regions for 
P.n 

d i f f e r e n t phones, and the better the system w i l l work. For f i n a l 

product ion runs the best parametric representation ava i lab le should 

be used. For prel iminary test ing, however, there is an advantage to 

using a less precise parametric representation. I f the system is to 

be of s i g n i f i c a n t value i t must be robust. I t must be able to 

operate in environments in which the direct acoustic observations do 

not well character ize the underlying phones. Besides, i f the system 

works wi th a crude parameterization, i t can be used to help assemble 

the data base needed for f inding and test ing a more r e f i n e d 

parameter i za t ion . 

The parameter which has been used is the output of a crude 

loca l -pat tern-match phonetic recognizer. The output of the 

recognizer is a label which is intended only to be an approximation 

to the associated phone. The conditional p robab i l i t i es are given in 

Table 1 . Each row corresponds to a given phone, and the columns are 

the possible labels that the recognizer might assign. This 

recognizer frequently confuses phones within a class, but i t can 

g e n e r a l l y d is t inguish among broad classes. 

The output of the system is shown for three chess ut terances. 

The s ix l ine graphs in each figure are the six parameters that are 

input to the pat tern recognizer. They are intensity measures of the 

signal passed through each of f ive octave-wide band-pass f i l t e r s and 

of the u n f i l t e r e d s ignal . The l ine immediately below the graphs is 



the sequence of labels assigned by the recognizer. This is the 

sequence V [ 1 : T ] . There is one label for each centisecond. The 

phones as segmented and labeled by a program using formulas (18) and 

(11) are displayed on the second l ine. Each phone is pr inted at the 

p o s i t i o n that indicates the time at uhich the phone begins. The hand 

segmentation data is given on the th ird l ine and the orthographic 

t r a n s c r i p t i o n on the fourth. The phone sequence for the program is 

der ived from a phonemic dict ionary, so i t d i f f e rs in places from the 

hand labeled sequence. 

In evaluat ing a system of this type i t is important to note the 

d i f f e r e n t kinds of errors and their e f fec ts . There are three 

important kinds of errors: (1) The sequence of phonetic labels may 

d i f f e r from the correct sequence. (2) A boundary posit ion may be 

s h i f t e d between two phones which are otherwise correct ly placed. (3) 

A phone may be so misplaced that i ts mach i ne-1 abe I ed segment does not 

i n t e r s e c t the correct segment. The d i f ferent kinds of errors have 

var ious e f f e c t s in a tota l man-machine system. 

The f i r s t type of error results from an inadequately spec i f ied 

phonet ic input. Problems may result especial ly when the input 

sequence is derived by rule from a phonemic d ict ionary . The 

a lgor i thm is not permitted to a l ter the nominal phonetic sequence 

which i t is given. To reduce errors of this kind more sophist icated 

phonological ru les must be combined with the phonemic d ic t ionary , or 

the ut terance must be transcribed by hand. Note, however, that for 



the purpose of co l lec t ing s t a t i s t i c s for machine recognit ion pa t te rn 

matching algori thms, the best labeling may in fact be that which is 

der ived from a d ic t ionary . Then the s t a t i s t i c s are grouped according 

to the d ic t ionary phonemic label , which is just what is needed for 

p a t t e r n matching s t a t i s t i c s . 

Some errors of misaligned boundaries are inevi table . In f a c t , 

the format of the output has some error bu i l t in since i t assumes 

that the phones can be occupy non-overlapping time segments. I t is 

e s p e c i a l l y hard for the program to accurately place the boundaries 

between vowels and semi-vowels or nasals. More accurate and d e t a i l e d 

acoust ic observations may help, but the output must s t i l l be checked 

and corrected by hand. 

The t h i r d type of error is the most serious. I t implies that 

several boundaries are misplaced and that the underlying sequence of 

s t a t e s in the path through the network is not following the actual 

sequence of phones at a l l . Such errors are easy for a human checker 

to de tec t , but to correct them may require that the whole utterance 

be hand labeled. Unless the number of errors of this type is smal l , 

the machine-aided system is not successful. 

No systematic performance evaluation has been attempted, since 

the program is s t i l l in a preliminary version. A f i l e of hand 

segmented data must be bu i l t up to establish s t a t i s t i c s for 

es t imat ing the conditional probabi l i ty d ist r ibut ions of the X ' s . 
P 

I t may be necessary to use the more complete model given by formulas 



(7) and ( 8 ) . Duration information is a valuable toot for preventing 

the type-3 er rors (which s t i l l occur under cer ta in cond i t ions) . 

Other parametric representations of speech must be explored, 

e s p e c i a l l y i f the system is to work without tuning to individual 

speakers. The pre-processor which is being used presently le tuned 

to the extent of having the speaker produce one prototype version of 

each phone. When th is crude tuning is omitted the qua l i ty of the 

acoust ic obsevations is degraded su f f i c ien t ly to introduce type-3 

e r r o r s in many utterances. 
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1 1 1 1 1 1 1 1 ! 1 1 1 t 1 1 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
2 e e e e 17 e e e 0 e e e 0 0 e 
3 1 i 1 1 25 1 l I 3 i 1 l 1 ! l 
E 2 2 s 2 37 2 2 z Z 2 2 2 2 Z z 
1 7 1 i 1 IE l l t 1 23 1 1 5 1 i 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
1 1 1 1 i 41 1 1 1 1 1 1 1 1 t 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
1 1 13 1 1 24 1 1 1 1 23 1 1 1 I 1 
7 B 1 1 t 1 2 2 1 1 41 1 1 2 17 1 
0 Z Z 2 2 2 2 2 2 Z 14 Z 2 2 2 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 14 3 3 3 3 3 3 3 3 3 3 3 3 
Z Z 2 Z 2 2 2 6 12 2 2 Z IZ Z 12 2 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
1 i 1 26 2 18 1 7 1 2S 1 11 1 ] 1 1 
1 1 I 20 1 2 1 1 i IB 1 22 1 1 t I 
2 1 1 7 1 IE 1 3 t 1 I t 1 1 1 1 
1 1 1 Z4 1 1 1 5 i 23 1 7 1 1 I 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
4 1 o « 2 4 7 14 e 18 14 1 E 2 J4 8 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 B 3 3 IS 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
1 1 1 1 1 1 1 1 1 1 1 1 1 ] 1 1 
1 1 t J 1 1 1 1 1 1 1 1 1 I 1 1 
2 2 2 2 2 \* 2 Z 2 2 Z 2 2 2 2 2 
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