
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

D. A. Waterman and A. Newell

June, 1973

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This paper will appear in the preprints for the third international
Joint Conference on Artificial Intelligence (IJCAI-73) . This research
was supported in part by Research Grant MH-07732 from the National
Institutes of Health and in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-0107)
which is monitored by the Air Force Office of Scientific Research.

PAS-II: AN INTERACTIVE TASK-FREE VERSION OF
AN AUTOMATIC PROTOCOL ANALYSIS SYSTEM

D. A. Waterman and A. Newell

Departments of Psychology and Computer Science
Carnegie- Mellon University
Pittsburgh, Pennsylvania

Abstract

PAS-II, a computer program which represents a
generalized version of an automatic protocol system
(PAS-I) is described. PAS-II is a task-free, inter­
active, modular data analysis system for inferring
the information processes used by a human from his
verbal behavior while solving a problem. The output
of the program is a Problem Behavior Graph: a descrip­
tion of the subject's changing knowledge state during
problem solving. As an example of system operation
the PAS-II analysis of a short cryptarithmetic pro­
tocol is presented.

1. Introduction

Automatic protocol analysis is a joint effort
by man and machine to infer from the record of the
time course of a subject's behavior, the underlying
information processes. As developed (5), it usually
refers to the verbalizations of a subject solving
some problem under instructions to think, out loud.
Protocol analysis designates the full range of activ­
ities engaged in by the psychologist when working
with protocols: description of the subject's
behavior according to an hypothesized model, induc­
tion of new rules, derivation of consequences from
a model in the context of specific data, and measure­
ment of adequacy of a model. The initial focus of
our work has been behavior description in terms of
information processes, given an hypothesized general
model (the so-called problem space in which the
subject operates).

The PAS-I system (14, 15) was our first attempt
at automatic protocol analysis. This is a fully
automatic, non-interactive, specialized system de­
signed to analyze cryptarithmetic protocols and pro­
duce as output a problem behavior graph (PBG)describ­
ing the subject's search through a posited problem
space. The protocol analysis is represented as a
sequence of processing stages that eventually trans­
form the raw protocol into a problem behavior graph.
At each stage rules are applied which effect a trans­
formation of the data. The organization of PAS-I is
shown in Figure 1.

PAS-I has successfully analyzed protocols from
DONALD+GERALD=ROBERT and CROSS+ROADS=DANGER crypt­
arithmetic problems. The results obtained in the
DONALD+GERALD=ROBERT task for two of the subjects
have been discussed in detail (15) and demonstrate
that this approach to automatic protocol analysis is
both feasible and rewarding.

Encouraged by the success of PAS-I we have
designed and built an improved version called PAS-II.
PAS-II was designed with two major goals in mind: to
make it interactive and task free. By interactive
we mean that the user is permitted to take an active
part in the analysis: he can provide answers to sub-
problems the system is unable to solve, correct proc­
essing errors, and even maintain control over the
processing sequence. Clearly, real-time interaction
of this sort makes the system a more powerful tool

for protocol analysis. By task free we mean that
the system is independent of any particular problem
domain. To make PAS-II task free we partitioned the
system into two parts: the problem dependent part
consisting of the processing rules or heuristics used
at each stage of the analysis, and the problem
independent part consisting of the general control
structure and command language. Thus, to apply the
system to a protocol in a new problem area the user
must first supply the system with processing rules
for that domain.* The design of PAS-II also included
four subgoals: to make the system transparent,
modifiable, extendable, and open (see Figure 2).

Two important implementation issues were not
addressed in the design of PAS-II. 1). Improve system
performance in cryptarithmetic. This includes
expanding the deductive and inductive inference
capabilities, and "fine tuning" the system hy
optimizing the processing heuristics to produce the
best possible analysis within the given framework.
2). Extend the scope of the analysis. For example,
extend the system back to handle the speech recog­
nition and segmentation problems inherent in producing
a transcription from the audio tape. Or extend the
system to handle the problem of inducing the problem
space from the protocol or inducing a production
system model from the problem behavior graph.

It was decided to make PAS-II interactive and
task free, postponing the problems of increasing
power in a particular task or broadening the scope
of the analysis. This decision was influenced by
the desire to provide a working tool for protocol
analysis that could be used by participants at a
workshop on New Techniques in Cognitive Research held
at CMU in the summer of 197 2 (7). The PAS-II system is
currently running in LISP at CMU on a PDP-10 and is
available to the CMU (and the ARPA Network) community.

This paper is organized as follows. The task of
protocol analysis is discussed in Section 2. This is
followed in Section 3 by a brief description of the
structure of the program and in Section 4 by an
example of its use in analyzing a cryptarithmetic
protocol. Section 5 concludes with a discussion of
the general executive structure of the system and
its implication for AI data analysis programs,

2. Task of Protocol Analysis

Protocol analysis is a complex data processing
task requiring both deductive and inductive inference
capabilities. Our current approach to protocol analy­
sis is based on a particular theory of human problem
solving. For a description of this theory and an
introduction to the task of protocol analysis see
Newell and Simon (5).

Ultimately, a library containing processing rules
for a number of different problem domains will be
available to the user.

Topic
Segments

(twoD's]
leach D Is 5]
[therefore, T is l e ro]

LINGUISTIC
PROCESSOR

Semantic
Elements

(N U M D 2)
(E Q D S)

(T H E R E F O R E) (E Q T 0 |

SEMANTIC PROCESSOR

PBG
GENERATOR

Step 1

Temporal
Integration

Step 2

Normal­
ization

Step 3

Extract
Next
Protogroup

Protogroup
Op: (PC 1)
Kn: (BECAUSEOF (EQ • S) (E Q T 0 »

I = Q X — / T = Q C I
D = 5

PBG
Information

Group

Op: (PC 1)
In: ((EO C I 0)(EQ D 5))
O u t : (E O T 0)

Extract next
Element

Determine
Unknowns
Mechanism

Origin
Mechanism

Yes

GROUP PROCESSOR

No

'UnanalyzedN,
. Elements /

left? /

Figure 1. Flow Diagram of PAS-I.

GOALS
Interactive:
Task Free :

SUBGOALS
Transparent:

Modifiable :

Extendable :

Open

User and system exchange information during processing.
System is independent of any particular problem domain.

System is easy to use and understand by virtue of a clean
organization and the ability to explain itself.
Basic changes in the data processing procedure can be made
by a user with no knowledge of the language used to program
the system.
The programmer can easily enlarge the system to encompass
a wider range of the data analysis.
The user, rather than the program, initiates and controls
the interaction and accordingly gains ultimate control of
the processing sequence.

