NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PAS-II REFERENCE MANUAL

D. A. Waterman

Version 29, June 17, 1973

PAS-11 REFERENCE MANUAL

TABLE OF CONTENTS

1. | NTRODUCTI ON

TABLE OF CONTENTS

1.1. Automatic Protocol Analysis

1.2. Goal of PAS-I11

1.3. Running the System

2. SYSTEM ORGANI ZATI ON

2.1. Modul ar Organization
2.1.1. Run vs Rule Modes
2.1.2. Auxiliary Modes
2.1.3. Mode Table

2.2. Functional
2.2.1
2.2.2
2.2.3
2.2. A
2.2.5

2.3. Proce
2.3.1

3. MODES
3.1. Run Modes
1.1. Text

u

WWwWwwowowowowoowowowahmowowowowowowowowowowwwww
MNNONNMNNMNMNNMNNOMNNNNTRRPRREPRPPRPRERRPRPRR
'—\
A

. Graphicl
9. Graphic2 Mde
18. Graphi c3 Mde
11. Tracel
12. Trace2 Mbde

13. Trace3 Mode

. Traced4 Mode

e Modes

1. Segmentation Mode
2. Extraction Mode

3. Space Mode

4. G anmmar

5. Integration Mdde
G. Normalization Mde
7

8

9

1

1

Or gani zati on
. Types of
. Executing Functions
. Entering Data

Functi ons

Numbers as Arguments
Function Tabl e

cessing Data

. Response to OK? Question

Mode
2. Topic Mode

3. Linguisticl Mode
4. Linguistic2 Mde
5. Semanticl Mode

6. Semantic2 Mode

7. Semantic3 Mode

8

Mode

Mode

Mode

Gr oupi ng Mode
Unknowns Mbde
. Origin Mde

0. Conflict Mbde
1. PBG Mode

PAS-11 REFERENCE MANUAL
TABLE OF CONTENTS

3.2.12. PS Mode
3.2.13. Memory Mode
3.3. Auxiliary Modes

3.3.1. Association Mode
3.3.2. Control Mode
3.3.3. Information Mode
3.3.4. Save Mode

3.3.5. Scratch Mode

4. FUNCTI ONS
4.1. Basic Functions

4.1.1. (rmode name)
4.1.2. Core Function
4.1.3. Create Function
4.1.4. Display Function
4.1.5. Erase Function
4.1.B. Exit Function
4.1.7. Help Function
4.1.8. Mode Function
4.1.9. Move Function
4.1.10. Next Function
4.1.11. Prior Function
4.1.12. Rule Function
4.1.13. Run Function
4.2 Edit Functions

Break Function
Connect Function
Define Function
Del ete Function
Ed Function

I nsert Function
Read Function
Renumber Function
Wite Function

A DDA
N NNDMDNMNNNNNODDN

4.3. Flag Functions
4.3.1. Automatic Flag
4.3.2. Batch Flag
4.3.3. Comment Flag
4.3.4. Fast Flag
4.3.5. Hush Flag
4.3.B. Numbers Flag
4.3.7. Print Flag
4.3.8. Search Flag
4.3.9. Suppress Flag
4.3.18. Time Flag
4.3.11. Versionl Flag
4.3.12. Version2 Flag

4. 4. Process Functions
4.4.1. Again Function
4.4.2. Apply Function

PAS- 11 REFERENCE MANUAL
TABLE OF CONTENTS

Copy Function

Go Function
Recopy Function
Restart Function
Start Function

R AERES
PR AERS

5. EVOLUTI ON
5.1. Changes to PAS-11
5.2. O d Versions of PAS-II

G. EMERGENCY PROCEDURES
7. REFERENCES

8. APPENDI X

8.1. State Vectors
8.2. PAS-11 Rules
8.3. PAS-I1l Script

PAS-11 REFERENCE MANUAL 5
1. | NTRODUCTI ON

1. | NTRODUCTI ON

1.1. AUTOMATI C PROTOCOL ANALYSI S

Automatic protocol analysis is a joint effort by man and machine to

infer, from the verbalization of a subject solving a problem the
underlying information processes occurring during solution (1). An
initial goal for automatic protocol analysis is to provide a
description of the subject's behavior. An intermedi ate goal is to
provide a model of the subject; one which can generate a description
of his problem solving behavior. A long-term goal is to automate the
anal ysis more conpletely, particularly the induction processes, such
as induction of the problem space from the verbal protocol, or

induction of the mpdel from the description of the behavior of the
subject.

1.2. GOAL OF PAS-11

The PAS-I1 system (2) is an interactive, task-free version of an
earlier protocol analysis system PAS-1 (3, 4). At the current |evel
of devel opment, the goal of PAS-Il is behavior description. The

system is designed to analyze protocols and produce as output a
probl em behavior graph (PBG describing the subject's search through

a posited problem space. The input to PAS-1I is a transcribed text of
the subject's verbal protocol, plus a number of rules defining the
probl em space, grammar, and certain data transformation operations.
The program performs a |linguistic analysis of the text, producing a
series of semantic elements. These elements are further processed to
provi de tentative groupings, each containing one operator plus

knowl edge representing the operator's inputs and outputs. The
operator groups are represented as nodes in the PBG. Thus the output
from PAS-11 is a graph which defines the subject's know edge state at
each point in time and the operators he applied to change that

knowl edge.

1.3. RUNNI NG THE SYSTEM

PAS- | | is currently running in LISP on the CMU PDP18A system To | oad
PAS-11 type R PAS to the monitor. Then type either (BEGAN) or (PAS)
to the LISP interpreter to actually enter PAS-11. To |eave PAS-II

either type EXIT to return to the LISP interpreter, or (control)C to
return to the PDP-18 monitor.

PAS-11 will run in Stanford LISP conpil ed, and either Stanford or
Irvine LISP interpreted. To obtain your own copy of the system you

PAS- 11 REFERENCE MANUAL 6
1. |1 NTRODUCTI ON

need disk files PAS2. LAPI X320DU28) and PAS2P. LAP<X3200W28) (the
compi | ed functions) and PAS2.LSP(X320DU28) (the unconpil ed
functions). You will need GK of core and 43000 words of binary
program space to assenble the conpiled functions and load the
unconpi |l ed ones. The regular and special pushdown [|ists should be set
to 3000 words each, with full words set to 1000. To run PAS-II
interpreted sinply load file PAS2(X320DW28) and run.

PAS- 1| REFERENCE MANUAL 7
2.1. MODULAR ORGANI ZATI ON

2. SYSTEM ORGANI ZATI ON

2.1. MODULAR ORGANI ZATI ON
2.1.1. Run and Rul e Modes

PAS-11 is organized as a nodular data analysis system The basic unit
of organization is the node: a processing state which has associ at ed

with it a buffer capable of holding rules or data. This buffer can be
nmodi fied by the editing functions available in the command | anguage.

There are three types of mpodes: run nodes, which hold the data being

anallyzed, rule mpdes, which hold the processing rules, and auxiliary
modes, which hold task-free systemoriented rules.

The difference between run and rule nodes is that in a run node you
have two options: you can process the data in the previous run node
by applying rules froma rule node, or you can edit the data In the
current run node. In a rule nmode you have only one option: that of
editing the rules in that node.

Every run mpde, except text, tracel, and trace3 has one or nmore rule
modes associated with it. Wen a run node is used to process dat a,
the processing always consists of applying the rules from the

associ ated rule nodes to the data.

2.1.2. Auxiliary Modes

There are five auxiliary nodes: save, control, association, scratch,
and information. The save node contains rules which specify which
mode buffers are to be saved on (or read into from a disk file when
the WRITE (or READ) command is executed. The control node contains
rul es which define the control cycle and control flow through the
system The association node contains rules which specify which rule
modes are associated with each run node. The scratch node is a
general purpose, tenporary buffer used as the destination mode for
the apply function. The information node, however, holds no rules and
processes no data. It is unique in that it contains no buffer and
recogni zes none of the functions that constitute the command

| anguage. This nmode provides the user with general information about
PAS-11: its basic organization, purpose and techniques of operation.
This is to be contrasted with the HELP function, which provides the
user with specific, on-the-spot information about the nmode he is in.

2.1.3. ©Mode Table

The PAS-11 nodes are listed bel ow

PAS- 1| REFERENCE MANUAL 8
2.1. MODULAR ORGANI ZATI ON

Run Rul e Auxi liary

t ext associ ation
topic segnent ati on contro

i nguisticl extraction save
linguistic2 space, grammar i nformation
semanti cl i ntegration scratch
semantic2 normal i zation

semanti c3 groupi ng

gr aphi cl unknowns

graphic2 origin

graphic3 conflict, pbg

tracel

trace2 ps, menory

trace3

traced mat ch

2. 2. FUNCTI ONAL ORGANI ZATI ON
2.2.1. Types of Functions

The basic functions are: core, create, display, erase, exit, help,
mode, move, next, prior, rule, run, and (node name). They are
applicable in all run and rule nodes. Note that every nmpde nane is a
function, which when executed puts you into that node. The nopst

i nportant function for the novice is help; it provides information
about the use of all functions in every node. Be sure to use help
after you leave the information node.

The edit functions are: break, connect, define, delete, ed, insert,
read, renunber, and wite. Mst of themare applicable in all run and
rul e modes, and are used to edit the data in the nmode buffers. They
are applicable in the save nmode but not in the information node.

The flag functions are: automatic, batch, conment, fast, hush
numbers, print, search, suppress, time, versionl, and version2. They
are applicable in all but the information nmode, and are used to set
swi t ches which control processing in the run nodes.

The process functions are: again, apply, copy, go, recopy, restart,
and start. They are applicable in all run nodes, and are used to
start the processing of data

2.2.2. Executing Functions

Functions can be executed in all mnpdes except the information nmode:
to execute a function type its name or, if it has arguments, its name

PAS- 1| REFERENCE MANUAL 9
2. 2. FUNCTI ONAL ORGANI ZATI ON

and the argunments in parentheses. For exanple, typing 'DI SPLAY* or

* (DI SPLAY)' or '(DISPLAY 3)' will execute the display function. It is
not necessary to type the entire function name: any unambi guous
initial substring of the function nane will evoke execution, and if
the name ends in a digit, any initial substring foll owed by that
digit will evoke execution. For exanple, 'DISPLA", 'DISPL', and

"DISP* will all execute the display function. 'GRAPHI C3', ' GRAPH3*
and 'G3* will all execute the graphic3 function. Note I: function
names used as argunents to the help function cannot be abbreviated.
Not e 2: par ent heses are needed only for disanbiguation. Thus typing

* BREAK 1 2 RENUMBER DI SPLAY' is equivalent to typing (BREAK 1 2)
RENUMBER DI SPLAY" .

