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Abstract 

PAS-II, a computer program which represents a 
generalized version of an automatic protocol system 
(PAS-I) is described. PAS-II is a task-free, inter­
active, modular data analysis system for inferring 
the information processes used by a human from his 
verbal behavior while solving a problem. The output 
of the program is a Problem Behavior Graph: a descrip­
tion of the subject's changing knowledge state during 
problem solving. As an example of system operation 
the PAS-II analysis of a short cryptarithmetic pro­
tocol is presented. 

1. Introduction 

Automatic protocol analysis is a joint effort 
by man and machine to infer from the record of the 
time course of a subject's behavior, the underlying 
information processes. As developed (5), it usually 
refers to the verbalizations of a subject solving 
some problem under instructions to think, out loud. 
Protocol analysis designates the full range of activ­
ities engaged in by the psychologist when working 
with protocols: description of the subject's 
behavior according to an hypothesized model, induc­
tion of new rules, derivation of consequences from 
a model in the context of specific data, and measure­
ment of adequacy of a model. The initial focus of 
our work has been behavior description in terms of 
information processes, given an hypothesized general 
model (the so-called problem space in which the 
subject operates). 

The PAS-I system (14, 15) was our first attempt 
at automatic protocol analysis. This is a fully 
automatic, non-interactive, specialized system de­
signed to analyze cryptarithmetic protocols and pro­
duce as output a problem behavior graph (PBG)describ­
ing the subject's search through a posited problem 
space. The protocol analysis is represented as a 
sequence of processing stages that eventually trans­
form the raw protocol into a problem behavior graph. 
At each stage rules are applied which effect a trans­
formation of the data. The organization of PAS-I is 
shown in Figure 1. 

PAS-I has successfully analyzed protocols from 
DONALD+GERALD=ROBERT and CROSS+ROADS=DANGER crypt­
arithmetic problems. The results obtained in the 
DONALD+GERALD=ROBERT task for two of the subjects 
have been discussed in detail (15) and demonstrate 
that this approach to automatic protocol analysis is 
both feasible and rewarding. 

Encouraged by the success of PAS-I we have 
designed and built an improved version called PAS-II. 
PAS-II was designed with two major goals in mind: to 
make it interactive and task free. By interactive 
we mean that the user is permitted to take an active 
part in the analysis: he can provide answers to sub-
problems the system is unable to solve, correct proc­
essing errors, and even maintain control over the 
processing sequence. Clearly, real-time interaction 
of this sort makes the system a more powerful tool 

for protocol analysis. By task free we mean that 
the system is independent of any particular problem 
domain. To make PAS-II task free we partitioned the 
system into two parts: the problem dependent part 
consisting of the processing rules or heuristics used 
at each stage of the analysis, and the problem  
independent part consisting of the general control 
structure and command language. Thus, to apply the 
system to a protocol in a new problem area the user 
must first supply the system with processing rules 
for that domain.* The design of PAS-II also included 
four subgoals: to make the system transparent, 
modifiable, extendable, and open (see Figure 2). 

Two important implementation issues were not 
addressed in the design of PAS-II. 1). Improve system 
performance in cryptarithmetic. This includes 
expanding the deductive and inductive inference 
capabilities, and "fine tuning" the system hy 
optimizing the processing heuristics to produce the 
best possible analysis within the given framework. 
2). Extend the scope of the analysis. For example, 
extend the system back to handle the speech recog­
nition and segmentation problems inherent in producing 
a transcription from the audio tape. Or extend the 
system to handle the problem of inducing the problem 
space from the protocol or inducing a production 
system model from the problem behavior graph. 

It was decided to make PAS-II interactive and 
task free, postponing the problems of increasing 
power in a particular task or broadening the scope 
of the analysis. This decision was influenced by 
the desire to provide a working tool for protocol 
analysis that could be used by participants at a 
workshop on New Techniques in Cognitive Research held 
at CMU in the summer of 197 2 (7). The PAS-II system is 
currently running in LISP at CMU on a PDP-10 and is 
available to the CMU (and the ARPA Network) community. 

This paper is organized as follows. The task of 
protocol analysis is discussed in Section 2. This is 
followed in Section 3 by a brief description of the 
structure of the program and in Section 4 by an 
example of its use in analyzing a cryptarithmetic 
protocol. Section 5 concludes with a discussion of 
the general executive structure of the system and 
its implication for AI data analysis programs, 

2. Task of Protocol Analysis 

Protocol analysis is a complex data processing 
task requiring both deductive and inductive inference 
capabilities. Our current approach to protocol analy­
sis is based on a particular theory of human problem 
solving. For a description of this theory and an 
introduction to the task of protocol analysis see 
Newell and Simon (5). 

Ultimately, a library containing processing rules 
for a number of different problem domains will be 
available to the user. 
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User and system exchange information during processing. 
System is independent of any particular problem domain. 

System is easy to use and understand by virtue of a clean 
organization and the ability to explain itself. 
Basic changes in the data processing procedure can be made 
by a user with no knowledge of the language used to program 
the system. 
The programmer can easily enlarge the system to encompass 
a wider range of the data analysis. 
The user, rather than the program, initiates and controls 
the interaction and accordingly gains ultimate control of 
the processing sequence. 

Figure 2. Design Considerations for PAS-II. 



Theoretical Substructure 

Problem Space. We assume human problem solving 
takes place by search in a problem space. The ele­
ments of this space are the possible states of knowl­
edge the subject can have about the task, where a 
state of knowledge is simply an expression of what the 
subject knows at some particular point in the space. 
Besides knowledge states, the problem space also in­
cludes a set of operators. These define operations 
the subject can perform on knowledge at a particular 
state to yield new knowledge -- hence to move to a 
new knowledge state. The operators are incremental, 
that is, they take as input a small portion of the 
total knowledge state (a small set of knowledge ele­
ments) and produce as output new knowledge elements. 

Problem Behavior Graph. The subject's search 
through the problem space for a solution can be des¬ 
cribed as a sequence of operator applications that cre­
ate a string of incrementally changing knowledge states. 
The plot of this search is called the problem behavior 
graph (PBG) . Figure 8 (also used to illustrate the 
output of the analysis given in Section 4) shows a 
problem behavior graph for cryptarithmetic. The nodes 
represent operator applications: the knowledge ele-
ments at the lower left of each node are the inputs, 
those at the lower right are the outputs. PBG 
branching results from the subject abandoning infor¬ 
mation and returning to a prior knowledge state 
(usually because of a discovered contradiction) . For 
example, in Figure 8 the outputs of nodes 4 and 6 
conflict: "R is 4" conflicts with "R is odd," and 
leads to the abandonment of nodes 4, 5 and 6. Note 
that the knowledge state at any point in the graph is 
the conjunction of all output elements on the path from 
the given point back to the beginning of the graph. 
All nodes on the path from the last node back to the 
beginning of the graph are called currently active 
nodes . Thei r output elements define the current 
knowledge state. 