Figure 2. Design Considerations for PAS-II.

Theoretical Substructure

Problem Space. We assume human problem solving
takes place by search in a problem space. The ele­
ments of this space are the possible states of knowl­
edge the subject can have about the task, where a
state of knowledge is simply an expression of what the
subject knows at some particular point in the space.
Besides knowledge states, the problem space also in­
cludes a set of operators. These define operations
the subject can perform on knowledge at a particular
state to yield new knowledge -- hence to move to a
new knowledge state. The operators are incremental,
that is, they take as input a small portion of the
total knowledge state (a small set of knowledge ele­
ments) and produce as output new knowledge elements.

Problem Behavior Graph. The subject's search
through the problem space for a solution can be des¬
cribed as a sequence of operator applications that cre­
ate a string of incrementally changing knowledge states.
The plot of this search is called the problem behavior
graph (PBG) . Figure 8 (also used to illustrate the
output of the analysis given in Section 4) shows a
problem behavior graph for cryptarithmetic. The nodes
represent operator applications: the knowledge ele-
ments at the lower left of each node are the inputs,
those at the lower right are the outputs. PBG
branching results from the subject abandoning infor¬
mation and returning to a prior knowledge state
(usually because of a discovered contradiction) . For
example, in Figure 8 the outputs of nodes 4 and 6
conflict: "R is 4" conflicts with "R is odd," and
leads to the abandonment of nodes 4, 5 and 6. Note
that the knowledge state at any point in the graph is
the conjunction of all output elements on the path from
the given point back to the beginning of the graph.
All nodes on the path from the last node back to the
beginning of the graph are called currently active
nodes . Thei r output elements define the current
knowledge state.

Data Analysis

The data being analyzed is the transcribed text
of a subject's verbal protocol. As the text is trans¬
formed into a PBG it is subjected to four major types
of processing: linguistic, semantic, group, and PBG.
Figure 1 typifies such a processing sequence.

Linguistic Processing. The text is first
segmented into shorter strings called topic segments,
each of which is expected to ultimately yield approxi¬
mately one problem space element. Each segment is
then parsed using a grammar sensitive to the problem
domain under consideration. The result of parsing is
a set of semantic elements which represent the meaning
of the segment. For example, the segment "D is not
equal to 6" might yield the elements (NEG)(EQ D 6) in
the cryptarithmetic task. Here (NEG) is called
an indicator element, (EQ D 6) a knowledge element.

Semantic Processing. The semantic elements
produced through parsing are first combined in very
elementary ways to produce new elements, i.e., (NEG)
and (EQ D 6) become (NEQ D 6) . Next, new elements
reflecting relationships between elements from
adjacent segments are produced. Thus, (EQ D 5) from
one segment and (THEREFORE)(EQ T 0) from the next
segment become (BECAUSEOF (EQ D 5)(EQ T 0)) , e.g.,
"because D is 5, T is 0." Finally, these elements are
arranged into initial approximations of operator groups,
each containing an operator element and the surround¬
ing knowledge and indicator elements. An operator

group is defined to be an operator together with its
input and output knowledge elements.

Group Processing. The tentative operator groups
produced during semantic processing are now analyzed
to obtain a complete picture of what the subject knows
at each moment and what operators he applies. First,
variables in semantic elements are identified by com¬
paring the elements to the current context as defined
by the PBG. Thus if (EQ D 5) were in the PBG then
when given the element (EQ <L> 5) , where <L> stands
for a class of letters, we recognize that <L> in this
case is the letter D.

The second part of group processing consists of
finding, or hypothesizing, the origin of every knowl¬
edge element in each tentative group. The origin of
a knowledge element is defined to be the operator
which produced it, plus the inputs to that operator,
plus the operators which produced those inputs, etc.
Thus the origin can be represented as a tree which
defines a collection of overlapping operator groups.

PBG Processing. The operator groups produced
during group processing are now incorporated into the
PBG. In general, each group becomes a node in the
PBG. In the simplest case the new node is just
attached to the last currently active node. However,
when contradictions occur (the output of one node
conflicts with the output of another) restructuring
occurs to eliminate the conflict (see Figure 8) .

3. Structure of the Program

PAS-II takes as input a transcribed text of the
verbalization of a subject solving a problem and
produces as output a PBG. The processing rules for
the various stages, including the rules defining the
problem space, are given to the system. These rules
are supplied either by the system builder via a
library of rules for various problem domains or by
the user himself.

Modular Structure

PAS-II is organized as a modular data analysis
system. The basic unit of organization is the mode:
a processing state which has associated with it a
buffer capable of holding rules or data. This buffer
can be modified by the editing functions available in
the command language. There are three types of modes:
run modes, which hold the data being analyzed, rule
modes, which hold the processing rules, and auxiliary
modes, which hold task-free system-oriented rules.
Thus the information in the rule modes constitutes the
problem dependent part of the system.

The next level of organization is the stage: a
unit consisting of one run mode and any number of
associated rule modes. Data processing is performed
in a stage by applying the rules from the rule modes
associated with that stage to the data present in the
run mode of the previous stage. The result of the
processing is then put into the run mode of the current
stage. Figure 3 illustrates the modular organization
of PAS-II, with the arrows indicating data flow and
the lines indicating mode associations.

The highest level of organization is the
processor: a unit consisting of consecutive stages
in the control cycle. For example, in PAS-II two
linguistic stages form the Linguistic processor and
three semantic stages form the Semantic processor.

Segmen­
tation
Mode

Extraction
Mode

Space
Mode

Grammar
Mode

Integra
tion
Mode

|
1

Topic Linguistid Linguistic2 Semantic!
Mode Mode Mode Mode

Normal­
ization
Mode

Semantic2
Mode

Grouping
Mode

Semantic3
Mode

TOPIC PROCESSOR LINGUISTIC PROCESSOR SEMANTIC PROCESSOR

PS Memory
Mode Mode

Conflict PBG
Mode Mode

Origin
Mode

Trace4 Trace3 Trace2 Trace 1
Mode T Mode Mode 1" Mode

Unknowns
Mode

Graphic2
Mode

TRACE PROCESSOR PBG PROCESSOR GROUP PROCESSOR

Graphic 1
Mode

Figure 3. Modular organization of PAS 11
(Auxiliary modes not shown)

Modes . The modes currently implemented in PAS -
II are listed in Table 1. Note that most run modes
have one or two rules modes associated with them.
This association is illustrated in Table 1 and also
in Figure 3," which shows the modular composition of
the various processors in P A S - I I . The arrows in the
figure define the data links existing between m o d e s .
The mode at the tail of an arrow provides the data
that the mode at the head of the arrow p r o c e s s e s . For
example, processing in the TOPIC mode involves apply-
ing the SEGMENTATION rules to the data in the TEXT
mode and then placing the result in the TOPIC mode.
As each line in TEXT is processed, it is deleted from
the TEXT buffer. However, a copy of these deleted
lines is stored elsewhere in TEXT and can be re¬
trieved (see the process functions in Table 2) . The
arrows in Figure 3 do not necessarily define the
control cycle, i.e., the order in which processing
occurs. The control flow is illustrated in Figure 4
(to be discussed l a t e r) .