2.2.3. Entering Data

A carriage return (CR enters a line of data into the system To
continue from one line to the next without terminating the previous
line use altmpde instead of carriage return if you are on a tty. Use
underline if you are on a Datel or 2741. A carriage return in
response to a yes or no type question is interpreted as meani ng no.
The only exception to this is OK? question which interprets a
carriage return as meaning yes.

The system indicates that it is ready to accept tty input by typing:
a, (digit)., N(digit), or (string) = .

2.2.4. Nunbers as Argunents

Most of the edit functions take numbers or nunber-groups as
arguments. A number nust be either an integer (1, 5, 56, etc.) or a
real (1.5, 17.02, 0.7, etc.) without a plus or mnus sign. A number
group has the form nunber-nunmber or nunber+nunber. For exanple, 3-6
stands for 3, 4, 5, and 6. 12+3 stands for 12, 13, 14, and 15. An
asterisk (ft) can be used to designate the last item in the buffer.
Thus if the buffer contained ten lines (1-10) then typing ' (DI SPLAY 1
4 ft)' would display lines 1, 4, and 10.

2.2.5. Function Table

The PAS-11 functions are listed bel ow
Basi c Edi t Fl ag Process
(rmode nane) br eak automatic again
core connect bat ch apply
create defi ne conmment copy

di spl ay del ete f ast go

PAS- 1| REFERENCE MANUAL 18
2. 2. FUNCTI ONAL ORGANI ZATI ON

erase ed hush recopy
exit i nsert number s restart
hel p read print start
nmode renunber search

nove wite suppr ess

next tinme

pri or ver si onl

rule version2

run

2. 3. PROCESSI NG DATA

2.3.1. Response to OK? Question

When the system finishes a processing step it wll type a nunmber or
nunber range (indicating the lines processed from the previ ous node)
and lines of data (representing the lines of output to be added to
the current mode). If the system types:
4. DIS 5
TISO

this means that from line 4 of the previous nmobde the processing
produced the above two lines to be added to the end of the current
mode buffer. At this point (if batch - F) the systemw Il ask 'OK?*.
Type just a carriage return to signify that the processing was ok and
you want to continue. O you may respond as shown bel ow

? : means forget the last processing step, don't do it,
U n : nmeans consider that the input for the Iast
processing step was the first n lines in
the previous node rather than what was used.
UR: n : means consider that both the input and the
output for the last processing step were
the first n lines in the previous mode's buffer.
R string : means consider that the output for the |ast
processing step is the string including
everything between the R and the next carriage
return. The string may contain the synmbol & to
indicate that the output goes to different

(but adjacent) lines in the current node buffer.
(function call) : nmeans execute the function in the

normal way, but if it's a flag continue nmode

processing. If it's not a flag, don't continue

node processing.
Bel ow are exanples of conbinations of responses and their effect:

OK? ? TIME : means don't do this last processing step
(from?), set time - T, and continue processing

PAS- 1| REFERENCE MANUAL
2,2, FUNCTI ONAL ORGANI ZATI ON

(since time is a flag). Thus the |ast

processing step will be repeated, this tine
with time - T.

OK? ? TEXT : neans don't do this last processing step,
and furthernore don't do it over (since text
isn't a flag), just go to text node and return
control to the user.

OK? R LIS1 &TI1IS2 : means put 'L IS 1» into the
next line of the current node buffer, and
*T IS 2 into the line after that, just as if
they were the result of the processing step

OK? UR: 4 : neans consider that the processing

consisted of taking the first 4 lines from the
previ ous node buffer and putting them into the
end of the current buffer.

OK? U 2 R (EQDJ5) : nmeans consider that the |[ast
processing step used the first 2 lines from the
previ ous node as input and produced as output
(EQ D 5). Thus the 2 lines are deleted and
(EQ 0 5) is added to the current node buffer

PAS-11 REFERENCE MANUAL 12
3. 1. RUN MODES

3. MODES

3.1. RUN MODES
3.1.1. Text Mode

The text mode is used sinply as a storage buffer which provides data
for the topic node to process. No processing is done in the text
mode.

In the text mode, the define function is used to type materi al into
the text buffer. Typically this material is a string of text
representing a subject's protocol.

Data in the text mode should consist of a string of text all stored
in one line of the text buffer. For exanple: "EACH D IS 5 ; THEREFORE
T IS 0. I "M CARRYI NG 1' would be typical for cryptarithmetic.

3.1.2. Topic Mode

The topic nmode is used to process text data by applying the
segment ati on rules and placing the resulting segmented text into the
topic buffer. These segments are called topic data.

In the topic mode, the define function is used to define topic
segments representing a subject's segmented protocol.

Data in the topic mode should consist of segments of text, where each
segment is in one line of the topic buffer and consists of basically
a single item or assertion. For example:

EACH D IS 5 ;

THEREFORE T IS O
are two typical segments for cryptarithmetic.

3.1.3. Linguisticl Mode

The linguisticl mode is used to process topic data by applying the
extraction rules and placing the result, sone subset of the topic
data, into the linguisticl buffer. This result is called |inguisticl
dat a.

The extraction rules sinmply divide the contents of the topic buffer

into smaller, nore easily handled groups. For example, if the topic
buffer contained 40 lines of data and the extraction rule were set to
10, then the data would be processed in 4 groups of 10 lines each,

with each group being conpletely processed (linguistic2 through
graphic3 modes) before processing starts for the next group.

PAS- 11| REFERENCE MANUAL 13
3.1. RUN MODES

In the linguisticl node, the define function is used to define a
small set of topic segnents representing an initial estimate of an
operator group.

Data in the linguisticl node has exactly the same format as data in
the topic node.

3.1.4. Linguistic2 Mde

The linguistic2 mbde is used to process linguisticl data by applying
the space and grammar rules and placing the result, a set of semantic
el ements, into the linguistic2 buffer. This result is called

linguistic2 data.

In the Ilinguistic2 node, the define function is used to define
semantic el ements: operator, know edge, and indicator el enments.

Data in the linguistic2 node should consist of sets of semantic
el ements, with each line of the buffer containing a set of one or
more elements. For exanple:

(EQ D 5)

(THEREFORE) (EQ T 8)
are two sets for cryptarithnetic, the first containing one el ement,
the second containing two el enments.

3.1.5. Semanticl Mbde

The semanticl node is used to process linguistic2 data by applying

the integration rules and placing the result, integrated semantic
el ements, into the semanticl buffer. This result is called semanticl
dat a.

In the semanticl node, the define function is used to define semantic
el ements which have undergone integration processing.

Data in the semanticl nopde has essentially the same format as data In
the Iinguistic2 nmode.

3.1.6. Semantic2 Mode

The semantic2 mode is used to process semanticl data by applying the
normal i zation rules and placing the result, normalized semantic

el ements, into the semantic2 buffer. This result is called semantic?2
dat a.

In the semantic2 node, the define function is used to define semantic

PAS- 1| REFERENCE MANUAL 14
3.1. RUN MODES

el ements which have undergone integration and nornmalization
processing.

Data in the semantic2 node has essentially the sane format as data in
the Mnguistic2 nmode, except that the semantic el ements * BECAUSEOF\
"COND', and 'OPIO may al so be present.

3.1.7. Semantic3 Modde

The semantic3 nmpode is used to process semantic2 data by applying the
grouping rules and placing the result, a protogroup, into the
semantic3 buffer. This result is called semantic3 data.

In the semantic3 node, the define function is used to define a small
nunber of semantic elenments which represent a reasonable estinmate of
an operator group.

Data In the semantic3 node has exactly the same format as data in the
semanti c2 node.

3.1.8. Graphicl Mode

The graphicl node is used to process semantic3 data by applying the
unknowns rules and placing the result, elements w thout unknowns,
into the graphicl buffer. This result is called graphicl data.

In the graphicl node, the define function is used to define semantic
el ements. which, in general, do not contain unknowns.

Data in the graphicl nmode has exactly the sane fornmat as data In the
semanti c2 node.

3.1.9. Graphic2 Mde

The graphic2 node is used to process graphicl data by applying the
origin rules and placing the result, an operator group, into the
graphic2 buffer. This result is called graphic2 data.

In graphic2 the systemwlt query the user about the origins of the
el ements in graphicl. For a know edge el enent, the systemw |l ask

the user for the operator that produced it, the operator's inputs,

the operators that produced the inputs, etc. For each operator

element it will ask for the operator (in case the user wants to
change notation) its inputs, outputs, etc. If there are nultiple
operators in graphicl the systemwll ask if each is an occurance of

the others. For exanple, in cryptari thnetic for DONALD+GERALD- ROBERT
(PLUS D D) can be considered an occurance of (PC 1), process colum

PAS-11 REFERENCE MANUAL 15
3. 1. RUN MODES

In the graphic2 mode, the define function is used to define operator
groups such that each group occupies one line of the graphic2 buffer.

Data in the graphic2 node must have the following formt;
(operator) (input list) (outputs)

For exampl e; (PC 2) ((EQ D 5) (EQ A 0)) (EQ T 8) (EQ €2 1)

represents a cryptarithmetic operator group with operator (PC 2) ,

inputs (EQ D S) and (EQCI 0), and outputs (EQ T 0) and (EQ C2 1) .

3.1.10. Graphic3 Mode

The graphic3 mode is used to process graphic2 data by applying the
conflict and pbg rules and placing the result, a pbg node, into the
graphic3 buffer. This result is called the graphic3 data or problem
behavi or graph.

In the graphic3 mode, the define function is used to define PBG
nodes. The system prompts with a node nunber, even though define
takes line numbers as arguments.

Data for the graphic3 mde must have the following format;

(number) OP (operator) |IN (know edge) OUT (know edge)
For exampl e; 3 0P (PC 1) IN (EQDY5) (EQ C 0) OUT (EQ T 0) defines
a node which points back to node 3 and consists of the operator (PC
1) with inputs (EQ D 5) (EQ € 0) and an output of (EQ T O). The
m nimal legal format is; OP (operator).

3.1.11. Tracel Mode

The tracel mode is used to linearize the pbg stored in the graphic3
buffer. Executing 'GO* in the tracel mpde puts a linear version of
the pbg into the tracel buffer. |In the linear pbg, backups are

represented as nodes and the pbg itself is just an ordered set of
nodes.

In the tracel mode, the define function is used to define a |inear
representation of the pbg that is stored in the graph!c3 mode.