Data Analysis 

The data being analyzed is the transcribed text 
of a subject's verbal protocol. As the text is trans¬ 
formed into a PBG it is subjected to four major types 
of processing: linguistic, semantic, group, and PBG. 
Figure 1 typifies such a processing sequence. 

Linguistic Processing. The text is first 
segmented into shorter strings called topic segments, 
each of which is expected to ultimately yield approxi¬ 
mately one problem space element. Each segment is 
then parsed using a grammar sensitive to the problem 
domain under consideration. The result of parsing is 
a set of semantic elements which represent the meaning 
of the segment. For example, the segment "D is not 
equal to 6" might yield the elements (NEG)(EQ D 6) in 
the cryptarithmetic task. Here (NEG) is called 
an indicator element, (EQ D 6) a knowledge element. 

Semantic Processing. The semantic elements 
produced through parsing are first combined in very 
elementary ways to produce new elements, i.e., (NEG) 
and (EQ D 6) become (NEQ D 6 ) . Next, new elements 
reflecting relationships between elements from 
adjacent segments are produced. Thus, (EQ D 5) from 
one segment and (THEREFORE)(EQ T 0) from the next 
segment become (BECAUSEOF (EQ D 5)(EQ T 0)) , e.g., 
"because D is 5, T is 0." Finally, these elements are 
arranged into initial approximations of operator groups, 
each containing an operator element and the surround¬ 
ing knowledge and indicator elements. An operator 

group is defined to be an operator together with its 
input and output knowledge elements. 

Group Processing. The tentative operator groups 
produced during semantic processing are now analyzed 
to obtain a complete picture of what the subject knows 
at each moment and what operators he applies. First, 
variables in semantic elements are identified by com¬ 
paring the elements to the current context as defined 
by the PBG. Thus if (EQ D 5) were in the PBG then 
when given the element (EQ <L> 5) , where <L> stands 
for a class of letters, we recognize that <L> in this 
case is the letter D. 

The second part of group processing consists of 
finding, or hypothesizing, the origin of every knowl¬ 
edge element in each tentative group. The origin of 
a knowledge element is defined to be the operator 
which produced it, plus the inputs to that operator, 
plus the operators which produced those inputs, etc. 
Thus the origin can be represented as a tree which 
defines a collection of overlapping operator groups. 

PBG Processing. The operator groups produced 
during group processing are now incorporated into the 
PBG. In general, each group becomes a node in the 
PBG. In the simplest case the new node is just 
attached to the last currently active node. However, 
when contradictions occur (the output of one node 
conflicts with the output of another) restructuring 
occurs to eliminate the conflict (see Figure 8) . 

3. Structure of the Program 

PAS-II takes as input a transcribed text of the 
verbalization of a subject solving a problem and 
produces as output a PBG. The processing rules for 
the various stages, including the rules defining the 
problem space, are given to the system. These rules 
are supplied either by the system builder via a 
library of rules for various problem domains or by 
the user himself. 

Modular Structure 

PAS-II is organized as a modular data analysis 
system. The basic unit of organization is the mode: 
a processing state which has associated with it a 
buffer capable of holding rules or data. This buffer 
can be modified by the editing functions available in 
the command language. There are three types of modes: 
run modes, which hold the data being analyzed, rule 
modes, which hold the processing rules, and auxiliary 
modes, which hold task-free system-oriented rules. 
Thus the information in the rule modes constitutes the 
problem dependent part of the system. 

The next level of organization is the stage: a 
unit consisting of one run mode and any number of 
associated rule modes. Data processing is performed 
in a stage by applying the rules from the rule modes 
associated with that stage to the data present in the 
run mode of the previous stage. The result of the 
processing is then put into the run mode of the current 
stage. Figure 3 illustrates the modular organization 
of PAS-II, with the arrows indicating data flow and 
the lines indicating mode associations. 

The highest level of organization is the 
processor: a unit consisting of consecutive stages 
in the control cycle. For example, in PAS-II two 
linguistic stages form the Linguistic processor and 
three semantic stages form the Semantic processor. 
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Modes . The modes currently implemented in PAS -
II are listed in Table 1. Note that most run modes 
have one or two rules modes associated with them. 
This association is illustrated in Table 1 and also 
in Figure 3," which shows the modular composition of 
the various processors in P A S - I I . The arrows in the 
figure define the data links existing between m o d e s . 
The mode at the tail of an arrow provides the data 
that the mode at the head of the arrow p r o c e s s e s . For 
example, processing in the TOPIC mode involves apply-
ing the SEGMENTATION rules to the data in the TEXT 
mode and then placing the result in the TOPIC mode. 
As each line in TEXT is processed, it is deleted from 
the TEXT buffer. However, a copy of these deleted 
lines is stored elsewhere in TEXT and can be re¬ 
trieved (see the process functions in Table 2) . The 
arrows in Figure 3 do not necessarily define the 
control cycle, i.e., the order in which processing 
occurs. The control flow is illustrated in Figure 4 
(to be discussed l a t e r ) . 

MODES 

RUN RULE AUXILIARY 

TEXT ASSOCIATION 
TOPIC SEGMENTATION SAVE 
LINGUISTIC1 EXTRACTION CONTROL 
LINGUISTIC2 SPACE, GRAMMAR INFORMATION 
SEMANTIC1 INTEGRATION 
SEMANTIC2 NORMALIZATION 
SEMANTIC3 GROUPING 
GRAPHIC1 UNKNOWNS 
GRAPHIC2 ORIGIN 
GRAPHIC3 CONFLICT, PBG 
TRACE1 
TRACE2 P S , MEMORY 
TRACE3 
TRACE4 MATCH 

Table 1. PAS-II Modes. 

Functions. The functions currently implemented 
in PAS-II are listed in Table 2. They constitute the 
command language available to the user, and are 
divided into four categories: basic, edit, flag, and  
process functions. Note that a mode name is a 
function that puts the user into that mode. 

