NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17. U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document withoul permission of its author may be prohibited by law.



Working Papers in Speech Recoghnition

-1 -

'CM“ Computer Science Speech Group
‘ -August, 1973

This report contains three previously published papers and two unpublished
ones:

D. Raj Reddy,, Lee D. Erman, and Richard B. Neely, "A Model and a System for Machine
Recognition of Speech”, IEEE Trans. Audio and Electroacoustics, AU-21 (3), June,
1973.

D.R. Reddy, LD. Erman, RD. Fenneli, and RB. Neely, "The HEARSAY Speech
Understanding System: An Example of the Recognition Process®, 3rd Inter. Joint
Conf. on Artificial Intelligence, Stanford, Ca, Aug, 1973.

L.D. Erman, R.D. Fennell, V.R. Lesser, and D.R. Reddy, "System Organizations for Speech
Understanding:  Implications of Network and Multiprocessor Computer
Architectures for AI", 3rd Inter. Joint Conf. on Artificial Intelligence, Stanford Ca,
Aug, 1973.

Janet Maclver Baker, "A New Time-Domain Analysis of Human Speech”, Apr, 1973.

James Baker, "Machine-Aided Labeling of Connected Speech”, Apr, 1973.

The research reported here was partially supported by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (F44620-73-C-0074) and
monitored by the Air Force Office of Scientific Research.




IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, VOL. AU-21, NO. 3, JUKE 1973

A Model and a System
for Machine Recognition
of Speech

D. RAJ REDDY, LEE D. ERMAN, and RICHARD B. NEELY

Absiraet—This paper presents 8 mod#l Zor machine recogni-
tion of connected speech and the details of a specific imple-
mentation of the model, the REARSAY aystem. The model
congista of & amall et of cooperating independent parallel pro-
cessex thed are capable of helping in the decoding of a spoken
uiterance elther individually or collectively. The processes use
the “hypothesize-and-test™ paradigm. The structure of HEAR-
SAY is illusirated by considering its operation in a particular
task situstion: voice-chess. The task is to recognize a spoken
move in 8 given board position. Procedures for determination
of parameters, segmentation, and phonetic descriptions are
outlined. The use of semantic, syntactic, lexical, and phono-
logical sources of knowledge in the generation and verification
of hypotheses is described. Preliminary results of recognition
of some utterances are given.

introduction

Most papers on speech recognition conclude by say-
ing that it is necessary to use higher level linguistic
cues to obtain acceptable recogmition. The terms
context, syniax, semantics, and phonological rules are
used but attempis to utilize these sources of knowl-
edge have not been successful because of the ill struc-
turedness of these concepts. This paper represents a
summary of several years of investigation to formu-
late an information processing model that would lead
to efficient recognition of speech and in which the
role of various sources of knowledge would be well
defined.

At the 1989 spring meeting of the Acoustical So-
ciety, we presented several papers on the structure of
a speech recognition system that was used to recog-
nize a list of 500 isclated words and a syntax-directed
connected speech-recognition system using a finite
state and a 16-word vocabulary (Vicens
[373, Reddy [31], Neely [22])}. Six amplitude and
zero-crossing parameters of the incoming utterance
were sampled every 10 ms and segmented. The seg-
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ments were labeled to specify the phonetic class; the
syntax was used for senience analysis and word
boundary determination, and prelearmed acoustic and
phonetic segmental descriptions of lexical items were
used for word recognition. ’

Several inherent limitations were apparent even as
we developed the sysiem. First, the vocabulary had
to be reduced to 16 words because of word boundary
ambiguity problems. For example, the word “large”
had to be changed to “big” because of assimilation of
the reduced vowel of “the™ into the semivowel {1f of
“large™ in the utterance: “Pick up the large biock.”

Second, we had to overcome the limitations of the
syniax-directed methods. One could not blndly
parse from left to right; rather, we had to locate an-
chor points from which parging could proceed both
backwards and forwards. This was necessary to com-
rensate for machine errors in earlier stages and to
compensate for the idiosyncrasies in speaker perform-
ance such as introduction of spurious words, repeti-
tion of words, and inclusion of hmm- and ha-like
sounds.

Third, the simple hierarchical structure in which
cutput from one process forms the input to the next
was not adequate for the task. Errors introduced in
each process tend to have multiplicative effect, i.e., if
each of four processes introduced 10 percent errors,
the cumulative error would be 34 percent. Further,
the lack of feedback and feedforward of the simple
hierarchical model meant any errors that got through
were uncorrectable. The main virtue of the system
was that it was the first demonsirable system to use
syntactic and lexical constraints to recognize com-
nected speech sentences (such as: “Pick up the big
block at the bottom right corner”).

For the past four vears the authors have been at-
tempting tc develop a model and a system for con-
nected speech recognition that did not suffer from
the limitations mentioned previously, and that would
serve as & research tool for speech-recognition re-
search over a wide range of tasks., The following sec-
tions present the resulting model and an outline of
the system implemented. on a PDP-10 computer.

The Madel

We were interested in developing a system capable
of-- recognition of connected speech from several
speakers with graceful error recovery, in close to real
time, and easily generalizable to operate in several
different task domains. We started with several re-
quirements for the model.

1) Contributions of syntax, semantics, context,
and other scurces of knowledge towards recognition
should be clearly evaluatable. Exactly what and how
much does each contribute towards improving the
performance of the system?

2) The absedce of one or more sources of knowl-
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edge should not have a crippling effect on the per-
formance of the model. That semantic context
should not be essential for perception is illustrated by
overheard conversations among strangers. That syn-
tactic or phonological context should not be essential
is illustrated by conversations among children. That
lexical representation is not essential is illustrated by
our recognition of new words and nonsense syllables.

3) When more than one source of knowledge is
available, interactions between them should lead to a
greater improvement in performance than is possible
to aftain by the use of any subset of sources of
knowledge.

4} Since the decoding process is errorful at every
stage, the model must permit graceful error recovery.

5) Increases in performance requirements, such as
the real time requirement, increase in vocabulary,
modifications to the syntax, or changes in semantic
interpretation, should not require major reformula-
tion of the model,

The model we have arrived at to satisfy these re-
quirements consists of a small set of cooperating inde-
pendent processes capable of helping in the decoding
process either individually or collectively and using
the “hypothesize-and-test™ paradigm.

Each of the processes in our model is based on a
particular source of knowledge, e.g., syntactic, seman-
tic, or acoustic-phonetic rules. Each process uses its
own source of knowledge in conjunction with the
present context (i.e., the presently recognized sub-
parts of the utterance) in generating hypotheses
about the unrecognized portions of the utterance.
This mechanism provides a way for using (much
talked about but rarely used) context, syntax, and
semantics in the recognition process.

The notion of a set of independent parallel pro-
cesses, each of which is capable of generation and
verification of hypotheses, is needed to satisfy the
requirements 1) and 2) mentioned previously. In our
model, the absence of a source of knowledge implies
deactivating that process, and recognition proceeds
(albeit more slowly and with lower accuracy) using
the hypotheses generated by the remaining processes.
The independence of the processes permits us to de-
activate a source of knowledge and measure how and
by how much that source of knowledge improves the
system. )

The need for parallel processes can be derived from
the real-time periormance requirement. If the system
is to ever approach human performance, it must be
able to answer trivial questions as soon as they are
uttered (some times even before they are completed).
This implies that various processes of the system
should be able to operate on the incoming data as
soon as they are able to do so without waiting for the
completion of the whole utterance (as in a simple
hierarchic model), The *“coroutine” model, in which
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each process passes control to the next level when a
“chunk™ is perceived and regains control when a
new chunk is needed, would be satisfactory. But this
organization can lead to irrevocable loss of data if a
higher level process does not return control in time to
process new chunks of incoming speech. Thus, there
must be at least two parallel processes, one of which
is continuously monitoring the input speech and the
other proceeding with recognition. This, in addition
to requirements 1) and 2), suggests a model with par-
allel pracesses,

An important aspect of the model is the nature of
cooperation between processes. The implication is
that, while each of the processes is independently
capable of decoding the incoming utterance, they are
also able to cooperate with each other to help recog-
nize the utterance faster and with greater accuracy.
Process ““A™ can guide and/or reduce the hypothesis
generation phase of process “B” by temporarily re-
stricting the parts of the lexicon that can be accessed
by B, or by restricting the syntax available fo process
B, and so on. This assumes that process A has addi-
tional information that it can effectively use to pro-
vide such a restriction. For example, in a given syn-
tactic or semantic situation only a small subset of all
the words of a language may appear.

The need for a hypothesize-and-test paradigm arises
from 4). The “errorful’ nature of speech processing
at every stage implies that every scurce of knowledge
has to be brought to bear to resclve ambiguities and
errors at every stage of processing. This implies rich
connectivity among various processes and involves
both feedforward and feedback. The hypothesize-
and-test paradigm represents an elegant way of ob-
taining this cooperation in a uniform manner.

The notion of hypothesize-and-test is not new. It
has been used in several artificial intelligence pro-
grams (Newell [25]). It is equivalent to analysis-by-
synthesis (Halle and Stevens [10]) if the ‘‘test”
consists of matching the incoming utterance with a
synthesized version of the hypothesis generated. In
most cases, however, the test is of a much simpler
form; for example, it is not necessary to generate the
whole formant trajectory when a simpler test of the
slope can provide the desired verification. This not
only has the effect of reducing the computational ef-
fort but also increases the differentiability between
phonemically ambiguous words.

Extendability and generalizability of the model is
mainly an issue of implementation. It requires that
representation of sources of knowledge be separate
from and independent of mechanisms that operate on
them. One way of achieving this is to represent the
knowledge in a form most suitable for moedification
by the user and have a set of preprocessors that then
transform the knowledge into the representation re-
quired by the system.
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HEARSAY System

HEARSAY is a speech-recognition system that incor-
porates many of the ideas presented in the previous
section and is presently under development at Car-
negic-Mellon University. It is not restricted to any
particular recognition task., Given the syntax and the
vocabulary of a language and the semantics of a task,
HEARsAY will attempt recognition of utterances in
that language.

Fig. 1 gives an overview of the HEARSAY system.
The EAR module accepts speech input, extracts pa-
rameters, and performs some preliminary segmenta-
tion, feature extraction, and labeling, generating a
"partial symbolic utterance description." The recog-
nition overlord (ROVER) controls the recognition pro-
cess and coordinates the hypothesis generation and
verification phases of various cooperating parallel pro-
cesses, The Task provides the interface between the
task being performed and the speech recognition and
generation (SPEAK-EAsy ) parts of the system. The sys-
tem overload (SOL) provides the overall control for
the system. A more detailed, but earlier, description
of the goals and various components of this system
are given in Reddy et af [33] and Reddy [32].

Here we will describe the operation of the 1TEARSAY
system by considering a specific task: voice-chess.
The task is to rccognize a spolien move in a given
board position. In any given situation there are gen-
erally 20-30 legal moves and several thousand differ-
ent ways of cxpressing these moves. The syntax,
semantics, and vocabulary of the task are restricted,
but the system is designed to be easily generalizable
to larger tasks, which was not the case for our earlier
systems, Larger syntax (e.g., a subset of English) and
vocabularies (1000-5000 words) for a more complex
semantic task will make HEARsAY slower and less ac-
curate but are not likely to be crippling.

Fig. 2 shows the recognition process in greater de-
tail. At present, it contains three independent pro-
cesses: acoustic, syntactic, and semantic. We will give
a short description of how these processes cooperate
in recognizing "king bishop pawn moves to bishop
four.” Let us assume that this is a legal move (other-
wise, at some stage of processing, the system will re-
ject it as semantically inconsistent).

Parametric Level Analysis

The speech from the input device (microphone,
telephone, or tape recorder) is passed through five
octave bandpass filters (spanning the range 200-6400
Hz) and an unfiltered band. Within each band the
maximum intensity and the number of zero crossings
are measured for every 10-ms interval.

This results in a vector of 12 parameters every 10
ms. These parameters are smoothed and log trans-
formed and a subset of the parameters is chosen for
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Fig. 2. Detail of the recognition process,

further processing, Fig. 3 gives the parameters used,
at present, for part of the utterance "king bishop
pawn . . . ." Each column represents a 10-ms time
unit. Rows PI1, P2, P3, and AL represent the log-
amplitude parameters in the frequency bands 200-
400, 400-800,800-1600 Hz, and the unfiltered band,
respectively,  The amplitudes are quantized to 32
levels and represented as a single character (blank,
0-9, A-U, and *, which represents a value greater than
31). Rows P4 and P35 represent values that are func-
tions of both amplitude and zero crossing in bands
1600-3200 and 3200-6400. Details of various oper-
ations on these parameters are given in Erman [6],

This vector of parameters (P1-P5 and A4 L)) are com-
pared with a standard set of parameter vectors to ob-
tain a minimum distance classification for each time
unit using a highly meoedified version of a procedure
proposed by Astrahan [1]. The row labeled PP gives
the classification tor each 10-ms unit. The standard
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Fig. 3. Parameters and segmentation for “king bishop pawn - - -

S P1-P5 and AU {amplitude} are the input parameters. PP is

the phone-like name given to the segment. SP is the locally amoothed PP, VF is n segmentation based on the SP's: - unvoiced,
nonfricated; funvoiced, fricated; v voiced, nonfricated; and z voiced, fricated.

set of parameters is obtained by selecting cluster cen-
ters from a training set of utterances containing vari-
ous phonemes in neutral contexts. When a phoneme
is represented by several articulatory gestures, more
than one cluster center may be added to the standard
set. Speaker characteristics and the noise character-
istics of the environment or the transducer may be
reflected in the standard set of clusters by recording
the training set in that environment. Fig. 4 gives clus-
ter centers for several representative sounds. A com-
plete list of clusters used and the details of the
speaker normalization program are given in Erman
[6].

Remark I: The labels in row PP of Fig. 3 are not to
be confused with phonetic transcription. Accurate
phonetic transcription, where possible, would require
modifying the labels taking into account segment and
sentence level context.

