NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PAS-TI: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

D. A. Waterman and A, Newell

June, 1973

Departments of Psychelogy and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This paper will appear in the preprints for the third International
Joint Conference on Artificial Intelligence {(IJCAI-73). This research
was supported in part by Research Grant MH-07732 from the National
Institutes of Health and in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-0107)
which is monitored by the Air Force Office of Scientific Research.

PAS-I1: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS S$SYSTEM

D. A, Waterman and A, Newell

Departments of Psycholegy and Computer Science
Carnegie- Mellon University
Pittsburgh, Pennsylvania

Abstract

PAS-II, a computer program which represents a
generalized version of an automatic protocol system
(PAS-I) is described. PAS-II is a task-free, inter-
active, modular data analysis system for inferring
the information processes used by a human from his
verbal behavior while solwving a problem. The output
of the program is a Problem Behavior Graph:
tion of the subject's changing knowledge state during
problem solving. As an example of system operation
the PAS-II analysis of a short cryptarithmetic pro-
tocol is presented,

1. TIntroduction

Automatic protocol analysis is a joint effort
by man and machine to infer from the record of the
time course of a subject's behavior, the underlying
information processes. As developed (5), it usually
refers to the verbalizations of a subject solving
some problem under instructions to think out loud.
Protocol analysis designates the full range of activ-
ities engaged in by the psychologist when working
with protocols: description of the subject's
behavior according to an hypothesized model, induc-
tien of new rules, derivation of consequences from
a model in the context of specific data, and measure-
ment of adequacy of a model. The iritial focus of
our work has been behavior description in terms of
information processes, given an hypothesized general
model {the so-called problem space in which the
subject operates).

The PAS-1 system (14, 15) was our first attempt
at automatie protocol amalysis. This is a fully
automatic, non-interactive, specialized system de-
signed te analyze cryptarithmetic protocols and pro-
duce as output a problem behavior graph (PBG)describ-
ing the subjeect's search through a posited problem
space, The protocol analysis is represented as a
sequence of processing stages that eventually trans-
form the raw protocol into a problem behavior graph.
At each stage rules are applied which effect a trans-
formation of the data. The organization of PAS-I is
shown in Figure 1.

PAS-I has successfully analyzed protocols from
DONALIHGERALD=ROBERT and CROSS+ROADS=DANGER crypt-
arithmetic problems. The results obtained in the
DONALIH-GERALD=ROBERT task for two of the subjects
have been discussed in detail (15) and demonstrate
that this approach to automatic protocol analysis is
both feasible and rewarding.

Encouraged by the success of PAS-I we have
designed and built an improved version called PAS-II.
PAS-1T was designed with two major goals in mind: to
make it interactive and task free. By interactive
we mean that the user is permitted to take an active
part in the analysis: he can provide answers to sub-
problems the system is unable to solve, correct proc-
essing errors, and even maintain contreol over the
processing sequence, Clearly, real-time interaction
of this sort makes the system a more powerful tool

a descrip-

for protocol analysis. By task free we mean that

the system is independent of any particular problem
domain. To make PAS~II task free we partiticned the
system into two parts: the problem dependent part
consisting of the processing rules or heuristics used
at each stage of the analysis, and the problem
independent part consisting of the general centrol
structure and command language. Thus, to apply the
system to a protocel in a new problem area the user
must first supply the system with processing rules
for that domain.® The design of PAS-IT alsc included
four subgoals: to make the system transparent,
modifiable, extendable, and open (see Figure 2).

Two important implementation issues were not
addressed in the design of PAS-II. 1), Improve system
performance in cryptarithmetic. This includes
expanding the deductive and inductive inference
capabilities, and "fine tuning" the system by
optimizing the processing heuristics to produce the
best possible analysis within the given framewoerk.

2). Extend the scope of the analysis. For example,
extend the system back to handle the speech recog-
nition and segmentation problems inherent in producing
a transcription from the audic tape. Or extend the
system to handle the problem of inducing the problem
space from the protocel eor inducing a production
system model from the preblem hehavier graph.

It was decided to make PAS-II interactive and
task free, postponing the problems eof increasing
power in a particular task or broadening the scope
of the analysis. This decision was influenced by
the desire to provide a working tool for protocol
analysis that could be used by participants at a
workshop on New Techniques in Cognitive Research held
at CMU in the summer of 1972 (7). The PAS-1I system is
currently running in LISF at CMU on a PDP-10 and is
available to the CMU (and the ARPA Network) community,

This paper is organized as follows. The task of
protecol analysis is discussed in Secvion 2., This is
followed in Section 3 by a brief description of the
structure of the program and in Section & by an
example of its use in analyzing a cryptarithmetic
protocol. Section 5 concludes with a discussion of
the general executive structure of the system and
its implicaticn for AI data analysis programs.

2. Task of Pretocol Analysis

Protocol analysis is a complex data processing
task requiring both deductive and inductive inference
capabilities. Our current approach to protocol analy-
sis is based on a2 particular theory of human preblem
solving. For a descripticn of this theory and an
intreduction to the task of protocol analysis see
Newell and Simon (5).

Ultimately, a library containing processing rules
for a number of different problem domains will be
available te the user.

s — — — - — 7

SEMANTIC PROGESSOR
Topic Semantic Step 1 Step 2 Step 3
’ Elements
Segments LINGUISTIC. Temporal |l Normal- |] Extract
. PROCE i i
(twa 0's] Integration Ization Protogroup
{each D is 5] (NUM D 2)
[therefors, T is zarc] (EQ D 5)
(THEREFOQRE)EQ T D)
Protogroup
Op: (PC1)
Kn: (BECAUSEQF (EG D 5){EQT 0}
Extract noxl
Element
¢l =4 T_4 *
D=5 Determing
Unknowns
PEG Mechanism
Information
¥
FEG Group L Origin
GENERATOR < Mechanism
Op. (PG 1)
In: ((EQ CA D}EG D 5))
Qut{EQTO) GROUP PROCESSOR
Figure 1. Flow Diagram of PAS-I,
GOALS
Interactive: User and system exchange fnformation during processing,
Task Frec System is independent of any particular problem domein.
SUBGUALS

Transparent: System is easy to use apd understand by virtue of a clean
otganization and the ability to explain itself.

Modifiable Bagsic changes in the data progessing procedure can be made
by a user with no knowledge of the language used Lo program
the system.

Extendable : The programmer can easily enlarge the system to encompass
a2 wider range of the data analysis.

Open The wser, rather than the program, fnitiates and controls
the interaction and accordingly gains ultimate contenl of
the processing sequence.