A function call consists of a function name 
followed by its arguments. Any number of function 
calls may occur together. If it is not clear which 
names are the functions and which are the arguments, 
parentheses can be used for disambiguation. In 
ambiguous cases the system always assumes the name 
is a function name rather than an argument. Thus if 
the user types HELP TOPIC DISPLAY 3 it could mean 
either (HELP T O P I C ) : give me information about the 
TOPIC mode, and (DISPLAY 3 ) : display line 3 of the 
current buffer; or (HELP): tell me how to get help, 
(TOPIC): put me into the TOPIC mode, and (DISPLAY 3 ) : 
display line 3 . The system would make the latter 
interpretation. 

Comparison with Figure 1 shows how PAS-II maps onto 
PAS-I . Note that the scope of the analysis has 
been extended to include a Trace processor (not 
discussed in detail in this paper) . 

Auxiliary Modes . There are four auxiliary 
modes: save, control, association, and information. 
The SAVE mode contains rules which specify which 
mode buffers are to be saved on (or read into from) 
a disk file when the WRITE (or READ) command is 
executed. The CONTROL mode contains rules which 
define the control cycle for the system. Initially 
these rules define the control flow shown in Figures 
3 and 4. The ASSOCIATION mode contains rules which 
define the associations between run and rule modes . 
The initial (or default) associations are those 
shown in Figure 3. The CONTROL and ASSOCIATION modes, 
together with the CREATE function, permit the sophis¬ 
ticated user to create new modes, redefine mode 
associations, and reorganize the control flow for 
the entire system. One example of this is the use of 
a reorganized PAS-II to analyze a problem description 
(problem text) in natural language in order to infer 
from that text a tentative problem space, one that a 
subject might use in representing the problem ( 2 ) . 

The INFORMATION mode is unique in containing 
no buffer and recognizing none of the functions that 
constitute the command language. Instead, this mode 
responds to key words in the users input, which may 
be in sentence form. The mode provides the user with 
general information about PAS-II: its basic organi¬ 
zation, purpose, and techniques of operation. This is 
to be contrasted with the HELP function, which pro¬ 
vides the user with specific, on-the-spot information 
about the mode he is in. 

Control Structure 

The control cycle for PAS-II is shown in the 
flow diagram of Figure 4 . The solid arrows indicate 
the stage that is entered once processing in the 
current stage is finished. The broken arrows indicate 
which stage to enter before processing is started. 
Processing in LINGUISTIC1, SEMANTIC3, and GRAPHIC2 is 
incremental. In each of these modes only part of the 
data from the previous mode is processed at one time. 
This initial portion of the data is then carried 
through the rest of the system, leading to the growth 
of PBG nodes, before the rest of the data in the 
previous mode is processed. This is done to establish 
a semantic context (the PBG) as early as possible in 
the processing sequence so it can provide feedback 
needed for linguistic, semantic, and group processing'. ' 

Since the control organization of PAS-II is 
quite flexible, the user is under no constraints to 
process the data in the order shown in Figure 4. He 
may skip or repeat stages within the existing control 
framework, and may redefine the control cycle (via 
the CONTROL m o d e ) . He may also have the system put 
him into the next run mode in the control loop, or 
even automatically step him through the run modes, 
initiating the processing at each stage (see NEXT 
and AUTOMATIC in Table 2) . 

Data Processing 

Figures 3 and 4 show the processors which com¬ 
prise the control cycle of PAS-II . In the Topic 
processor transcribed text is segmented into phrases 
containing only a single task topic.* * Then in the 
Linguistic processor an initial collection of these 

At present the PBG provides feedback for group 
processing only. 

This is a slight extension: PAS-I requires seg¬ 
mented text as input. 



FUNCTIONS 

NAME DESCRIPTION 

(mode name) Puts user into the mode named. 
CREATE Creates a new mode. 
DISPLAY Displays the contents of M. 

B ERASE Uncreates M (if it was formed using CREATE). 
A EXIT Takes the user out of the system (to LISP). 
S HELP Provides system information pertinent to M. 
I MODE Tells the user what mode he is in. 
c NEXT Puts the user into the next appropriate run mode of C 

RULE Puts the user into the rule mode associated with M. 
RUN Puts the user into the run mode associated with M. 

BREAK Breaks a line in M into two or more smaller lines. 
CONNECT Connects adjacent lines in M to form a single line. 

E DEFINE Permits the user to define the contents of lines in M. 
D DELETE Deletes lines in M. 
I ED Enables the user to perform intra-line editing in M. 
T INSERT Inserts a line after a given line in M. 

READ Reads data from a disk file into M. 
RENUMBER Renumbers the lines in M. 
WRITE Write the contents of M onto a disk file. 

AUTOMATIC Steps the user through C, executing GO in each run mode. 
BATCH Stops system queries during run mode processing. 
COMMENT Permits comments to be displayed when a line is displayed. 

F FAST Speeds up reading from the disk by eliminating format checking. 
L HUSH Abbreviates error messages. 
A NUMBERS Causes disk files to be written with buffer line numbers. 
G PRINT Puts all the I/O at the terminal onto a disk file. 

SEARCH Causes processing to be repeated until no rules are applicable. 
SUPPRESS Suppresses printing of auxiliary information during processing. 
TIME Causes processing time in M to be printed. 
VERSI0N1 Causes the old version of grammar/parser to be used. 
VERSI0N2 Causes the new improved version of grammar/parser to be used. 

P AGAIN Puts the data in M into P and fires GO. 
R COPY Prints the copy of the data in M. 
0 GO Processes the data located in P and puts the result into M. 
c RECOPY Puts the copy of the data from M back into M. 
E RESTART Puts the copy of the data from P back into P and fires START. 

START Deletes the data in M and fires GO. 

mode buffer of the mode the user is in 
mode buffer prior to M in C 
control cycle 

Table 2. Description of PAS-II Functions 
(Flag descriptions are for the condition flag = T) 
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segments is parsed yielding sets of semantic elements. 
These elements are processed and refined in the 
Semantic processor to produce groups composed of one 
operator element and its associated input and output 
knowledge elements. In the PBG processor these groups 
are incorporated into the PBG. The Trace processor 
is then used to compare this PBG with the trace 
produced by a given production system model of the 
subject. 

Topic Processor. The Topic processor contains 
two run modes: TEXT and TOPIC. TEXT is an initiali­
zation mode; it holds the data for TOPIC to process. 
Thus no real processing takes place in it. The 
TOPIC mode uses the SEGMENTATION rules to segment all 
the text in the TEXT mode. These rules have the 
general form: string, / stringy , where a string is 
any sequence of words, punctuation marks, or word 
classes (as defined in the GRAMMAR mode), including 
the null sequence. The slash (/) indicates where the 
text is to be broken, i.e., after every occurrence 
of string1 that is immediately followed by an occur­
rence of string . Figure 6 show SEGMENTATION rules 
for cryptarithmetic {to be used in the example in 
Section 4). 