In the tracel mode each buffer 1line either represents the contents of
one pbg node or indicates a backup. For example;

1. (PCc1) ((ERDS5)(EQC 0)) ((EQC 1))

2. (AV R 0 ((AEQ R Q))

3. (PC2) ((ERC2 1)) ((OD R))

4. (BACKUP (PC 1))
woul d be typical for cryptar i thnmet ic.

PAS- 11 REFERENCE MANUAL 16
3.1. RUN MODES

3.1.12. Trace2 Mode

The trace2 mpde is used to generate a trace of the production system
defined in the ps rule node. The initial contents of the various
memories are defined in the nenory rule node.

In the trace2 node, the define function is used to define a list of
probl em space or production system operators. This list represents
the trace produced by the production system that was defined in the
ps rul e mode.

El ements in the trace2 node nust have a format where each buffer |ine
contains just one problem space or production system operator. This
list represents the trace produced by a production system Thus,

(PC 1)

(DEPOSIT (EQ T 0))

(DEPCSIT (EQ C2 1))

(PC 2)

(DEPCSIT (CDD R>)

. (REMOVE (EQ R 6))

woul d be a typical trace for cryptarithnetic.

ouhAWNPR

3.1.13. Trace3 Mode

The trace3 mpde is used to standardize the trace currently in the
trace2 buffer by giving it the same general form as the pbg which is
stored in the tracel buffer.

In the trace3 nmode the define function is used to define a list of
probl em space or production system operators. This list represents a
standardi zed version of the trace currently in the trace2 node
buffer.

In the trace3 node each buffer line represents either a problem space
operator with inputs and outputs or a production system operator. For
exampl e:

1. (PCD ((EQDJ5) (EQCI 0)) ((EQC2D)

2. (AWMR 0 ((AEQ R 6))

3. (PC2) ((EQC2 1)) ((CD R))

4. (REMOVE (AEQ R 6))

woul d be typical for cryptarithmetic.

3.1.14.. Trace4 Node

The trace4 nmode is used to find the best match between the pbg in
tracel and the trace in trace3. The problem is sinilar to that of
comparing two pbg's and trying to fine the best way to pair simlar

PAS- 1| REFERENCE MANUAL 17
3.1. RUN MODES

nodes so a neasure of how well one pbg matches the other can be
obt ai ned.

In the trace4 node the define function is used to define a
representation of the correspondence or best match between the pbg in
tracel and the trace in trace3.

Each buffer line in the trace4 nbpde nust contain sone representation
of either a pbg node, a trace node, or both. The pbg nodes are
denoted gl, g2 =~ = = and the trace nodes tl, t2, For exanple:

1. d ((PC 1)((EQD 5))((EQ T 0)))

2. & ((AV RQO((AEQR T7))) T ((AVR) O((AEQ R 7)))

3. T2 ((PC 2) 00)

i ndicates that node & from the pbg in tracel and node TI from the
trace in trace3 matched each other while none of the other nodes
mat ched.

3.2. RULE MODES

3.2.1. Segnentation Mde

In the segnentation node, the define function is used to define
segmentation rules: rules for breaking the text into topic segments.

These rules are used by the topic node to process text data.

Rul es in the segmentation node nmust have the follow ng formt:
(string) / (string), where a string is any sequence of words,

punctuati on marks, or word classes, including the null sequence. For
exanmpl e, . I means break the text after the occurrence of every
peri od, / AND SO neans break the text just before the occurrence of

every '"AND SO string, and <D> , / <D> neans break the text after
every occurrence of a digit comma string which is followed by a
digit. (Assuming that <D> stands for a class of digits which is

al ready defined in the grammar node before the class is nentioned in
the segmentation node.)

3.2.2. Extraction Mde

In the extraction mode, the define function is used to define an
extraction rule: a rule specifying the m nimum nunber of segments
which are likely to contain one entire operator group. These rules
are used by the linguisticl node to process topic data.

Rul es in the extraction nmode nust have the format: (number), and only
the rule in the first line of the buffer is used. For exanple, 6 in
line one means to extract S segments from the topic node and use

t hese segments as an initial estinmate of an operator group. If the

PAS- 1| REFERENCE MANUAL 18
3.2. RULE MODES

first line of the extraction buffer does not consist of a nunber,
then segments are extracted 18 at a tine.

3.2.3. Space Mdde

In the space mode, the define function is used to define the problem
space in terms of semantic elements. These problem space rules are
used by the linguistic2 node to help process linguisticl data.

Most rules in the space node have the follow ng format:
(semantic-elenment) (type)
where the semantic elenment has either word classes or other semantic
el ements for argunments, and the type is either KN, OP, or |ND,
dependi ng on whether the element is a know edge, operator, or
i ndi cator el enent. For exanple,
(EQ<V> <D>) KN
(EQC (PLUS <U> <U>) <U») OP
(NEG |IND
are space rules for cryptarithmetic. Note that all classes (<V> <D>,
and <U> above) nust be defined in the grammar node before the space
rules are applied to data.

In general, rules in the space node nust have the format:
(semantic-tenplate) (type)

The semantic-tenplate is used to match the tree resulting from the
application of grammar rules, in order to construct a semantic
el ement containing specific entities from the particular 1inguistic
segment at hand. The left-nmost item in the tenplate should be the
name of the grammar class to which the semantic elenment corresponds,
which will be the label of the entire tree being matched except that
here the name occurs w thout angle-brackets. The other items in the
templ ate are names of granmar classes (this time with the
angl e- brackets), nanes of spaset's, names of splabl's, or semantic
sub-tenmpl ates in parentheses which are then used to match particul ar
subtrees of the main tree which have labels (according to gramar
cl asses) which correspond to the left-nost item in the sub-tenplate
in much the same way as the label of the entire tree corresponds to
the left-nost name in the semantic-tenplate. Elements from the tree
are in general matched to elements in the tenplate in left-to-right
order with the exception that nrriprinn nf *uhtrftP<* ral ativn tn the
ot her'elements is insi ani ficant that is t hrsubt ™are matched
i ndependent | u of the other elements and in fact in some cases it w | |
be desirable to Dick out a oarHcul ar subtree (w thToarticul ar
| abel) no matter n which oosit on it occurs relative to the other
el ements since in some cases order can be reversed with the sane
semanti ¢ nmeaning. For instance the senmantic el ement

(EQC (PLUS BOA)
can be used to represent the neaning of: '"A IS B PLUS C and 'B PLUS
CISA.

PAS- 11 REFERENCE MANUAL 13
3.2. RULE MODES

The type part of the space rule is one of the words KN, OP, |ND,
SPASET, or SPLABL. The first three denote respectively know edge,
operator, and indicator elements. These three are used to specify
whi ch grammar rules are to be applied to the linguistic segnents, and
the order in which those rules are taken. SPASET and SPLABL have
nothing to do with the grammar rules, but deal wth ways of using the
space rule tenplates for building semantic el enments. Exanples wll
foll ow as each feature of the tenplates is discussed in nmore detail.
The nmost common element used in a tenplate is a grammar cl ass,
usually a class which defines termnal elements. If the class doesn't
define a termnal, a subtree of the parse tree is put into the
semantic el enent. For exanple, given grammar rul es:

<EQC> - (<SUM> | S <LETTER>) <<LETTER> |S <SUM>)

<EQ@ - (<LETTER> |S <DIQd T>)

<SUM> = (<LETTER> PLUS <LETTER>)

<LETTER> = A B C

<DIGT> - 35
and space rul es:

(EQ <LETTER> <DI Gl T>) KN

(EQC (SUM <LETTER> <LETTER>) <LETTER>) OP
we woul d get semantic elements as follows:

(EOB 3) from'B IS 3

(EC (SUWM A B) & from'APLUS B IS C
and (EQC (suM B C) A from'"'A IS B PLUS CQ

A space rule tenplate can contain as little as the name. This is
common for indicator elements, for exanple '(AND) IND , *(THEREFORE)
| ND' .

An alternative to the use of grammatical class nanes in the tenplate
is to use the nane of a spaset, which stands for the set of class
names which are listed after the name in the space rule. The semantic
element will then contain the termnal associated w th whichever
class name in the spaset occurs in the parse tree. An inportant
restriction to note is that within any particular tenplate (excluding
sub-tenpl ates) the spaset's nust be disjoint, because the matcher
cannot deci de which spaset a particular class belongs to in case of
conflict, and in fact will associate it with both spasets. As an
exanpl e of use of a spaset, we can generalize <EQC> as defined in the
above exanmple to be:

<EQC> = (<SUM> | S <LETO0I G) (<LETDIG 1S <SUM~)

<LETDI G = (<LETTER>) (<DIGIT>).
Then in space node if we have:

(EQC (SUM LD LD) LD) o©oP

(LD <LETTER> <DI Gl T>) SPASET
we get the semantic el enment

(EQC (SUM A B) 3) from'A PLUS B IS 3*
and the results in the above exanple would be unaltered.

PAS- 11 REFERENCE MANUAL 20
3.2. RULE MODES

In some cases it is desirable to use a label of a subtree as an item
in a semantic elenent, instead of including nore specific contents of
the subtree. 1In this case we use the splabl type of space rule to
give a nane to that subtree from which we wish to extract the |[abel
of a subordinate subtree. For instance, suppose we want to know the
type of an exclamation in a linguistic segment. If <EXCL> - (<HAPPY>)
(<NEUTRAL>) (<SAD>), where <HAPPY> <NEUTRAL>, or <SAD> are further
defined to be specific sorts of utterances, then we could use

(EX <EXCL>) SPLABL

(EXCL EX) IND
to signal to the semantic matcher that it should return the nanme of
the subtree of <EXCL>. For instance we would get (EXCL <HAPPY>) from
"VERY GOOD !" and (EXCL <SAD>) from 'UH CH !'.

Semantic tenplates can be recursive and refer to themselves as
illustrated by the follow ng exanple. If we have in the grammar:
<SUM> * (<LETTER> PLUS <SUM>) (<LETTER> PLUS <LETTER>)

then we could have space rules

(SUM <LETTER> (SUM) KN

(SUM <LETTER>) SPASET.
This will indicate that as long as there is a subtree with |[abel
<SUM>, it will match (SUM <LETTER> (SUM)), and so on recursively
until a <SUM> is <LETTER> PLUS <LETTER>, in which case the tenplate
used for matching will be (SUM <LETTER> <LETTER>). The (SUM part of
the tenplate is replaced by the elenent of the spaset for SUM The
el ement of this particular kind of spaset can be a nane of another
spaset, for instance:

(SUM U (SUM) KN

(SUM U) SPASET

(U <LETTER> <DI Gl T>) SPASET.
Spaset nanes in spaset's are otherwise invalid. For exanple we would
get the semantic element (SUMD (SUM G (SUMR B))) from 'D PLUS G
PLUS R PLUS B'.