Figure 2, Design Conaiderations for PAS-11,

Theoretical Subkstructure

Froblem Space. We assume human proklem solving

takes place by search in a prcklem space. The ele-
ments of this space are the possible states of knowl-
gdge the subject can have abcut the task, where a

state of knowledge 1s simply an expression ¢f what the
subject knows at scome particular peint in the space.
Begides knowledge states,
cludes a cset of operators.
the subject can perform on knowledge at a particular
state to vield new knowledge -- hence to move to a
new Knowledge state.
that is, they take as
total knowledge state
mentas)

the prokblem space also in-
These define operaticns

The operators are incremental,
input a small porticon of the

ta small set of knowledge ele-
and produce as output new knowledge elements.

Problem Behavior Graph. The subject's search
through the problem space for a sclution can be des-
¢ribed as a sequence <f cperator applications that cre-

ate a string of inc¢rementally changing knowledge states.

The plot of this search is callad the problem beshavior
graph (PBG). Figure 2 ({also used to illustrate the
output of the analysis given in Ssction 4)
proklem kehavicr graph for cryptarithmetic.
represent operator applications:

shcws a

The nodes
the knowledge ele-
ments at the lower left of each node are the inputs,
those at the lower right are the cutputs. FB3
branching results from the subject abandoning infeor-
mation and returning to a pricr knowledge state
{usually hecause of a discovered contradicticn). For
example, 1in Figure 8 the outputs of nodes 4 and 4
conflict: "R 1g 4" conflicts with "R is o<dd," and
leads to the abandonment of nodes 4, 5 and 5. Hote
that the knowledge state at any point in the graph is
the conjunction of all output slements on the path from
the given point back te the beginning <f the graph.
211 nodes on the path from the last node back to the
beginning of the graph are called currently active
nodes . Their output elements desfine the current
knowledge state.

Data Analysis

The data being analyzed is the transaribed text
of a subject's verbal protocol. Es the text 1s trans-
formed into a PBG it 1z asubjected to four major types
of processing: semantic, group, and PBEG.
Figure 1 typifies such a processing seguence.

linguistic,

The text is first
gsegmented into shorter strings called topilc segments,
each cf which is

Linguistic Processing.

expected to ultimately yield approxi-
mately <ne problem apace element. Each segment 1is
then parsed using a grammar sensitive to the proklem
domain under ccnsideratien. The result of parsing is
a set of semantic elements which represent the meaning
<of the segment. For example, the segment "D is nct
equal tc 6" might yield the elements (NEG) (EQ D &) in
the cryptarithmetic task. Here (MEG) is called

an indicator element, (EQ D &) a knowledge slement .

Semantic Prccessing. The =semantic elements

produced through parsing are first combined in very
elementary ways to produce new elements, {NEG}
and (EQ D &) bhecome (NEQ D 6) . Next, new elements

reflecting relationships bketween elements from
adjacent segments are produced. Thus, (EQ D 5)

{THEREFORE} (EQ T 0) £from the next
(BECAUSEQF (EQ D 5)(EQ T 0)), e.g.,

T is 0." Finally, these elements are
arranged inte initial approximaticns of operator groups,
each containing an operator element and the surrcund-
ing kncwledge and indicator elementa.

i.e.,

from
one segment and
segment become

"because 0 i3 5,

An operator

group is defined to be an operator together with its
input and cutput knowledge elaments.

Group Processing. The tentative operator grcups
produced during semantic processing are now analyzed
to cobtain a complete picture of what the subject knows
at each mement and what operatcrs he applies. First,
variabkles in semantic identified by com-
paring the elements to the current context asg defined
by the PEG. Thus 1if (EQ D 5} were in the PEG then
when given the element (EQ <L» 5), where <L>» stands
for a class of letters, we receognize that <L» in this
case 1s the letter D.

elements are

The seceond part of group processing consists of
finding, c<r hypothesizing, the origin of every knowl-
edge element in each tentative group. The origin of
a knowledge element is defined to bhe the operatcr
which produced it, plus the inputa to that operater,
plus the cperators which produced those inputs,
Thus

defines a collection of cverlapping operator grougs.

etc,
the origin can bte represented as & tree which

PEG Processing. The coperator groups produced
during group procesaing are now incorporated inte the
FEG. In general, each grcup becomes a node in the
PBG. In the simplest case the new node is just

attached teo the last currently active node. However,

when ccontradicticns ocour (the output of one node
conflicts with the output of another)

ocours to eliminate the conflict

restructuring
(see Figure 8) .

3. Structure of the Program

PAS-II takes as input a transcribed text <f the
verbalization of a subject solving a problem and
The processing rules for
including the rules defining the
are given to the system.
are supplied either by the system builder wvia a
likrary <f rules for wvaricus prcklemn domains <r by
the user himself.

produces as output a PBG.
the various stages,

problem space, These rules

Modular Structure

PRS-II ia organized as a mcdular data analysis
ayatem. The basic unit of corganization is the mode:
a processing state which has associated with it a
buffer capable of holding rules or data. This buffer
can be modified by the editing functicns available in
the command language. There are three typeszs of modes:

run modes, which hold the data being analyzed, rule

modes, which hold the processing rules, and auxiliary
modes, which hold task-free system-oriented rules.

Thus the information in the rule modes constitutes the
prckblem dependent part of the system.

The next level of organizaticn is the stage: a
unit consisting of cne run mocde and any number of
azsociated rule modes. Lata processing is performed
in a stage by applying the rules from the rule mcdes
asscciated with that stage to the data present in the
run mode <f the previous stage. The regult of the
processing is then put into the run mode ©f the current
stage. Figure 3 illustrates
of PAS-II, indicating data flow and
the lines indicating mode associations.

the mocdular organizaticn
with the arrows

The highest level of crganization is the
processor: a unit consisting of consecutive atages
in the contrel cycle. in PAS-II two
linguistic stages form the Linguistic processor and
three semantic stages form the Semantic processcor.

For example,

Segmen-
tation
Mode
Text Topic
e
Mode Mode

TOPIC PROCESSOR

Extraction Space Grammar
Mode Mode Maode
Linguistic1 Linguistic2
Mode Made

LINGUISTIC PROCESSDR

I ntegra- MNormal- & .
tion ization rouping
Mode
Mode Maode
Semantic 1 Semantic 2 . Semantic3
Meode Mode Mode

SEMANTIC PROCESSOR

Conflict
Mode

PBG
Mode

Origin Unknowns
Mode Maode

I_r_.l

Match PS Memary

Made Mode Mode
Trace4 . Trace3 Trace2 Tracel
Mode 1 WMode Mode Mode

TRACE PROCESSOR

Figure 3. Modular organizetion of PAS-||

Graphic}
Mode

Graphic2 o] Graphic1

PBG PROCESSOR

[Auxiliary modes not shownt

Mode WMode

GROUP PROCESSOR

Modes. The modes currently implemented in PRS-
IT are listed in Table 1. Hote that most run modes
have one or two rules modes asscociated with them.
Thia aassociation is illustrated in Takle 1 and alsc
in Figure 3," which shows the moedular coupesition of
the wvarious processors in PAS-TI.
fiqure define the data links existing between modes.
The modes at the tail of an arrcw provides the data
that the mode at the head <of the arrow processes. For
example, prcceasing in the TCPIC mcocde invelves apply-
ing the SEGMENTATION rules to the data in the TEXT
mode and then placing the result in the TCPIC mode.
As each line in TEXT is processed, i1t 1s deleted frem
the TEXT buffer. However, a copy of these deleted
lines is stored elgewhere in TEXT and can he re-
trieved (see the process functions in Table 2 . The
arrows 1in Figure 2 4o net necesgsgarily define the
control cycle, i.e., the order in which processing
The <ontrol flow is illustrated in Figure 4
{to be discussed later) .