Linguistic Processor. The Linguistic processor-
contains two run modes: LINGUISTICl and LINGUISTIC2. 
In LINGUISTICl the EXTRACTION rules are used to select 
a consecutive set of segments from TOPIC, representing 
an initial guess as to the minimum number of segments 
from which a group can be inferred. Processing con­
sists only of transferring these segments from the 
TOPIC mode to the LINGUISTICl mode. At present, the 
EXTRACTION rules are simply a single integer speci­
fying how many segments to transfer. 

Processing in the LINGUISTIC2 mode consists of 
applying the SPACE and GRAMMAR rules to all the topic 
segments in LINGUISTICl. The parsing operation pro­
duces, for each segment, a set of semantic elements 
representing the meaning of the segment. The rules 
in the SPACE mode define the problem space and have 
the form:" (semantic-element) type, where a semantic 
element is either an operator, knowledge, or indicator 
element^and the type is either OP, KN, or IND. The 
GRAMMAR""* rules define a key-word grammar and have the 
form: <class> = (iteir^ item^ ...) (item 2 1 item^ 
...) ... , where an item is either a class 
(denoted by angle brackets) or a literal (such as a 
word, letter, or character). An asterisk (*) can be 
used between any two items to indicate a match with 
any string of text, and any GRAMMAR rule which is a 
disjunction of single literals can be written without 
parantheses. Figure 6 shows SPACE and GRAMMAR rules 
for cryptarithmetic. 

Semantic Processor. The Semantic processor 
contains three run modes: SEMANTIC 1, SEMANTIC2, and 
SEMANTIC3. In SEMANTIC 1 the INTEGRATION rules produce 
new elements by combining semantic elements generated 
from the same or adjacent segments. In SEMANTIC2 the 
NORMALIZATION rules map knowledge and indicator ele­
ments into single elements reflecting the relationships 
existing between two or more knowledge elements. In 
SEMANTIC3 a tentative ODerator orouu (orotoeroun) is 
formed. The INTEGRATION AND NORMALIZATION rules are 
replacement rule? of the tvDe A => B i e reolace 

with B. Both A and B can be Lists of semantic 
elements! A slash (/) indicates that the next 
elements of the list occur on the next line of the 
mode buffer. Class names and X's are used as vari-
ables, and in the NORMALIZATION rules A's are var i-
ables which stand for knowledge elements on adjacent 
lineq connected bv the AND indicator Tvcical 
INTEGRATIOH and NORMALIZATION rules for crypt-
acithmetic are shown in Figure 6* GROUPING rules are 
not qhown * Thev define a nrotoeroun to be the 
largest consecutive sequence of elements containing 
no more than one operator element. 

Group Processor. There are two run modes in the 
Group processor: GRAPHIC 1, and GRAPHIC2. GRAPHIC 1 
processing fills in the values of variables in the 
semantic elements by comparing the element containing 
variables with all the elements currently active in 
the PBG, i.e., the current context. When a match is 
found the appropriate values are filled in. Currently 
the UNKNOWNS rules are not accessible to the user. 

Processing in GRAPHIC2 is a joint man-machine 
effort."* The goal is to hypothesize for each knowl­
edge element its origin, i.e., the operator and its 
inputs (and the operators that produced those inputs, 
etc.) that produced that knowledge element as output. 
The system queries the user asking for possible 
operators and inputs that could have produced the 
element whose origin is being sought. From this 
information the system constructs an origin tree, 
and hypothesizes which path through the tree repre­
sents the actual origin of the element. The path is 
picked on the basis of the agreement between the 
hypothesized inputs and the actual context defined by 
the current PBG. The ORIGIN rules, like the GROUPING 
and UNKNOWNS rules, are currently not accessible. 

PBG Processor. The PBG processor contains one 
run mode: GRAPHIC3. In the GRAPHIC3 mode, processing 
consists of taking the operator groups produced in 
GRAPHIC2 and incorporating them into the problem 
behavior graph. The CONFLICT rules are used to deter­
mine whether or not any knowledge elements in the 
operator groups conflict with knowledge already in the 
PBG. If such a conflict occurs, the PBG rules are 
used to restructure the PBG so the conflict is 
eliminated. 

SPACE rule 8 in Figure 6 is an exception. It 
defines a set named <V> containing two members, 
the class <LETTER> and the class <EARRV>. 

Two parsers are available, a simple top down 
parser and a more sophxsticated parser written 
by M, Rychener. 

At the current stage of development the Grouping 
rules have not been made accessible to the user. 

This is the major place where we have not regained 
in PAS-II the power for automatic processing 
available in PAS-I. 



Both the CONFLICT and PBG rules are ordered 
production rules of the form S » A, i.e., in situation 
S take action A (12, 13). A situation is defined by 
a list of values of certain variables, called the 
state vector, SV, The left side of each production 
rule has the form (V V V ... ) , where V repre­
sents a permissible value for the nth state vector 
variable. The right side has the form (A^ A^ A^ . . . ) , 
where the A"s represent actions to be taken. The cur­
rent values of the state vector variables are compared 
with the left side of each production rule. The first 
match, from top to bottom, determines the actions to 
be taken (an asterisk is considered to match any value). 

Figure 6 shows CONFLICT and PBG rules for 
cryptarithmetic. The CONFLICT rules determine 
whether or not two given knowledge elements conflict. 
The example CONFLICT state vector contains: (SAME 2), 
which is true (T) if the second items of both the 
elements are identical and false (F) otherwise; 
(ITEM 1 1 ) , which returns as a value the first item 
of the first element (the element in the PBG); and 
(ITEM 1 2 ) , which returns as a value the first item 
of the second element (the element in the group). 
Thus if the two elements being compared were (ODD R) 
and (NEQ R 5) CONFLICT rule 3 would match the state 
vector and the decision would be that no conflict 
exists. 

The PBG rules determine the type of restruc­
turing that occurs once a conflict is detected. The 
PBG state vector in Figure 6 has 2 variables: TYPE, 
which has the value CON if restructuring is ba^ed on 
conflict and SIM if it is based on similarity;" and 
(ITEM 1 2), which is defined above. The actions shown 
in Figure 6 are BLOCKREJ, a type of restructuring 
where blocks of adjacent nodes are abandoned, and 
COPY, a specification that the group causing the 
restructuring should remain in the active portion of 
the PBG after restructuring. The state vectors for 
CONFLICT and PBG may contain variables and actions 
other than the ones shown in Figure 6. For a complete 
description of these rules see the PAS-II reference 
manual (16) . 