Remark 2: If one wanted to use formant frequen-
cies and amplitudes (assuming they can be deter-
mined without mislabeling} one would reanalyze the
training set for this parametric representation to de-
termine the new cluster centers. Representing the
parameters as a vector with a weighted distance met-
ric defined on the vector space is all that is needed to
use & new parametric representation in the nEamsay
systemn. There are several disadvantages to this ap-
proach, e.g., errors in labels, inability to take advan-
tage af special features of 2 parametric representa-
tion, etc. However, this approach provides a
convenient way of obtaining the best firxst approzima-
tion to the phonetic representation. '

Remark 3: The tendency is to blame every error on
inadequate parametric representations. We have gone
from one set of amplitude and zere crossing param-
eters to three sets and now to five. Others divide the
frequency range into 12, 17, 24, 32, and 48 regions
or the fuli resoiution given by FFT. The increase in
noisiness of the parameters with increasing resolution
makes it imperative that one transform the high reso-
lution data to & smaller number of robust parameters
such as the efforts by Li ef al. [16] and Pols [28) in
dimensionality reduction of spectra.

Remark 4: The parameters we use represent a
crude spectrum. A mixed strategy in which finer
analysis is performed only when necessary (Reddy

PP Pl F2 P2 P4 PS Al
d rra 14 5 4 & ia
3 a a B 4F 33 3
L] I8 18 2 2 ] 33
u 43 3R 11 7 ] 33
a 37 62 L3 28 -] 59

Fig. 4. Several typical PPcluster centers.

[30]) seems more appropriate for an efficient realiza-
tion of the system than obiaining every possible pa-
rameter at the start.

Remark 5: Spectral representation appears to be
movre robust than formant representation because of
the likelihood of misiabeling a formant.

Remork &: Parcor parameter representation (Ita-
kura and Ssaito [14]) has also been used successfully
{Nakano et el [21]) and may have efficient machine
realizations within the framework of the AEARsAY
system.

Remark 7: Zero-crossing measurements and form-
ant frequency measurements are more prone to error
than energy messurements in a noisy environment.
It appears more difficult to devise noise subtraction
algorithms for frequency than for amplitude {Neely
and Reddy [24]).

Segmentation .

The purpose of segmentation is to divide the con-
tinuous parameter sequence into discrete phone-size
chunks. This is usually based on an acoustic similar-
ity measure (Reddy and Vicens [34]). Labeling
every 10-ms unit by a phone-like cluster name per-
mits the segmentation to be divided in terms of these
labels. Fig. 3 shows two levels of segmentation for
“king hishop pawn . ..." The first level is derived by
doing a local “smoothing™ of the PP names assigned
to each of the 10-ms segments; this is displayed on
the row labeled SP. A segment is defined to be a con-
tiguous run of a single PP, flanked by PP's not the
same a5 those in the run. This segmentation is ap-
proximately at the phoneme level hut is, by itself,
very unreliable.

A second level of segmentation is derived by associ-
ating a voicedfunwvoiced decision and a fricated/non-
fricated decision with each PP. These binary deci-
sions, when applied to the SP's (and modified with a
fow simple rules for smoothing and breaking of long
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segments according to significant local amplitude
peaks), segrment the signal very reliably. The row in
Fig. 8 labeled VF indicates this segmentation for the
sample.

Remark 1. It is now commonly agreed among all
tesearchers that some form of segmentation of acous-
tic signals is necessary for connected speech recogni-
tion (see Fant and Lindblom {8], Reddy [29], Denes
and von Keller [4], Broad [2], Medresz [19], Dixon
and Tappert [§], Klatt and Stevens [15], Stalham-
mar and Karlsson [35], Hemami and Lehiste [11]).
No systematic evaluation has been made of these and
other methods of segmentation that have been pro-
posed or implemented. Our present view is that al-
most any of the schemes, given enough careful tun-
ing, will work in a large majority of the cases; the
more important question is then not how to segment,
but rather how to use the segmentation without being
crippled by the inevitable errors.

Remark 2: This use of segmentation represents a
trend away from segmentation-free recognition
schemes (Halle and Stevens [10]). However, segmen-
tation-free recognition still seems to be a useful con-
cept if one is mainly interested in isolated word
recognition (Hill {12], White [39]).

Acoustic Aecognizer

The role of the acoustic recognizer is to predict and
verify asyllables and words based on the features pres-
ent in the incoming utterance, the present context,
and the lexicon. The structure and phonetic descrip-
tion of syllables and words in the lexicon is prespeci-
fied. An entry for a word in the lexicon contains the
phonemic spelling(s) of the word and annotations
that are used to describe expected anomalies that can-
not be predicted hy rule from the phonemic spelling.
A more detailed description of the lexicon and the
preprocessing is given in Erman [6].

The acoustic recognizer has three sources of knowl-
edge available for the generation and verification of
hypotheses: acoustic, phonological, and vocabulary
restrictions. The acoustic knowledge appears in the
form of expected parameters (or features) for a pho-
neme in a neutral context. The phonological knowl-
edge appears in the form of a coarticulation model
that modifies the expected features hased on context.
The between-word coarticulation effects have to be
determined wherever applicable through the uze of
the “currently accepted partially recognized utter-
ance” (Fig, 2), which provides the boundary pho-
nemes. The vocabulary restriction appears in the
form of a valid subset of words in the lexicon that
contain a given sequence of features.

The acoustic recognizer uses these sources of knowl-
edge in two stages: the hypothesis and the verifica-
tion. The acoustic hypothesizer does not have any
knowledge of the syntax or semantics of the situa-
tion, but can use the gross features (such as /[/ of
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“hishop’’) in the *“partial symbolic utterance descrip-
tion” (Fig. 2) to retrieve those words of the lexicon
that are consistent within the features present.

The task of a verifier is to determine whether a
given hypothesis is consistent with the context pres-
ently available to it. For example, let us assume that
alternative hypotheses of the words “king’s,” *‘pawn,”
“bishop,” ‘“‘queen’s,” and “knight” have been made
in the context “king --- pawn * + " (where **---" repre-
sents the hypothesized words) and that the word
actually spoken was “bishop.” Detailed verification,
by the acoustic verifier, of every phoneme of every
option word is not necessary. All that is needed, in
this example, are some simple tests that notice that
there is a strong fricative indicated near the middle of
the area of interest, which causes “‘pawn” and
“knight” to be rejected, and some other simple tests
on the vowel portion, e.g., duration, high/low, and
front/back, which would indicate that both “queen’s”
and “king’s” are unlikely, whereas “'bishop’ is highly
likely.

A more detailed matching of features and the use of
coarticulation rules at the word boundaries may, of
course, be needed for other cases. Detailed matching
often implies generation of a test. For example, if the
verification to be made is among “sit,” “‘spit,” and
“gsplit,” the presence of s/, /1/, /t/ and the transitions
between /I/ and /t/ are irrelevant. What is needed is
the test for the presence or absence of a stopgap and
for the presence of /1/-like formant structure follow-
ing the stopgap.

Remark: That some form of hypothesization and
verification is needed seems to be recognized by
many researchers at this point. Halle and Stevens
[10] proposed synthesia and match as a means of
verification in their analysis-by-synthesis model. Hy-
pothesis and verification for izolated word recogni-
tion was used in the Vicens-Reddy system (Vicens
[38]). More recently, similar techniques have also
been used by Klatt and Stevens [15], Lindblom and
Svensson [18], Tappert et al, [36], and Itahashi et
al. [13].

Syntactic Recognizer

The role of the syntactic recognizer is to predict
phrases based on the syntactic structure of the lan-
guage to be recognized and the context. The pre-
dicted phrases induce (specify) words that might ap-
pear in that context. The grammar for the voice-chess
language 1s context free. The voicechess grammar,
specified as a set of BNF productions, is given in Fig.
§. For example, in this grammar, “<move>"" is de-
fined to be either ““<movel>" followed by “< check-
word>>" or “<<movel>." The total number of differ-
ent utterances permitted by this grammar is about
five million.

The role of the syntax hypothesizer is to use the
syntactic source of knowledge to predict words. In
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Fig. 5. Voicochess syniax.

18, «ranks

hypothesization the ayntax recognizer uses only very
local context to predict words. Predictions may be
made either to the right or the left of already existing
words. For example, if “--- moves-{o ---" i given,
then words may bhe hypothesized to the left of
“moves-to” or to the right of “moves-to.” Hypoth-
esization uses only inexpensive methods, and often
generates words that would not fit in the complete
context of the sentence.

Traditional parsing schemes are not very useful in
generating hypotheses. Further, the syntax recog-
nizer must be capable of processing errarful strings
containing spurious wovds and repetition of werds.
This implies that it must be capable of working both
forwards and backwards. This is achieved in uEar-
say by the use of antiproductions.

Antiproductions act asz a concordance for the gram-
mar giving all the contexts far every symbol appear-
ing in the grammar. They are used to predict words
that are likely to occur following or preceding =
word using only limited context. Fig. 6 gives anti-
productions for productions 1-8 of the grammar of
Fig. §. These are produced automatically by a pre-
processing program. In this figure, the symbols in the
column labeled cerren are the entries in the concor-
dance. Each symbol in the subset of the grammar 2p-
pears in this column once for each occurrence of it in
the subset. The entries in the Lerr and rIGHT columns
denote symbols that can appear to the left and right
of the entry in the center column. When an + appears
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CENTER LEFT RLGHT HoAD

CASTLE L t ccistie-upra>
CASTLES L t <chatin-npro=
EM-PR5SENT FAM t wcapturax

o <CARt la-whrels ceuniroyal> <Cantlas

PakN <Captury-wor i EN-FASSENT wcaptura>
SI1DE <l b | > t canttm>

S1DE 2wl e opd| > t wcantlax
«maval» T ccheck-mards “movas
<mavel»> L4 4 “mover
“Chackshords <mayel t <EOVE>
<reqgular-mowe> t k] <movael:x

ACAp LT L + <movel»
~Ccaatiex t 4+ <movel>r
<caatfe-wards + DN <cant|a>
<caatle-woros t LN ir oy s <cantla>
«caalle-words> T * <cant|a»
<unirouals 1] S10E <cant|ax

<unir oyl @] [o-utrds 21DE <contlax

<man- loex t <ROVE-HOF <rmul ar-move:-
<man- | pex t <Capl i B-sord> capturea
<maAn-loc» t <G Mgl B-vord: cop lure>
<man-loc> <Cf e g * <chplure>
<ROYE-LKH o> <man-lag> chguire> «ragul ar-wayp>
<EAQUAT 8> L1 T e ey L] srequl ar-wover
<chptura-nords <man-log> PARN ccAplurex>
<captura-nerds <man-loex cadn- | opr ccAptures

Fig. 6. Antiproductiona for & subset of the syntax of Fig. 5.
(The subset consists of productiona 1-6_)

in the rzFr or meuT columm, it indicates that the
original production did not have an entry to the left
or right of that symbol.

When the cerr (or réET) context given in an anti-
production is satisfied, then the rxur {or Lerr) con-
text i= hypothesized for recognition. If the hypoth-
esized symbeol happens to be a nonterminal, then ait
the possible terminal symbole that can appear at the
left of this nonterminal are hypothesized. Detailed
descriptions of the structure and use of antiproduec-
tions will be given in Neely [23].

The role of the syntactic verifier is to accept or dis-
card hypotheses using syntactic consistency checks.
This is usually a more expensive process than hypoth-
esization because it involves complete parsing of the
partially recognized sentences. The verifier may work
both on hypotheses that the syntactic hypothesizer
has generated, as well as those generated by other
hypothesizers.

Semantic Recognizer

The rmla of the semantic recognizer i= to predict
conicepts based on the semantics of the task and se-
mantics of the preceding uttersnce. A predicted
concept (a legal move for voice-chess) s used in con-
junction with the present context to predict a word
that might appear in the utterance. The semantics of
the task and the preceding utterances are captured
for chess by the current board position. The board
position for the utterance in discussion, “king bishop
pawn moves to bishep four,” is shown in Fig. 7.

uearsay has, as a subpart, a chess program (Gil-
logly [9]) that generates an ordered list of maves that
are possible in that sitnation. A partial list of legal
moves with numbers representing the likelihood of
occurrence iz given in Fig. 8.
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Fig. 7. Board position for utterance in discussion,

EBF/KBINKF /KG 184
P/R2-04 S8
OM/OH] -0B3 43
KB xBL -084 48
KMAKN]L-K2 47
Prz-nz 46
KB/KBL-K2 45
ar/n1-K2 4k
0BP ¢ IB2-084 43
CBFP/DB2-083 42
K/K1-KBZ 4]
TrK1-E2 48
£AP/KRZ-KR4 s
FNP /K2 -KHG 8
OMP /O -0 37
DRP/ORZ-0R4 36
KM/KN] -KAZ 35
KWP/KN2-£H3 34
[P /N2 -0N3 3
KRAP/KRZ-2£A2 32
DAP/ORZ-IAT 31
DA/DNL -0R3 3B
KB/KB1 -DWECH 2t
KBP/KB3-XB4 24
KB/¥H1 -065E 12
KB/KE1-03 B

Fig. B. Ordered list of legal moves supplied by the chess-play-
ing program for the board position of Fig. 7.

The semantic hypothesizer uses the ordered list of
moves for hypothesis generation. In our example the
hypothesizer would concentrate only on the ‘“non-
capture” moves that start with the word “king.” If
there are none, then there is an inconsistency in the
currently accepted partially recognized utterance.
This may be due to an illegal statement or incorrect
recognition. In the latier case, the partially recog-

biahap B2
knight B2
biekap's %4
rorok &l
an 4l
hhight's 38

da hypotkesized by samantic hy

Fig. 9. Worda hypothesized by semantic hypothesizer,

nized utterance is modified by replacing the weakest
link by the second best choice for that position.

Fig. 9 gives the words hypothesized by the semantic
hypothesizer in the context of “king ---." Associated
with each hypothesis is a rating {(ranging from 1 fo
100) indicating the semantic likelihood of the hy-
pothesis. This lkelihood is derived from the likeli-
hoods of the projected legal moves from which the
hypotheses are taken, and from intrasentence seman-
tic clues. The semantic hypothesizer uses word- and
phrase-level semantic consistency checks to restrict
hypothesization. The structure angd the mechanism
used by the semantic hypothesizer are described in
Neely [23].