The arrows in the

ooCcurs .

MODES

RUN RULE AUXILIARY
TEXT ASSOCIATION
TOPIC SEGMENTATION SAVE
LINGUISTIC1 EXTRACTICHN CONTROL
LINGUISTICZ SPACE, GRAMMAR INFORMATION
SEMANTIC1 INTEGRATION
SEMANTICZ NORMALIZATION
SEMANTICS3 GROUPING
GRAPHICI1 TMENOWNS
GRAPHIC2 ORIGIN
GRAPHICS CONFLICT, FPBG
TRACEL
TRACEZ2 PS, MEMORY
TRACE?
TRACE4 MATCH

Table 1. P2S-IT Modes.

Functicns. The functions currently implemented
in PAS-II are listed in Table Z.
command langquage availakle tc the user, and are
divided into four categories: bhasic, edit, £flag, and
precess functions. Hcte that a mode name is a
function that puts the user into that mode.

They constitute the

2 function call consists of a functicn name
followed by its arguments. any number of function
calls may occur together. If it is net clear which
names are the functicns and which are the arguments,

parentheses can be used for disambiguation. In
ambilguous cases the system always assumes the name
is a functicn name rather than an argument. Thus if

the user types HELF TCOFIC DISPLAY 2 it could mean
either (HELP TQPIC) : give me information about the
TOPIC mode, and (DISPLAY 2} : display line 2 cf the
current buffer; or (HELFP): tell me how to get help,
(TQPIC): put me into the TOPIC mode, and (DISFLAY 2} .
display line 3. The system would make the latter
interpretaticon.

Comparison with Figure 1 shows how PRAS-II maps onto
P25-I. HNote that the scope of the analysis has
been extended to include a Trace processcor (not
discuased in detail in this paper).

There are four auxiliary

Auxiliary Modes.
modes : aave, contrcl, association, and information.

The SAVE mode contains rules which specify which
mode buffers are to be saved on {(or read intc from)
a disk file when the WRITE {cor READ) command is
exacuted. The CONTEOL mcde contains rules which
define the contrel cycle for the system.
these rules define the control flow shown in Figures
2 and 4. The ALSSOCIATICON mode contains rules which
define the aasociations ketwaen run and rule modes.

Initially

The initial J{or default} asscciations are those

shown in Figure 3. The CONTROL and ASSOCIATICH modes,
together with the CREATE function, permit the scphis-
ticatad uaer to create new modes, redefine mcode
asscciaticons, and recrganize the control flow for

the entire system. One exampla of this is the usze of
a reorganized PAS-II teo analyze a problem description
{problem text; in natural language in order toc infer
from that text a tentative proklem space, cone that a
subject might use in reprezenting the proklem (2.

The INFORMATICH mcde is unique in centaining

no buffer and recognizing none of the functions that
conatitute the command languaga. Instead, this mode
responds to key words in the users input, which may
ba in gentence form. The mcode provides the user with
general information akcut PAS-II: its basic crgani-
zation, purpose, and tachniques of cperation.
to be contrasted with the HELP funetion, which pro-
vides the user with specific, on-the-spot information
about the mecde he is in.

This is

Control Structure

The contrel cycle for PAS-II is shown in the
flow diagram of Figure 4. The 30lid arrows indicate
the stage that is entered once processing in the
current stage is finished. The breken arrcws indicate
which stage to enter before processing is started.
Processing in LINGUISTIC1, SEMANTIC2, and GRAPHICZ is
incremental. In each of these modes only part of the
data from the previcus mcde is processed at cone time.
This initial portion of the data is then carried
through the rest cf the system, leading to the growth
of PBEG ncdes, before the rest of the data in the
previocus mcde 1s processed.
a semantic ccntext (the PBG) as early as possible in
the processing sequence 2o it can provide feedback
needed for linguistic, semantic, and group processing'.’

This is done to estaklish

Since the control crganization of PAS-IT is
quite flexibkble, the user is under no constraints to
procezss the data in the order shown in Figure 4. He
may skip or repeat stages within the existing contreol
framework, and may redefine the control cycle (via
the CONTROL mcde) . He may alsoc have the system put
him inte the next run mode in the contrcl locp, or
even autcmatically step him through the run modes,
initiating the processing at each stage i{see HNEXT
and AUTOMATIC in Table 2, .

Data Processing

Figures 3 and 4 show the processcrs which com-
prise the contrel <yele of PAS-II. In the Topic
processcor transceribed text is segmented inte phrases
Then in the
Linguistic processor an initial collection of these

containing only a single task topic.**

At present the PEG provides feedback for group
processing only.

This is & slight extensiocn: PAS-I regquires seg-
mented text as input.

FUNCTIO0NS

NAME

DESCRIFTLON

(mode name)

Puts uger into the mode named.,

CREATE Creates a mew mode,
DISFLAY Displays the contents of M,
B ERASL Unereates M (1f 1t was formed usinpg CREATE).
A EXTY Takes the user out ot the system {to LISE).
g HELF Provides system infoemation pertinent to M,
L MO Tells the user what mode he ie in.
C NEXT Puts the user inte the next appropriate run mode of C.
RLUILE Puts the user into the rule mode associated with M,
RUN Puts the user into the run mode asspcclated with M,
BREAK Brealks a Jine in M into two or more smaller lines,
GONNECT Connects adlacent lines in M to form a single line.
F DEI T NE Parmits the user to define the contents of lTines in M.
il DELETR Deletas Tines in M,
T ED Enables the user to perform intra-line editing in M.
T INSERT Inserts & line after a given line in M.
READ Reads data from a disk tile into M.
RENUMBER Remonbers the lines in M,
WRITE Write the contents of M onte a disk file.
AUTOMATIC Stepas the urer throuph C, executing GO in each run mode.
BATCH Stopa ayatem queries during run mode processing.
COMMENT Permits comments to be displayed when a line is displayed.
I PAST Speeds up reading (rom the disk by climinating format checking.
B HUsH Abbreviates error messages,
A NUMBERS Cauzes disgk files to be written with buffer line numbers.
PRINT Puts all the 1/0 at the tLerminal onbo a disk Iile,
SEARCH Causes processing to be repeated until no rules are applicable.
SUFPFRESS Suppresses printing of auxiliary informatien during processing.
TIME Causres procesalng time in M to be printed.
VERSTONL Cauzes the old version of grasmar/parser to be used.
VERSTION?Z Causea the new improved version of grammﬂr/parser tn be used,
AGATN Puts the data in M inte P and iires GO.
R CoPY Printa the copy of the data in M,
Q GO Processes the data located in F and puts the result into M.
G RECOPY Puls Lhe copy of the data from M back inta M.
E RESTART Puts the copy of the dala from P back into P and fires START,
5 START Deletes the data in M aod fives i,