MODES

RUN RULE AUXILIARY

TEXT ASSOCIATION
TOPIC SEGMENTATION SAVE
LINGUISTIC1 EXTRACTION CONTROL
LINGUISTIC2 SPACE, GRAMMAR INFORMATION
SEMANTIC1 INTEGRATION
SEMANTIC2 NORMALIZATION
SEMANTIC3 GROUPING
GRAPHIC1 UNKNOWNS
GRAPHIC2 ORIGIN
GRAPHIC3 CONFLICT, PBG
TRACE1
TRACE2 P S , MEMORY
TRACE3
TRACE4 MATCH

Table 1. PAS-II Modes.

Functions. The functions currently implemented
in PAS-II are listed in Table 2. They constitute the
command language available to the user, and are
divided into four categories: basic, edit, flag, and
process functions. Note that a mode name is a
function that puts the user into that mode.

A function call consists of a function name
followed by its arguments. Any number of function
calls may occur together. If it is not clear which
names are the functions and which are the arguments,
parentheses can be used for disambiguation. In
ambiguous cases the system always assumes the name
is a function name rather than an argument. Thus if
the user types HELP TOPIC DISPLAY 3 it could mean
either (HELP T O P I C) : give me information about the
TOPIC mode, and (DISPLAY 3) : display line 3 of the
current buffer; or (HELP): tell me how to get help,
(TOPIC): put me into the TOPIC mode, and (DISPLAY 3) :
display line 3 . The system would make the latter
interpretation.

Comparison with Figure 1 shows how PAS-II maps onto
PAS-I . Note that the scope of the analysis has
been extended to include a Trace processor (not
discussed in detail in this paper) .

Auxiliary Modes . There are four auxiliary
modes: save, control, association, and information.
The SAVE mode contains rules which specify which
mode buffers are to be saved on (or read into from)
a disk file when the WRITE (or READ) command is
executed. The CONTROL mode contains rules which
define the control cycle for the system. Initially
these rules define the control flow shown in Figures
3 and 4. The ASSOCIATION mode contains rules which
define the associations between run and rule modes .
The initial (or default) associations are those
shown in Figure 3. The CONTROL and ASSOCIATION modes,
together with the CREATE function, permit the sophis¬
ticated user to create new modes, redefine mode
associations, and reorganize the control flow for
the entire system. One example of this is the use of
a reorganized PAS-II to analyze a problem description
(problem text) in natural language in order to infer
from that text a tentative problem space, one that a
subject might use in representing the problem (2) .

The INFORMATION mode is unique in containing
no buffer and recognizing none of the functions that
constitute the command language. Instead, this mode
responds to key words in the users input, which may
be in sentence form. The mode provides the user with
general information about PAS-II: its basic organi¬
zation, purpose, and techniques of operation. This is
to be contrasted with the HELP function, which pro¬
vides the user with specific, on-the-spot information
about the mode he is in.

Control Structure

The control cycle for PAS-II is shown in the
flow diagram of Figure 4 . The solid arrows indicate
the stage that is entered once processing in the
current stage is finished. The broken arrows indicate
which stage to enter before processing is started.
Processing in LINGUISTIC1, SEMANTIC3, and GRAPHIC2 is
incremental. In each of these modes only part of the
data from the previous mode is processed at one time.
This initial portion of the data is then carried
through the rest of the system, leading to the growth
of PBG nodes, before the rest of the data in the
previous mode is processed. This is done to establish
a semantic context (the PBG) as early as possible in
the processing sequence so it can provide feedback
needed for linguistic, semantic, and group processing'. '

Since the control organization of PAS-II is
quite flexible, the user is under no constraints to
process the data in the order shown in Figure 4. He
may skip or repeat stages within the existing control
framework, and may redefine the control cycle (via
the CONTROL m o d e) . He may also have the system put
him into the next run mode in the control loop, or
even automatically step him through the run modes,
initiating the processing at each stage (see NEXT
and AUTOMATIC in Table 2) .

Data Processing

Figures 3 and 4 show the processors which com¬
prise the control cycle of PAS-II . In the Topic
processor transcribed text is segmented into phrases
containing only a single task topic.* * Then in the
Linguistic processor an initial collection of these

At present the PBG provides feedback for group
processing only.

This is a slight extension: PAS-I requires seg¬
mented text as input.

FUNCTIONS

NAME DESCRIPTION

(mode name) Puts user into the mode named.
CREATE Creates a new mode.
DISPLAY Displays the contents of M.

B ERASE Uncreates M (if it was formed using CREATE).
A EXIT Takes the user out of the system (to LISP).
S HELP Provides system information pertinent to M.
I MODE Tells the user what mode he is in.
c NEXT Puts the user into the next appropriate run mode of C

RULE Puts the user into the rule mode associated with M.
RUN Puts the user into the run mode associated with M.

BREAK Breaks a line in M into two or more smaller lines.
CONNECT Connects adjacent lines in M to form a single line.

E DEFINE Permits the user to define the contents of lines in M.
D DELETE Deletes lines in M.
I ED Enables the user to perform intra-line editing in M.
T INSERT Inserts a line after a given line in M.

READ Reads data from a disk file into M.
RENUMBER Renumbers the lines in M.
WRITE Write the contents of M onto a disk file.

AUTOMATIC Steps the user through C, executing GO in each run mode.
BATCH Stops system queries during run mode processing.
COMMENT Permits comments to be displayed when a line is displayed.

F FAST Speeds up reading from the disk by eliminating format checking.
L HUSH Abbreviates error messages.
A NUMBERS Causes disk files to be written with buffer line numbers.
G PRINT Puts all the I/O at the terminal onto a disk file.

SEARCH Causes processing to be repeated until no rules are applicable.
SUPPRESS Suppresses printing of auxiliary information during processing.
TIME Causes processing time in M to be printed.
VERSI0N1 Causes the old version of grammar/parser to be used.
VERSI0N2 Causes the new improved version of grammar/parser to be used.