Trace Processor. The Topic, Linguistic, 
Semantic, Group and PBG processors comprise the major 
portion of PAS-II. It is this portion which repre­
sents a generalized version of PAS-I. The Trace 
processor is a new extension to the system and has no 
analogue in PAS-I. Some parts of it, like the MATCH 
mode, are still under development. The Trace proc­
essor enables the user to write a production system 
model of the subject (6), and then compare the trace 
obtained by running the production system model with 
the PBG obtained by analyzing the protocol. The 
details are described elsewhere (16). 

it. Example of Program Operation 

To illustrate the use of PAS-II, we present a 
listing of the actual user-machine interaction in­
volved in the on-line analysis of a short crypt­
arithmetic protocol. The cryptarithmetic task is 
given in Figure 5. Bofh the protocol and the crypt­
arithmetic rules used for this example are shown in 
Figure 6. The protocol is stored in the TEXT mode 
and the cryptarithmetic rules in the eight rules modes 
shown. These rules approximate the minimal set needed 

The PBG rules are also used for restructuring when 
similarities (identical nodes) are detected, as 
discussed in an earlier paper on PAS-I (15). 

to analyze the given protocol, and are for expository 
purposes only.* 

The annotated listing is shown below. The user 
input is in lower case and the system output in upper 
case. The system prompts the user by typing either 
an asterisk (*) or a question followed by a question 
mark (?) . 

« t e x t d i s p l a y 
TEXT MODE 

I . D IS 5 i THEREFORE T IS B . RSSUME R EQUAtS 4 . SINCE YOU 
CARRY 1 , R IS ODD . ASSUME Ft IS 7 , HOT 5 , 

t n a x t go 

TOPIC MODE 
1 . 0 I S 5 | 

THEREFORE T IS 8 . 
ASSUME R EQURtS * . 
S INCE YOU CARRY 1 , 
R IS ODD . 
ASSUME R IS 7 , 
NOT 5 . 

OK? y e s 
TOPIC MODE F I N I S H E D 
* n o x ! go 

L I N G U I S T I C 1 MODE 
1 . 0 IS 5 ; 
2 . THEREFORE T IS 8 . 
3 . ASSUME R EQURtS * . 
4 . S INCE YOU CARRY 1 , 
5 . R IS ODD . 
6 . ASSUME R I S 7 , 
7 . NOT 5 . 

OK? u s s 
t n s x t go 

D O N A L D D = 5 
+ G E R A L D 

R O B E R T 

The above expression is a simple arithmetic sum in 
disguise. Each letter represents a digit, that is, 
0, 1, 2, .... 9. Each letter is a distinct digit. 
You are given that D represents the digit 5; thus, 
no other letter may be 5. 

What digits should be assigned to the letters such 
that when the letters are replaced by their corres­
ponding digits the above expression is a true 
arithmetic sum? 

Figure 5. Cryptarithmetic Task 

The user first entered the TEXT mode and dis­
played its contents. He then entered the next mode 
in the control cycle, TOPIC, and started processing 
by typing GO. This caused the SEGMENTATION rules to 
be applied to the data in TEXT. The system indicated 
that the data in line 1 of the previous mode had been 
transformed into the seven lines shown above, and 
asked if this transformation was satisfactory (OK?). 
At this point the user typed yes, telling the system 
to actually put those seven lines into the next seven 

At least four times as many rules would be needed 
for a complete set (15). 



TEXT MODE 
1. D IS 5 ; THEREFORE T IS 0 . ASSUME R EQUALS 4 . SINCE YOU 

CARRY 1 , R IS ODD . ASSUME R IS 7 , NOT 5 . 

SPACE RULES 
I . (NEG) IND 
2 {ODD <V» KN 
3. (EQ <V> <DIGIT» KN 
4. (THEREFORE) IND 
5. (BECAUSE) IND 
6. (ASSUME) IND 
7. (DIGIT <DIGIT>) KN 
8. «V> <LETTER> <CARRY» SPASET 

GRAMMAR RULES 
1. <EQ> = «CARRYEQ» «LETTER> * <EQUAL> * <DIGIT» 
2. <CARRYEQ> * «CARRY> * <DIGIT» «CARRY» 
3. <ODD> = «LETTER> * <EQUAL> * ODD) 
4. <EQUAL> = IS EQUAL EQUALS BE WAS ARE 
5. <NEG> = CANNOT NOT NO N'T 
6. <THEREFORE> = THEREFORE IMPLIES 
7. <ASSUME> = ASSUME ASSUMING 
8. <BECAUSE> = BECAUSE SINCE 
9. <CARRY> = CARRY CARRYING CARRIED 

10. <LETTER> = A B D E G L N O R T 
I I . <D)GIT> = 0 1 2 3 4 5 6 7 8 9 

SEGMENTATION RULES 
1. . / 
2- ; / 
3. <DIGIT> , / 
4. <LETTER> , / 

EXTRACTION RULES 
1. 12 

INTEGRATION RULES 
1. (XI CARRY X2) => (XI <C> X2) 
2. (EQ XI X2) / (DIGIT X3) => (EQ XI X2) / (EQ XI X3) 
3. (NEG) (EQ <LETTER> <DIGIT» => (NEQ <LETTER> <DIGIT» 
4. (ASSUME) (EQ <LETTER> <DIGIT» => (AEQ <LETTER> <DIGIT» 

NORMALIZATION RULES 
1. A l / (THEREFORE) A2 *> (BECAUSEOF A l A2) 
2. (BECAUSE) A l / A2 => (BECAUSEOF Al A2) 

CONFLICT RULES 
1. SV = ((SAME 2) (ITEM 1 1) (ITEM 1 2)) 
2. (F * * ) => NO-CON 
3. ( * ODD NEQ) => NO-CON 
4. ( * * * ) => ASK-IF-CON 

PBG RULES 
1. SV = (TYPE (ITEM 1 2)) 
2. (CON NEQ) => BLOCKREJ 
3. (CON * ) => (BLOCKREJ COPY) 
4. ( * * ) => BLOCKREJ 

Figure 6. Cryptarithmetic Rules. 



lines of the TOPIC buffer. If the processing had 
been unsatisfactory, the user could have jumped to 
the SEGMENTATION mode, changed the rules, jumped 
back to TOPIC, and reprocessed the data using the new 
rules before proceeding with the next processing step. 