Sub-t enpl at es need not be specified in full if elsewhere there is a
space rule defined with the sane name as used in the sub-tenpl ate.
For instance if we have (SUM <LETTER> <LETTER>) KN then we can
shorten (EQC (SUM <LETTER> <LETTER>) <LETTER>) OP to (EQC (SUM
<LETTER>). Each would return (EQC (SUMA B) C from'A PLUS B I SC' .

The left-nost nane in a sub-tenplate nmay be a spaset name in which
case the rest of the sub-tenplate is used to match agai nst whichever
element in the spaset occurs in the actual parse tree. For instance,
i f the grammar contains:

<EQC> = (<PLUSSUM> EQUAL <LETTER>)

<PLUSSUM> = (<PLUSTU0>) (<SUW>)

<PLUSTUO> - (TWD <LETTER> 'YS)

<SUM> = (<LETTER> PLUS <LETTER>)
and the space rules contain:

(EQC (PLSM <LETTER>) OP

PAS-11 REFERENCE MANUAL 21
3.2. RULE MODES

(PLSM <PLUSTUO> <SUM>) SPASET

(PLUSTUO <LETTER>) KN

(SUM <LETTER> <LETTER>) KN
then we would get (EQC (PLUSTUO B) T) from "TWO B ' S EQUAL T and
(EQC (Sl B C T) from'B PLUS C EQUAL T\

As an example illustrating a slightly different use consider a
grammar containing:

<FIND> = (FIND * <LETTER>)

<NEED> = (NEED * <FI ND>) (NEED * <I N>)

<IN> = (HAVE * <LETTER>)

and space rules containing:

(NEED (NEEDS <LETTER>)) OP

(NEEDS <FIND> <IN>) SPASET
Then we get (NEED (NEEDS A)) from 'l NEED TO FIND AN A and from M
NEED TO HAVE AN A'» Note that in this case the spaset name ' NEEDS*
appears in the semantic element because the sub-tenplate of the space
rule had <LETTER> explicitly, while in the previous example, we only
had (PLSM in the space rule, and 'PLSM did not appear in the
semantic element, but either 'PLUSTUO or 'SUM did.

Any name, undefined el sewhere, used in any position in a space rule*
other than the leftnmost position of the main template, wll be
carried over | iteral ly to the resulting semantic element. |f an

ot herwi se-undefined nane is used as a space rule name, this space
rule is disregarded entirely in the processing.

This section gives the complete definition of the SPACE MODE,

al though not all of the features described from this point on are
currently implemented. The rules in the SPACE MODE determ ne what
grammati cal analyses will be made of the text segments in an input

buffer (eg, the TOPIC MODE) to produce semantic elements in an output
buffer (eg, the LINGUISTIC2 MODE). All SPACE RULES are of the form

RULE- BODY TYPE
The TYPE determ nes the interpretation of the RULE-BODY. For each
TYPE we exhibit below the form of its RULE-BODY. After all the forns
are presented, we give the interpretation.
Not ati on: In presenting the forns we use the following grammar-1|ike

conventions:
Terms that contain - stand for classes of forms.

The definition for the class of forms named X-Y is given by:
X-Y :« (here is the def)
Alternative forms for X-Y are indicated by:

X-Y :- alternative! ! alternative2 !

PAS- 1| REFERENCE MANUAL

3. 2.

RULE MODES

Form cl asses ending in NAME (eg, X-NAME) nmmay be any synbol

f not defined further.

Form cl asses ending in LIST (eg, X-L1ST) may be any |Iist
of zero or nore elenments of form X

SEMANTI C- TEMPLATE KN
SEMANTI C- TEMPLATE OP
SEMANTI C- TEMPLATE IND

SEMANTI C- TEMPLATE := (TEMPLATE- NAME TEMPLATE- ELM LI ST)

TEMPLATE- NAME : = CLASS- NAME ! SPASET-NAME ! SPLABL- NAME

TEMPLATE- ELM : = <CLASS- NAME> ! SPASET- NAME ! SPLABL- NAME !
PATH- NAME | SYMBOL ! SUB- TEMPLATE ! (NOTE TEMPLATE- ELM

SUB- TEMPLATE : = (SUB- TEMPLATE- NAME TEMPLATE- ELM LI ST)
SUB- TEMPLATE- NAME : = TEMPLATE- NAME | PATH- NAME | SYMBOL
NOTE := IV | o ! 'D I U ! I F

Note: (1) CLASS-NAME is the nane of a grammar class with
the <>-brackets stripped off, eg, XX for <XX>.

(2) Tenporarily TEMPLATE-NAMEs in SEMANTI C-
TEMPLATEs can only be CLASS- NAMES.

(SPASET- NAME SPASET- ELM LI ST) SPASET

SPASET- ELM <CLASS- NAME> | SPASET- NAME ! SPLABL- NAME !
PATH- NAME

(SPLABL- NAME <CLASS- NAME>- LI ST) SPLABL

(PATH- NAME STEP-LI ST FI NAL- EXP) PATH

STEP := <CLASS-NAME> ! SPASET-NAME ! S | T !
POSI Tl VE- | NTEGER ! NEGATI VE- | NTEGER
FI NAL-EXP := (null) I C!I P I L

(TERM ELM- LI ST) TERM

TERM- ELM : = <CLASS- NAME> ! SPASET- NAME

(STAR- NAME TERM ELM LI ST) STAR

STAR- NAME : « *SYMBOL

(TEMPLATE- NAME <CLASS- NAME> REPLACEMENT- NAME) RETAI' N

Spac

e rules specify the semantic elenents that are to be built

i nguistic segnments. The parser processes the Space rul es of

OP,
each

IND, and KN in the order of occurrence in the SPACE buffer.
it searches for the corresponding grammar classes in the text

22

from

types
For

PAS- 11| REFERENCE MANUAL 23
3.2. RULE MODES

segment wunder consideration (the current line of the input buffer).
Space rules of types RETAIN and STAR are used to nodify parsing
actions. After the parse tree is formed for a given rule, its

SEMANTI C- TEMPLATE specifies how to retrieve elenments from the parse
tree to make up the actual senantic el enments. Space rules of types
SPASET, SPLABL, PATH, and TERM are used in this construction process,
and their order in the buffer is irrelevant.

SEMANTI C- TEMPLATE; Each tenplate produces a single semantic el ement
in the output buffer. Al tenplates generated by a single line of
text in the input buffer produce semantic elenents in the same out put
line, and in the order in the SPACE buffer (ie, the order in which
they are considered). The TEMPLATE- NAME determi nes a grammr cl ass.
This is <CLASS-NAME> if the TEMPLATE-NAME is CLASS- NAME; otherwi se it
is the grammar class determ ned by SPASET or SPLABL as the case may
be (cf their definition). The specified grammar class is used to
search the text as it exists when input to the space rule (it may
have been modified by prior space rules, cf RETAIN). If the grammar
class is not defined in the GRAMMAR then the tenplate is ignored. The
parse with <CLASS-NAME> determ nes a parse tree (a null one if the
parse is unsuccessful). Al the TEMPLATE-ELMs in the tenplate refer
to this parse tree, called the current parse tree, in determng their
own behavi or. They sel ect subtrees and classes from it, but are
limted to the analysis present in this orignal tree (ie, no further
parsings occur).

TEMPLATE- ELM Each el ement determ nes a single subelenment of the
out put senentic elenent, positioned in the same place as in the

templ ate. The subel ement produced depends on the type of the tenplate
element (ie., whether <CLASS-NAME>, SPASET-NAME, ... etc.). The type

of the element is determned by its definition in a semantic rule

el sewhere in the SPACE buffer. |In general each type of semantic rule
provi des a nmeans for obtaining some particular type of information
from the parse tree mde available by the <CLASS-NAME> of t he
SEMANTI C- TEMPLATE. SPASET, SPALABL and PATH are descri bed bel ow under
their own types; the rest are covered here.

<CLASS- NAME> as TEMPLATE-ELM This produces the subtree of
the parse tree directly below <CLASS-NAME>. (This could be
a single word if a ternminal, a sequence of words, or an
entire parse tree.)

SYMBOL as TEMPLATE- ELM This produces a literal copy of
itself in the semantic el enent. (By a SYMBOL is neant a

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

not - ot herwi se defined in the GRAMMAR or the SPACE RULES.)

SUB- TEMPLATE: This produces a subelement in the semantic

el ement t hat is the i mmge of the subt enpl at e.

The

SUB- TEMPLATE- NAME determ nes a new place in the parse tree,
and the TEMPLATE-ELMs in the subtenplate are taken relative
to this sub- parse-tree, ie, it becomes the current parse

tree. Uhat is written in t he semantic el ement for

t he
SUB- TEMPLATE-NAME is determned by its type (eg, whether

a

SPASET, etc). A CLASS-NAME or SYMBOL is reproduced

literally. | f the SUB-TEMPLATE-NAME is a SYMBOL, then

in

essence it selects the null parse tree. Hence the entire

SUB- TEMPLATE is copi ed over literally (since none of
SUB- TEMPLATE- ELMs will be found it the null tree).

NOTES: Various options about the semantic element to
produced are given by prefixing NOTES. The NOTE and

its

be

t he

el ement it refers to are enclosed in parenthesis, though
these parentheses do not show up in the final semantic

el ement . The NOTES are:

10 OPTIONAL: If the element is not found in the parse
tree, then no elenent is to appear in the semantic

el ement .

'V VARI ABLE: If the element is not found in the parse
tree, then it is to appear in the semantic el ement

as a literal (to be interpreted as a vari able).

!'D DUPLICATE: If the elenent is not found in the parse
tree, then a duplicate of the last semantic el ement

that was used for a simlar element wll occur in
semantic el ement.
[DO NOT UNDERSTAND]
U UNBRACKET: The <CLASS-NAME> following is to be

produced in the semantic element without brackets,

eg, as CLASS- NAME.
(If the subelenment following is not of
form <CLASS- NAME>, U has no effect.)