P AGAIN Puts the data in M into P and fires GO.
R COPY Prints the copy of the data in M.
0 GO Processes the data located in P and puts the result into M.
c RECOPY Puts the copy of the data from M back into M.
E RESTART Puts the copy of the data from P back into P and fires START.

START Deletes the data in M and fires GO.

mode buffer of the mode the user is in
mode buffer prior to M in C
control cycle

Table 2. Description of PAS-II Functions
(Flag descriptions are for the condition flag = T)

TOPIC PROCESSOR J LINGUISTIC PROCESSOR

Text
Stage

Topic
Stage

Linguistid
Stage

Linguistic2
Stage

Initial­
ization

Segmen
lation 1

Extrac­
tion

Parsing

i 1

• Yes , " ' D a t a'x
' < in >

"" . . .Topic?, , ' '

TfNo

Trace4
Stage

Trace3
Stage

Trace2
Stage

Trace 1
Stage

Matching
Standard­

ization
Production

System
Linear­
ization

TRACE PROCESSOR

Graphic3
Stage

Problem
Behavior

Graph

SEMANTIC PROCESSOR

Semantic 1 Semantic 2 Semantic3
Stage Stage Stage

Integra­ Normal­ Proto-
tion ization grouping

PBG PROCESSOR

—
D a t a " * ^ Y e s

^ in
% < v G r a p h i c l ^ ' j

Graphic2 Graphic 1
Stage Stage

Origin
Determine

Origin Unknowns

GROUP PROCESSOR

Figure 4. Flow diagram of PAS-I I

Key: +• stage to enter after processing
*• stage to enter before processing

segments is parsed yielding sets of semantic elements.
These elements are processed and refined in the
Semantic processor to produce groups composed of one
operator element and its associated input and output
knowledge elements. In the PBG processor these groups
are incorporated into the PBG. The Trace processor
is then used to compare this PBG with the trace
produced by a given production system model of the
subject.

Topic Processor. The Topic processor contains
two run modes: TEXT and TOPIC. TEXT is an initiali­
zation mode; it holds the data for TOPIC to process.
Thus no real processing takes place in it. The
TOPIC mode uses the SEGMENTATION rules to segment all
the text in the TEXT mode. These rules have the
general form: string, / stringy , where a string is
any sequence of words, punctuation marks, or word
classes (as defined in the GRAMMAR mode), including
the null sequence. The slash (/) indicates where the
text is to be broken, i.e., after every occurrence
of string1 that is immediately followed by an occur­
rence of string . Figure 6 show SEGMENTATION rules
for cryptarithmetic {to be used in the example in
Section 4).

Linguistic Processor. The Linguistic processor-
contains two run modes: LINGUISTICl and LINGUISTIC2.
In LINGUISTICl the EXTRACTION rules are used to select
a consecutive set of segments from TOPIC, representing
an initial guess as to the minimum number of segments
from which a group can be inferred. Processing con­
sists only of transferring these segments from the
TOPIC mode to the LINGUISTICl mode. At present, the
EXTRACTION rules are simply a single integer speci­
fying how many segments to transfer.

Processing in the LINGUISTIC2 mode consists of
applying the SPACE and GRAMMAR rules to all the topic
segments in LINGUISTICl. The parsing operation pro­
duces, for each segment, a set of semantic elements
representing the meaning of the segment. The rules
in the SPACE mode define the problem space and have
the form:" (semantic-element) type, where a semantic
element is either an operator, knowledge, or indicator
element^and the type is either OP, KN, or IND. The
GRAMMAR""* rules define a key-word grammar and have the
form: <class> = (iteir^ item^ ...) (item 2 1 item^
...) ... , where an item is either a class
(denoted by angle brackets) or a literal (such as a
word, letter, or character). An asterisk (*) can be
used between any two items to indicate a match with
any string of text, and any GRAMMAR rule which is a
disjunction of single literals can be written without
parantheses. Figure 6 shows SPACE and GRAMMAR rules
for cryptarithmetic.

Semantic Processor. The Semantic processor
contains three run modes: SEMANTIC 1, SEMANTIC2, and
SEMANTIC3. In SEMANTIC 1 the INTEGRATION rules produce
new elements by combining semantic elements generated
from the same or adjacent segments. In SEMANTIC2 the
NORMALIZATION rules map knowledge and indicator ele­
ments into single elements reflecting the relationships
existing between two or more knowledge elements. In
SEMANTIC3 a tentative ODerator orouu (orotoeroun) is
formed. The INTEGRATION AND NORMALIZATION rules are
replacement rule? of the tvDe A => B i e reolace

with B. Both A and B can be Lists of semantic
elements! A slash (/) indicates that the next
elements of the list occur on the next line of the
mode buffer. Class names and X's are used as vari-
ables, and in the NORMALIZATION rules A's are var i-
ables which stand for knowledge elements on adjacent
lineq connected bv the AND indicator Tvcical
INTEGRATIOH and NORMALIZATION rules for crypt-
acithmetic are shown in Figure 6* GROUPING rules are
not qhown * Thev define a nrotoeroun to be the
largest consecutive sequence of elements containing
no more than one operator element.

Group Processor. There are two run modes in the
Group processor: GRAPHIC 1, and GRAPHIC2. GRAPHIC 1
processing fills in the values of variables in the
semantic elements by comparing the element containing
variables with all the elements currently active in
the PBG, i.e., the current context. When a match is
found the appropriate values are filled in. Currently
the UNKNOWNS rules are not accessible to the user.

Processing in GRAPHIC2 is a joint man-machine
effort."* The goal is to hypothesize for each knowl­
edge element its origin, i.e., the operator and its
inputs (and the operators that produced those inputs,
etc.) that produced that knowledge element as output.
The system queries the user asking for possible
operators and inputs that could have produced the
element whose origin is being sought. From this
information the system constructs an origin tree,
and hypothesizes which path through the tree repre­
sents the actual origin of the element. The path is
picked on the basis of the agreement between the
hypothesized inputs and the actual context defined by
the current PBG. The ORIGIN rules, like the GROUPING
and UNKNOWNS rules, are currently not accessible.

PBG Processor. The PBG processor contains one
run mode: GRAPHIC3. In the GRAPHIC3 mode, processing
consists of taking the operator groups produced in
GRAPHIC2 and incorporating them into the problem
behavior graph. The CONFLICT rules are used to deter­
mine whether or not any knowledge elements in the
operator groups conflict with knowledge already in the
PBG. If such a conflict occurs, the PBG rules are
used to restructure the PBG so the conflict is
eliminated.

SPACE rule 8 in Figure 6 is an exception. It
defines a set named <V> containing two members,
the class <LETTER> and the class <EARRV>.