The user then entered the next mode, LINGUISTIC1, 
and started processing. The EXTRACTION rules were 
applied to the seven lines of data in TOPIC and the 
system indicated that the processing should consist of 
placing these lines in LINGUISTIC1 unchanged. Note 
that the system indicated that line 1 from TOPIC was 
transformed into a single line in LINGUISTIC1, etc., 
as opposed to the previous step where one line in TEXT 
was transformed into seven lines in TOPIC. 

L I N G U I S T I C 2 MODE 
<EQ> <LETTER> 0 

<EOUfH_> IS 
< O I G I T > 5 

1 . (EQ 0 5 ) 
FROM .! D IS 5 ; 

OK? y e s b a t c h s u p p r e s s 
BATCH=T 
SUPPRESS=T 

2. (EQ T 6» (THEREFORE) 
FROtl i THEREFORE T IS 8 

3 . (EQ-R 4 ) (ASSUME) 
FROM : ASSUME R EQUALS 4 

4 . (EO CARRY 1) (BECAUSE) 
FROrt i SINCE YOU CARRY 1 

5 . ( 0 D 0 R) 
FROM : R IS ODD . 

6 . (EQ R 7) (ASSUME) 
FROM : ASSUME R IS 7 , 

7 . (NEG) ( D I G I T S ) 
FROM : NOT S . 

L1NGU1ST IC2 HOOE F I N I S H E D 
•i ( b a t c h )> ( s u p p r e s s ( ) a u t o m a t i c 
B R T C H - f 
SUPPRESS=F 
AUT0MAT1C=T 
* n e * t go 

Processing in LINGUISTIC2 consisted of applying 
the SPACE and GRAMMAR rules to the data in LINGUISTIC1 
to produce a parse. In step 1 the parse tree was 
printed and the user set the flag BATCH true to 
eliminate the OK? question (the system then assumes 
the answer is always yes) and the flag SUPPRESS true 
to eliminate further printing of the parse trees. 
Then, before going to the next mode in the control 
cycle, the user set the flag AUTOMATIC true so the 
system would automatically step through the appropriate 
run modes executing GO. At this point the LINGUISTIC2 
buffer held the seven sets of semantic elements shown 
above. 

SEMANTIC1 MODE 
RULES APPLIED : 4 1 2 4 3 

1. (ED D 5 ) 
2 . (ED T 81 (THEREFORE) 
3 . (AEQ R 4 ) 
4 . (BECAUSE) (EQ <C> 1) 
5 . IOOD R) 
6 . (AEQ R 71 
7 . (NEQ R S ) 

OK? y e s 
S E t l R N T I C l MODE F I N I S H E D 

SEMANTIC2 MODE 
RULES APPLIED i 1 2 
1 - 7 . (RECAUSEOF ( (EQ D 5 ) ) ( (EQ T 0 ) W 

(AEQ R 4 ) 
(RECAUSEOF ( (EQ fC> 11) ((ODD R ) ) ) 
(AEQ R 7 ) 
(NEQ R S) 

OK? y e s 
SEHANTIC2 MODE F I N I S H E D 

SEMANTICS I100E 
1 . (BECAUSEOF <<EQ D 5 ) ) ( (EQ T 0 ) > ) 
2 . (AEQ R 4 ) 
3 . (BECRUSEOF ( (EQ <C> 1 ) ) ((ODD R ) ) ) 
4 . (AEQ R 7 ) 
5 . (NEQ R 5 ) 

OK? y e s 

Processing in SEMANTIC1 consisted of applying the 
INTEGRATION rules to the semantic elements in 
LINGUISTIC2. As indicated above there were five 
applications of the rules. Processing in SEMANTIC: 
consisted of applying the NORMALIZATION rules to the 
seven sets of elements in SEMANTIC 1. There were two 
applications of the rules, and five sets of elements 

left in SEMANTIC2. Processing in SEMANTIC3 con — 
isisted of applying the GROUPING rules, which are not 
explicit. These rules simply attempted to pull from 
SEMANTIC2 one operator element and its associated 
knowledge elements. Since no operator elements were 
present, it pulled all the elements from SEMANTIC2. 

G R A P H I C l MODE 
1 . (BECAUSEOF <(EQ O S ) ) (<EQ T 8 ) ) ) 

FROM : (BECAUSEOF ( (EQ 0 5 ) ) ((EQ T 8 ) ) ) 
OK? y o s 

2 . (AEQ R 4 ) 
FROM i (AEQ R 4) 

OK? y e s 
3 . (BECAUSEOF ((EQ <C> 1> > I I O D D R ) ) ) 

FROM t (BECAUSEOF ( (EQ <C> 1 ) ) ((ODD R>>> 
OK? y e s b a t c h s u p p r e s s r : I becauseof ( ( e q c2 l ) ) ( ( o r f d r > > ) 
BATCH=T 
DO YOU REALLY UANT BOTH AUTOMATIC^! RND BATCH=T 1 yes 
SUPPRES3=T 

4 . (AEQ R 7 ) 
FROM : (AEQ R 7 ) 

5 . (NEQ R 5 ) 
FROM i (NEQ R 5 ) 

G R A P H I C l MODE F I N I S H E D 

Processing in GRAPHICl consisted of applying the 
UNKNOWNS rules, which are not explicit. These rules 
involve searching the existing PBG for elements that 
match the elements containing unknowns. In this 
simple example no matches were found because the PBG 
had not yet been grown. Thus, in step 3 when the 
unknown carry <C> was not found, the user told the 
system to replace its processing result with 
(BECAUSEOF (( EQ C2 1)) ((ODD R)) ) . This was put 
into line 3 of the GRAPHIC 1 buffer, rather than the 
result containing <C>. In effect the user told the 
system that the value of <C> was C2, i.e., that the 
unknown carry was the carry into the second column 
(the L+L=R column). 

Processing in GRAPHIC2 and GRAPHIC3 occurred as 
follows: GRAPHIC2 was entered and the elements from 
line 1 of GRAPHIC1 were processed interactively to 
determine their operator groups. GRAPH1C3 was then 
entered and these groups were grown as new nodes in the 
PBG. Next GRAPHIC2 was reentered and the elements 



from line 2 of GRAPHIC1 processed. This graphs-
graphic 3 loop was repeated for each line in GRAPHIC 1. 
Below is shown only one of these loops": processing 
and growing the elements from line 3 of GRAPHIC1. 