'F FLATTEN: The parentheses are to be taken as
indicating structure (ie, a SUB-TEMPLATE) for the
purpose of formng the subel ement, but the
parent heses are to be removed in the semantic

el ement (thus producing a set of sementic elements)

SPASET (SPACE ALTERNATI VE- SET): The occurrence of a SPASET- NAME
TEMPLATE or SUB-TEMPLATE is to be considered replaced (at that
occurrence) by the member of the SPASET (as defined in the SPASET
rul e-body) that is found in the parse-tree (as defined at the point

of occurrence). Whatever other interpretation is to be given
SPASET- NAME applies to the synmbol that replaces it.

to

in

t he

24

a

PAS- 11 REFERENCE MANUAL 25
3.2. RULE MODES

SPLABL (SPACE LABEL): A SPLABL is a.,pecial case of a SPASET, which
has a specific convention for what expression is to be written into
the semantic element. As in a SPASET, the first SPLABL-ELM which is

found in the in the current parse tree is used. (This ultimately is
a <CLASS- NAME>.) The expression produced in the semantic elenent is
the level in the parse tree inmediately under this

<CLASS- NAME>. (Makes sense in a context in which the <CLASS-NAME>
names a set of alternative subclasses, so that it functions as a

vari abl e. What is produced in the semantic element is then the val ue
of the variable holding for the particular parse, ie, the the sub
grammar cl ass.)

PATH (PATH EXPRESSI ON): The PATH provides a general schenme for
designating portions of the current parse tree to be produced in the
semantic elenment. A PATH specifies a search starting at the top of
the current parse tree. The PATH consists of a sequence of STEPs,
each being taken from the result of the prior STEP and meking a
search in the parse tree relative to it. At the end of the path a
specific node in the parse tree has been deterni ned. FI NAL-EXP
determ nes what shall be produced in the semantic elenent: the | abel
of the node (C, for class name), the entire parse tree (P) or the

| evel one-betow (L, as in the SPLABL). If the FINAL-EXP is not
present the default convention determines it. The STEPS that can be
taken are:

<CLASS- NAME>: Find the first occurrence of the
<CLASS- NAME> in the current subtree.

SPASET- NAME: Find the first occurrence of whichever
el ement of the SPASET is defined in the current subtree.

T: Find the termnal elenents of the current subtree.

S: Find the lowest point at which a single <CLASS- NAME>
(or terminal) comprehends the entire current subtree.

POSI TI VE- I NTEGER (N): Find the point N nodes further
down the current subtree (towards the terminal). This
cannot go below a terminal and a nunber greater than
that is taken to specify the termnal.

NEGATI VE- | NTEGER (-N): Find the point N nodes further
back up the parse tree toward the top. This cannot go
above the top of the current parse tree and a number

greater than that is taken to specify the top.

TERM (TERM NAL DECLARATION): A TERM space rule declares that one or
nmore <CLASS-NAME>s will be treated as terminal elenments in

determ nation of the semantic element from the TEMPLATE (and

SUB- TEMPLATES) once the parse tree has been deternmined from the text

PAS- 1| REFERENCE MANUAL 26
3.2. RULE MODES

segment. This holds for all operations, eg, use of T or searches in
PATHs. |If a <CLASS-NAME> that is declared to be a terminal appears
explicitly in a PATH, then the search continues belou It tie, it is
not treated as a termnal for that search).

STAR (STAR- SYMBOL DECLARATION): A STAR space rule defines a new
star-synbol for use in the granmar. |Its name nust begin with ft. It
operates like ft, skipping over words in the text, except that it wll
not skip over any word that occurs in the definitions of the
<CLASS-NAME>s in its definition (ie, directly or indirectly in the
<CLASS- NAME>s, SPASETs or SPLABLs in TERM LI ST)
Not e: Tenporarily only term nals, <CLASS-NAME>s t hat
define termnal sets and SPASETS whose el enents
are termnals or termnal classes can be used.

RETAI N: A RETAIN rul e determ nes what happens to the text involved
in a specific parse. In the context of the parse for the
SEMANTI C- TEMPLATE with TEMPLATE- NAME, the termnals (words) for
<CLASS- NAME> will be replaced by the synbol specified by
REPLACEMENT- NAME. It occurs in the place of the first term nal of
<CLASS- NAME>. |f no REPLACEMENT-NAME is given, then all the term nals
are left in the text.

[DOESN' T MAKE | T EASY TO KEEP ALL THE WORDS NOT DEALT

W TH AT THEN END OF THE PARSE — THE RESI DUAL!

3.2.4, Grammr Mode

In the granmar node, the define function is used to define a grammar
whi ch includes grammatical classes for every elenent defined by the
space rules. Both the space and grammar rules are used by the

linguistic2 mode to process linguisticl data.

Rul es in the grammr node nust have the followi ng format:

<class> = (itemitem ...) (itemitem...) ...
where an item is either a class (denoted by angle brackets) or a
literal (such as a word, letter, or character). A U can be used at

the beginning or end of the string of itens to indicate a segnment
boundary, and aft can be used between two itens to indicate a match
with any string of text.

For exanpl e, <EQ@> = (<LETTER> * 1Sft <0G T>) defines the class EQ
as matching any string containing a nmenber of the class LETTER,
followed (not necessarily imrediately) by the literal 'IS, followed

(not necessarily inmediately) by a nmenber of the class DIG T. <DIGIT>
= (8 (1) (2) defines the class DIG@ T as matching any string
containing O or 1 or 2. Any grammar rule which is a disjunction of
single literals can be witten wthout parentheses, and defines what
is called a terminal class. Thus <DIG@T> - 8 1 2 is a termnal
class and is equivalent (even preferred) to the above form

PAS- 11| REFERENCE MANUAL 27
3.2. RULE MODES

Cl asses may need to have extensions: thus if you have the rule <PLUS>
= (<LETTER.L2> AND <LETTER.L1>) and in the space buffer you have the
rule (PLUS <L> <L>) KN, then when 'D and G is parsed 0 will be
substituted for the second occurrence of <L> in the space rule and G
for the first occurrence, giving (PLUS GO0) as the resulting semantic
element. |If the rule had instead been <PLUS> - (<LETTER L2:L> and
<LETTER. L1>) then the result would have been (PLUS <L> 0). the class
name following the colon is used in place of the literal that matches
the class. NOTE: Extensions are only needed if you are using the old
grammar, i.e., the flag VERSIONL - T. Extensions are not needed if
the flag VERSION2 - T when the grammar and space rules are defined
and used.

Restrictions on grammar rules: The grammar rules cannot be 'left
recursive', that is in the lists of itens defining a grammar cl ass,
the leftnost item cannot be the same as the grammar class being
defined. Any other item can be the same as the defined cl ass,
however, giving in effect full recursive capabilities. For exanple,
<SUM> - (<LETTER> + <SUMr) (<LETTER>)
is al |owed, but
<SUM> = (<SUW> + <LETTER>) (<LETTER>)
is not al | owed.

Also it is worthwhile to note that if there are several |lists of
items defining a grammar class, these are examined in left-to-right
order to see if they exist in the current linguistic segnent. It ie

generally necessary to put short alternatives which are contained in
ot her |onger ones after the others, so that the |ongest possible
match is attenmpted first, before a shorter match which would al so
succeed.

The order in which grammar classes are nmatched against the linguistic
segments to check their presence is deternmned by the order of the
space rules defined in space npde

3.2.S. Integration Mde

In the integration nmobde, the define function is used to define
repl acement rules which integrate information within a set of
el ements or between adjacent sets. These rules are used by the
semanticl node to process linguistic2 data.

Rules in the integration node nust have the followi ng format:

e... e/l e... el ... =>e...ele...el ...
where each e is a semantic elenent and the / indicates that the next
el ements occur on the next line of the buffer. The elements may
contain variables, denoted by XlI, X2, ... or by class names which
refer to termnal classes. A class name in the left side of an

PAS- 1| REFERENCE MANUAL 28
3.2. RULE MODES

integration rule will match any word in that class, however, class
names in the data are not treated as variables. Consecutive strings
of elenments in adjacent lines can be referred to by using the
variables SI, S2, ... Thus (DIGAT SI) refers to the list (DGT XI) /
(DA T X2) [/ ... , a sequence of indefinite |ength.

These rules are replacenent rules which mean that an occurrence of
everything to the left of the arrow is replaced by everything to the
right of the arrow. For exanple,
(NEG (EQ XI X2) => (NEQ XI X2)

means that if both (NEG and the EQ elenment are found in the sane set
of elements (i.e. on the sanme buffer line) in any order then the EQ
is changed to NEQ, and the (NEG is deleted. Also,

(EQ XI X2) / (DAT X3) => (MEQ XI X2 X3)
means that if EQ is found in one set of elements and DIG T is found
in the next adjacent set then they are transformed into the MEQ
el ement. Furthernore,

(EQ XI X2) / (DIAT SI) => (MEQ XI X2 S1+)
means that if EQ is in one set and there are adjacent sets with DIG T
in them then the EQ element and all the DIG T elenents are replaced
with (MEQ XI X2 S1+), where Sl1+ stands for the list of all arguments
of the DIG T element. This rule would change:

(IF) (EQR 1)

(DG T 3) into (I (MQR 1 3 7)
(DIG T 7) (CDD R)

(GDD R)

A rule with (DIGT SI) as the left side applied to the data shown
bel ow:

1. (DGAT 1)(EQL 4)

2. (NEQ(DAT 3)

3. (EQR 7
woul d match the first two lines above. The (DIG@T SI) matches (DIGT
1) (EQL 3) / (NEQ(DAT 3), that is, everything on both lines. The
SI matches 1 and 3, the arguments of DIGT.

3.2.6. Normalization Mbde

In the normalization mode, the define function is used to define
repl acement rules that create elenments |ike 'BECAUSEOF , ' CONO\ and
"OPIO which specify group relations existing between problem space
el ements. These rules are used by the semantic2 node to process
semanticl data.

Rul es in the normalization node nmust have the following format: e

e/ e ... e/ ... *>e ... e/l e ... e/l ... as in the integration mode.
But here the variables Al, A2, ... can be used to stand for any
consecutive know edge el enent sets connected by 'AND*, 1l.e., A would

mat ch the consecutive sets (EQD5) / (AND) (EQTO) / (AND) (ODD R) .

PAS- 1| REFERENCE MANUAL 29
3.2. RULE MODES

Al so, KI, K2, ... can be used to stand for individual know edge
el ements. These K's will match the first non-indicator elenment in a
line, going from left to right. For exanple,
Al / (THEREFORE) A2 -> (BECAUSECF Al A2)
woul d transform

(EQ D 5)
(AND) (EQ CI 8) into (BECAUSECF ((EQ D 5) (EQ C 8))
(THEREFORE) (EQ T 8) ((EQT 8) (EQC2 1)))

(AND) (EQ C2 1)
Al so, the rule
(IF) KI / (THEN) K2 => (COND KI K2)
woul d transform
(1F)(OR) (EQ R 7)
(YES) (THEN) (EQ C2 1) into (COND ((EQR 7)) ((EQ C2 1)))
See the prelimnary results paper(Waterman and Newel |, 1972) pages
37-38 for exanples of the use of A and K in normalization rules.