Two parsers are available, a simple top down
parser and a more sophxsticated parser written
by M, Rychener.

At the current stage of development the Grouping
rules have not been made accessible to the user.

This is the major place where we have not regained
in PAS-II the power for automatic processing
available in PAS-I.

Both the CONFLICT and PBG rules are ordered
production rules of the form S » A, i.e., in situation
S take action A (12, 13). A situation is defined by
a list of values of certain variables, called the
state vector, SV, The left side of each production
rule has the form (V V V ...) , where V repre­
sents a permissible value for the nth state vector
variable. The right side has the form (A^ A^ A^ . . .) ,
where the A"s represent actions to be taken. The cur­
rent values of the state vector variables are compared
with the left side of each production rule. The first
match, from top to bottom, determines the actions to
be taken (an asterisk is considered to match any value).

Figure 6 shows CONFLICT and PBG rules for
cryptarithmetic. The CONFLICT rules determine
whether or not two given knowledge elements conflict.
The example CONFLICT state vector contains: (SAME 2),
which is true (T) if the second items of both the
elements are identical and false (F) otherwise;
(ITEM 1 1) , which returns as a value the first item
of the first element (the element in the PBG); and
(ITEM 1 2) , which returns as a value the first item
of the second element (the element in the group).
Thus if the two elements being compared were (ODD R)
and (NEQ R 5) CONFLICT rule 3 would match the state
vector and the decision would be that no conflict
exists.

The PBG rules determine the type of restruc­
turing that occurs once a conflict is detected. The
PBG state vector in Figure 6 has 2 variables: TYPE,
which has the value CON if restructuring is ba^ed on
conflict and SIM if it is based on similarity;" and
(ITEM 1 2), which is defined above. The actions shown
in Figure 6 are BLOCKREJ, a type of restructuring
where blocks of adjacent nodes are abandoned, and
COPY, a specification that the group causing the
restructuring should remain in the active portion of
the PBG after restructuring. The state vectors for
CONFLICT and PBG may contain variables and actions
other than the ones shown in Figure 6. For a complete
description of these rules see the PAS-II reference
manual (16) .

Trace Processor. The Topic, Linguistic,
Semantic, Group and PBG processors comprise the major
portion of PAS-II. It is this portion which repre­
sents a generalized version of PAS-I. The Trace
processor is a new extension to the system and has no
analogue in PAS-I. Some parts of it, like the MATCH
mode, are still under development. The Trace proc­
essor enables the user to write a production system
model of the subject (6), and then compare the trace
obtained by running the production system model with
the PBG obtained by analyzing the protocol. The
details are described elsewhere (16).

it. Example of Program Operation

To illustrate the use of PAS-II, we present a
listing of the actual user-machine interaction in­
volved in the on-line analysis of a short crypt­
arithmetic protocol. The cryptarithmetic task is
given in Figure 5. Bofh the protocol and the crypt­
arithmetic rules used for this example are shown in
Figure 6. The protocol is stored in the TEXT mode
and the cryptarithmetic rules in the eight rules modes
shown. These rules approximate the minimal set needed

The PBG rules are also used for restructuring when
similarities (identical nodes) are detected, as
discussed in an earlier paper on PAS-I (15).

to analyze the given protocol, and are for expository
purposes only.*

The annotated listing is shown below. The user
input is in lower case and the system output in upper
case. The system prompts the user by typing either
an asterisk (*) or a question followed by a question
mark (?) .

« t e x t d i s p l a y
TEXT MODE

I . D IS 5 i THEREFORE T IS B . RSSUME R EQUAtS 4 . SINCE YOU
CARRY 1 , R IS ODD . ASSUME Ft IS 7 , HOT 5 ,

t n a x t go

TOPIC MODE
1 . 0 I S 5 |

THEREFORE T IS 8 .
ASSUME R EQURtS * .
S INCE YOU CARRY 1 ,
R IS ODD .
ASSUME R IS 7 ,
NOT 5 .

OK? y e s
TOPIC MODE F I N I S H E D
* n o x ! go

L I N G U I S T I C 1 MODE
1 . 0 IS 5 ;
2 . THEREFORE T IS 8 .
3 . ASSUME R EQURtS * .
4 . S INCE YOU CARRY 1 ,
5 . R IS ODD .
6 . ASSUME R I S 7 ,
7 . NOT 5 .

OK? u s s
t n s x t go

D O N A L D D = 5
+ G E R A L D

R O B E R T

The above expression is a simple arithmetic sum in
disguise. Each letter represents a digit, that is,
0, 1, 2, 9. Each letter is a distinct digit.
You are given that D represents the digit 5; thus,
no other letter may be 5.

What digits should be assigned to the letters such
that when the letters are replaced by their corres­
ponding digits the above expression is a true
arithmetic sum?

Figure 5. Cryptarithmetic Task

The user first entered the TEXT mode and dis­
played its contents. He then entered the next mode
in the control cycle, TOPIC, and started processing
by typing GO. This caused the SEGMENTATION rules to
be applied to the data in TEXT. The system indicated
that the data in line 1 of the previous mode had been
transformed into the seven lines shown above, and
asked if this transformation was satisfactory (OK?).
At this point the user typed yes, telling the system
to actually put those seven lines into the next seven

At least four times as many rules would be needed
for a complete set (15).

TEXT MODE
1. D IS 5 ; THEREFORE T IS 0 . ASSUME R EQUALS 4 . SINCE YOU

CARRY 1 , R IS ODD . ASSUME R IS 7 , NOT 5 .

SPACE RULES
I . (NEG) IND
2 {ODD <V» KN
3. (EQ <V> <DIGIT» KN
4. (THEREFORE) IND
5. (BECAUSE) IND
6. (ASSUME) IND
7. (DIGIT <DIGIT>) KN
8. «V> <LETTER> <CARRY» SPASET

GRAMMAR RULES
1. <EQ> = «CARRYEQ» «LETTER> * <EQUAL> * <DIGIT»
2. <CARRYEQ> * «CARRY> * <DIGIT» «CARRY»
3. <ODD> = «LETTER> * <EQUAL> * ODD)
4. <EQUAL> = IS EQUAL EQUALS BE WAS ARE
5. <NEG> = CANNOT NOT NO N'T
6. <THEREFORE> = THEREFORE IMPLIES
7. <ASSUME> = ASSUME ASSUMING
8. <BECAUSE> = BECAUSE SINCE
9. <CARRY> = CARRY CARRYING CARRIED