GRBPHIC2 nODE 
FOR (BECBUSEOf ( (EQ C2 1 ) ) <(ODD R)>> : 
OP = (pc Z> 
OUTPUTS = (odd r ) 
INPUTS = ( e q c 2 1 ) 
FOR (EQ C2 1> : 
OP = U v c 2 > 
INPUTS * 
OTHER O R I G I N S FOR (EQ C2 11 7 yes 
FOR (EQ CZ 1) l 
OP = (pc 1 ) 
INPUTS = ( e q d S ) < e q c l B) 
(EQ D 5 ) FOUND IN PBG 
(EQ C i 0> FOUND I N PBG 
DTHER O R I G I N S FOR (EQ C2 1) ? no 
O R I G I N TREE : 
(ODD R> (PC 2 ) (EQ CZ 1) (HV C2> 

(PC 1) (EQ D SI 
(EO C I 9) 

3 . (PC 1 ) I (EQ D S) (EQ C I e>> (EQ C2 1) 
(PC 2> (<E0 C2 1 ) ) (ODD R) 

FROtt : (BECftUSEOF ((EQ C2 1>> <<0B0 R>>) 

GRRPHIC3 MODE 
1 . GROU (EQ C2 It 

FROM : (PC 1) ( ( E E D Si (EQ C I B)> (EH C2 1) 
DO (BEO. R 4 ) BNO (ODD R) CONFLICT ? yes 

2 . CONFLICT: N4 (AEQ R 4> FIND (ODD R) UITH (BLOCKREJ COPY) 
FROtt : (PC 2 ) <<EQ C2 l>> (ODD fi) 

GRBPHIC3 NDDE F I N I S H E D 

In GRAPHIC2 the system queried the user to deter­
mine possible origins (operators and their inputs) for 
the elements in question. This information was 
represented as an origin tree as shown above. This 
tree is displayed below in a more conventional style. 

output: (ODD R) 

operators: (PC 2) 
I 

input/output: (EQ C2 1) 

operators: (AV C2) (PC U ) 

input: (EQ D 5 (EO CI 0) 

Figure 7. Origin Tree 

The system analyzes the tree and decides which path 
represents the best origin far the top element, in 
this case (ODD R). Here there are only two alter­
natives: the path with the operator: assign a value 
to the carry into column 2, (AV C2), and the path 
with the operator: process column 1, (PC 1). The 
system chooses the latter, based on implicit ORIGIN 
rules which tell it to choose between operators by 
rating them according to their inputs. The decision 
function currently in use is: 

Choose to maximize: (3 x used-inputs) -
(unused-inputs) 

Space limitations prevent us from including the 
entire listing. 

where an input is "used" if it occurs in the PBG. 
Thus (AV C2) has a rating of 0 while {PC 1) has a 
rating of (3x2)-0 or 6. The format of the operator 
groups produced in GRAPHIC2 is: operator (input 
list) output. 

In GRAPHIC3 the two groups from CRAPHIC2 were 
incorporated into the PBG. The second group, with 
(ODD R) as the output, conflicted with an existing 
group in the PBG and led to restructuring of the PEG 
to resolve the conflict. Conflicts were defined by 
the CONFLICT rules, the type of restructuring by 
the PBG rules." 

s o , r a p h i c 3 d i s p l a y 
GRBPHIC3 MODE 

N l fl OP (RECALL Dl DUT (EQ D 5) 
NZ OP (RECALL C I ) OUT (EQ CL B> 
N3 op [PC I) IN (EQ D 5) (EQ C I 9) OUT (EQ T 8) 
N4 OP (BV R> OUT (BEQ ft 4) 
N5 DP (PC 1) IN (EO D 61 (EQ C I 6) OUT (EQ CZ 1) 
N6 OP (PC 2) IN (ED 12 1> OUT (ODD R) 8 
N7 3 OP (PC 1) IN (EQ D 5 ) IEQ C I 9 ) OUT (EQ C2 1) 
N8 OP (PC 2 ) IN (EQ C2 1) OUT (ODD R) 
N9 OP (BV R) OUT (REQ R 7) 

N I B OP (TD R 5 ) IN (EQ D 5) OUT (NEQ R 5) 

After all the data from GRAPHIC1 was processed 
in GRAPHIC2 and GRAPHIC3 the contents of GRAPHICS 
were displayed. Each line in the display represents 
a node in the PBG. Node 10 contains the operator: 
test to see if R can have the digit 5 as a value, 
(TD R 5). Figure 8 shows this PBG in the conven­
tional representation. Note that the conflict between 
(AEQ R 4) and (ODD R) led to a back-up that abandoned 
nodes 4, 5 and 6. Thus the currently active nodes, 
the ones that define the current context, are those 
joined by the heavy lines in Figure 8. 

5. Discussion 

The initial program, PAS-I, is an artificial 
intelligence program by any reasonable criteria. The 
task it attempts, the inference from verbal behavior 
to Problem Behavior Graph, is a task requiring intel­
ligence when done by humans. The mechanisms used are 
those common to other artificial intelligence 
programs that tackle somewhat similar tasks: grammars 
to deal with the surface structure of natural language, 
representation of knowledge, matching, and heuristic 
search to infer information not directly expressed in 
the utterances. 

PAS-II is a program that accomplishes the same 
task as PAS-I. Hence, it too is an artificial intel­
ligence program. But when looked at structurally it 
more closely resembles a data processing framework 
or, possibly, a language. Something has happened in 
going from PAS-I to PAS-II, something worth identi­
fying and discussing. 

** 
Let us start with Planner (3) and QA4 (8). 

These systems are languages for writing programs to 
perform a class of artificial intelligence tasks. The 

Conflict and PBG rules are described in detail in 
an earlier paper (15) . 

There are other representatives of this class, 
e.g., POPLER (1) and Conniver (10, 11). 



R odd 

R=£5 

Figure 8. Problem Behavior Graph for Cryptarithmetic 
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exact boundaries of these tasks are obscure but their 
central core is clear and includes a large fraction of 
the tasks for which heuristic programs have been built 

theorem proving, robot planning, symbolic manipu­
lation, etc. These systems were formed, essentially, 
by taking a list processing framework and embedding 
within it some of the ad hoc mechanisms developed 
for particular heuristic programs. They include back­
tracking, a generalized matching facility, a global 
data base (accessed by pattern matching) and multi­
processing control. Embedding these mechanisms with­
in a language makes possible their use in novel com­
binations (and in interaction with the other mecha­
nisms available in higher languages). 