Control of the Processes

Since the different recognizers are independent, the
recognition overlord needs to synchronize the hy-
pothesis generation and verification phases of varicus
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processes. Synchronization ensures that hypotheses
generated by one process will be verified by all the
other processes in the subsequent time slice. Several
strategies are available for deciding which subset of
the processes generates the hypotheses and which
verify. At present this is done by polling the pro-
cesses to decide which process is most confident
about generating the correct hypothesis. In voice-
chess, where the semantic source of knowledge is
dominant, that module usually generates the hypoth-
eses. These are then verified by the syniactic and
acoustic recognizers. However, when robust acoustic
cues are present in the incoming utterance, the roles
are reversed with the acoustic recognizer generating
the hypotheses. .

The verification process continues until a hypothe-
sis is found that is acceptable to all the verifiers with
a high enough level of confidence. All the unverified
hypotheses are stored on a stack for the purpose of
backtracking at a later stage. Given an acceptable hy-
pothesis, rover updates the currently accepted par-
tially recognized utterance and updates the partial
symbolic utterance description with additional fea-
tures that were discovered during the process of hy-
pothesis generation and verification. If the utterance
still has unrecognized portions of speech and if the
interpretation of the utterance is still unclear, then all
the active processes are reactivated to generate hy-
potheses in the new context. If there are no unrecog-
nized portions of speech in the utterance and the
sentence is uninterpretable, the knowledge acquisition
part of the system (unimplemented in the present
system and not shown in Fig. 2) is activated to up-
date the lexicon and the acoustic, syntactic, and/or
semantic rules.

Preliminary Resuits

The system described in the preceeding sections has
been operational since June 1972. We view HEAR-
say as a continually evolving system that is expected
to serve as a research tool for explorations in speech-
recognition research at Carnegie-Mellon University.
Fig. 10 gives some preliminary results of recognition
by the system. More comprehensive resulis contain-
ing time, accuracy, and error analyses will be given in
Erman [6] and Neely [23].

Discussion

Mecdels of Speech Perception

This paper presents a model of speech perception
that has been arrived at not so much by conducting
experiments on how humans perceive speech but in
the process of constructing several speech-recognition
systems using computers. The emphasis has been on
developing efficient recognition aigorithms, with little
attention to modeling of known human perceptual
behavior. The general framework (for a model) that
evolved is different from some previously proposed

1 Actually spoken
: Recognized by HEARSAY

]

« PALN TD KING FOUR
« PAUN TO QUEEN FOUR

+ KNIGHT ¥Q KING'S BISHDP THREE
¢ PAUN  TO OUEEN'S BLSHOP THREE

: BISHOP TO KNIGHT FI1YE
¢ PAUN TO QUEEN THREE

: KNIGHT TO QUEEN BISHDP THREE
t KNIGHT TO GUEEN BISHOP THAEE
S. PALN TG GUEEN FOUR
: PAWN TO QUEEN FOUR

£
o I!{! DWW ow D owm

B. S: KNIGHT TAKES PAUN

+ KNIGHT TAKES PAWN

Fig. 10. Some preliminary results from one run. (Approxi-
mately 4-7 times real-time processing on a PDP-10 computer,}

models by Liberman et al., [17] and Halle and
Stevens [10], which imply that perception takes
place through the active mediation of motor centers
associated with speech production. Our results tend
to support “sensory” theories advanced by Fant [7],
and others, in which speech decoding proceeds with-
out the active mediation of speech motor centers.

If one eliminates the synthesis part of analysis-by-
synthesis, then our model is most similar to that of
Halle and Stevens [10]. The important distinction to
remember is that once a hypothesis is generated, say
of the words “sit,” “slit,” and “‘split,” one should
never want to verify the hypotheses by generating
formant trajectories for the word or phrase. That
phonemes /s/, /I/, [t/ occur in the hypothesized words
is no longer relevant. All that is needed is a verifica-
tion of the presence of stopgap and the /}/-like for-
mant transition preceding the vowel. Another limita-
tion of synthesis and match is that the noise might
swamp the finer distinction required, i.e., the variabil-
ity in speaker performance of /s/, /1/, /1] might over-
shadow the positive contributions of a /p/ or an /l/.

Information-Processing Models

The model proposed in this paper raises several is-
sues that may be of interest to speech scientists and
cognitive psychologists interested in human speech
perception. We would like to propose that, in addi-
tion to stimulus-response studies and neuro-physio-
logical models, speech scientists should also make
extensive use of information-processing models in the
study of speech perception. The notion of an infor-
mation-processing model reflects a current trend in
cognitive psychology to view man as an information
processor, i.e., that his behavior can be seen as the
result of a system consisting of memories containing
discrete symhbols and symbolic expressions and pro-
cesses that manipulate these symbols (Newell [261).
The main advantage of this approach to speech per-
ception studies is that it permits a researcher to lock
at the tota! problem of speech perception at a higher
functional and conceptual level than is possible with
the other two approaches. (To attempt to study the
total problem of speech perception by formulating a
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ncurophysiological modcel would be like atlempting
to understand the workings of a TV set by looking at
the flow of electrons through a transistor,)

One question that arises in this context is the na-
turc of scrial and parallel proccssing mechanisms used
by humans. It is known that, at a higher problem-
solving level, a human being behaves essentially as a
scrial information processor (Newell and  Simon
[27]). It 1s also known that parallel processing occurs
at the preprocessing levels of vision and speech. What
is not known is whether there are several independent
processes or a single sophisticated process at the per-
ceptual level that can use effectivelv all the available
sources of knowledge.

The sccond question 1s how various sources of
knowledge cooperate with each other. There are
experiments (Miller and Isard [20]. Collins and Quil-
lian [3]) that can be interpreted to show thal percep-
tion is faster or more intelligible depending on the
number of available sources of knowledge, Any
moadel of speech percepltion must deal with the naturc
and structure of the interaction between various
sources of knowledge. Earlier models tend to ignore
this question.

Summary and Conclusions

A casual reader of this paper would probably only
notice the superficial aspects of the system: that it
accepls voice commands 1o play chess, uscs crude pa-
rameters. and is not very smart at using the acoustic-
phonctic and other sources of knowledge. Thal is
beside the point. The main contribution of this re-
scarch 1s 1o provide a model and a [ramcwork in
which the role of phonology. syntax. semantics, and
other sources of knowledge can be systematically
studied and evaluated. It is no longer necessary for
us 1o be conlenl with vacuous slatements aboul the
importance of syntax or semantics.

We chose voice-chess as a task not because it is im-
portant to play chess with a computer over tele-
phone. but because chess provides a good area to eval-
unate our ideas about the role of various sources of
knowledge in speech perception. Chess plays the role
in our svstem that the fruit fly plays in genetics. Just
as the genetics of drosophila are studied not to
breed better flics. but to learn the laws of heredity,
so we choose chess as a task because the syntax. se-
mantics. and vocabulary of discourse are well defined
and are amenable to systematic study.

Similarly. the acouslic parameters and phonologi-
cal, syntactic., and semantic rules currently used by
the HEARSAY syslem arc not particularly important or
interesting. What is important to note is that while
cach module is "stupid." the system siill works and
does do a creditable job in spite of its weaknesses.
The interesting lcaturcs arc the interaction and coop-
eration among various modules and the correction of
crrors by various sourcces of knowledge.

The system described in this paper was demon-
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strated in Junc 1972, at a workshop on speech recog-
nition. It represents the first system to demonstrate
live, connected speech recognition using nonfrivial
syntax and scmantics. We expect 10 actively modily
the system to greatly increase its performance, as well
as use it as an experimental tool for studyving speech
understanding, recognition, and perception.
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THE HEARSAY SPEECH UNCERSTANGING SYSTEM:
An Example of the Recognition Process

DR Reddy, L.D. Erman, RD. Fennell, and R.B. Neslyw

Computer Science Departmantan
Carnegie~Metlon Universily
Pittsburgh, Pa 15213

ABSTRACT

This paper describes the

struclure and operation of the Hearsay speach

understanding syslem by the use of a spacific axample ilfustrating lhe various stages
of recognilion. The system consists ol a set of cooperating indepandenl processes,
vach representing a source of knowledge. The knowladge is used silher to pradict
whal may appear in a given context or to wverify hypotheses resulting from a
prediction. The siructure of ihe system is illustrated by considering its operation in a
pariicular tesk situation: Veice-Chess. The representation and use of various sources
of knowledge ere outlined. Preliminary results of the reduction in search resulling
from the use-of verious sources of knowledge are given.

Keywords: spssch recognifion, undsrstanding, hypothesize=snd-tesl.

IHTEQDUCTION

The factors influencing the strocture and operation of a
speech understanding system are many and complex. The raport
of Newell et al. (1971) discusses these issues in detail. Qur cwn
goals and efforis in this arsa have hesn described in several
aarlier papers {Reddy et al, 1972, The gosis for our praseni
affort were outlined in Reddy, Erman, and Meely (1970L The
initial structural description of the Hearsay system was given in
Reddy {i971) The modei and ths system that evoived aftar
saveral design ilerations were described in Reddy, Erman, ang
Neely (1972214 The main addiions to the initial proposed
system were in \he specificalion of -the interaclicns among
various sourcaes gf knowledge. In this paper, we describa the
structure and operation of the Hearsay system trom a different
point of view, i.e, by considering a specific sxample to illustrate
the various stages of the recegnition process.

Maching perceplion of speech differs from meny olher
problems in artificial inlslligence in that it is characterized by
high data rates, large amounts of dala, and the availability of
many sources ol knowledgs. Thus, the techniques that must be

+ The general framework thal evolved for the model is ditferent
from some previously proposed modals by Liberman et al
(1962} and Halle and Stevens (1962} which imply that
perception takes place through the active mediation of motor
centers, Our etlorts tend to support “sensory” theories
advarced oy Fant {1968} and olhers. If one modifies the
"synthesis” parl af analysis-by-synthesis, then our model is
most sirmilar 1o that of Halle and Stevens.

employed differ from other problem-soiving syslems in which
weaker and weaker methods are used to solve a problem using
less and less information about the actual fask, In addition, there
is a marked difference in the ewpectations for system
performance. In lasks such as thess and thecrem-proving, the
human has sufficient trouble himself so as t¢ make reasonably
trude programs of intersst. But humans perform effortlessly
{and with only modest error) in speech or wisuai perceplion
tashs, and they dsemand comparable performance from a machine.
Thus, it is imporiant thal the structure and orgamization of a
system be such thal it is nol a dead-end effort, e, il should be
capable of approaching humen perfarmance wilhout major
reformulation of the problem solution. The Hearsay system efforl
represents an attempt to produce one such system. The main
distinguishing characteristic of this sysiem is that diverse sources
ol hnowledge can be rapresented as cooperaling independant
parallel processes which help in tha decoding of the ullerances
using the hypathesize-and-test paradigm.

The system is designed for the recognition of connected
speech, from several speakers, with gracelul error recovery,
parfarming the recognition in close to real-time. The structure
and implementation of the syslem are to a iarge extent dictaled
by these concerns. One feature thal characlerizes a speech
understending sysiem is lhe exislence of errors al every level of
analysis. The errorlul nalure ot processing implies that Bvery
saurce of knowledge has to be invoked to resolve ambiguities
and arrors at evary slage of the pracessing. One way to
accomplish this is through the use of lhe hypothesize-and-lest
paradigm, where each source of knowledge can accept, reject, or
re-order the hypotheses produced by olther sources of
knowledge, For ewample, in the Voice-Chess task, if the word
“captures™ appears in a partiatly-recognized ullerance, the

# Present address: Xerox Palo Alke Research Center, Palo Alle, Ca. 54305,

as This research was supported in part by the Advanced Research Projects Agancy of
the Dapartment of Defense under confract mo. FA4620-70-C-0107 and monitored by

the Air Force Office of Sciantific Research,




semantic source of knowledge can reject all the hypotheses that
do not lead to a capture move.

The Hearsay
recognition task

system is not restricted to any particular
Given the syntax and the vocabulary of a
language and the semantics of the task, it attempts recognition of
utterances in that language. It is designed to serve as a
research tocl in which the contributions of warious sources of
knowledge towards recognition can be clearly evaluated. Since
each source of knowledge is represented as an independent
pracess, it can be removed without crippling the system

Figure 1 gives an overview of the Hearsay system The EAR
module accepts speech input, extracts parameters, and performs
sgme preliminary segmentation, feature extraction and labeling,
generating a "“partial symbolic utterance description.” ROVER
(Recognition OVERIlord) contrels the recognition process and
coordinates the hypothesis generation and wverification (testing)
phases of the various cooperating knowledge processes The
TASK provides the interface between the task being performed
and the speech recognition and generation {SFEAK-EASY) parts
of the system. SOL, the System Overlord, provides the message
communication facilities for the system
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Figure 1. Structure of the Hearsay system.

AN EXAMPLE OF RECOGNITION

Here we will illustrate the operation of the Hearsay system
by considering in detail the recognition process of an utterance
within a specific task envircnment: VYoice-Chess. The task is to
recognize a spoken chess move in a given board position and
respond with the counter-move.

Figure 2 gives the board position and a list of legal moves in
that position at the time the move is spoken. The speaker,
playing white, wishes to maove his bishcp cn gueen's-bishop one
to king knight five. This is one of 48 different legal moves
These moves have been crdered on the basis of their goodness
in the given board position. This judgment was based on a task-
dependent source of Kknowledge available toe the program
(Gillogly, 1672). Note that the move chosen by the speaker was
only the fourth best move in that situation.

Having chosen the move, there are many possible ways of
uttering the move. The syntax of the language permits many
variations, usually of the form <piece> <action> <position>. The
piece can have qualifiers to indicate the location. The action may
be of the form: "te", "moves-to", "goes-to", "takes" 'captures'*
and so on. The positicn can be of the form: "king three", "king
bishap faour", or "gueen's kmght five". and sc on
move spoken in this context was “"bishop moves-te king knight
five" Note that "queen bishecp on queen bishop one" can be
specified as just "bishop" because there is nc ambiguity in this
case

The actual

Figure 3 shows the speech waveform of the utterance with
manual segmentation, showing the beginning and ending of each
word and each phoneme within the word. {The manual

Si mém * .