10. <LETTER> = A B D E G L N O R T
I I . <D)GIT> = 0 1 2 3 4 5 6 7 8 9

SEGMENTATION RULES
1. . /
2- ; /
3. <DIGIT> , /
4. <LETTER> , /

EXTRACTION RULES
1. 12

INTEGRATION RULES
1. (XI CARRY X2) => (XI <C> X2)
2. (EQ XI X2) / (DIGIT X3) => (EQ XI X2) / (EQ XI X3)
3. (NEG) (EQ <LETTER> <DIGIT» => (NEQ <LETTER> <DIGIT»
4. (ASSUME) (EQ <LETTER> <DIGIT» => (AEQ <LETTER> <DIGIT»

NORMALIZATION RULES
1. A l / (THEREFORE) A2 *> (BECAUSEOF A l A2)
2. (BECAUSE) A l / A2 => (BECAUSEOF Al A2)

CONFLICT RULES
1. SV = ((SAME 2) (ITEM 1 1) (ITEM 1 2))
2. (F * *) => NO-CON
3. (* ODD NEQ) => NO-CON
4. (* * *) => ASK-IF-CON

PBG RULES
1. SV = (TYPE (ITEM 1 2))
2. (CON NEQ) => BLOCKREJ
3. (CON *) => (BLOCKREJ COPY)
4. (* *) => BLOCKREJ

Figure 6. Cryptarithmetic Rules.

lines of the TOPIC buffer. If the processing had
been unsatisfactory, the user could have jumped to
the SEGMENTATION mode, changed the rules, jumped
back to TOPIC, and reprocessed the data using the new
rules before proceeding with the next processing step.

The user then entered the next mode, LINGUISTIC1,
and started processing. The EXTRACTION rules were
applied to the seven lines of data in TOPIC and the
system indicated that the processing should consist of
placing these lines in LINGUISTIC1 unchanged. Note
that the system indicated that line 1 from TOPIC was
transformed into a single line in LINGUISTIC1, etc.,
as opposed to the previous step where one line in TEXT
was transformed into seven lines in TOPIC.

L I N G U I S T I C 2 MODE
<EQ> <LETTER> 0

<EOUfH_> IS
< O I G I T > 5

1 . (EQ 0 5)
FROM .! D IS 5 ;

OK? y e s b a t c h s u p p r e s s
BATCH=T
SUPPRESS=T

2. (EQ T 6» (THEREFORE)
FROtl i THEREFORE T IS 8

3 . (EQ-R 4) (ASSUME)
FROM : ASSUME R EQUALS 4

4 . (EO CARRY 1) (BECAUSE)
FROrt i SINCE YOU CARRY 1

5 . (0 D 0 R)
FROM : R IS ODD .

6 . (EQ R 7) (ASSUME)
FROM : ASSUME R IS 7 ,

7 . (NEG) (D I G I T S)
FROM : NOT S .

L1NGU1ST IC2 HOOE F I N I S H E D
•i (b a t c h)> (s u p p r e s s () a u t o m a t i c
B R T C H - f
SUPPRESS=F
AUT0MAT1C=T
* n e * t go

Processing in LINGUISTIC2 consisted of applying
the SPACE and GRAMMAR rules to the data in LINGUISTIC1
to produce a parse. In step 1 the parse tree was
printed and the user set the flag BATCH true to
eliminate the OK? question (the system then assumes
the answer is always yes) and the flag SUPPRESS true
to eliminate further printing of the parse trees.
Then, before going to the next mode in the control
cycle, the user set the flag AUTOMATIC true so the
system would automatically step through the appropriate
run modes executing GO. At this point the LINGUISTIC2
buffer held the seven sets of semantic elements shown
above.

SEMANTIC1 MODE
RULES APPLIED : 4 1 2 4 3

1. (ED D 5)
2 . (ED T 81 (THEREFORE)
3 . (AEQ R 4)
4 . (BECAUSE) (EQ <C> 1)
5 . IOOD R)
6 . (AEQ R 71
7 . (NEQ R S)

OK? y e s
S E t l R N T I C l MODE F I N I S H E D

SEMANTIC2 MODE
RULES APPLIED i 1 2
1 - 7 . (RECAUSEOF ((EQ D 5)) ((EQ T 0) W

(AEQ R 4)
(RECAUSEOF ((EQ fC> 11) ((ODD R)))
(AEQ R 7)
(NEQ R S)

OK? y e s
SEHANTIC2 MODE F I N I S H E D

SEMANTICS I100E
1 . (BECAUSEOF <<EQ D 5)) ((EQ T 0) >)
2 . (AEQ R 4)
3 . (BECRUSEOF ((EQ <C> 1)) ((ODD R)))
4 . (AEQ R 7)
5 . (NEQ R 5)

OK? y e s

Processing in SEMANTIC1 consisted of applying the
INTEGRATION rules to the semantic elements in
LINGUISTIC2. As indicated above there were five
applications of the rules. Processing in SEMANTIC:
consisted of applying the NORMALIZATION rules to the
seven sets of elements in SEMANTIC 1. There were two
applications of the rules, and five sets of elements

left in SEMANTIC2. Processing in SEMANTIC3 con —
isisted of applying the GROUPING rules, which are not
explicit. These rules simply attempted to pull from
SEMANTIC2 one operator element and its associated
knowledge elements. Since no operator elements were
present, it pulled all the elements from SEMANTIC2.

G R A P H I C l MODE
1 . (BECAUSEOF <(EQ O S)) (<EQ T 8)))

FROM : (BECAUSEOF ((EQ 0 5)) ((EQ T 8)))
OK? y o s

2 . (AEQ R 4)
FROM i (AEQ R 4)

OK? y e s
3 . (BECAUSEOF ((EQ <C> 1> > I I O D D R)))

FROM t (BECAUSEOF ((EQ <C> 1)) ((ODD R>>>
OK? y e s b a t c h s u p p r e s s r : I becauseof ((e q c2 l)) ((o r f d r > >)
BATCH=T
DO YOU REALLY UANT BOTH AUTOMATIC^! RND BATCH=T 1 yes
SUPPRES3=T

4 . (AEQ R 7)
FROM : (AEQ R 7)

5 . (NEQ R 5)
FROM i (NEQ R 5)

G R A P H I C l MODE F I N I S H E D

Processing in GRAPHICl consisted of applying the
UNKNOWNS rules, which are not explicit. These rules
involve searching the existing PBG for elements that
match the elements containing unknowns. In this
simple example no matches were found because the PBG
had not yet been grown. Thus, in step 3 when the
unknown carry <C> was not found, the user told the
system to replace its processing result with
(BECAUSEOF ((EQ C2 1)) ((ODD R))) . This was put
into line 3 of the GRAPHIC 1 buffer, rather than the
result containing <C>. In effect the user told the
system that the value of <C> was C2, i.e., that the
unknown carry was the carry into the second column
(the L+L=R column).