3.2.7. GCrouping Mde

The grouping nmode is currently non-operational. That is, the grouping
rules are built into PAS-Il at a level which is not accessible to the
user. These rules operate on the data in the semantic2 mode, and
result in transferring from semantic2 to semantic3 the | argest
consecutive sequence of elenment sets (starting from the el ement set
in the first line of the semantic2 buffer) containing no nore than
one operator element.

3.2.8. Unknowns Mode

The unknowns nmode is currently non-operational. That is, the unknowns
rules are built into the system and are not accessible to the user.
These rul es essentially fill in the values of variables in the
semantic elements located in the semantic3 node. This is done by
comparing the element containing variables with all the el ements
currently active in the PBG i.e., the current context. Then, when a
match is found the appropriate values are filled in. A variable is
just a grammar class taken without its domain.

3.2.9. Origin Mde

The origin node is currently non-operational. That is, the origin
rules are built into the system they are not accessible to the user.
These rul es define processing in graphic2 to be a joint man-machine
effort. The goal is to hypothesize for each know edge el enent in
graphicl its origin, i.e., the operator and its inputs (and the
operators that produced those inputs, etc.) that produced that

know edge el enment as output. The system queries the user asking for

PAS-11 REFERENCE MANUAL 30
3. 2. RULE MODES

all operators and inputs that could have produced the element whose
origin we want. From this information the system grows an origin
tree, and hypot hesi zes which path through the tree represents the

actual origin of the element. The path is picked on the basis of the
agreement between the hypothesized inputs and the actual context
defined by the current PBG.

3.2.10. Conflict Mode

In the conflict mode, the define function is used to define a state
vector and situation-action rules which are used to determ ne whether
or not two particular know edge elements conflict. The first el ement
is always the output of a node in the pbg, the second is always an
out put of the group that is currently being grown onto the pbg. These
rules are used by the graphic3 nmode to help process graphic2 data.

Rules in the conflict node use a state vector formt.

The state vector variables currently available are:

(SAME N) : is T if the n*th arguments of both knowl edge
el ements of the conflict pair are identical, else is
F.

(ITEMn m : is the n'" th argument of the m th el ement of
the conflict pair.

SIMLAR : is T if the group being grown onto the pbg is
simlar to the node that produces the first elenment
of the conflict pair, else is F. By simlar we mean

that the group inputs are a subset of the node
inputs and the operators are identical.

The actions currently available are:

SIM : the two know edge elenents are considered simlar.

CON : the two know edge elements are considered
conflicting.

NO-CON : the two knowl edge elements are considered
unconflicting.

ASK-1F-CON : the user is asked if the elements are
conflicting.

For exampl e, if the conflict rules have the form

SV = (SIMLAR (SAME 2) (ITEM 1 2))

(T * ft) => SIM

(ft F ft) => NO- CON

(ft ft EQ => ASK-1F- CON
then if the two know edge elements are outputs of different operators
and are (EQ D 5) and (EQR 7), the evaluated SV is (F F T) and the
action taken is NO-CON. For (EQ D 5) and (BEQ D 7) the SV is (F T T)
and the action taken is ASK-IF-CON. For (EQ D 5) and (EQ D 5) the SV
is (T T T) and the action taken is SIM In general, if the conflict

PAS- 1| REFERENCE MANUAL 31
3.2. RULE MODES

rul es produce SIMor CON this leads to a restructuring of the PBG as
the new node is grown.

3.2.11. PBG Mode

In the pbg mode, the define function is used to define a state vector
and situation-action rules which are used to determ ne how a
particul ar group should be incorporated into the pbg. These rules are
used by the graphic3 node to help process graphic2 data.

Rul es in the pbg npde use a state vector format.

The state vector variables currently avail able are:

TYPE : is SIMif a simlarity is found, or CON if a
conflict is found.

(ITEMn m : is the n'th itemof the m th element of
the simlarity or conflict pair.

INCLUDE : is T if all output elenents of cnl are

included in those of cn2.

Al so, the prefix 'NOT-' on a state vector variable is equivalent to
asking for the conplement of the value of the variable.

The actions currently available are:
BLOCKREJ : restructure using block rejection.
GROU : add the group to end of pbg, no restructuring.

The action BLOCKREJ can have the follow ng arguments:
COPY : copy cn2 during restructuring.
CHAIN-N : redefine cnl to be the earliest node which
produces an 'n' elenent used as input to the
original cnl node.
For example, if the pbg rules have the form
SV = (TYPE (NOT-1ITEM 1 2))
(CON EQ => (BLOCKREJ COPY CHAI NAEQ
(CONft) => BLOCKREJ
then if the two elenments are (EQD5) and (EQD 7), the evaluated SV
is (CON (ODD EVEN AEQ)), assuming that EQ AEQ ODD, and EVEN are all
knowl edge el enents defined in the space rules. The action taken woul d
be BLOCKREJ. |If the elements are (DD R) and (EVEN R) the SV is (CON
(EQ AEQ ODD)) and the action taken is (BLOCKREJ COPY CHAI NAEQ) .

CN1 refers to the operator which produced the first know edge el enent
of the simlarity or conflict pair. CN2 refers to the operator which
produced the second know edge el ement of the simlarity or conflict
pair.

3.2.12. PS Mode

PAS-11 REFERENCE MANUAL 32
3.2. RULE MODES

In the ps mode, the define function is used to define an ordered set
of production rules which, taken together, form a production system
Both the ps and menory rules are used by the trace2 node to generate
a trace of the production system defined in the ps mode.

Rules in the ps mode must have the following format:
S S e e ¢ 5" * 59 96 e e g
where s can be: k, -k, (k . . kme.. m , or
-(k ..« km... m
a can be: o or (om ... m
and k is any problem space el enent,
o is any operator
m is any memory.
The left side of a rule is true (and leads to the evocation of the

right side) when all k's in the left side are found to currently be
in at |least one of the specified menmories. When the right side of a
rule is evoked, the operators are executed and the result put into

each of the specified memories.

The production system operators are

(DEPOSI T k) : puts k into the front of menory
(REMOVE k) : removes k from menory
(FIRE p) : fires production systemp
(ASSI GN x v) : variable or class x is assigned value v
(DEASSI GN x) : variable or class x is made undefined
(REPLACE (b c d) (bl cl dl) n) : bcdinnth element
of memory is replaced with bl ¢l dl. If n is m ssing,
it is assumed to be 1.
(NOTICE k) : if found, k is moved to front of memory
(FAI'L) : the production rule execution is halted
(STOP) : the production system execution is halted.

Bel ow are exanples of legal rules: (where memory isn*t specified the

default memory is assumed):

1. (EQ D 5) (EQ T 8 « (PC 1)

(EQ <L> <D>) => (FC <L>) (PC <COL>)

(EQ D 5 NEW ((EQ T 0) LTM = (PC 1)

((EQ D 5) (EQT O LTM «> ((PC 1) LTM

((EQ DS STMLTM «> ((PC 1) STMLTM

(EQ D 5 (NEW UNCLEAR)) «> (PC 1)

(EQ XI X2) - (OD <L>) => ((DEPCSIT (PC 1)) STM™M

(a 5 => (NOTICE (DAT 5))

9. (ODD XI') => (REPLACE (X)) (R)

Note that vari ables are denoted Xl, X2, and cl asses are denoted
by angle brackets (<>) . Consider rule 5 above, if (EQDJ5) is in
either STM or LTM then (PC 1) is put into both STM and LTM The ft in
rule 8 above matches any string of words. Thus (sv 5) matches (EQ D
Sy, (DGATH5), and (NEQR5) .

® N O AN

PAS- 11 REFERENCE MANUAL 33
3.2. RULE MODES

3.2,13. Menory Mode

In the nenory mode, the define function is used to define and
initialize the various nenories to be accessed by the productions in
the production system nodes (such as the ps node). Both the menory
and ps rules are used by the trace2 node to create a trace of the
producti on system defined in the ps node.

Rul es in the menory node nust have the follow ng formt:

name = elenment element ... elenent
where 'name' is the name of the nenory and 'elenent' is any problem
space elenment. The elenment list defines the contents of the nmenory,

and the nenmory defined by the first rule in the buffer is always made
the default memory. Any nunber of menories nay be defined and
initialized, and they may have arbitrary nanmes. For exanple, if the
menory buffer held:

1. KS - (EQD5)(EQ O 0)(EQ C7 0)

2. STM = 0

3. LTM - (EQ D 5)
then the system would assune that 3 nenories were available: KS with
three elements in it, STMwith no elements (enpty), and LTMwith one
element in it. The default nenory woul d be KS.

3.3. AUXI LI ARY MODES
3,3.1. Association Mde

The associ ati on node contains rules which define the associations

bet ween run and rule nodes, i.e., which rule nodes are associ ated
with each run node. These associations, together with the control

rul es, define both the control cycle, (i.e., the order in which nodes
are accessed using the next function or automatic flag) and the

| ocation of the data for the rules in each rule node to process.

In the association node, the define function is used to define rules
i ndi cating which rule nodes are associated with which run nmodes.

Rul es in the association node have the followi ng format: M: M...
where the Ms stand for run or rule node names. The Mto the left of
the col on nmust be a run node name, those to the right, rule node
names. For example, the rule LINGU STIC2 : SPACE GRAMMAR i ndi cates
that the Mnguistic2 node has two rule nodes associated with it,
space and grammar. Thus processing in linguistic2 consists of
applying the space and grammar rules to the data in the previous run
mode (or the run node indicated in the control rules). The default
association rules for PAS-I1 are shown bel ow

PAS- 11| REFERENCE MANUAL 34
3.3. AUXI LI ARY MODES

1. TEXT :
2. TOPIC : SEGVENTATI ON
3. LINGUI STIC1l : EXTRACTI ON
4. LINGUI STI C2 : SPACE GRAMVAR
5. SEMANTI C1 : | NTEGRATI ON
G. SEMANTI C2 : NORMALI ZATI ON
7. SEMANTI C3 : GROUPI NG
8. GRAPHICl : UNKNOWNS
9. GRAPHIC2 : ORIG N
18. GRAPHI C3 : CONFLI CT PBG
11. TRACE1 :
12. TRACE2 : PS MEMORY
13. TRACES :

14. TRACE4 : MATCH

Note that some run npbdes have no associated rul e nodes.

3.3.2. Control Mode

The control node contains rules which together define the control
cycle for the system

In the control node, the define function is used to define rules
speci fying where a run node obtains its input data and what the next
run node is relative to the control cycle.