-

KEY M: mode butfer of the mode the wser is in
I: mode buffer ptior to M in ©
G: econtrol cycle

Table 2. Desereiption af PAS-II Functions
(Flay descriptions are for the condition flag 1)

AP R e ok M o AP ot

i
i
TOPIC PROCESSOR : LINGUISTIC PROCESSOR SEMANTIC PROCESSDR
H
1 -
Text Topic “JLinguistic1 Linguistic? Semantic Semantic2 Semantic3
Sage Stage Stage Srage Stage Stage Stage
== - - -
Initial- Segmen Extrac- Parsi Integra- Normal- Prote-
ization tatian F-=1=» tion arsing tion ization > grouping
[] 1 1
H i
: :
| A ('S
' #*Data™ Data™
HRY - ata w, +“ Data
‘__E.S(': in -~ in ™~ ;:;s
- ic? LY . -
~losics, el |
) * '
Mo T [
I]
1
i ! {
Traced Trace3 Trace? Tracel Graphic3 Graphic2 nd Graphiei
Stage Stage Stage Stage Stage Stage Stage
fi—] -t e—]
Problem 5 .
- Standard- Praductian Linear- Behavior Orini etermine
Matching ization System ization Graph e Unknowns
TRHACE PROCESSOR PBG PROCESSOR GROUP PROCESSOR

Figure &, Flow diagram of PAS-I|

Koy =i stage to enter after processing
===~ stage ta enter before processing

segments is parsed yielding sets of semantic elements.
These elements are processed and refined in the
Semantic processor to produce groups composed cof one
operator element and its associated input and cutput
knowledge elements. In the PBG processor these groups
are incorporated into the PBG. The Trace processor

is then used to compare this PBG with the trace
produced by a given production system medel of the
subject.

Topic Processor. The Topic precessor contains
two run modes: TEXT and TOPIC. TEXT is an initiali-
zation mode; it holds the data for TOPIC to process.
Thus no real processing takes place in it. The
TOPIC mode uses the SEGMENTATION rules to segment all
the text in the TEXT mode. These rules have the
general form: string, / string,_, where a string is
any sequence of words, punctuation marks, or word
classes (as defined in the GRAMMAR mode), including
the null sequence. The slash (/) indicates where the
text is to be broken, i.e., after every cccurrence
of string1 that is immediately followed by an cccur-
rence of string,. Figure 6 show SEGMENTATION rules
for cryptarithmétic {to be used in the example in
Section 4).

Linguistic Processor., The Linguistic processor
contains two run modes: LINGUISTICl and LINGUISTICZ.
In LINGUISTICLl the EXTRACTION rules are used to select
a consecutive set of segments from TOPIC, representing
an initial guess as to the minimum number of segments
from which a group can be inferred. Processing con-
sists only of transferring these segments from the
TOPIC mode to the LINGUISTIC] mode, At present, the
EXTRACTION rules are simply a single integer speci-
fying how many segments to transfer.

Processing in the LINGUISTICZ mode consists of
applying the SPACE and GRAMMAR rules teo all the tepic
segments in LINGUISTICL. The parsing operation pro-
duces, for each segment, a set aof semantic elements
representing the meaning of the segment. The rules
in the SPACE mode define the problem space and have
the form: (semantic-element) type, where a semantic
element is either an operater, knowledge, or indicatcr
element, and the type is either OP, ¥N, or IND. The
CRAMMAR™ ™ rules define a key-word grammar and have the
form: <class> = (item11 item12 " (item21 item22
...) ... , where an item is either a class
(denoted by angle brackets} or a literal (such as a

word, letter, or character). An asterisk (%) can be
used between any twe items to indicate a match with
any string of text, and any GRAMMAR rule which is a
disjunction of single literals can be written without
parantheses. Figure 6 shows SPACE and GRAMMAR rules
for cryptarithmetic,

SPACE rule 8 in Figure 6 is an exception. It
defines a set named <V> containing two members,
the class <LETTER> and the class -~CARRY>,

Two parsers are available, a simple top down
parser and a more sophisticated parser written
by M. Rychener.

Semantic Procegsor. The Semantic processor
contains three run modes: SEMANTICL, SEMANTIC2, and
SEMANTIC3., 1In SEMANTIC1 the INTEGRATION rules produce
new elements by combining semantic elements generated
from the same or adjacent segments. In SEMANTIC? the
NORMALIZATION rules map knowledge and indicator ele-
ments into single elements reflecting the relationships
existing between two or more knowledge elements. In
SEMANTIC3 a tentative operator group (protogroup} is
formed. The INTEGRATION AND NORMALIZATION rules are
replacement rules of the type A => B, i.e., replace

A with B. Both 4 and B can be lists of semantic
elements. A slash (/) indicates that the next
elements of the list occur on the next line of the
mode buffer, Class names and X's are used as vari.
ables, and in the NORMALIZATION rules A's are vari-
ables which stand for knowledge elements on adjacent
lines comnected by the AND indicator. Typical
INTEGRATION and NORMALIZATION rules for crypte
arithmetic are shown in Figure 6. GROUPING rules are
not shown.® They define a protogroup to be the
largest consecutive sequence of elements containing
no more than one operator element.

Group Procegsor. There are two rum modes in the
Group processor: GRAPHICL, and GRAPHICZ. GRAPHICL
processing fills in the values of variables in the
semantic elements by comparing the element centaining
variables with all the elements currently active in
the PBG, i.e,, the current context, When a match is
found the appropriate values are filled in, Currently
the UNKNOWNS rules are not accessible to the user,

Processing in GRAPHIC? is a joint man-machine
effort.™ The goal is to hypothesize for each knowl-
edge element its origin, i.e., the operator and its
inputs {and the operaters that produced those inputs,
etc¢,) that produced that knowledge element as output.
The system queries the user asking for possible
operators arnd inputs that could have produced the
element whose origin is being sought, From this
informatior the system constructs an origin tree,
and hypothesizes which path through the tree repre-
sents the actual ecrigin of the element. The path is
picked on the basis of the agreement between the
hypothesized inputs and the actual context defined by
the current PBG. The ORIGIN rules, like the GROUPING
and UNKNOWNS rules, are currently not accessible.