“NAVKNZKNI
GROB1HCY ONPCNZING
QEOR1KE4 ORPIOR? OR3
QEQR1KNS KN
KBIQNS QB4 CNAING
KRKR1 KB1 ONCBICE
Q1 KPKILKS
KEONSXCNAEE RIRFKZ
KEPKB2HE4 ONGBIKZ
THM1 HNPEMZITNG
KEP/KBI-KEL ONPONZING
1-02 CNOSIQR4
ORAR1-DN1 NGB0
KH1-HE1 OB/ORI-02
KE/ONS-H2
KNO4-KBS QIMKB3
KBDNSOR4 QOUT2
KNG XQNQRE CBOB 1MRG
{z1) K/Kl-02
KRP/KR24R4 HKNDHKE
QRPANZDRY
KBONS KB KN4
DMTKRS

n -mm ma

Figure 2. The chess board position and the ordered list
of legal moves for White.

segmentation and labeling indicated in this and succeeding figures
is for our benefit only — it is not available to the system while it
i1s attempting recognition.) The utterance was about 2 seconds in
duration and the waveform is displayed on ten consecutive rows,
each row containing 200 milliseconds of the utterance. The first
line of text under each row contains the word being articulated
The word label is repeated for the duration of the word. Thus,
"bishop" was articulated for 400 millisecends and
occupies the first two rows of the waveform. The second line of
text under each row containg the intended phoneme being
articulated The phaoneme (represented in IPA notation} s
repeated for the duratien of the phoneme

the ward

Several interesting problems of speech recognition arise in
the context of recognition of this utterance. The end of Row 2 of
Figure 3 shows the juncture between "bishop" and "moves".
MNote that the ending /p/ in "bishep" and the beginning nasal /m/
in "moves" are homorganic, ie. they both have the
articulatory position. This results in the absence of the release
and the aspiration that normally characterizes the sound /p/.
Row 6 of Figure 3 illustrates a word boundary problem. The
ending nasal of "king" and the beginning nasal of "knight" tend to
be articulated from the same tongue position even though in
isclaticn they wcould have been articulated from two different
positions This results in a single segment representing two
different phonemes in two adjacent words. Further, it s
impossible tc specify the exact location of the word boundary. In
the manual segmentation, the boundary was placed at an
arbitrary position. Another type of juncture proklem appears on
Row 8 of Figure 3 at the boundary of "knight five"
and aspiration of the phcocneme /t/ are assimilated inte the /f/ of
"five",

same

The release

Feature Extraction and Segmentation

The speech input frem the micrephone is passed through five
band-pass filters (spanning the range 200-6400 Hz) and through
an unfiltered band. Within each band the maximum intensity is
measured for every 10 millisecends {the zero cressings are alsc
measured in each of the bands but they do not play an impertant
role in the recognition process at present). This results in a
vector of 6 amplitude parameters every 10 milliseconds. These
parameters are smoothed and log-transformed. Figure 4 shows a
plet of these parameters as a function of time for part of the
utterance of Figure 3. The top line shows the utterance spoken
The second line of text indicates where the word boundaries
were marked during the manual segmentation process (this will
permit verification of the accuracy of the
recognition process in the later stages).

manual machine

This wvector of parameters (labeled 1, 2, 3 4, 5, and U in
Figure 4} is, fer each centisecond, compared with a standard set
of parameter vectors to obtain a minimum distance classification
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R 3




i HOVES - 1O et e zrme

1 o P N ’ N -
2 N o an,V § [~ " .
N e M L
4 -_H.aw__f\.../\_...‘ e
s 2 W N _—
ol .y L L T Y M
e e e Pl B T e TR T

Figure 4. Paramsiric representation of the utterance showing the
results of festure axtraction and segmentation

using 8 modified nearest-neighbor classification technique. The
ournose of ‘his Operation is to assign a (zingle character) labal to
each cenlisecond of speech using a compact pssudo-phonaetic
natalion rapresanting the aclual local charactarisics ot tha
sp2egr Signal. (he line of text labsled P in Figure 4 gives the
¢ zas'ficatian for every 10-millisacond unit.

The ciassification af igbeis for each centisecond obtained by
this maich procecuse {row P ir figure 4} is then used to specify
a iisT of features, such as voiring and frication, which are than
used in the segmentation of the utlerance, shown ir Figure 4.
The boundaries of segmentz are indicated by wveriical linas
through the parameters, and the ielter at the center of escn
segment {foliowing the raw P in Figure 4) indicates the {ype of
sagmant that is present. The "A" indicales a sonorant segment,
e, all the wvoited unfricated segments; the "5" Indicales a
fricated segment, and the period {“.") indicates & silence segmeri.
The firs! use of an acoustic-phonelic source of knowledge can be
seen in the handling of the "king knigint” word boundary broblem
mentioned earlier. A long sonorant segment is subdivided into
two segments to indicate the presénce of two differant syi.ables,
The syllabie iuncture is determined in this case by the presence
of & sgrificant iocal minimum 0 an overai intensily plet (ne
labeied U on Figure 4).

Iha Recognition Procecs

The Hearssy system, at present, has three coocperating
independant processes which help in the decoding of tha
utterances. These represent acoustic, syntaclic, and semantic
sources of knowledge:

1. The agoustic-phongiic domain, which we refer to as
just acoustics, deals with the sounds of the language
gnel how thay re.ale {5 the speech signal produced
by ina speaxer. Tniz comain of knowledge has
traditionally been the only ohe used in most previous
attempts &t speech recognition.

The syntax domain deais with the orderirg of werds
in the utterance according lo the grammar ot the
input language.

The semantic domaln considers the meaning of the
utterances of the fanguage, in the context af the task

The actual number and nature of lhese sources of knowledge is
somewhat arbitrary. Wnat is important to notice is tha! there can
be severei cooparating independent processes,

Thase processas cooperate by means of a hypothesize-and-
test paradigm, This paradigm consists of ons or more sources of
knowledge looking at the unrecogrizes portion of the utterance
and generating an ordered jisi of hypatheses. These hypothases
may then be verified by ane or more of ihe sources of
knowledge; tha verification may accept, reject, or re-order tl'_na
hypotheses, The same source of knowledge may be used in

different ways both to generate hypothesez and to verify (or
rejact) hyootheses.

We wil Hlusirgte (his recognition process by following
hrough various siagas of racognilian for the utterance glven in
Figures 3 and 4. Figuras B ‘nrocgh 12 iYustrate several of thase
stages af the recognition, In aach figure, we have four kinds of
infarmation in aodition ‘o wha: was shown in Flgure 4 the
tusrant sentance nypoihesis (mmediately below the P and
segmertation rows), the processes acting on the current sentence
Fypcinesis and iheir affact {p.g., SYN HYPOTHESIZED., ACO
REJECTED.), the acceptanie opiion words with thelr ratings and
word boundaries (e.g, T..T S00 Rooks), and the four bast
sentence hypotheses which result by adding the poasible option
words to the current best senfence hypothesis. When there are
mare than eight opltion words, only the best eight are shown,
Whan there are mare than four sentencs hypotheses, only the
best four are shawn, The symbol <UV> within the current
sentence hypolhesis gives the (ocation of the set of new words
being hypotthes:zed and verified. The 11" arraws indicate the
possible beginning and ending for sach eption word.

Figure 8 shows (he firgt oygie of the recognition process, At
this point none of the words inm the sentence have been
racognized arnd the crocessing begins left to right. The Syntax
module chooses to hypathesize and generates 13 possible words,
implying thal fhe sentence capn begin with “rook’s", “rook”,
"queen's”, alz. (Of these, the Acaustics module absolutely rejects
the word “bishops™ as being severely inconsistent with the
scouslic-phonetic evidence. The Semantics module rejects
"castle™ and “castles” as being illepal in this board position, The
remaining 10 wards are raled by each of the sources of
kpowledge, The composite rating and the word beginning and
ending markers for the eigh! besl words are shown in Figure 5,
The werds "rock™, "rook’s”, “gueens" and “queen” all get a raling
of BOO. "Sichop”, ire carraci warg, gets a rating of %13, These
words ara then Jg=g to form the heginning sentence hypotheses,
tha top four of which are shown at tha bottom of Figure B,

Figure & shaows the secanc cyzle of tha recognilion process,
Tha lop sectence hypoithesis i "oishop ——-". An attempt is being
made 1¢ recognize the word fallowing "bishop™. Again Syntax
generates the hypotheses. Given thal “bishop™ is the preceding
worg, the syntactic source of knowiedge proposes only 7 oplions
aut of the -possible 31 words in the lexicon =- a reduclion in
search space by a factor of 4. OF these possible 7 words,
Acaustics rejacts "ceptures" src Gementics rajects none. The
remaining six words are ratad by each of the sources of
knowledge and a composite rating along with word boundaries is
shown in Figure 6 for each of the acceplable words ("to® has a
rating of 443, elc). The correc! word, "moves-{0”, happens lo
get the highest rating of 525. The new top sentence hypothesis
is "bishop moves-to ---", with a composite sentence rating of
547,

Figura 7 shows the third cycle of the racognition process.
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Given the top sentence hypolhesis "hishop moves-to ---", the
Synlax modile hypothesizes 7 oplion words. Mone of these were
rejecled by Acouslics or Semantics, "King™ and "king’s™ bolth get
the highest score of 513, The first error in the recognition
process occurs al this point. As new senlence hypotheses ars
created based on the ratings of individua! words, both "bishop
moves-to king's ---" and "bishap moves-to king ---" have the
same rating, with lhe former appearing at the top of the list. At
this point i is instructive to see why the arror was made In the
first place. The phonemic description of "king's” causes a ssarch
far a stop followed by a vowel-tike sagment followed by a stop
and fricative. This sequence of segments occurs in “king knight
five™ as can be seen from Figure 4 (improvements currently
being made to lhe syslem will result in “hings™ getting a much
lower score). The impertant thing to observe is how the system
recovers from errars of this type.

Figure 8 shows the system attempting to associsie &
meaningful word to the vnverilied part of the ullersnce, ie, the
falef part of the word “live™ in the originel utterance. Syntax
proposas 3 passible option words {out of a possible 31, giving a
factor of 10 reduclion). One is rejected and the other two get
very low ratings. The corresponding sentence hypotheses -also

get low composite ratings and end up al the bottom of the steck

{nol visible in Figure 8}

Now we see sn interesting feature of the systam. In the
preceding cycle (Figure 8) Syntax generated the hypotheses. It
is possible that that source of knowledge is incomplete and did
not generale the correct word as a possible hypothesis,

‘Theretore, in this cycle {Figure 9), the Semanlic module is given a-

chance to hypolhesize. It hypothesizes 9 option words {a
reduction of search by a factor of 3} all of which are rejscted by
Syntax and Acoustics. When both atterapts to make a mesningful
completion of the utterance fail, this particular sentance
hypothesis, "bishop moves to king’s--", is removed from the
candidate listk,

Mow the top senterce hypothesis is “bishop moves-lo King-—"
(Figure 10). Syntax hypothesizes 11 oplion words. Acoustics
rejects six of them and Semantics rejects two. Of the remaining
words, the correct ward, "knighl”, gets the second best raling
afler "bishop”. Again there is am ercorful path, because the top
sentence hypolhesis now happens to be "bishop moves-to king
bishop ---". This senlence hypothesis is rejacted immediately in
the next cycle because lhere is no mare ultterance to be
recognized aml “bishop moves-to king bishop™ is nat s legal
move. MNote that the correct sentence hypothesis is not at the
top of the stack. Iis rating of 550 is nol as good as “bishep
tmoves-ta king ---" {see Figure 10).

The processing in the next cycle is flustrated in Figure 11,

Mete that in Figure 10, lhis sams sentence hypothesis wes used

when the Syntax module hypothesized. WNow Samaniics is given
an opfion to hypothesize and proposes 3 words. All of these are
rejected by Syntax and Acousties.

Finally, the correct partizl senterce hypothesis, “hishop
moves-ta king knighi ---", gels to the top (Figure 12} Syniax
hypothesizes 17 oplian woerds. Of these Semantics rejacts 16 as
beirg incorract, leaving only "live™ as a possibility. This results
in Ihe correcl complete sentance hypathesis of "bishap moves-Io
king knight five™ Bul the campasite raling for this sentence is
only 545 and thers are olher parlial sentence hypotheses with
higher ratings. At this paint, the system cycles alghl more times
before rejecling all of them and accepting the correct sentence
hypolhesis.

Figure 13 shows the accuracy of the system in reCCgMzIing
some typical sentences. An allempl was made lo estimate the
efiect of syntax and semantics. Uking Syntax only, the average
nurmber of words analyzed was reduced to 9.4 out of tha possible

R 6

31 words n the lexicon -~ a reduclion in search space by a
facter of 3. Lsing Semantics only, the reduction of search space
was about the same, Using both knowledge sources results in a
reduction in the search space by a factor of 5.

E:EEEEHIZEB (H nol compelelsly cerrectd
pasin Lo guesn 1our
patn |8 guean bizhop lowr
paen Lo kimg lowr
7 knighl (o guemn bishep threr
bkxhop TAKRE paun

guesty TAknE guesn on gueen four
{gave ki aiter 4B secomnds of computad lenl

bishop lo quesn Enlghl thres

bizshop to ¥irg thras
bighop 1o King TNive

céslles quesn =ida
cosline guean's &ide (undersiood cerractiy)

pivn 10 bishop thras

pasn takas Knight

krnighl 10 guesn five

kright 1ses knighl

kishop to king rock =ix

rock to quesn thras

knight 10 rook thres

rook on rook one 10 Quasn ona

rock on gussn one Iskes rook on queen Lhess
rook on quesn one o king rook one check

knighi’s pssm takes bishop

19 ulterances 1rbed:
15 racognited correctiy, I6 undersiced cerrsctly.