Rul es in the control npde have the follow ng format:
M(M... M => MM

where M stands for any node name. The nodes in parentheses indicate
where the node at the left obtains its input for processing. The
nmodes to the right of the arrow indicate where control passes after
processing is finished in the node at the left. For exanple, the rule

LI NGUI STIC1L (TOPIC) => LINGU STI C2 TRACEl
indicates that in the linguisticl nmde data from the topic node is
processed and then the next nmode in the control cycle is either
linguistic2 or tracel. When processing is started in linguisticl if
topic is enpty then processing cannot occur (no data to process) and
the next node entered is tracel, the second node nanme to the right of
the arrow in the rule above. If topic is not enpty processing occurs
in linguisticl, and the next node entered is | ingui stic2, the first
nmode name to the right of the arrow

The default control rules for PAS-1l are shown bel ow

TEXT () => TOPIC TOPIC

TOPI C (TEXT) => LINGU STICl LINGU STIClL

LI NGUI STICL (TOPIC) => LI NGUI STI CS TRACEL

LI NGUI STI C2 (LINGUI STICl) => SEMANTI C1 SEMANTI C1
SEMANTI Cl (LI NGUI STIC2) -> SEMANTI C2 SEMANTI C2

SN

PAS- 11 REFERENCE MANUAL 35
3.3. AUXILI ARY MODES

G. SEMANTI C2 (SEMANTIC!) => SEMANTJC3 SEMANTI C3
7. SEMANTI C3 (SEMANTI C2) => GRAPHI C1 LI NGULSTIC1
8. GRAPHI C1 (SEMANTI C3) => GRAPHI C2 GRAPHI C2
9. GRAPHI C2 (GRAPHI ClI) => GRAPHI C3 SEMANTI C3

10. GRAPHI C3 (GRAPHLC2) => GRAPHI C2 GRAPHI C2

11. TRACE1l (GRAPHIC3) => TRACE2 TRACE2

12. TRACE2 0 => TRACE3 TRACE3

13. TRACE3 (TRACE2) => TRACE4 TRACE4

14. TRACE4 (TRACE3 TRACED -> TRACE4 TRACE4

3.3.3. Informati on Mode

The information nmode is totally unlike all other nmobdes in the system
It recognizes only index words or key words (like 'INDEX and

* PROMPT'), and cannot execute functions. In all the other nodes,
however, there is no know edge of index or key words; these nodes
expect all tty input, except for data, to consist of functions:
non-functions will elicit error messages. Currently 'HELP' is the
only keyword avai table.

The index words and their descriptions are listed bel ow
DEF : definition of a node.

DIF : difference between run and rul e nodes.
INF : information about the information node.
ASSOC : run nodes and associated rule npdes.
BASI C : description of basic functions.

EDIT : description of edit functions.

FLAG : description of flag functions.

PROCESS : description of process functions.

EXECUTE : how functions are executed (and abbrevi ated).
PROMPT : ways the system nmay pronpt you for input.

CR : wuse of the carriage return.

3.3.4. Save Mode

In the save node, the define function is used to define rules for
speci fying which node buffers are to be saved when '"WRITE' Is
execut ed.

Rul es in the save node are sinply sets of nmpde nanmes. For exampl e,
line 1 in the save buffer contains (as a default condition) all the
run mode names. Line 2 contains (as a default condition) all the rule
mode nanes.

In the save node, the read function lets you read a disk file into
the run and rule nmode buffers, thus establishing a context that was
previously saved by using "WRITE' in the save node. The file being
read should not have line nunbers (sos line nunbers are ok) unless

PAS- 1| REFERENCE MANUAL 3G
3. 3. AUXI LI ARY MODES

the flag NUMBERS - T, but it may have an extension. If you type
' (READ SAVED' then file SAVEL is read, a different part of it going
into each run and rule nmode buffer. The file being read must consi st
of sequences of the farm

node nane

rules or data

bl ank 1ine
Thus a file of the form

TEXT
L 1S3, ANDD
IS S .

TOPI C
L 1S3,
AND D IS 5

SEGMENTATI ON
o

woul d be read into the text, topic, and segnentation buffers,
replacing the old information in these buffers. The information in
the other buffers (all except text, topic, and segmentation) is |eft
unchanged. The node ordering in the file (text before topic, etc.)
can be arbitrarily chosen.

In the save node, the wite function lets you wite the contents of
all run and rule node buffers onto a disk file when given one
argument, the name of the file to be read. This file may have an
extension, if desired. If you type ' (WR TE SAVE2)' then the current
context (all buffers) are saved on a disk file named SAVE2.

To save certain selected buffers, give as the 2nd, 3rd, etc.
arguments to the wite function either node names or nunbers

referring to save node buffer lines which contain node names. Then
only the buffers named will be saved. Initially, line 1 of the save
buffer contains all the run node nanmes, line 2 all the rule nmode

names. Thus to save the contents of all rule node buffers on file
SAVE3 type ' (WRITE SAVE3 2) . To save just the contents of the space
and grammar node buffers on file SAVE3 type ' (WRI TE SAVE3 SPACE
GRAMMAR) * .

3.3.5. Scratch Mode

In the scratch mode, the define function is used to type materi al
into the scratch buffer. This material nmay consist of any rules or
dat a.

The scratch node is used as a tenporary storage buffer for any type

PAS- 11 REFERENCE MANUAL
3.3. AUXI LI ARY MOCES

of rules or data. |In particular,
of its processing into the end of

the apply function puts the result
this buffer. Thus the user may

apply a rule to a line of data and see the result without changing
the current status of the run nodes.

Rul es or data stored in the scratch buffer need not have any

particul ar format.

37

PAS- 11 REFERENCE MANUAL 38
4.1. BASI C FUNCTI ONS

4. FUNCTI ONS

4.1. BASI C FUNCTI ONS
4.1.1. Mode Name

The name of each mpde in PAS-11 is interpreted as a function uhich
puts the user into that particular node. For exanple, to go to the
topic mode the user sinmply types 'TOPIC, and the system responds by
typi ng back 'TOPIC MODE' to indicate that the user is now in that
mode.

4.1.2. Core Function

The core function tells you how many words of free storage you have
left in core. This free storage is used by PAS-11 as tenporary
wor ki ng storage during processing. |If the nunmber of words in free
storage is small the system spends too rmuch time garbage coll ecting
(returning unneeded words to free storage) and the response at your
termnal will be quite slow. You can increase free storage by
expandi ng core (see PANICs energency procedures). When core is
expanded, roughly three-fourths of all additional core is allocated
as free storage.

4.1.3. Create Function

The create function lets you create a new rule mode. This node will

be of the same type as the npde you are currently in. It takes one
argument, the name you wi sh the new node to have. Thus, if you type

* (CREATE PS5)' while in the PS node, then a PS5 buffer is created,
you are automatically put into PS5 node, and the rules defined in the
newl y created node must have the format described for rules in the PS
mode. Currently create is not defined in the save, association,
control, menory, text, trace2, and segnentation nodes.

4.1.4. Display Function

The display function displays the data present in the node buffer,

i ncluding buffer line nunbers. It takes any nunmber of arguments,

whi ch should be either nunbers or nunber-groups. In the grammr mode,
DI SPLAY can al so take class nanes as argunments. If you type

" DI SPLAY*, all non-enpty lines of the buffer will be displayed. If
you type '(DISPLAY G)', then only line S will be displayed. ' (DI SPLAY
1 3 18-12)' gives you lines 1, 3, 10, 11, and 12.

PAS-11 REFERENCE MANUAL 39
4.1. BASIC FUNCTIONS

4.1.5. Erase Function

The erase function lets you erase (uncreate) any mode you have
created using the create function. It takes one argument, the name of
the mode to be erased. If you erase the mode you are currently in,
you are put into the text mode.

4.1.6. Exit Function

The exit function takes you out of PAS-II and leaves you talking to
the Lisp interpreter. If you're not familiar with Lisp, don't use
EXIT. To return to PAS-Il after using EXIT type ' (BEGIN) \

4.1.7. Help Function

The legal arguments for the help function are:

(function name) : tells how to use the function in the
current mode,

(mode name) : gives information about the mode,

(index word) : gives general information about PAS-II.

INDEX : describes and lists the index words.

HELP : describes the legal arguments for the help function.

ARGS : lists the Ilegal arguments for the help function.

FORMAT : gives data or rule formats for the current mode.

FUNCTIONS : lists all functions.

MODES i |lists all run modes and associated rule modes.

NUMBER : describes numbers and number-groups.

STATE-VECTOR : describes state vector rules and their
operat i on.
CHANGES : describes all the recent changes to the PAS-II

system.
COMMENTS : describes the use of comments in buffer lines.
PROTOCOL : gives general info about automatic protocol
ana lysi s.
PANIC : describes emergency procedures.
LOAD : tells how to load and run PAS-II.
OLD : tells how to run earlier versions of PAS-II.
AUX t describes the auxiliary modes.
REF : lists protocol analysis referenes.
PAS : gives a general description of PAS-II operation.
DEM . tells how to obtain a PAS-II demonstration listing.
CN : defines the terms cnl and cn2.
OK? : describes the responses that should be used to 'ok?'.

4.1.8. Mode Function

The mode function tells you what mode you are currently in.

PAS-11 REFERENCE MANUAL 48
4.1. BASI C FUNCTI ONS

4.1.9. Move Function

The move function noves lines of data or rules from one buffer to
another. It has the general form

(MOVE Mnesl nodel TO Mnes?2 npde?2)
where linesl and nodel are the source lines and mode, and Mnes2 and
mode2 are the destination. The nobve function nust be given at |east
one argument. It fills in mssing arguments according to the default

val ues shown bel ow.

ARGUMENT DEFAULT VALUE

li nesl all lines in nodel buffer

nodel current node

| i nes2 enpty lines at end of node2 buffer

node?2 current node
The nunber of lines specified by the argunent Ilinesl nust be equal to
the nunmber specified by lines2. Myve deletes the source lines from
the buffer and redefines the destination |ines.

Exampl es of the use of the nove function are shown below. Ue will
assume that the current node is TEXT.
(MOVE 1-3 SCRATCH TO 9 18 15 TORPIC) : 1, 2, and 3 in scratch
are noved to 9, 1B, and 15 in topic.
(MOVE 6 18 TO 8-9 SCRATCH) : G and 18 in text are noved to
8 and 9 in scratch.
(MOVE 4 TO SCRATCH) : 4 in text is noved to end of scratch.