PBG Processor. The PBG processor contains one
run mode: GRAPHIC3, In the GRAPHIC3 mode, processing
consists of taking the operator groups produced in
GRAPHIC2? and incorporating them into the problem
behavior graph. The CONFLICT rules are used to deter-
mine whether or not any knowledge elements in thea
operator groups conflict with knowledge already in the
PBG. If such a conflict cccurs, the PBG rules are
used to restructure the PBG so the conflict 1is
eliminated.

" At the current stage of development the Grouning
rules have not been made accessible to the user,

el
This is the major place where we have not regained

in PAS-I1 the power for automatic processing
available in PAS.T.

Both the CONFLICT and PBG rulea are ordered
production rules of the fterm & » 4, i.e., in situatien
S take actiom & (L1, 131. A situation is delined hy
a list of values of certaln vacriables, called the
state vector, SV, The left side of each production
tule has the Torm (VW ’ v 1, where V repre-
sents & permlsaible value %or the uth stat® vector
variable. The right side has the Mom {ﬁ A? ﬁ* g
where the A's represent actions to be taken. The cur-
rent valuea of the state vector varlables are compared
with the lefr =zide of each production rule. The first
mateh, from top to hottom, determines the actlons te

be taken {an asterisk is vomsldered to match any valoe).

Figure 6 showa CONFLLCT and PRG rnles for
cryptarithmetic. The COKFLILT rules determine
whether ar nat two given knawledge elements conflict.
I'te vxample CONFLICT state veetar contains: [SAME 2,
which is true (T) if the second items of hath the
glements are identical and fFalse (FY athexrwise;

(ITE¥ 1 1), which returne as & waluge {the (iest itemn
af the fitst element (the element in the PBGY; and
(ITEM 1 2), which returna as a valuc the fjrst ifen
af the secand clement {(the element in the groupl.
Thus it the two elements being compared wete (DU R)
and {NEQ R 91 CONFLICT tule 3 would match the state
vector and the decisive woeuld be that pa conflict
axists.

The PBG rules determine the t¥pe of rtesttuc-
turing that accurs ance a eonflict ia detected. The
PBGC state vectar in Figure & has I variables: TYPE,
which has the valuc CON if resiructuting ls baged on
caaflict and STM if it i3 based on aimilarity;” and
(ITEM 1 2, which is defined above. The a¢tlans shown
Ju Figure A are BLOCKRET, a type of restructuring
where blocks of adiacent nodea arc abandoned, and
COPY, a specilicarion rhac the graup causing the
restructuring should remain in the active portion of
the ZBG after restructucing, The stace vectars far
CONFILICT and PB{: may contain variables and actiona
other than the ones shown io Figure 6. For a complete
desceiptlan of these rules see the PAR.ITI reference
manuvat (10

Trace Pracessor. The Tepic, Linguistic,
gemantle, Graup and PRBG processors comprise the major
porticn of PAS-I1. It is thls purtian whicl repra-
septs a4 generalized versicn of PAS-I. The Trace
pracessar is a4 new extensian ta the system and has ne
analague in PAS.I. Some parts of it, like the MATCI
mede, are still wnder development, The Trace proc-
essar enables the user to wrlte a productionm syatem
model af the subjact (6, and then cowpare the trace
cbtained by running the production system model with
the PHG obrained by analyxing the protocol. The
details are described elsewhere {l&}.

4, FExample of Program Operation

T 11lustrate the use of PAS-TI, we present a
1isting of the actual user-machine interaction in-
velved in the an-line analysls ol a shoro crypt-
arithmetic protecal. The cryptarithmetic task is
glven in Flgure 5. HBathche protocal and the crypt-
avithmetic rulve used for this example are shown in
Flgure 6, ‘'Lhe pratocal iy stared im the TEXT mode
and the cryptacithmetic cules in the vight roles modes
showm. These rules approximate the minimal set needed

The FRG rates are alss uged Jor restructuring when
similaritica {ideatiuval nades) are detected, as
discussed in an earlier paper on TAS-I (13).

to analyze the q1ven protecal,

and are fur pxpogitory

purposes only.”

cdae.

The anpmotated listing is showe below. The cser
is jn lawer case and the system anipnl in wpper
The system prompts the user by typing either

inpnt.

an asterisk (%) or a quescion follewed by u guesllon
mark ¢!7.

whaxl efplay

TEXT HODE
1. 0I5 %5 THEREFORE T 15 8 , RSSUME R EQUALS 4 . SIHCE you
CARRY L , R I3 0ODD . ASSUME R 19 7 | KT &
#naxi gn

TOPIC M0O0F

1. b I56
THEREFORE T 5 8 .
ASSURE R EQUALS 4 .
SINLE YOU CRRRY 1
A 15 oob .
ASSYNE ® T3 7
HOT 5 .

0x? yas

TOPIC MDOE FIM[SHED

no¥ Y o

il

LTNGUISTICL HapE

0135 ;

THEREFORE T 15 B .
ASSUME R EOUALS 4 .
SINCE YOW CARRY |
R 13 DDO .
AGSUME R I3 7
NOT 5 .

OK? yas

tnext go

>

umu-.rum-—

DONALTD =3
+ GERALTD

ROBERT

The above expressicn 1s a simple avftimetic aum in

dizguise,
0, 1, 2, ..., 9.
You
no viher

Fach letter representa & diglit, that (s,
Each letter iz a disciper digitc.
glven that D represente the digit 5; thus,

letter may be 5.

are

What digite should be assigned to Lhe letlers sceh
that when the letters are replaced by their corees-
ponding digits the above expresslen is a lrue
arichmesic sum?

olayed its contents.
in the control cycle, TOPIC,
by typing GO,
be applied te the data [n TEXT,

ligure 5. Cryptarithmetcic Task

The user [irst entered the TE«T made and Jdis-
lleg ther entered the next mode
and started processing
This raused the SEGMEKUATION rules to
The system indicated

that the data in line 1 of the previous mede had been

transformed into the seven lines shown

above, and

asked if this transformation was satlsiactory (OKZ?).
At this peint the user cyped ves, telling the syacem
te actually put those seven lines into the next seven

" 4L least four times as many rules would be needed
for a complate set (153).

1.

0N MR W -

IS0 RNON N -

——

—_

8 WN -

bW -

WA -

B WK -

TEXT MODE

D IS 5 ; THEREFORE ¥ IS 0 . ASSUME R EQUALS 4 . SINCE YOU

CARRY | ,RISODD.ASSUMERIS7 ,NOT 5.