1 concuded.
Hean computation {ime per uillsrancer 1035 sec. (POPLD - KLLD)

Figure 13: Examples of results for one run,

SOURCES OF KHOWLEDGE: .
Thair Repressntalion and Use in the Hearsay System

Several sources of knowledge are used in the Hesarsay
system at present: spesker- and environment-dependent
knowledge, acouslic-phonetic rules, vocabulary restrictions, and
syntactic and semantic knowladge. The krnowledge used at
present represents only a smell peri of all 1he available
knowladge, We ewpect to be adding to the knowledge base of
the system for mamy years to come. Ths difficulties in
representstion and use of knowledge within the syslem are
manifold,. Even when rules exist which express periinent
knowledga, their applicability seems very limited and the effort
invalvad 1o make effeclive use of them within the systam is very
|arge. Rules that suist ars scettered in the lileraturs. Many have
not been written down and exis! only in the heads of some
scientisls, and many ars yet to be discoverad. In this section, we
will rastrict oursalves 1o the discussion of the knowledge thal is
incerporated inlp the present Hearsay syslem.

Spaakar acd Environment Dependent Knpwiadge

The characteristics of speech wvary, depending on the
speaker, age, sex, and physical condilion. In  sddition, the
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characteristics of the environmeni {such 25 Gackground noise)
and the characteristics of the transducer (such as the frequency
response characteristics of the microphone) also cause variability
in speech characteristics.

In the Hearsay system an attempt is made to correct for
these variables through the use of a PP table. This table
contains a standard set of parameters for various phones uttered
by the speaker in a neutral phonetic context. This set of
parameters also accounts for the characteristics of the room
noise and the characteristics of the microphone in that the
neutral phones were uttered in the very same environment. A
complete list of the clusters used and the details of the speaker
and environment normalization are given in Erman {1973).

Acoustic-Phonatic Knowladge

This knowledge is used in several placas within the system to
perform different functions. Knowledge related to syllabic
structure is used in the segmentation. For each segment,
knowledge related to voicing, frication, and sy'lable junction (a
local minimum of energy} is used to assign labels to each
segment. An example of segmentation and labeling obtained by
this type of knowledge is given in Figure 4.

The acoustic-phoneiic knowledge is used in the recognition
process in two ways: to generate hypotheses about possible
words that may be present in the incoming utterance; snd to
reject, accept, or re-order the hypothesas generated by other
sources of knowiedge.

The hypothesization is based on the fact that certain sounds
within an utterance, e.g., stressed vowels, sibilants, and unvoiced
stops, can usually be uniguely recognized. These features of the
incoming utterance can then be used as an acoustic-phonetic
filter on the lexicon 1o hypothesize only those words that are
appropriate in this acoustic context.

When the acouslic-phonetic knowledge is used to verify
hypotheses, it performs a more thorough amalysis. Given a
hypothesized word, its phonetic description” is located in the
texicon. This description is used to guide the search for the
word by means of phoneme procedures. That is, the expected
characteristics of a given phoneme in vearious contexis are
represenied as a procedurs; this procedure is activated to ses if
the expected features are present, and to provide a confidence
rating based on the acoustic evidence. There are severai
increasingly more sophisticated verification procedures that can
be used to verify proposed hypotheses. These sophisticated
procedures are only invoked it word ambiguity exisis st the
preceding level.

Syntactic and Semantic Knowlsdga

Conventional parsing techniquas are not very useful to direct
the search within a spasch understanding system. The
recognizer must be capsble of processing errorful strings
containing spurious and repeated words. This implies that the
parser must ba capable of starting in the middie of the utterance
whers a word might be recognized uniqusly and parss both
forwards and backwards. The goa! of parsing is not s much to
ganerate s parse tree, but to predict what terminal eymbol might
appear to the left or to the right of a given context,

The predictive parsing for hypothasization is achiaved in the
Hearsay system by the use of anti-praductions. Anti-productions
act as a concordance for the grammar giving all lhe contexts for
every symbol appearing in the grammar; they are generated from
a BNF dascription of the language to be recognized. The anti-
productions are used to predict words that are likely to occur

following or preceding & word using only a limited context.
Exampies of anti-productions and their use are given by Neely
(1973). The role of the syntactic verifier is to accept or discard
hypotheses by using syntactic consistency checks based on the
partial parse of the utterance. While the knowledge used for
hypothesization and verification are the same, the representstion
and the mechanisms used in the hypothesization and verification
are different. Figures 5 and 6 give examples of constraints
provided by the syntactic knowledge during hypothesization.
Figure 9 illustrates its use in verification.

The semantic source of knowledge for Voice-Chess is based
on the semantics of the task, the current board position, and the
likelihood of ihe move. This knowledge is used to predict likely
legal moves; .hese moves are then used in conjunction with the
partially-recognized utterance to predict a word thet might
appear in the utterance. The same knowledge is also used to
verify hypotheses generated by other sources of knowledge.
Figure 9 illusirates the use of semantic knowledge to generats
hypotheses. In the context of “bishop moves-to king", Semantics
hypothesizes nine possible words. It hypothesizes all the words
that might appear in the utterance in positions sllowed by the
semantic knowledge, given the parlial recognition. Figure 12
shows the use of Semantics in the verificalion Syntax
hypothesizes 17 possible words. The semantic knowledga, given
the partially recognized utterance “bishop moves to king knight”,
indicates that only “five” is legal in that context by rejacting atl
others. ’

SLMMARY

This paper reports 5.1 ressarch in progress on the Heersay
speech understanding system. The system has been operations!
since Kine, 1972, At present we are altempling to improve the
accuracy and performance of the system by wsdding to and
improving the knowledge base. This is being done by an analysis
of errors made by the sysiem on seven sets of data from five
male speakers in four different task domains. This process of
maodification and improvement iz expected o continue for several

- years, using incressingly complax vocabularies, syntax, and tesk

snvironments. The Hearsay sysiem will be used primarily as a
research tool to evaluate the contributions of various sources of
knowledge, as wall as serving as an information processing model
of speach perceplion. :
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ABRSTRACT

This paper considers wvarious faciors affecting system organization for speech
understanding ressarch. The structure of the Hearsay system based on a sset of

coopearating, independent processes using the hypolhesize-and-tast

paradigm is

prasented. Design considerations for the sltective use of multiprocessor and network
architectures in speech understanding systems are presented: cenirol of processes,
interprocess communication and dala sharing, resource alloceticn, and debugging are

discussed.

Keywords: spesch recognition, spesch underslanding, sysiem organizalion, networks,
multiprocessors, parallel processing, resl-time syvtems, hardwars for Al, software for AL

INTRODUCTION

System organizations for speech understanding systems must
address many problems: effective use ol multiple sources of
knowledge, anticipation and goal-direction in the analysis of the
incoming uiterance, real-time response, continsous manitering of
input devicels), srrorful nature of tha recognition process,
exporential increase of procassing requirements wilh  the
increase of desired accuracy, and s0 on. A particular model of
speech perception (Reddy et al, 1973} which attempts to solve
the above problems involves the use ol cooperating independent
processes using a hypothesize-and-iest paradigm. This paper
examines tha sifect of the problem constraints and the model an
system orgenizations, presents 1he siruciure of a system
curcently operational on a PBP-10 compuler, and discussas the
implicelions of multiprocessor and natwork architectures.

Unlike many other problems in artificial intalligance, speech
understanding systems are tharaclerized by the availability of
diverss sources of knowledge, e.g., acoustic-phaonetic ruhes,
phonological rules, articulatory models of speech production,
vocabulary and synlactic  constraints, semantics of tha lesk
domain, user models, and s0 on A major problem, then, is to
develop paradigms which can maka use of all the available
sources of knowledge in the problem salulion. Al the same iime,
absence of one or mare sources of knawledge should not cripple
the system. Suppose each source o! kndwledge is represented
within the syslem as a process. In order lo remove or add
sources of knowledge, esach process must be independent, ie, it
must not reguire the presence of other processes in the system.
But at lhe same lime each process must cooperste wilh the clher

processes, e, it must be able to effectively use the information
gathered by them aboul the incoming utterarce. Thus, a major
design step is 1o eslablish whal indermation is to be shared
among processes and how this information is o be communicated
s0 as to maintain the independence of individual processes while
shill allowing for necessary process cooperalion.

Knowledge available in the acoustic signal represents only
one part of the total knowledge thal is brought lo bear in
undersianding » conversation. & good example of this is when
one is inlerrupted by an appropriate response Iram the listener
to a question that is as yet incomplete. In gereral, a humasn
listensr can lolerate a great deal of sloppiness and variability in
speech because his knowledge base permils him to eliminaie mast
of the possibililies even as he hesrs the firsl lew words of the
utterance (if nct before!t. We feal that this notion of anlicipation,
pradiction, an¢ hypothesis generation is essentisl for machine
parception systems as well. In genaral, ws sxpect evary source
of knowledge io be able to gsnerale hypotheses in a given
context, or werify hypotheses penerated by others using
different representations of knowledge, if necessary. The
implication is thal knowledge processes be organized within the
system s0 as to reduce the problem of recognition and
understanding to one of prediction end verification.

in tasks such as chess and thecrem-proving, the human has
sufficient trouble himself so as to make ressonably crude
computer programs of interest. But, because humans seem lo
perfarm effartlessly {and with only modest error) in speech {and
visual} perception lashs, similar performance is expecled from
machines, Le, cne expects an immadiate response and will nol
iaterate any errors. To equal human perliormance, a speech
understanding system mus! be able io understand trivial

# This research was supported in part by the Advanced Research Projecls Agency of
the Departmeant of Dafense under contract ma. F44620-70-C~0107 and monilored by

the Air Force Office of Scientitic Ressarch,




queslions as soon as lhey are uttered, This implies lhat various
processes within the system should be allowed to cperale as
soon as there is sulficient incoming data, withoul waiting for the
completion of the whele ulterance. if the processes within Hhe
syslem are independenl and uraware of the exislence ol each
other, lhen the system must provide facilities for aclivation,
termination, and resource alocation {or sach of ihe processes.
Further, il a process can be deactivaied before il reaches a
natural termination paint, provision must be made o preserve the
state of the process until i1 is reactivated. Ao, it is necessary
to provide inlerlocks an the data thal are shared among many
processes,

This has several imphications for system organizalion. The
system mus! monitor 1he inpul device continususky o determine
whether speech is present; this reguires non-trivial processing.
If the syslem is unable to process the incoming data, automatic
buffering must be provided. [f the system is to run on 2 lime-
sharing syslem, prowision must be made Yo ensurs that no data is
lost hecause the program is swapped out for a period of time, If
the speech understanding system is to consist of a set of
cooperaling independent processes, it is furlher necessary that
they be able to be interrupted &t unpreprogrammed points -- if
the microphene monitoring program is nat activated in time to
process the sncoming utterance, it could lead to irrevocabie loss
of data. These consideralions iead to two adcitional requirements
that are not commaniy available ar existing time-sharing sysiems,
wiz,, process-generated interrupts ot other processes and user
sarvicing of interrupts.

One of the characteristics of speech understanding systems is
the presence of error al every level of analysis, To conirol such
errors and permit recycling with improved definitions of the
srtfuatian, one uses techargues siwch as feedlarward, feedback, and
probabaiistic backlracsing. [f such facikbes do not exist within
the syslem, Ilhey have o be programmed exoricitly.

Speech, by 1s nature, appears to be camputer infensive. A
substantially  unrestricted sysfem cepable of  reliably
understanding connected speech of many speakers using a levge
vacabulary is likeiy !0 require systems ¢f the order of a
proposed Al maching {Bell, Freeran, et al., 19714}, i.e, processing
power of 10O tz 100 milier instructians per secoma and memory
of 100 to 1000 million bits.x To obian such processing power, i
appears necessary to conmsider multiprocessor architectures.
Decomposition of speech processing systems to effeclively use
distributed processing power requires careful cansidecalion even
with primitive syslems. Our model of cooperating independent
processes, eath representing a source of knowledge, leads 1o a
natural decomposition of the algerithms for such machine
architectures.

THE CURRENT Hearsay SYSTEM

In this section we briefly describe the Hearsay speech
understanding system as it now exists al C-MUL {Mare detailed
descriplions of the system are given ir Reddy et al, 1973,1973a
{this valumek Erman, 1973; and Neely, 1973) Wa shall siress
those aspects of i's orgamizalion wmch are responsive to the
constraints and model outimed abave. This system represents a
first  attempt to salve those problews; thus, some of the
constraints are onty partially or poorly met, whilte others are
satisfied in a more canstricted way 'han recessary. We shall
paint out these limitations as they are described; later sections
on tiosely-coup'ed ard  lcosely-coupied processar neltwork
architeciures sescribe possible corrections and improvements of
the system.

* Smalier ano substanliaily cheaper systems can be built to
perform useful But restricled speech understanding tasks.

E 2

The Hearsay syslem is implemented as a3 small number of
parallel coroulines (ses Jligurel Each cwoutine [module) is
realized as a separabe job in the FDP-10 lime-sharing system;
thus the time-sharing monitor is the primary scheduler for the
modubes. In generd, the modules may 'achieve a high degres of
{pseudo-]} paraflel activity {through the use of sharad memory
and a flexible inter-process message systems), but, in practice,
we limit the paralkelism to a very modesl amount. This [imitation
is imposed for two reasons: first, since the PDP-10 is g
uniprocessor system, there is rothing 1o be gained (in the lime
domain} by incressing the paraflelism; and, second, the greater
1he amount of parallelism, the mors difficult it is to control and
debug the programs within a lime-sharing system that is nol
designed for cooperating processes (jobs),
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Decomposition of processes in the current Hearsay system.

The model of recognilion specifies that there be separale
precesses, each representing a differenl domain of knowledge.
We have chosen three major domains of knowledge: acoustic-
phonetics, synlax, and semanlics:

1. The acouslic-phonetic domain, which we refer o
os just acouslics, deals with the sounds of the
|anguage and how they relsle to the speach signal
produced by lhe speaker. This domain of
knowledge has iraditionally been the conly one
used in most previous atlempls al speech
recognifion.