Processing in GRAPHIC2 and GRAPHIC3 occurred as
follows: GRAPHIC2 was entered and the elements from
line 1 of GRAPHIC1 were processed interactively to
determine their operator groups. GRAPH1C3 was then
entered and these groups were grown as new nodes in the
PBG. Next GRAPHIC2 was reentered and the elements

from line 2 of GRAPHIC1 processed. This graphs-
graphic 3 loop was repeated for each line in GRAPHIC 1.
Below is shown only one of these loops": processing
and growing the elements from line 3 of GRAPHIC1.

GRBPHIC2 nODE
FOR (BECBUSEOf ((EQ C2 1)) <(ODD R)>> :
OP = (pc Z>
OUTPUTS = (odd r)
INPUTS = (e q c 2 1)
FOR (EQ C2 1> :
OP = U v c 2 >
INPUTS *
OTHER O R I G I N S FOR (EQ C2 11 7 yes
FOR (EQ CZ 1) l
OP = (pc 1)
INPUTS = (e q d S) < e q c l B)
(EQ D 5) FOUND IN PBG
(EQ C i 0> FOUND I N PBG
DTHER O R I G I N S FOR (EQ C2 1) ? no
O R I G I N TREE :
(ODD R> (PC 2) (EQ CZ 1) (HV C2>

(PC 1) (EQ D SI
(EO C I 9)

3 . (PC 1) I (EQ D S) (EQ C I e>> (EQ C2 1)
(PC 2> (<E0 C2 1)) (ODD R)

FROtt : (BECftUSEOF ((EQ C2 1>> <<0B0 R>>)

GRRPHIC3 MODE
1 . GROU (EQ C2 It

FROM : (PC 1) ((E E D Si (EQ C I B)> (EH C2 1)
DO (BEO. R 4) BNO (ODD R) CONFLICT ? yes

2 . CONFLICT: N4 (AEQ R 4> FIND (ODD R) UITH (BLOCKREJ COPY)
FROtt : (PC 2) <<EQ C2 l>> (ODD fi)

GRBPHIC3 NDDE F I N I S H E D

In GRAPHIC2 the system queried the user to deter­
mine possible origins (operators and their inputs) for
the elements in question. This information was
represented as an origin tree as shown above. This
tree is displayed below in a more conventional style.

output: (ODD R)

operators: (PC 2)
I

input/output: (EQ C2 1)

operators: (AV C2) (PC U)

input: (EQ D 5 (EO CI 0)

Figure 7. Origin Tree

The system analyzes the tree and decides which path
represents the best origin far the top element, in
this case (ODD R). Here there are only two alter­
natives: the path with the operator: assign a value
to the carry into column 2, (AV C2), and the path
with the operator: process column 1, (PC 1). The
system chooses the latter, based on implicit ORIGIN
rules which tell it to choose between operators by
rating them according to their inputs. The decision
function currently in use is:

Choose to maximize: (3 x used-inputs) -
(unused-inputs)

Space limitations prevent us from including the
entire listing.

where an input is "used" if it occurs in the PBG.
Thus (AV C2) has a rating of 0 while {PC 1) has a
rating of (3x2)-0 or 6. The format of the operator
groups produced in GRAPHIC2 is: operator (input
list) output.

In GRAPHIC3 the two groups from CRAPHIC2 were
incorporated into the PBG. The second group, with
(ODD R) as the output, conflicted with an existing
group in the PBG and led to restructuring of the PEG
to resolve the conflict. Conflicts were defined by
the CONFLICT rules, the type of restructuring by
the PBG rules."

s o , r a p h i c 3 d i s p l a y
GRBPHIC3 MODE

N l fl OP (RECALL Dl DUT (EQ D 5)
NZ OP (RECALL C I) OUT (EQ CL B>
N3 op [PC I) IN (EQ D 5) (EQ C I 9) OUT (EQ T 8)
N4 OP (BV R> OUT (BEQ ft 4)
N5 DP (PC 1) IN (EO D 61 (EQ C I 6) OUT (EQ CZ 1)
N6 OP (PC 2) IN (ED 12 1> OUT (ODD R) 8
N7 3 OP (PC 1) IN (EQ D 5) IEQ C I 9) OUT (EQ C2 1)
N8 OP (PC 2) IN (EQ C2 1) OUT (ODD R)
N9 OP (BV R) OUT (REQ R 7)

N I B OP (TD R 5) IN (EQ D 5) OUT (NEQ R 5)

After all the data from GRAPHIC1 was processed
in GRAPHIC2 and GRAPHIC3 the contents of GRAPHICS
were displayed. Each line in the display represents
a node in the PBG. Node 10 contains the operator:
test to see if R can have the digit 5 as a value,
(TD R 5). Figure 8 shows this PBG in the conven­
tional representation. Note that the conflict between
(AEQ R 4) and (ODD R) led to a back-up that abandoned
nodes 4, 5 and 6. Thus the currently active nodes,
the ones that define the current context, are those
joined by the heavy lines in Figure 8.

5. Discussion

The initial program, PAS-I, is an artificial
intelligence program by any reasonable criteria. The
task it attempts, the inference from verbal behavior
to Problem Behavior Graph, is a task requiring intel­
ligence when done by humans. The mechanisms used are
those common to other artificial intelligence
programs that tackle somewhat similar tasks: grammars
to deal with the surface structure of natural language,
representation of knowledge, matching, and heuristic
search to infer information not directly expressed in
the utterances.

PAS-II is a program that accomplishes the same
task as PAS-I. Hence, it too is an artificial intel­
ligence program. But when looked at structurally it
more closely resembles a data processing framework
or, possibly, a language. Something has happened in
going from PAS-I to PAS-II, something worth identi­
fying and discussing.

**
Let us start with Planner (3) and QA4 (8).

These systems are languages for writing programs to
perform a class of artificial intelligence tasks. The

Conflict and PBG rules are described in detail in
an earlier paper (15) .

There are other representatives of this class,
e.g., POPLER (1) and Conniver (10, 11).

R odd

R=£5

Figure 8. Problem Behavior Graph for Cryptarithmetic

KEY:

Knowledge
equal

«- assign equal
not equal

RECALL
PC
AV
TD

Operators
recall element
process column
assign value
test digit

6

exact boundaries of these tasks are obscure but their
central core is clear and includes a large fraction of
the tasks for which heuristic programs have been built

theorem proving, robot planning, symbolic manipu­
lation, etc. These systems were formed, essentially,
by taking a list processing framework and embedding
within it some of the ad hoc mechanisms developed
for particular heuristic programs. They include back­
tracking, a generalized matching facility, a global
data base (accessed by pattern matching) and multi­
processing control. Embedding these mechanisms with­
in a language makes possible their use in novel com­
binations (and in interaction with the other mecha­
nisms available in higher languages).