SPACE RULES

. {NEG) IND

. {ODD <V>) KN

. {EQ <V> <DIGIT>) KN

. (THEREFQORE} IND

. (BECAUSE) IND

. (ASSUME) IND

. (DIGIT <DIGIT>) KN

. {<¥> <LETTER> <CARRY>) SPASET

GRAMMAR RULES

. <EQ> = (¢<CARRYEQ>) (<LETTER> % <EQUAL> * <DIGIT>)
. <CARRYEQ> = (<CARRY> % <DIGIT>) (<CARRY>)
. <ODD> = (<LETTER> * <EQUAL> * 0DD)

<EQUAL> = IS EQUAL EQUALS BE WAS ARE
<NEG> = CANNOT NOT NO N'T

. <THEREFORE>» = THEREFORE IMPLIES

<ASSUME> = ASSUME ASSUMING

. <BECAUSE> = BECAUSE SINCE

. <CARRY> = CARRY CARRYING CARRIED
C<LETTER>=ABDEGLNORT
DIGIT>=01234567 89

SEGMENTATION RULES
-/
s/

. <DIGIT> , /
. <LETTER» , /

EXTRACTION RULES

.12

INTEGRATION RULES

. (X1 CARRY X2) = (X1 <C> X2}

. (EQ X1 X2) / (DIGIT X3) = (EQ X1 X2) / (EQ X1 X3)
. (NEG) (EQ <LETTER> <DIGIT>) => (NEQ <LETTER> <DIGIT>)

. (ASSUME) (EQ <LETTER> <DIGIT>) => {AEQ <LETTER> <DIGIT>)

NORMALIZATION RULES

. Al f (THEREFQRE) A2 => (BECAUSEOF Al A2)
. (BECAUSE) Al / A2 = (BECAUSEOF Al A2)

CONFLICT RULES

.5V = {({SAME 2) (ITEM 1 1) (ITEM 1 2))
{F % =) => NO-CON

. (% 0DD NEQ) => NO-CON

. (% % x) => ASK-IF-CON

PBG RULES

.SV = (TYPE (ITEM 1 2))

. (CON NEQ) => BLOCKREJ

. (CON x} => (BLOCKREJ COPY)
. (% %) => BLOCKREJ

Figure 6. Cryptarithmetic Rules.

lines of the TOPIC buffer, 1 the processing had
been unsatisfactory, the user could have jumped to

the SECMENTAT ION mode, changed the rules, jumped

back to TOPIC, and reprocessed the data using the new
ruley before proceeding wilth the next processing step.

The user then entered the next mede, LINGUISTICI,

and started processing. The EXUTRACTTON rules werae
applied to the seven lines of data in TOPLC and the
system indicated that the processing should consist of
placing these lines In LINCUISTLICL unchanged., Nole
that Lhe syastem indicated that line 1 from TOPIC was
trangformed into a4 single line in LINGUISTICY, etc.,
ay vppoesed to the previous step where one line in TEXT
was trangforwed Into seven lines in 1TOPIC,

LINGUISTLICZ MODE
«EQ> «LETTER> @

«<EQuaL> IS5
NIGIT> &
1. (FO D &)

FROM pIss
an? yuk hatch supprass
BATCH=T
SUPPRESS=F

7. tFQ T 8} {THCREFORE)
FROA THEREFORE T IS @
3. (EQ-R 4) (ASSUME)
FROM ASSUME R EQUALS 4 .
4, (EQ CARRY 1) (BECAUSE}
FROM o SINCE YOU CARRY 1 ,
5. (DDD R)
FROM f I5 00D -
6. (EQ R 71 (ASSUNE}
FROH » ASSUNE R 15 7
7. (NFG) (OIGIT 5}
FROH NOT 5 .
LINGUISTIC2 HOOF FINTSHED
«(balch 1) (suppress f) autaomatic
BATCH=F
SUPPRESS=F
AUTOHATIC=T
wnmxt go

Processing in LINGUISTICZ consisated of applying
the SPACL and GRAMMAR tulee to the data in LINGUISTICL
to preoduce a parse. In step 1 the parge tree was
printed and the user set the flap BATCH true to
eliminate the OK? question {the system then assumes
the answer is always ves) and the flag SUPPRESH true
to elimipnate fuether printing of the parse trees.
Then, before going to the next mode in the cantrol
cyele, the uwuser set the flag AUTOMATIC true so the

sysatem would automatically step through Che appropriate

run modes executing GO. At this point the LINGUISTIC2
buffer hald che seven sets of semanlic clements shown
above.

SEMANTICL HaoOF

RULES RPPLTFD - 4 1 2 & 3
1. (EQO D &

(EQ T A» {THEREFQORE)

(AEQ R &)

(RECAUSEY (FQ <C» 1)

(neo R)

NEQ R 71

. (NEQ R §)

-0K? ymos

SEMRNYICL HODE FINISHED

~N oY oeom

SEMANTICZ RODE

RULES AFPPLIED : 1 2

1-7. (RECAUSEOF t(EQ D 50} ((EQ T B)b}
AEG R 4)
(RECAUSEDF {(EQ <&~ 117 (4QPD RO}
(REQ R 7)
(NEO R 5)

k? yas

SEHANTIC2 HOQE FINISHEOD

SEMANTIC3 HODE

1. (BECALSEOF ({EO0 D 5)) {({EQ T @13}
(AEQ R 4)
{BECAUSEDF ((EQ U= 1)) ((DRD RI))
(REQ R 7)
(NEQ R o)
0K? yms

2.
3.
&,
5.

Prucessing in SEMANTIC consisted of applying the
INTEGRATION rules to the semantic clemenls in
LINGUISTECZ, As indicated above there were five
applications of the rules. Processing in BEMANTIO.
consiated of applying the NOHMALTZATION rules to the
seven sets of elements in SEMANTICL. There were two
applications of the rules, and Mive sets of elewments
woere left in SEMANTIC?, TFrocessing in S5CEMANTICY con-
igisted of applying Lhe CROUPING rules, which are not
explicit. These rules aimply attempted to pull trom
SEMANT LCZ one opetator element and its arsociated
knowledge elements, Since no operdator clements were
pregent, it pulled all the clements from SEMANTIG2,

GRAPHICL hODE
1. (BECAUSEDF (IER O %)) ((EQ T @)}

FRON (BECAUSEDF ((EQ O 53 ((EQ T @)Y
0K yosz
2. (RAEQ R &)
FROM 1 {ACO R &)
QE? yas

3. (RCCRAUSEDF ((EQ <Cx 13} ((ODD R)))
FROA : {RECAUSEOF {(EQ =<C> 1)) ((DOD R})}
QF?* yas batch supprass ri: lbecauscof (leqg c2 11 lledd r2})
BATCH=T
Bo vou REALLY HANT BOTH AUTORATIC=T AND BATCH=T 7 yes
SUPPRESS =1

4, [(AEQ R 7}

FROR (AEQ@ R 7
5. (NEQ R 5

FROA 1 (NEO R 5)

GRAPHICL HODE FIWNISHED

Processing in GRAPHICL consisted of applying the
UNKNOWNS rules, which are nat explicit. These pules
Involve rearching the existing PRG for elementcs that
match the elements containing unknowns. In thia
simple example no matches were found because the PBG
had not yot been grown. Thus, in step 3 when the
unknown carry <> way not found, the user told the
system to replace jts processing result with
(BECAUSEQF ({ EQ CZ 1)) ({ODD ®))). This was put
into line 3 of the CGRAMRICT huffer, rather than the
result containing <C>. In effect the user told the
system that the value of T was 02, 1.,e., that the
unknown ciarry was the carry into the gecond column
(the L+L=R column).