2. The synitsx comain deals wilh the ordering of
words in the utterance according to the grammar
ol the inpul language.

3. The samanlic domain considers the meaning of the
utterences of the language, in 1he context of 1he

task lhat is specilied {Jor the speach
understanding sysiem.
These processes, according to lhe model, ere to be

independent and removabie; Iherelore the funclioning {and very
pxistence} of each must nol be necessary o crucial to the others.
Ovv the other hand, the model also reguires that the processes
cooperale and that the recognilion should run efficiently and wilh

* The facilities provided for inter-job cantrol and communication
are similar to those developed ior the Stanford Hand-Eye
system (Feldman and Sproul, 1971}



good error recovery; these dictates imply that there be a great
deal of interacticn among the processes. Thus we seem to have
opposing These opposing

requirements led to the design of the following structure:

requirements  for the system.

in a uniform way
no process Knows

interfaces externally
across processes;

Each process
that is
what or how many other recognition processes exist

identical

A mediator, ROVER (Recognition OVERIord), handles the
interface tc each of the processes and thus serves as
the linkage connecting the processes; the processes
are called ROVER's "sons."

The interface is implemented as a global data structure which
is maintained by ROVER Each of ROVER's sons puts information

into this data structure in a uniform way. Each may access
information submitted by its brothers, but in a manner which
leaves the source of that informaticn anonymous. This

mechanism is analogous to a bulletin bocard on which messages
can he left by several people and for which there is a monitor
wha accepts the message and arranges them in appropriate

places on the board for others to react.

This anonymous interface structure is appropriate only if the
global data structure can be designed in such a way as to allow
the processes to communicate meaningfully: ie. there must be a
common language which allows them tc transmit the kind of
information they need to help each other toc work on the problem.
We resolve this problem by using the word as the basic unit of
discourse among the processes.

The basic element of the global data structure is the word
hypothesis which represents an assertion that a particular word
(of the input language lexicon) occurs in a specified position in
the spoken input. A sentence hypothesis is an cordered linear
sequence of word hypotheses; it represents an assertion that the
words occur in the sentence in the order that the waord
hypotheses appear in the sentence hypothesis. In addition, the
unique "word" FILLER may appear as a word hypathesis; this is a
represents the assertion that zero or more as
vet unspecified words occur in this position in the spoken
sentence. In general, there may be any number cof sentence
hypotheses existing at any one time.

placeholder and

The interactions among the source-of-knowledge processes
are carried cout wusing the hypothesize-and-test paradigm
prescribed by the model. In general. any process may make a
set of hypotheses about the utterance, all the processes
{including the hypothesizer) may then verify {i.e. reject, accept,
ar re-order) these hypotheses. In particular, hypothesization
occurs when a recognition process (Acoustics, Syntax, or
Semantics) chocses a FILLER word from a sentence hypothesis
and associates with it one or more opticn words, each of which it
asserts is a candidate to replace all or part of the FILLER.
Verification consists of each process examining the optieon words

and rating them in the context of the rest of the sentence
hypothesis.
Several restrictions have been placed on the implementation

of this general scheme. First,
shared, global data structure (ie.
accessible to the processes for hypothesization and verification.

at any time only one part of the
one sentence hypothesis) is

Second. the processes go through the hypothesization and
verification stages (and several other subsidiary stages) in a
synchronized and non-interruptable manner. Finally, only one

process is allowed to hypothesize at any cone time.
restrictions imposed both parallelism con a
uniprocessor does not accomplish any throughput increase and
because the available programming and operating systems make a

implementation difficult to specify, debug, and
These restrictions are mitigated somewhat by

Again, these

were because

more  general
instrument.

carefully adjusting the time grain of the processing so that each

nan-interruptable phase is not "excessively large

Each sentence hypothesis has a confidence rating associated
with it which is an estimate of how well it describes the spoken
This rating is calculated by ROVER, based on
infermation supplied by the recognition processes.
processing become evident when the overall rating given
sentence hypothesis begins to drop; at that point, attention is
focused on some other sentence hypothesis with a higher rating.
This switching of focus is the mechanism that provides the error
and backtracking that is speech

utterance.
Errars in
to a

recovery necessary in any

understanding system.

CLOSELY-COUPLED PROCESSOR SYSTEMORGANIZATIONS

As discussed in the introduction, in order te do real-time
speech understanding a substantial amount of computing power is
required. trends in technology indicate that this
camputing power can be economically obtained through a closely-
coupled network of "simple" preccessors. where these processors
can be interconnected to communicate in a variety of wavys (e.g.,
directly with each other through a highly multiplexed switch
connected to a large shared memcry (Bell et al., 1871), or
through a regular ar network of busses (Bell et al
1873)). However, the major preblem with this network apprecach
to generating computing power is finding algerithms which have
the appropriate contrel and data structures for exploiting the
parallelism available in the network. The meodel for a speech
understanding system as previcusly discussed, which s
decomposed inte a set of independent processes ccoperating
through a hypocthesize-and-test paradigm, represents a natural
structure for expleiting this netwoerk parallelism.

Recent

irregular

There exist three major areas for exploitation of parallelism
in  the structure of this speech understanding system:
preprocessing, hypothesization and  wverification and the
precessing specific to each source of Kknowledge. The
preprocessing task involves the repetition of a sequence of simple
transformations on the acoustic data, e.g. detection of the
beginning and end of speech, amplitude normalization, a simple
phoneme-like labeling, smoothing, etc. This seqguence of
transformations can be structured as a pipeline computation in
Thus, through
limited

which each transformation is a stage in the pipe
this pipeline decomposition of the preprocessing task a
amount {i.e . 4) of parallel activity is generated

The hypothesize-and-test paradigm for sequencing the activity
of the different sources of knowledge can also be structured so
as to exhibit parallelism, but the amount of parallelism is
potentially much greater. This parallel activity is generated by
the simultanecus processing of multiple sentence hypotheses and
the simultaneous hypethesization and verification by all sources
of knowledge. The simultaneous processing of multiple sentence
hypotheses, rather than processing just the currently most likely
candidate, can conceptually introduce unnecessary work. But in
practice, because of the errorfui nature of the processing, there
may be a considerable amcount of necessary backtracking to find
the best matching sentence hypothesis. It is appropriate to
quote a conjecture of Minsky and Fapert {1869, Section 12.7.8)
on this point:

[While for the exact match problem] relatively small
factors of redundancy in memory size yieid very large
increases in speed, . . . [for the best match problem ] .

for large data sets with lcng werd lengths there are
no practical alternatives to large searches that inspect
large parts of the memory.

Thus, the parallel activity generated by simultanecus processing
of more than one sentence hypothesis can result in a



proportionel  speed-up  of  the  recogaition  processs
Correspondingly, simullanecus hypothesization and verification
by all spurces of knowledge also resuits in a proportional spsed-
up of the racognition procass becausa each source of knowlsdgs
is independent and is designad so that its knowledge conlirbution
is sdditive,

Finaily, the verificstion algorithm of each saurce of knowledge
can be decomposad inlo a sed of parallsl processes in bwo ways:
The first kind of decomposition is based on the fact that
verificalions are performed on e sel of option words rather than
a single word 3t a time. Thus, for each source of knowledge
there can be mulliple instentiations of ils verification process,
each operaling on a different option word. The second hind of
decomposition  involves the parallelizing of the verilication
algorithms themselves; thus, each instanliaticn of a veritication
process may ilself be composed of a sel of parailel processes.
However, this set of instantiations may not be totafly independent
because the rating produced by the verificalion process may be
dependent on the particular sat of option words o be verified
and also on the local data base which is common to all the
instantiations. For example, the acoustic verification process is a
hierarchical series cof progressively more sophisticated tests.
The first few levels of tasting look only at the conlext of a singls
oplion word, while the mare sophisticated tests compare one
oplion word against anolher. Thus, only ak the Ffirst few levels of
tests can the acoustic verification algorithm be parallelized in a
straighiforward manner.

The parallelism generated by parallelizing the hypothesize-
and-test confrol structure and the wverification processes are
multiplicalive in their paraliel activily {i.e. performing in parallet
the updating of a senterte hypothesis where easch hypolhesis
invokes m verification processes and each wverificalion process
operales on o oplion words leads to a potential parallelism of
nxmxo). This parallelism, togelher with the pipalina paraliglism of
the preprocessing, leads to what appears to be a large amournt of
potential paralielism to be explolted by a closely-coupled
network. Howewer, it is still not clear jusi how much potential
parallel aclivily exists over the enlicre recognition system; nor is
it known how much of this potential will be dissipated because of
software and hardware overhead.

In order to answer lhese questions, a parallel decompaosition
ol the Hearsay speech understanding system is now Deing
implemented on C.mmp, a closely-coupled network of PDP-11%s
which communicale through a large shared memory (Bell et al,
19712 The C.mmp hardware configuration can conlain up to 6
POP-11's; the highty multiplexed switch that connects processors
to memory permits up to 16 simultaneous memory references if
these references are nok to the same memary madule. Thes, if
processors are referencing dillerent memory modules, then each
processor can run at full speed. In addition, T.mmp can be
configured tor a specific application {e.g., speech} by replacing &
processor by a special purpose hardware device which directly
accesses memory (B.g., @ signal processarh

The HYDRA soflware operating system (Wulf, 1972]), which is
associated with C.mmp, provides an appropriate kernel sel of
facilities for implamenting the parallal varsion of the speech
syslem. These facilibes permit control of resi-time devices,
convenient building of a tree of processes, message goeuss and
shared data base communmication among processes; user-defined
scheduling strategies, arbilrary interriplion ¢f runnirg asrocesses,
and dymamic creation of rew processes. Buiding cp from this
base, a debugging system wilt be constructed which, in addition
to the normal leatures, wil permit lhe rtecording of ai
communication among processes, the fraging of all process

* Simulalion studies are currently being carried out on evaluating
this speed-up factor. These studiss are based on detas
generaled from the current version of Ihe Hearsay systam.

activity, and the monitoring of gilobal wvariables [including a
recording of which processes have modified them) These
additional capabililies are crucial for ischating errors erd
understanding lhe dynamic behavior pallerns of the parallel
sysiem, i

The major software problem to be investigated in this
parallel implementation of the Hearsay system is how to
efficiently map wvirtual parallelism (process aclivity} into aclual
parailslism (processor aclivilyl This mapping proklem in turn
centers on three design issues, each of which relales o how
processes interact:

1. the design of ihe interlock slructure for a shared
data base,

2. the choice of the smallest computalional grain at
which the system exhibils parallel activily, and

3. the technigues for scheduling a large number of
closely-coupled processes.

The first design issue is imporlant because in a closely-
coupled process structure many pracesses may attempt to access
2 shared deata base at the same lime. In 2 uniprocessor system,
the sequentialization of actess to this shered dala base does not
significantly affect performance because lhare is only one
process running ai a time. En a multiprocessor system, howaver,
it the interlock structure lor @ shared deta base is nol properly
designed so0 as to permit as many non-interfering accessas as
passible, then access to the shared dala base becomes a
significent bottlensck in the syslam’s performance {McCredie,
1972

The second issus ralales to how closely-coupled processes
can interact. 11 the grain of decomposition is such that the
overhegd involvad in process communicalion is significant in
relation 1o ibe amount of compulation done by the process, then
the added virlual parallelism achieved by a liner decomposition
can dsecrease, rather thar increase, lhe perlormarce of the
system. Thus, understanding the relationship betwean tha grain
of decomposilion and the overhead of communication is an
important design parametar.

The third issoe relates to a phenomenon called the "cantrol
waorking set” {Lesser, 1972} This phenomenon predicts that the
execution of a closely-coupled pracess structure on a2
muttiprocessor may result in a significant amount of supervisory
overhead caused by a large number of process conlext switches.
The reason tor this high number of process conlext switches is
analogous 10 the reason for “thrashing” within & data working set
{Denning, 1968). For example, in a uniprocessor system if lwo
parallel processes closely inferact with each other, then each
time one process is waiting for a communication fram the ather it
would have fo be context switched so as fo allow the ather
process lo gxecute. )f ihese two processes communitate often
then there would be a large number of context switches.
However, if there were two processors, sach cantaining one of
ihe processes, iben there would be no process switching.

The implications of lhis phenomenon on construcling process
stractures are the following:

1. Processes should be formed inlo clusters where
communication ameng ciuster members is closely-
coupled wheress communication among clusters is
logsely-caupled. This  process  structuring
paradigm has alsd besn been suggested as a
model for the operation of complex human and
raturak systems {Simon, 1962).

2. The size of a process cluster cannot be chosen
indepandent of the  particular  hardware
configuration fhat will be used to execute il. For
example, a cluster size of B may be appropriale
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tor a hardware syslem conltaining 16 processors
while being inappropriste for a1 syslam containing
6 processors.

3. The scheduler of » mulliprocessor syslem should
use a stralegy thel schedulss process clusters
rather than singla procasses. (This is anslogous

o 1he wcvanisge of preloading the dats working
sat rether than cynamically comstructing the
working set at #sch contsxt swsp.)

4, Tha use of process siructures to implement
inherently sequantisl, though complex, control
struclures {(eg., coroutines, eic.) may laad to
inafficient scheduling of process siructurss on
multiprocessor  system (i, 1he scheduling
sirategy should be able to easily differentiste
thosa processss thst can go on in peraliel from
thosa thal are sequentialized).