This same embedding of mechanisms into a language 
system has occurred in the transition from PAS-I to 
PAS-II. PAS-II provides a framework within which a 
class of AI programs can be easily constructed. This 
class is not the same as that of the Planner/QAA 
type system, which is more "mainline" artificial 
intelligence. Rather, it appears to be characterized 
as linguistic data processing, the essential feature 
being the processing of long sequences of data 
(rather than just a sentence at a time). This class 
includes, of course, protocol analysis. It also 
includes a number of other tasks: content analysis 
of more classical varieties (9), problem space con­
struction (2), test grading, and what is coming to be 
called semantic filtering. 

The embodiment of mechanisms into a language 
framework has occurred at two levels in PAS-II, one 
corresponding roughly to that of Planner/QA4 and the 
other more specialized. The first level is repre­
sented by the PAS-II framework of run modes, rule 
modes, common command language, editing system, and 
control structure. This includes a set of mecha­
nisms for the data base (the run modes), a matching 
facility (the common mechanism for how the rules work 
on data) , and a backtrack facility (the saving of 
buffers so that processing can be undone). Added to 
this is the explicit control structure for processing 
within a stage and passing through the stages, which 
corresponds to a weak method (4) in the same sense 
as GPS's basic methods or the basic methods built into 
the goal construct in Planner/QA4. These provide a 
schema of operation which, though almost content free, 
is still a rational procedure for achieving the 
overall goal. The mechanisms adopted in PAS-II are 
somewhat more shaped than their correspondents in 
Planner/QA4, e.g., there is not a single global data 
base or one stratified by a general context mechanism, 
rather the data is organized into homogeneous groups 
(the modes) along structural lines. 

The second level is the specialization of the 
various modes to specific subtasks inherent in tasks 
of the class: segmentation, parsing, normalization, 
etc. The specialized rule systems contain the knowl­
edge about the processing. Thus writing any sort of 
legal rules within a given rule system generates proc­
essing of the right sort (though it may not do the 
right task) In this respect Drovidine a sinele eener-
alized rule system or scheme for pattern matching and 
pattern evoked actions (in the manner of Planner/QA4) 
would move more of the knowledge required back across 
the boundary from the language system (PAS-ID to the 
coding within the system (the user program in PAS-II, 
which is the set of actual rules in the rule modes) 

As one moves PAS-II in the direction of a 
generalized system for a wider class of problems, one 
can expect the collection of rule modes to increase, 

becoming eventually, a library in the classic sub­
routine library sense. The system designer is then 
faced with the problem of providing these modes with 
the rules needed to define processing in the various 
problem domains. However, one advantage of spec­
ialized rule systems is that when their structure 
is highly constrained it becomes easy to predict the 
effect of modifying rules in the system (as compared 
to predicting the effect of modifying statements in 
a general programming language). This sets the stage 
for the development of self-modifying systems which 
rewrite their own rules or, in effect, learn to 
improve their performance in some data processing 
task (12, 13). Such a capability in an interactive 
PAS-II-like system would enable the system to build 
or modify its own rules for a particular problem 
domain, using feedback from the user to direct the 
search for good sets of rules. 

The evolution from PAS-I to PAS-II in analogy 
to the more general evolution going on toward 
planner-like language systems should add to the 
awareness that embedding mechanisms in language 
remains a potent scheme for making advances in 
artificial intelligence. 

Acknowledgments 

This paper will appear in the preprints for the 
third International Joint Conference on Artificial 
Intelligence (IJCAI-73). This research was supported 
in part by Research Grant MH-07732 from the National 
Institutes of Health and in part by the Advanced 
Research Projects Agency of the Office of the 
Secretary of Defense (F44620-70-C-0107) which is 
monitored by the Air Force Office of Scientific 
Research. 

References 

1. Davies, D. J. M., POPLER: a POP-2 planner. MIP. 
School of University of Edinburgh. 

2. Hayes, J. R., and Waterman, D. A., Automatic 
Problem Space Construction, Psychology Department, 
Carnegie-Mellon University, 1973. 

3. Hewitt, Carl, Description and theoretical analysis 
of planner: A language for proving theorems and 
manipulating models in a robot. AI report TR-258 
(Ph.D. thesis). MIT AI Laboratory, Cambridge, 
Massachusetts, 1972. 

4. Newell, A., Heuristic programming: Ill-structured 
problems, in Aronofsky, J. S. (ed.) Progress in  
Operations Research, vol. 3, Wiley, 1969, pp. 
362-414. 

5. Newell, A., and Simon, H. A., Human Problem  
Solving, Prentice-Hall, Englewood Cliffs, N.J. 
1972. 

6. Newell, A., A theoretical exploration of mechanisms 
for coding the stimulus, in Melton, A. W., and 
Martin, E. (eds.) Coding Processes in Human Memory, 
Winston and Sons, Washington, D.C., 1972, pp. 
373-434. 

7. Newell, A., Simon, H. A., Hayes, R., and Gregg, L., 
Report on a workshop in new techniques in cognitive 
research. Computer Science Department, Carnegie-
Mellon University, 1972. 



8. Rulifson, J. F., Derksen, J. A., and Waldinger, 
R. J., QA4: A procedural calculus for intuitive 
reasoning, Stanford Research Institute, November 
1972 . 

9. Stone, P. J., Dunphy, D, C, Smith, M, S,, 
Ogilvie, D, M,, The General Inquirer, MIT, 
Cambridge, Massachusetts, 1966. 

10. Sussman, Gerald, and McDermott, Drew, Why 
conniving is better than planning, MIT, Cambridge, 
Massachusetts, April 1972. 

11. Sussman, Gerald, and McDermott, Drew, Conniver  
Reference Manual, MIT, Cambridge, Massachusetts, 
May, 1972. 

12. Waterman, D. A., Machine learning of heuristics. 
Ph.D. Thesis, Computer Science Department, 

Stanford University, 1968. 

13. Waterman, D. A., Generalization learning tech­
niques for automating the learning of heuristics, 
Artificial Intelligence, vol. 1, nos. 1 and 2, 
1970, pp. 121-170. 

14. Waterman, D. A., and Newell, A., Protocol analy­
sis as a task for artificial intelligence. 
Artificial Intelligence, vol. 2, nos. 2 and 3, 
1971, pp. 285-318. 

15. Waterman, D. A., and Newell, A., Preliminary 
results with a system for automatic protocol 
analysis. Carnegie-MelIon University, Computer 
Science Department, 1973. 

16. Waterman, D. A., PAS-II Reference Manual, 
Psychology Department, Carnegie-Melion University, 
1973 . 