Fracessing in GRAFHIGZ and GRAPIICY occurred as
followa: GBRAPHIC2 was cnterod and the clements from
line 1 of GRAFHICLl were proceased Interactively to
determing theair operator groups, CGRAPHICY was then

erdered and these groups ware grown as new nodes in the

PBG., Next CRAPHICY was reentered and the elemosntls

from line 2 of GRAPHIC! processed, This graphic?-
graphic3 loop was repeated for each line in GRAPHICI.
Below is shown only one of these 1oops*: processing
and growing the elements from line 3 of GRAPHICL.

GRAPHIC2 HODE
FOR (BECAUSEDF (<EQ C2 1)) ¢{0DD R))) :
OP = {pc 2}
QUTPUTS = (odd r}
INPUTS = (eq c2 1}
FOR ¢EQ £2 1)
oPF = lav ¢}
INPUTS =
GTHER ORIGINS FDR (EQ C2 I} ? yes
FOR {(EQ CZ 1} 1
0P = (pe 1)
INPUTS = (eq o 5)leq cl 8)
(EQ D S} FOUND IN PRG
(EQ €1 8 FODUND IN PRG
OVHER ORIGINS FOR (EQ CZ 1) ? no
ODRIGIN TREE :
O0DD RY (PC 2) (EQ €2 1Y (AV C2})
(PC 1} (EC D %)
(EQ C1 &
3, (PC 1Y ((EQD S [EQ C1 8)) (EQ C2 1)
(PC 2) ((EQ €2 1}» (0DD R)
FRON : (BECRUSEOF (¢<EQ C2 1)) ((ODD RI})

GRAPHIC3 MODE
1. GROW (EQ C2 I}
FROM : {PC 1) (LED D 5 (EQ C} B)) (EQR C2 1}
DO (RAEG R &) AND (QOD R} CONFLICT ? yes
2. CONFLICT: N& {(AEQ R 4) AND (0OD Ry WITH (BLOCKREJ COPY)Y
FRON : (PC 2+ ((EQ C2 1)) (0DD R}
GRARPHIC3 MODE FINISHED

In GRAPHICZ the system queried the user to deter-
mine possible origins {operators and their inputs) for
the elements in question. This information was
represented as an origin tree as shown above. This
tree is displayed below in a more conventional style,

output: (ODD . R)

operators: (PCIZ)

input /output; (EQ EZ 1)

operators: (AV 02)/ }‘.K
input: (EQ D 5 (EQ C1 0}

Figure 7. Origin Tree

The system analyzes the tree and decides which path
represents the best origin for the top element, in
this case (ODD R). Here there are only two alter-
natives: the path with the operator: assign a value
te the carry into cclumm 2, {AV €2), and the path
with the operator: process columnl, (PC 1). The
system chooses the latter, based on implicit ORIGIN
rules which tell it to choose between operators by

rating them according to their inputs. The decision
function currently in use is:

Choose to maximize: (3 x used-inputs) -
{unused-inputs)

*
Space limitations prevent us from including the
entire listing,

where an input is "used" if it occurs in the PBG.
Thus {AV C2} has a rating of 0 while {PC 1) has a
rating of (3x2}-0 or 6, The format of the operator
groups produced in GRAFPHICZ is: operator (input
list) output.

In GRAPHIC? the two proups from GRAPHIC? were
incorporated into the PBG. The second group, with
{ODD R} as the output, conflicted with an existing
group in the PBC and led to restructuring of the PBG
to resclve the conflict. Conflicts were defined by
the CONFLICT rules, the type of restructuring by
the PEG rules.

sgraphicld display
GRAPHIC3 MODE

N1 8 OP (RECALL D} ouT {EQ 0O &)

N2 0P (RETHLL T QUT {EG CL O}

N3 gpP PC 1) IN (EQ D 5 {EQ Cl & oUT (EQ T &
N4 OP (AY R} DUT (RER R 4)

N5 oP (FC 1} IN (EQ D %) (EQ Cl B 0T (EQ CZ D)
NG aP (PC 2} IN (EQ C2 1} OUT (0DD R) [l

N7 3 oP (PC D) IN [ER D &) (EQ CL & OUT (EG €2 1)
NB& ap ¢ IN (EQ C2 D) ouT {C00 R}

N9 oP AV R OUT (REQ R 7)

Ni® oP (TD R 5} IN ERD 5) DUT (NER R 5)

After all the data from GRAPHICL was processed
in GRAPHIC2 and GRAPHIC3 the contents of GRAPHIC3
were displayed. Each line in the display represents
a node in the PBG. HNode 10 contains the cperator:
test to see if R can have the digit 5 as a value,
(Th R 5). Figure 8 shows this PBG in the conven-
tional representation. Note that the conflict between
{AEQ R 4) and (ODD R) led to a back-up that abandoned
nodes 4, 5 and 6., Thus the currently active nedes,
the ones that define the current context, are those
joined by the heavy lines in Figure 8.

5, Disgcussion

The initial program, PAS-I, is an artificial
intelligence program by any reasonable criceria, The
task it attempts, the inference from verbal behavior
to Problem Behavior Graph, is a task requiring intel-
ligence when done by humans. The mechanisms used are
those common to other artificial intelligence
programs that tackle somewhat similar tasks: grammars
to deal with the surface structure of natural language,
representation of knowledge, matching, and heuristic
search to infer information not directly expressed in
the utterances.

PAS-IT is a program that accomplishes the same
task as PAS-I. Hence, it too is an artificial intel-
ligence program. But when looked at structurally it
more closely resembles a data processing framework
or, possibly, a language. Something has happened in
going from PAS-1 to PAS-II, something worth identi-
fying and discussing.

Let us start with Planner (3) and QA4 (8).
These systems are languages for writing programs to
perform a class of artificial intelligence tasks. The

Conflict and PBG rules are described in detail in
an earlier paper (15).

ek
There are other representatives of this class,
e.g., POPLER (1) and Conniver (10, 11},

RECALL RECALL

D ct

D=6 C1=0

Figure 8. Problem Bebavior Graph for Cryptarithmetic

Knowledge Operafors
equal RECALL recall element

KEY: «- assign equal PC process column
not equal AV assign value

TD test digit

exact boundaries of these tasks are obscure but their
central core is clear and includes a large fraction of
the tasks for which heuristic programshave been built
-~ theorem proving, robot planning, symbolic manipu-
lation, etc. These systems were formed, essentially,
by taking a list processing framework and embedding
within it some of the ad hoe mechanisms developed

for particular heuristic programs. They include back-
tracking, a generalized matching facility, a global
data base (accessed by pattern matching) and multi-
processing control, Embedding these mechanisms with-
in a language makes possible their use in novel com-
binations (and in interaction with the other mecha-
nisms available in higher languages).