NETWORK ORGARIZATIONS

The mulliprocesser typs crgsnization described earlier
implies a closely-coupled set of processes on a sal of closely-
ctoupled processors cooperating to accomplish the common gosl of
uttersnce recognition. The key ides in such a system is thet both
the processes wnd processors are closely-coupled -~ that is, 1he
cest of communication belween processscs or processors &
relatively cheap wilth respect to the amounlt of compulalion to be
done by any individusl process. Indeed, in the mulliprocess
-system described earlier, much interprocsss commurication snd
data sharing may be achisved by sctually having sherad physical
address spaces. Howewver, such n system ususlly also implies &
cartain homogensity or physical proximity of the processors and
mamary. '

Consider now the task of inftegraling the xnowledge of many
differsnt resaarch groups in wvarious widespread gsogrephical
lecatizns, each with its own computing fecilities and ssch with ils
cwrn areas of specialization. In an attermpl bo avoid Unnecessary
duplications of effort, one would desire a2 schema wharsaby esch
group could deveiop pieces of = total recognition system (which
piecas might represent new sources of knowledge, such as a new
and improved vowel classification sigorithm} using locat computing
resources {ie, using an arbitrary machine corfiguration end
program structurel Those pieces of the system would lhen be
incorporated imto & distributed “jotal recognition system™ by
appropriale {hopefully minimal) linksge and prolocol conventions
and their contributions to the entira system evalusted. The
geographical constraints suggest the use of a computar network
facility as & means by which ¢ne might assemble this lotal
recognition system. We sre currently underiaking the task of
desigring and implamenting such a system for use on the ARPA
network of computing facilities {Roberts and Wessier, 1970} The
usetulness of such 2 relwork organization for & spesch
understanding system liss in its potential ability }o cembine and
avaluate the warious algorithms and sources of knowledge of &
wide variety -of resaarch groups. In particular, lhe pbjeclive of
Ihe network organization is to create w ressarch tool rather then
to preduce a highly efficient recognition system.

As an example, suppose & group wishes lo add » new source
ol knowledge (a naw vowel classification algorithm, for instance)
to the natwork system. This knowledge-source is provided in the
form of a process lor a set of processss) running on @ Jocel
computer connected fo the ARPA ralwork. System inlegration is
then achisved by adding linking insiructions o the process
(perhaps interactively} for nolifying a centralized controiling
process of the set of pre-conditions (s.g., conditions relsting 1o
the incoming speach wave or the current state of the
recognition} that musl be met in order to activate this process
(Adams, 1968), as well s the required inputs and cresied ocutpuis
{and thair formats). The central controller is than rasponsibia for

activaling the new knowledge source at appropriete limes,
supplying the requested inpufs, and updaling a global data base
to reflect the resulls of the activated process. Knowledge source
processes mey communicale wilh one angther via a message
sarvice Facikty provided by the central conlroller. The marked
increase of indirection with respect to communication and dalta
sharing as compared with a closely-coupled mulliprocessor
approsch is a resudt of the goal io serve s wide gecgraphic
reagion of users and 10 alipw cooparation between essentially
sutonomous knowiedgs sources.

The problems that occur in this network concept are of a
neture diffarent from that ol those occurring in the
multiprocesser  strockure  described  previously., The many
sources of krowledge are o longsr necessarily clesely—coupled,
In fact, we rmight term such a melwork crganization to be
“loosely—<coupled™ in the sense (hat process communication and
data base sharing musi be achiaved by some form of message
switching scheme since the system is now operaling on an
indefinite number of {nonhomogeneous] compulers, in particular,
thare iz no longer the ability for all processes o share data and
communicate by sharing physical address spaces. The problems
of date base sharing and shipping now abound: cne would like
not to hawe multiple copies of & given data siructure due o
updating synchronization problems, but the message swilching
invelved in meintaining ard updating a single, centralized data
structure may be overwhelmingly inefficient.

It is inlended that, besides serving ss & ressarch lool for
testing wvarlous recognition algorithms and combinations thereof,
such & neiwork organization will become an inieresting
sxperiment in its own righl. Theare remains much invastigation tg
be conducted regarding the lradecffs involved in passing and
sharing dala through chanrels having low communicalion rates, as
well as investigaling the means of coordination of many
autonomous knowledge sources. Poinks of interesl for sysiems
design also exist ir creating the appropriate inlerfaces between
any given groun’s knowlsdge sourcs process and the central
controlling process. Specification for data base reguiremenrts and
formats {for both input and output) and specifications for
determining the pre-condilions upon which a process should be
sclivaled must be sasily specified for each new process o be
sdded. [n particular, the new process should rol nesd to know
the detsils 5f the giobal data structuras it may need to access —-
the linkage interface should fake care of such delails (Parnas,
1971,1971s).

isspas of user control cwer the entire system and the human
interface in general are considered vital, demanding much
investigation for any system organization which inlends fo run as
a sel of parallel cooperaling {whether closely- or loosely-
coupled) processes. The user must have the witimate control
over halting the sntire recogrition system or some subset of
processes irnvolved lharein and interrogaling {and perhaps
altering) the instantansous state of amy given process. Frolocols
for debugging and controling any knowledge sowrce process
should be provided via lhe interface linkege salup. Swslems
sllowing the amounlt of user coniral thal might ba desired are not
oasily achievable given the current slate of the arl, primarily due -
to a general lack of experience in multiprocess environmenls
{howaver, ses Swinehart, 1973). Given a well-defined problem
environment such as the spesch understanding lask, which lends
itself readily to a multiple-process decomposition, investigalion
into the realms of mulliprocess dabugging and control might now
be given more definite aims. Indeed, the problems involved in
controlling 2 sel of independent parallel processes thal are
cooperaling lo solve a single problem reach beyond the issues
raisad in lne devalopment of presert multiprogramming systems
(8.g., monitoring and controlling the interaclions invalving shared
data struclures and process intercommurnications demand that
naw debugging systems and siralegies be formulsted).
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The main focus of this paper has been to illustrate the issues
of system organization that arise when one attempts to build a
general speech understanding system which can equal human
performance. In practice, howaver, one can finssse a largs
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relaxing other requiremenis, such as real-time response.
However, unless the system is organized with the eventual gosls
firmly in mind, one is likely to end up with dead-end systems,
necessitating a complete reformulation of the problem solution.
The complexity of the hardware and software problams raised by
real-time requirements explains why thare are very few systems
which can accept or attempt recognition of live connected
speech.

Usually the term “parallel processing” is used as if it will
resolve all of one's problems. The intent here is mainly to
indicate that speech understanding systems naturally decompose
infc a set of cooperating, independent processes. Whether one
uses a single processor (as we now do)} or many processors (as
we propose to do), the program structure and organization tends
to be similar. The main question, then, is how much computational
power is available on the system to attempt real-time recognition
of connected speech. The multiprocessor and nelwork
organizations provide an opportunity to study and evaluate
relative merits of various computer architectures in this context.

Finally, we believe that the issues of system organization
raised here are relevant to a large class of current problems in
Al, eg., vision, robotics, chess, chemistry, etc, where
performance is the main criterion for acceptability and where
many sources of knowledge are available., In particular, the
notions of hypothesize-and-test and cooperating independent
processes seem equally applicable to these areas as well.
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This paper’ concerns the application of a new time-domain lechnique t{o the
analysis of complex -acous!ic signals such as human speech. The chief
advantage of this method is its precise temporal resolution aliowing exact
timing of articulatory events within a sample of speech; that is, no bandwidth limitation
is present. This temporal resolution is most signiﬁcéntr for characterizing
- fast transitional regions such as occur at vowel-consonant and consonant-vowel
boundaries and within stop consonants, We generate visual displays
of waveform up-crossings in time, derived directly from the acoustic waveform itself.

The impetus for our work comes from two sources: 1)First are the studies by
Licklider and his colleagues who 25 years ago demonstrated the intelligibility of
infinitely Flipped speech. This showed that sufficient acoustic speech information
is encode—d in the zero—crossings of the waveform itself. Given the redundancy
of speech 'such information is most probably encoded by other aspects of the waveform.
As it happens though, zero-crossings or up-crossings are easy to see and extract from the
waveform., 2)}The second motivation for this work comes from neurophysiological research
on the auditory information processing of the sar itself. Basically the ear processes

an incoming signal in at least! two widely recognized manners. The first is

analysis in the frequency-domain and is analgou’s- to a kind of filter bank

where different neurons along the basilar membrane respond to different frequency
ranges; that is, a given neuron fires if i detects a signal of sutficient intensity
within a particular frequency range. Neurons also code information in the lime-domain
in a manner known as phase-locking. Given a waveform, a phase-locking neuron
responds by firing once, phase consistently, for each cycle or integer number
of cycles within the waveform. The technique we ‘are using is directly analagous
to this latter time-domain coding technigue.

We genérate our visual displays as follows: A zerp-axis is drawn ho.rizontally
through the center of the acoustic waveform. We note the exact time when the
waveform crosses this axis in an upward direction. In actuatity, we usually- record
only those up-crossings which exceed some threshold amplitude, epsilon,
set slightly above the horizontal zero-axis. This threshold tends to preclude low
amplitude background noise. We measure each interval between successive up-crossings

and plot these as a function of time in our displays. Therefore each up-crossing

JMB - 2



TIME DOMAIN - JMB

in the acoustic waveform is represented by a discrete dot in our dispiays.
in  fact, we actually plot on a log scale, the inverse of the interval
between successive up-~crossings along the vertic;al Y-axis and time along the horizontal
X-axis. This yields a display which superficially resembles a kind of spectrographic

display. (N.B. For those readers familiar with neurophysiclogical studies
of single unit responses, this display is directly analagous to an "instantaneous frequency”
plot and functionally analagous to a phase-locking phenomenon.) "We also display a

rough- intensity measure by means of a Z-axis modulation. That is, the
size of a dot representing a given cycle is proportionate to the log of the greatest
intensity achieved during that cycle.  This dot size intensity measure in our

up-crossing displays is analagous to the intensity measure expressed in spectrograms.

Zorr=
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The idea of looking al zero-croasing measures per se is not in itsel concep-
tually new. However, in contrast to most other invesligators who have used zero-crossing
measures to analyze speech, we do not average our up-crossings over a fixed interval of
time. Reasons for this will be discussed shortly. First of all it is important to be
aware that the chief molivation for many zero-crossing studies has been in searching for
an inexpensive way to find frequency domain acoustic features, such as formants.
This method avoids the computations required for Fourier transforms, for examéle. In
order to decrease the expense and variability in examining individual cycles,it was easy to
fo compute an average cycle length by simply counting the number of zero-crossings occur-
ring during a given time interval, This procedure has two major consequences: 1ithe perfect
time resolution inkerent in the time-domain is lost when crossings are averaged; that is, .
a bandwi;ﬂth limitation is introduced, 2) the conventional acoustic features extracted
are usually less precise and more wvariable than the same acoustic features
extracted directly with a frequency-domain analysis. Qur reason for not averaging
up-crossings is that in the speech waveform itself there are significant acoustic features
which only last for one or a few cycles in duration. {f cycles are averaged, this
information is irrevocably lost. S'Qch transient events frequently occur at vowsl-
consonant and consonani-vowel boundaries as well ‘as belween other acoustically
distinct regions, within stop consonants for example. In the waveform shown here of
the nonsense word  "a tat® a" (stress on the second syllable), some of these short
duration features can be seen. For example, one such feature often occurs at the
transition from a stop or fricative to a following vowel. We find there exists a relatively
long and intense cycle between the consonant and vowel. Somelimes there are several
such cycles before the vowel. On our displays this phenomenon appears as a relatively
low frequency large dot, or sometimes several, immediately preceding the vowel. The
occurrence of this transition cycle(s} coincides with the upswing in energyl
from the consonant to the vowel In our up-crossing display of the same

utterance we have <circled these transition cycles and labeled them  "tr".

JMB - 4
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Anocother area where consistent fime-domain features can be seen is during the
course of stop consonants. Both Ts" shown in this example consist of three distinct
regions: the initial pause, a release, and aspiration. The pause is characterized
in the waveform as a region of very low energy, irregular activity which is terminated
abruptly by the release characterized by many greater amplitude, high frequency cycles.
In the up-crossing displays, the initial pause appears as either one or a few outstandingly
low frequency dots immediately preceding the release activity. In our display, these
dots are circled and labeled "p", for "pause dot". The precise duration of any
unusual cycle or sequence thereof may be ftrivially determined by noting the cor-
responding dot's(s’) height(s) on the vertical axis. We have seen these pause and transition
dots in literally thousands of our displays (1 utterances spoken by both men and women.

In the up-crossing display here, there is also an example of an automatic boundary
segmentation as evidenced by the vertical lines drawn through the display*. These vertical
segmentation lines were drawn automatically solely on the basis of discontinuities in
the signal intensity functions. These intensity functions were computed pitch-synchronously
and are represented by the line graph at the base of the plot. As easily seen,
although the dot features and vertical line segmentaton were independently
derived, the times at which they occurred were rather close.

Another finding with this unaveraged up-crossing analysis is the presence of visually
easily distinguishable patterns for fricatives and stops, e.g."p", T\ and "K" distinctions.
We performed the following experiment with 10 people, most of whom had no experience
with spectrograms or other speech research. First of al, we had a stack of
photographs of our displays {with no segmentation lines or even any vertical or
horizontal axis markings). The photographs showed displays of nonsense words all

in the form of d CVC (stress on the CVC syllable), spoken by both male and female speakers.
In a typical experiment, we would give a subject three model pictures, each of a
nonsense word containing "p", "", and V in the initial consonant position respectively.
We would then show him where in the pictures these consonants were located. Next we
handed him a stack of unsorted pictures and instructed him to sort these into four piles,

one each for those that contained "p", "t", or "k" in the same position as in the

model pictures, and one pile for those pictures that did not look like any of the model

=(automatic segmentation algorithm and implementation done by James K. Baker)
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pictures, Despile spraker, allophone, and vowel differences between the model pictures
and those sorted, subjects were able to distinguish "p's", "{'s", and "Ks" from
each other about 807 correctly on a first try, regardless of the subject’s familiarily
wilh speech research, Addilional practice improved scores.