This same embedding of mechanisms into a language
system has occurred in the transition from PAS-I to
PAS-II. PAS-II provides a framework within which a
class of AI programs can be easily constructed. This
class is not the same as that of the Planner/QAA
type system, which is more "mainline" artificial
intelligence. Rather, it appears to be characterized
as linguistic data processing, the essential feature
being the processing of long sequences of data
(rather than just a sentence at a time). This class
includes, of course, protocol analysis. It also
includes a number of other tasks: content analysis
of more classical varieties (9), problem space con­
struction (2), test grading, and what is coming to be
called semantic filtering.

The embodiment of mechanisms into a language
framework has occurred at two levels in PAS-II, one
corresponding roughly to that of Planner/QA4 and the
other more specialized. The first level is repre­
sented by the PAS-II framework of run modes, rule
modes, common command language, editing system, and
control structure. This includes a set of mecha­
nisms for the data base (the run modes), a matching
facility (the common mechanism for how the rules work
on data) , and a backtrack facility (the saving of
buffers so that processing can be undone). Added to
this is the explicit control structure for processing
within a stage and passing through the stages, which
corresponds to a weak method (4) in the same sense
as GPS's basic methods or the basic methods built into
the goal construct in Planner/QA4. These provide a
schema of operation which, though almost content free,
is still a rational procedure for achieving the
overall goal. The mechanisms adopted in PAS-II are
somewhat more shaped than their correspondents in
Planner/QA4, e.g., there is not a single global data
base or one stratified by a general context mechanism,
rather the data is organized into homogeneous groups
(the modes) along structural lines.

The second level is the specialization of the
various modes to specific subtasks inherent in tasks
of the class: segmentation, parsing, normalization,
etc. The specialized rule systems contain the knowl­
edge about the processing. Thus writing any sort of
legal rules within a given rule system generates proc­
essing of the right sort (though it may not do the
right task) In this respect Drovidine a sinele eener-
alized rule system or scheme for pattern matching and
pattern evoked actions (in the manner of Planner/QA4)
would move more of the knowledge required back across
the boundary from the language system (PAS-ID to the
coding within the system (the user program in PAS-II,
which is the set of actual rules in the rule modes)

As one moves PAS-II in the direction of a
generalized system for a wider class of problems, one
can expect the collection of rule modes to increase,

becoming eventually, a library in the classic sub­
routine library sense. The system designer is then
faced with the problem of providing these modes with
the rules needed to define processing in the various
problem domains. However, one advantage of spec­
ialized rule systems is that when their structure
is highly constrained it becomes easy to predict the
effect of modifying rules in the system (as compared
to predicting the effect of modifying statements in
a general programming language). This sets the stage
for the development of self-modifying systems which
rewrite their own rules or, in effect, learn to
improve their performance in some data processing
task (12, 13). Such a capability in an interactive
PAS-II-like system would enable the system to build
or modify its own rules for a particular problem
domain, using feedback from the user to direct the
search for good sets of rules.

The evolution from PAS-I to PAS-II in analogy
to the more general evolution going on toward
planner-like language systems should add to the
awareness that embedding mechanisms in language
remains a potent scheme for making advances in
artificial intelligence.

Acknowledgments

This paper will appear in the preprints for the
third International Joint Conference on Artificial
Intelligence (IJCAI-73). This research was supported
in part by Research Grant MH-07732 from the National
Institutes of Health and in part by the Advanced
Research Projects Agency of the Office of the
Secretary of Defense (F44620-70-C-0107) which is
monitored by the Air Force Office of Scientific
Research.

References

1. Davies, D. J. M., POPLER: a POP-2 planner. MIP.
School of University of Edinburgh.

2. Hayes, J. R., and Waterman, D. A., Automatic
Problem Space Construction, Psychology Department,
Carnegie-Mellon University, 1973.

3. Hewitt, Carl, Description and theoretical analysis
of planner: A language for proving theorems and
manipulating models in a robot. AI report TR-258
(Ph.D. thesis). MIT AI Laboratory, Cambridge,
Massachusetts, 1972.

4. Newell, A., Heuristic programming: Ill-structured
problems, in Aronofsky, J. S. (ed.) Progress in
Operations Research, vol. 3, Wiley, 1969, pp.
362-414.

5. Newell, A., and Simon, H. A., Human Problem
Solving, Prentice-Hall, Englewood Cliffs, N.J.
1972.

6. Newell, A., A theoretical exploration of mechanisms
for coding the stimulus, in Melton, A. W., and
Martin, E. (eds.) Coding Processes in Human Memory,
Winston and Sons, Washington, D.C., 1972, pp.
373-434.

7. Newell, A., Simon, H. A., Hayes, R., and Gregg, L.,
Report on a workshop in new techniques in cognitive
research. Computer Science Department, Carnegie-
Mellon University, 1972.

8. Rulifson, J. F., Derksen, J. A., and Waldinger,
R. J., QA4: A procedural calculus for intuitive
reasoning, Stanford Research Institute, November
1972 .

9. Stone, P. J., Dunphy, D, C, Smith, M, S,,
Ogilvie, D, M,, The General Inquirer, MIT,
Cambridge, Massachusetts, 1966.

10. Sussman, Gerald, and McDermott, Drew, Why
conniving is better than planning, MIT, Cambridge,
Massachusetts, April 1972.

11. Sussman, Gerald, and McDermott, Drew, Conniver
Reference Manual, MIT, Cambridge, Massachusetts,
May, 1972.

12. Waterman, D. A., Machine learning of heuristics.
Ph.D. Thesis, Computer Science Department,

Stanford University, 1968.

13. Waterman, D. A., Generalization learning tech­
niques for automating the learning of heuristics,
Artificial Intelligence, vol. 1, nos. 1 and 2,
1970, pp. 121-170.

14. Waterman, D. A., and Newell, A., Protocol analy­
sis as a task for artificial intelligence.
Artificial Intelligence, vol. 2, nos. 2 and 3,
1971, pp. 285-318.

15. Waterman, D. A., and Newell, A., Preliminary
results with a system for automatic protocol
analysis. Carnegie-MelIon University, Computer
Science Department, 1973.

16. Waterman, D. A., PAS-II Reference Manual,
Psychology Department, Carnegie-Melion University,
1973 .