This same embedding of mechanisms into a language
system has ocecurred in the trangsition frem PAS-TI to
PAS-II, PAS-II provides a framework within which a
class of AI programs can be easily constructed. This
class is not the same as that of the Planner/QAd
type system, which is mote "mainline" artificial
intelligence. Rather, it appears to be characterized
as linguistic data processing, the essential feature
being the processing of long sequences of data
(rather than just a sentence at a time). This class
includes, of course, protocol analysis. It also
includes a number of other tasks: content analysis
of more classical varieties (9), problem space con-
struction (2), test grading, and what is coming to be
called semantic filtering,

The embodiment of mechanisms into a language
framework has occurred at two levels in PAS-II, cne
corresponding roughly to that of Planner/QAé and the
other more specialized. The first level is repre-
sented by the PAS-II framework of run modes, rule
modes, common command language, editing system, and
control structure., This includes a set of mecha-
nisms for the data base (the run modes), a matching
faeility (the common mechanism for how the rules work
on data), and a backtrack facility (the saving of
buffers so that processing can be undone), Added to
this is the explicit control structure for processing
within a stage and passing through the stages, which
corresponds to a weak method (4} in the same sense
as GPS's basic methods or the basic methods built into
the goal construct in Planmer/QA4. These provide a
schema of operation which, though almost content free,
is still a rational procedure for achieving the
overall goal. The mechanisms adopted in PAS-I1 are
somewhat more shaped than their correspondents in
Planner/QAd, e.g., there is not a single global data
base or one stratified by a general context mechanism,
rather the data is organized intc homogeneous groups
(the modes) along structural lines,

The second level is the specialization of the
various modes to specific subtasks inherent in tasks
of the class: segmentation, parsing, normalizationm,
etc, The specialized rule systems contain the knowl-
edge about the processing. Thus writing any sort of
legal rules within a given rule system generates proc-
essing of the right sort (though it may not do the
right task). In this respect providing a single gener-
alized rule system or scheme for pattern matching and
pattern evoked actions {(in the manner of Planner/QAA)
would move more of the knowledge required back across
the boundary from the language system (PAS-ID to the
coding within the system (the user program in PAS-II,
which is the set of actual rules in the rule modes).

As one moves PAS-II in the direction of a
generalized system for a wider class of problems, one
can expect the eollection of rule modes to increase,

becoming eventually, a library in the classic sub-
routine library sense. The system designer is then
faced with the problem of providing these modes with
the rules needed to define processing in the wvarious
problem domains. However, one advantage of spec-
ialized rule systems is that when their structure

is highly constrained it becomes easy to predict the
effect of modifying rules in the system (as compared
toe predicting the effect of modifying statements in
a general programming language). This sets the stage
for the development of self-modifying systems which
rewrite their own rules or, in effect, learn to
improve their performance in some data processing
tagk (12, 13). Such a capability in an interactive
PAS-II-1like system would enable the system to build
or modify its own rules for a particular problem
domain, using feedback from the user to direct the
search for good sets of rules.

The evolution from PAS-1 to PAS-II in analogy
to the mere general evolution geoing on toward
planner-like language systems shcould add to the
awareness that embedding mechanisms in language
remains a potent scheme for making advances in
artificial intelligence.

Acknowledgments

This paper will appear in the preprints for the
third Internaticnal Joint Conference on Artificial
Intelligence (IJCAI-73). This research was supported
in part by Research Grant MH-07732 from the Nationmal
Institutes of Health and in part by the Advanced
Research Projects Apency of the 0Office of the
Secretary of Defense (F44620-70-C-0107) which is
monitored by the Air Force Office of Scientific
Research.

References

1, Davies, D. J. M., POPLER: a POP-2 planner. MIP.
School of University of Edinburgh.

2. Hayes, J. R., and Waterman, D. A., Automatic
Problem Space Construction, Peychology Department,
Carnegie-Mellon University, 1973,

1, Hewitt, Carl, Description and theoretical analysis
of planner: A language for proving theorems and
manipulating models in a robot. AI report TR-258
(Ph,D, thesis}. MIT AI Laboratery, Cambridge,
Massachusetts, 1972,

4, Newell, A., Heuristic programming: Ill-structured
problems, in Aronofsky, J. 5. (ed.) Progress in
Operations Research, vol. 3, Wiley, 1969, pp.
362-414,

5. Newell, A., and Simen, H, A., Human Probiem
Solving, Prentice-Hall, Englewood Cliffs, N.J.
1972.

6. Newell, A., A theoretical explorartion of mechanisms
for coding the stimulus, in Melton, A. W., and
Martin, E., (eds.) Coding Processes in Human Memory,
Winston and Sons, Washington, D.C., 1972, pp.
373-434.

7. Newell, A., Simon, H. A., Hayes, R., and Gregg, L.,
Report on a workshep in new techniques in cognitive
research. Computer Science Department, Carnepie-
Mellon University, 1972.

10.

11,

12.

13,

14.

15.

16.

Rulifson, J. F., Derksen, J. &A., and Waldinger.
E. J., QAd: A procedural calculus for intuitive
reasoning, Stanford Research Institute, November
1872,

Stone, P. J., Dunphy, D, C, Smith, M, S,,
Ogilvie, D, M,, The General Inquirer, MIT,
Cambridge, Masgachusetts, 1966.

Sussman, Gerald, and McDermott, Drew, Why
conniving is better than planning, MIT, Canbridge,
Massachusetts, April 1972.

Sussman, Gerald, and McDermott, Drew, Conniver
Reference Manual, MIT, Cambridge, Massachusetts,
May, 1872.

Waterman, D. A., Machine learning of heuristics.

Ph.D. Thesis, Computer Science Department,
Stanford University, 1968.

Waterman, D. R., Generalization learning tech-
niques for automating the learning of heurietics,
Artificial Intelligence, veol. 1, nos. 1 and 2,
1970, pp. 121-170.

Waterman, D. A., and Newell, A., Protoccl analy-
gizg ag a task for artificial intelligence.
Artificial Intelligence, vol. 2, nog. 2 and 3,
1971, pp. 285-318.

Waterman, D. A., and Newell, A., Preliminary
results with a system for automatic protoccol
analyeis. Carnegie-MelIon University, Comnputer
Science Department, 1973.

Waterman, D. 4., PAS-II Reference Manual,

Psychology Department, Carnegie-Melicon University,
1973.