At this point two issues arise. First is the issue that the ability of
humans to distinguish these phoneme patterns does nol guarantee that an automatic spezech
recognizer can be programmed to do as well. The dot pattern itself is complex and it
is not clear exactly which visual {eatures subjects use in making their decisions.
Although we do have some specific ideas about which acoustic features are most reliabie
for these discriminations, we have not yet subjected a large sample of data
to an automatic tesfing program to determine which features ara most reliable
and when;. This brings us 1o the second major issue, the problem of allpphones and
coarliculation effects. Different aliophones of the same phoneme often are acoustically
very different. An extreme example of this phenomenon appears in the following
pictures {spectrograms and up-crossing displays) of the connected speech ulterances
"Pawn t¢ king four" and "Pawn to queen four”. The "k" in "king" differs radically fram the
“k" in "queen". The most obvious difference is the lower frequency companents in the "k"

of "queen”, probably due to the lips® rounding, effectively lengthening the vocal tract.
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TIME DOMAIN - JMB

Therefore we are starting an exiensive investigation examining time-domain accushic
features of all the allophones of the stops and fricatives common in English. We wilt
examine in detail a large sample of these utterances, about 500 each from seven or
eight male and female speakers to determine the rﬁost reliable cues for stop and fricative
discriminations and ascertain which allophones and coarticulation effects must
be dealt with explicitly. This kind of basic research is essential for the development of
automatic speech recognition systems,

In summary, we find that, due to its precise temporal resolution, this up-crossing
analysis (and presumably other related time-domain analyses) is particularly well-
suited to examining fast transitional regions of acoustic signals. In aur displays
we often find, particularly for traditionally difficult stop and fricative discriminations,
visually  distinct  patterns, consistent across male and female speakers.
In  addition, this technique is generalizable to any waveform and is particu-
larly applicable to complex waveforms characterized by rapid frequency changes.
On the basis of both theoretical considerations and the empirical results of our studies,
in conjunction with other studies in speech analysis, we feel that future automatic
speech recognition systems may be more successful by incorporating both time and
trequency domain analyses, rather than either separétély. Although there is a great
deal of redundancy in terms of the information yielded by both domains, frequency-domain
analyses will generally be more powerful for steady or quasi-steady state phenomena, e.g.
st_ressed vowels, while time-domain analyses will usually be most effective for studying fast

transient phenomena, e.g. stop consonants.
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MACHINE-AIDED LABELING OF CONNECTED SPEECH
James Baker
Computer Science Department
Carnegie-Mellon University
April, 1973

This paper presents preliminary resuits of a project for
machine-aided segmentation and labeling of connected speech. The
segmentatibn and labeling problem is reformulated as a problem of
searching for a minimum cost path in a network. Such abstract
formulation permits the construction of a system which avoids the
complexities of a system buiit by ad hoc methods from the acoustic
and phonological properties of speech. That such a simple abstract
mode! is adequate for this problem is demonstrated by a functioning
program which is described by the pair of simple formulas (18} and
{11). A program uwhich uses more sophigticated acous£ic observations
and more complicated matching procedures is under development, but it
is also aﬁ implementation of the same abstract model.

For research in the acoustic properties of speech it is
imperative to have a large data base of speech utterances wuhich have
been reliably segmented and labeled. Each important event must be
found and labeled as to time of occuréence. Let’s restrict our
attention ta finding the beginning and ending time of each phone_in a
given wutterance. A reliable method to do this labeling 1is to
generate an appropriate display of the acoustic parameters and then

have a trained person label the phone segments. But for a large data




base of thousands of utterances, such hand tabellng can be vary time
ccnsuming.r The goal opf this project is a program uhich can
automatical ly assjgn the labels to a connected speech utterance with
the need for human iﬁtervantion only on special problem cases.

Agssigning labae!s t{o a speech utterance to be -uaed in a data
base is a very different problem from segmentation and - tabeling for
automatic recognition because the utterance is known. The program ise
given either a phonetic transcription aor can approximate one from an
or thographic transcription plus a phanemic dictionary. 0On the other
thand, the iabeling must bhe as complete and reliable as possible
uhereas a general recognition system should e able to tolerate
incomplete !abeling or even errors.

- A second goal of this project iz the exploration of the
application of stochastic models to automatic speech analysis, A
general technigue has been developed for combining Infﬁrmation from
several sources when each source alone would result in a significant
number of errors. Clearly there are many problems (n speech
recognition which fit this general frameuork., The unifying principle
is a generative stochastic model for fitting a sequence of atates to
errorful data from several sources, Machine-aided segmentation and
tabeling has been approached as a specific application of thie

genaral technique.

To ralate the phones to the acoustic obzervations requires

knowledge of the acoustic phenomena which are expected with sach



phone. In line with the probabilistic approach, each phone is
assumed to be aasocjafad with 8 stochastic process wuhich prodices
acoustic parameter values for any instance of the phone. The
atatistical properties of the stochastic process associated with any
particular phone are to be esstimated from the occurrences of the
phone in the part of the data base which have already been segmented
and labeled, Thus a non-negligible data base must first be analyzed
by hand before the machine-aided system can be started.

Each acoustic ohservation is to take a value from a finite set
D. Assume that for each phone P there is a positive-integer-valued

random variable Z and a family of randem variables X (1), X (2},
P : P P

re o+ X AZ Y with wvalues in D. Let f ba the conditional
P P P.n

probability function
(1) f (x , %, vua , =}
P,n 1 Z n

= PROBIX ()=x , X (2ex , vy , X (nlex | Z on)
P 1P 2 P n P

Let g (n} = Prob(Z =n), The interpretation is to be that Z is the
P ' P ' P

duration of an instance of phone P and X (1}, X (2}, ... , X (2]
| P P P P

are the acoustic observations made during that instance of P.
Let VI(1), Vi{2), Vi3, ver 43 YI{T) be the sequence of

observations made for the utterance being analyzed. Let P(1), P(2},




"Ry he the  eezgueve of phones in the utterance.  Use

notation Y{tl:t2] as an abbreviation for the sequence V{tl}, V{tl+l)},

, Y{t2-1), VI£2), Let Uil), U(2), ... , U(R} be a sequence of
putative starting times for the phones. That is, U{l) < U2} < ... <«
U{R) and for each k, Plk) is supposed to last from observation
Y{U{k)) to ohservation V(Ulk+l}-1). Suppose a sat of observations
VIl: T} and times UIll:R} are produced by applying in succession the
stochastic processes for each of the phones P{1) through P(R} and

concatenating the observations, the individual processes being

independent., Then the probability of producing the observed sequence

is
(2) PROB ( VI1:4), Ull:ed )
PI1:R]
R
= (f (VIUK) :Utk+1) -lg (Ulk+1) -U(k)}
y Pk}, Ulk+1) -Ulk) Pk}
The segmentation and tabeling problem consists of finding the

correct set of values dJor the =seguence WUIl:R]. MWe shall wuse a

maximum |ikelihood estimation scheme. Pick for U{1:R] that sequence
that maximizes Prob(V{l:Ti, U(L:R]} for the given ohservations
VI1:T). The problem of finding Ul1:R] is equivalent to finding tne
best path through a binary decision tree where each node at levei ¢
represents a decision of uhether or not there is a phone boundary at

time t. Subject to the constraint that there are R phones, there are

' T-1 (T-1) 1
(3) ( . —
R-1 (R-1} 1 (T-R) |



paths through this ftree. This number is prohibitively large (if an
observation is mads every centisscond and the utterance lasts two
seconds, then T-230), so some reduction is necessary”

Note that our model is such that given k and Utk:R] we can

evaluate

(4) PROB ( VtUOOITI, Utk:R] )
PIItR)

4

- TT (f (VtU())tU(j+1)-hg (U(j4h)-u(j)

FAR P<JNU{J-hl)-U(J) P{j) ;

that is, the probability does not depend on Uthk-Il. Also note that

(5) PROB (VULTI, UtItR] )
PtliR]

- PROB (V[lIiU(k)-1l, UtltkDPROB (VtUOOITI. UtkjRI)
PtliR] PtliRI

Therefore If at any node of the tree corresponding to a particular k
and U{k) we have evaluated Prob(V[l:U(k-1)I, U11ski) then the
subsequent analysis depends only on k and U{k]. That is, for the
purpoee of analyzing V[U(k):T] and L)[k:R] we can identify all nodes
of the tree which correspond to ths same pair k and U(k). Since we
are only Interested in ths bsstUIItR], we associate with this
combination node the maximum of Prob(V[liU(k+I)-1], Utlik]) over all
the nodes which are combined. This identification reduces the tree

to a network whose nodes ceorrespond to the two-dimensional set of



values (k, U(k)), where 1 <« k < R, 1 < Utk) <« T. Procedures for

finding the best path through such a network have been extensively

investigated. A szimple, computationally efficient, procedure is

dynamic programming.

To facilitate dynamic programming, intrcduce the function

(6) Alk, t) « Max
Utl:k]
T({k)«t

IPROBtVQ. £t-1] ,U[l.k])}

That 1is, A(k,t} 18 the probability aleng the best path leading

up to
the (k,t) node. A may be calculated by
(7) Alk, t€) riaxi A{k-1, t-jif (VCc-J1i £-17 1g (j)}
3 P(k),] P(k-1)
Let J(k,t) be the walue for which this maximum 1s achieved. Then
after A and J have been calculated for the whole network, the best

path through the network is obtained by

(8) Uik) = Ulk+1l) - J(k+1, U(k=+U)

If we are willing to assgume that X (1),X (2),

p p P F

independent and identically distributed and that

, for some a Independent of P,



then an even simpler computation is possible. [t is not c!éiméd that
these additional assumptions are realistic. However, some examples
Wwill be given to show that even with these assumptions and very crude
acoustic observations the mode! can produce reasonable segmentation
and labeling.

The extra assumptions allow us to ignore the durations of the
phones by factoring out a factor which is the same for all paths
through the netuwork, Reformulate the network, ignoring duration
information. Let the node (k,t} correspond to the event U(lk) < t <
Ulk+l) with U{k) . otheruwise unrestricted. Let Blk,t) be tha
probability along the best path leading to (k,t}. Then B may be
"calculated by .

(18) Bk, t} = ( Max{ B(k-1, t-1), Bk, t-1} } )PROB(X = Y(t})
P(k)

Then the sequence U[1:R] may be calculated by

(11) U(k) = Max{ t | t<U(k+1) and Bik-1, t-1)>B(k, t-1) !}

Since some of the simplifying assumptions are admittediy
unrealistic, the model must be tested in actual use. First ue muat
find some measurable parameter to use as the sequence of acoustic
observations VI[1:T}, The better the parametric representation

distinguishes the phones, the mwmorse the conditional probabllity




function f will be concentrated in different reglons for
P,n

different phones, and the better the system will work. For final
production runs the best parametric representation available should
be used. For preifiminary testing, however, there is an advantage to
using a less precise parametric representation., If the system is to
be of significant value it must ke robust. [t must be able to
operate in environments in which the direct acoustic observations do
not well characterize the underlying phones. Besides, if the system
Works Wwith a crudg parameterization, it can be used to help assemhie
the data bass needed for finding and testing a more refined
paraweterization.

The parameter which has been used is the output of a crude
local-pattern-match phonetic  recognizer. The oputput of the
racognizer is a label which is intended only to be an approximation
to the asscciated phone. The conditional probabilities are given in
Table 1. Each rou corresponds to a given phane, and the columns are
the possible labels that the recognizer might assign. This
recognizer frequently confuses phores uwithin a class, but it can
generally diastinguish among broad classes.

The autput of the sy=tem is shown for three chess uytterances,
The six line graphs in each figure are the six parameters that are
input to the pattern recognizer, They are intenslty measures of the
signal passed through sach of five octave-wide band-pass filters and

of the unfilterad signal. The line immediately below the graphs is



the sequence of Ilabels assigned by the recognizer. This ts the
sequence VYI{1:T}, There is one label for each centisecond. The
phones as segmented and labeled by a program using formulas (18) and
{11) are displayed on the second line. Each phone is printed at the
position that ‘indicates the time at which the phone begins. The hand
segmentation data is given on the third line and the orthographic
transcription on the fourth, The phone sequence for the program is
derived from a phonemic dictionarg; so it differs in places from the
hand labeled seqguence.

In evaluating a suystem of this type it is important to note the
different kinds of errors and their effects. There are three
iﬁportant kinds of errors: (1} The sequence of phonetic labels may
differ from the correct sequence. (2} A boundary position may be
shifted betueen two phones which are otherwise correctiy placed. (3)
A phone may be so misplaced that its machine-laheled segment does not -
intersect the correct segment, The different kinds of errors have
various effects in a total man-machine system.

The first type of error results from an inadeguately specified
phonetic input. Problems may result especially when the input
sequence is derived by rule from a phonemic dictionarg. The
algorithm is not permitted to alter the nominal phonetic sequence
which it is given. To reduce errors of this kind more sophisticated
phonological rules must be combined with the phonemic dictionary, or

the utterance must be transcribed by hand. Note, however, that for




the purpose of collecting statistics for machine recagnition pattern
matching algorithms, the best labeling may in fact be that wuhich Is
derived from a dictionary, Then the statistics are grouped according
to the dictionary phonemic iabel, which is just what is needed for
pattern matching statistics.

Some errors of misaligned boundaries are inevitable. In fact,
the format of the output has some error huilt in since it assumes
that the phones can be occupy non-over lapping time segments. It is
e@special ly hard for the program to accurate!y place the boundaries
betuveen vousls and semi-vouels or nasals. More accurate and detailed
acoustic observations may help, but the output must still be checked
and corrected by hand. |

The third type of error is the mést serious. It implies that
several bhoundaries are misplaced and that the underlying sequence of
states in the path through the netuork is not fnlluuiné the actual
sequence of phoﬁes at all. Such errore are easy for a human checker
to detect, but to correct them may reguire that the whole utterance
be hand labeled. Unless the number of errors of this type is small,
the machinc-aided system is not successful,

No sgstemaﬁic per formance evaluation has heen attempted, since
the program is stifl in a preliminary version. A file of hand
segmented data must be built up to establish _statistics for

eatimating the conditional probability distributions of the X 's.
P

It may he necessary to usse the more complete model given by formulas

18



{7} and (8}, QDuration information is a valuable too!t for preventing
the tywe-3 errors (which still occur under certain conditions).
Other parametric representations of speech must be explored,
especially if the system is to work without tuning to individual
spéakers. The pre-processor uwhich is being used presently is tuned
ta the extent of having the speaker produce one proiotype version of
each phone. When this crude tuning is omitted the qua!itg of the
acoustic obsevations is degraded sufficientiy to introduce  type-3

errars in many utterances,

11
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