(MOVE 9 11 SPACE) : 9,11 in space are noved to end of text.
(MOVE TO SCRATCH) : all text is nmoved to end of scratch.
(MOVE 4 TO 12) : 4 in text is nmoved to 12 in text.

(MOVE 6) : S in text is noved to end of text.

(MOVE SCRATCH) : all scratch noved to end of text.

Note that (MOVE) or (MOVE TO) are not legal function calls.

4.1.10. Next Function

The next function changes the current node to the next appropriate
run mode as defined by the control cycle. Thus you can go to the next
appropriate run node and process data there by typing 'NEXT GO .

" NEXT' changes the node, 'GO starts the processing.

4.1.11. Prior Function

The prior function changes the current run nmode to the previous run
nmode as defined by the control cycle. This previous or prior run mode

PAS-11 REFERENCE MANUAL 41
4.1. BASI C FUNCTI ONS

is the one that supplies data for the current mode to process.

4.1.12. Rule Function
The rule function is used to go from a run node to the rule mode

associated with that run mode. If you type 'RULE' while in the topic
mode, you will be put into the segmentation mode.

4.1.13. Run Function
The run function is used to go froma rule node to the run mode

associated with that rule mode. If you type '"RUN* while in the
segment ati on mode, you will be put into the topic mode.

4. 2. EDIT FUNCTI ONS

4,.2.1. Break Function

The break function breaks a line in the node buffer into two or more
shorter lines. | f you type '"(BREAK 4 . IS (6 ,)) ", Iline 4 will be
broken after the first occurrence of after the next occurrence
of MS* , and after the next occurrence of the string '6 ,'. the old
line 4 will be replaced by lines 4.1, 4.2, 4.3, and 4. 4.

If you are using a tty, you can type '(BREAK 4) ' . The system will
prompt you with '"4.' and will then expect to read either altmode (to
print the next word in the I|ine), line feed (to break the line after
the last word printed) , space (to back up in the list of words
printed), or carriage return (to break the line after the last word

printed and |eave the break function).

4.2.2. Connect Function

The connect function connects together two or more lines in the mode
buffer. 1t takes two or more arguments, which should be numbers or
number-groups. If you type ' (CONNECT 2 3 4) ', lines 2, 3, and 4 wi | |
be joined together and redefined as line 2; lines 3 and 4 wi | | be
del eted.

In the graphic3 mode, the connect function is used to connect two pbg

nodes together, thus effecting a restructuring. It takes two numbers
as arguments, each of which should represent an active node in the
pbg. If you type '(CONNECT 1 5) ' then node 5 will be made to point

back to node 1 in the pbg.

PAS- 11| REFERENCE MANUAL 42
4.2. EDIT FUNCTI ONS

4.2.3. Define Function

The define function permits you to enter data into the mode buffer.

It takes any number of arguments, which should be either nunbers or
number - groups. If you type 'DEFINE , you will enter data into the
buffer starting with the line after the last nonenpty line. * (DEFINE
G9)' wll enter data into line G destroying old data, if any, and
then after the first carriage return will enter data into line 9.
Enter data after the system pronpts you with the line nunber. To stop
entering data, type a carriage return imediately after the system
prompts you with the line nunber.

4.2.4. Del ete Function

The del ete function deletes data present in the node buffer. It takes
one or nore arguments, which should be either nunmbers or
number - groups. For example, if you type ' (DELETE 6 8 18-12)', then
buffer lines G 8, 10, 11, and 12 will be del eted.

4.2.5. ED Function

To edit the current buffer type "ED, to edit a particular line (say
line 4) type '(ED 4)' . Then type "GET' to load the buffer data into
Alvine, the Lisp editor. Do the editing, and then type 'PUT" to put
the revised data back into the buffer. Then type t to l|leave the
editor. Warning: do not attenpt to use EO unless you are famliar
with the Lisp editor!!!l (see the Stanford Lisp 1.6 manual for a
description of Alvine).

4.2. G Insert Function

The insert function inserts data after a line in the node buffer. It
t akes any number of arguments, which should be either nunbers or
number - groups. For exanple, if you type '(INSERT 8)' and both lines 6
and 7 are enmpty then the command is exactly like typing ' (DEFINE G) ' .
If line 6 is full but 7 is enpty it is like typing '(DEFINE 7). |If
both 6 and 7 are full it is like typing '(DEFINE G. 5)\

4.2.7. Read Function

The read function lets you read a disk file into the node buffer. It

takes any number of argunents, which should be nanes of current disk

files. The file being read should not have line nunmbers (although eos
line nunbers are OK) unless the flag NUMBERS - T, and the first word

of the first line nust be the name of the node buffer the file is

PAS-11 REFERENCE MANUAL 43
4.2. EDIT FUNCTI ONS

being read into. The rules or data should start on the second line of
the file. If you type '(READ FILED' then the contents of FILEl on
the disk will be read into the buffer, starting with the line

i mmedi ately after the last non-enpty buffer line. Note that read in a

run or rule node does not delete or wite over the original contents
of the buffers, while read in the save node zeros each node buffer
being read into before actually reading from the disk file

In the save mpde, the read function lets you read a disk file into
the run and rule node buffers, thus establishing a context that was
previously saved by using 'URITE in the save node. The file being
read should not have line nunbers (sos line numbers are ok) unless
the flag NUMBERS = T, but it nay have an extension. If you type
' (READ SAVED' then file SAVEl is read, a different part of it going
into each run and rule node buffer. The file being read nust consi st
of sequences of the form

node nane

rules or data

bl ank 1ine
Thus a file of the form

TEXT
L 1S3, ANDO
IS5

TOPI C
L IS3,
AND D IS S .

SEGMENTATI ON

J

woul d be read into the text, topic, and segnmentation buffers,
replacing the old information in these buffers. The information in
the other buffers (all except text, topic, and segmentation) is |eft
unchanged. The nmode ordering in the file (text before topic, etc.)
can be arbitrarily chosen.

4.2.8. Renunmber Function

The renumber function lets you renunber all Ilines in the node buffer,
starting with 1 in increnents of 1. It takes no argunments. If the
buffer contains lines 4, 7, 8,8, and 12 and you type 'RENUMBER , the
buffer will then contain lines 1, 2, 3, and 4

4.2.9. Urite Function

The write function lets you wite everything in the node buffer onto

PAS- 1| REFERENCE MANUAL 44
4.2. EDIT FUNCTI ONS

a disk file. It takes one argunent, the name of the file to be read.
If you type ' (WRITE FILE2)' everything in the buffer will be written
on a di sk file named FILE2.

In the save node, the wite function lets you wite the contents of
al I run and rule nmode buffers onto a disk file when given one
argument, the nane of the file to be read. This file may have an
extension, if desired. If you type ' (URITE SAVE2)' then the current
context (all buffers) are saved on a disk file named SAVE2.

To save certain selected buffers, give as the 2nd, 3rd, etc.
arguments to the wite function either node names or nunbers

referring to save node buffer lines which contain nmpde names. Then
only the buffers named will be saved. Initially, line 1 of the save
buffer contains all the run node nanes, line 2 all the rule node

names. Thus to save the contents of all rule node buffers on file
SAVE3 type '(WRITE SAVE3 2)' . To save just the contents of the space
and grammar node buffers on file SAVE3 type *(WRI TE SAVE3 SPACE
GRAMVAR) ' .

4.3. FLAG FUNCTI ONS

A flag is a function which sets the value of the flag variable to
either T (true) or F (false). The flags currently avail able are:
automatic, batch, comrent, fast, hush, nunmbers, print, search,
suppress, time, versionl, and version2. Thus the flag hush can be set

to T by typing "HUSH , or '(HUSH T)'. It can be set to F by typing
" (HUSH F) \ To determ ne the current value of any flag give it the
argument " ?'. Thus (HUSH ?) wll give you the current value of the
hush fl ag.

4.3.1. Automatic Flag

If automatic = T then during node processing the system wl|
automatically change to the next appropriate run node and execute
"GO whenever the current processing is conpleted. If automatic = F
(the default condition) this will not happen.

4.3.2. Batch Flag

If batch - T then during node processing the systemw |l not ask the
user to confirm each step of the processing. If batch - F (the
default condition) the user wll be asked to confirm each step.

PAS- 1| REFERENCE MANUAL 45
4.3. FLAG FUNCTI ONS

4.3.3. Comrent Flag

If comment = T (the default condition) then when buffers are

di spl ayed all coments will be printed. If comment - F the comments
will be suppressed.

Comments may be added to the end of any buffer Iline without affecting
the operation of the system A coment is defined to be everything
bet ween the comrent marker (initially a double colon. ::) and the end
of the buffer Iine. Lines containing nothing but coments are

al | owed.

The comment flag may be used to merely insert comments into your
consol e display, since the flag isn't changed unless the first
argument is either T or F. Thus typing

(COMMENT : THI'S IS A COVMENT)
records this line on your termnal wthout changing the value of the
comment fl ag.

To change the conmment marker type 'EXIT', followed by the string
' (SETQ CHAR! ex)' where x is the new comment marker. Then type

" (BEGIN)' to return to PAS-11. The marker can be any string that
starts with a letter and is followed by letters or digits; where the
following are considered letters: * «><; : %?, . - + [/« Note:

the last six characters above nust be preceded by a slash (/) when
setting CHARI!

4.3.4. Fast Flag

If FAST = T then when files are read from the disk no format checking
t akes place, speeding up the reading process. If FAST - F (the
default condition) format checking takes place and reading is rather
sl ow.

4.3.5. Hush Fl ag

If hush = T then error nessages are abbreviated, if hush - F (the
default condition) they are not abbreviated.

4.3.G Numbers Flag

If nunbers = T, then when a file is witten on the disk the buffer
line nunbers will be included as part of the file. When a file is
read from the disk, the system assunes that all lines begin with a
buffer Iine nunber. If nunbers - F (the default condition), files are
written without Iline nunbers, and are read under the assunption that
no lines begin with line nunbers.

PAS- 11| REFERENCE MANUAL 46
4.3. FLAG FUNCTI ONS

4.3.7. Print Flag

If print = T, then all the interaction at your termnal wll be
written on a disk file. When print is first set to T the system wl|
ask for the file name. If the file already exists, its old contents
will be lost. If print = F (the default condition) the interaction
will not be saved. Note 1: the file is not saved on the disk until
print is set back to F. Do not forget to set print back to F before
you |leave PAS-I11! Note 2: do not execute the wite function white
print - TI!

4.3.8. Search Flag

The value of the search flag affects the processing in semanticl and

semantic 2 as follows: the integration (or normalization) rules wll
be applied to the data starting with line 1 until no further
applications are possible. Then the rules are applied starting with
line 2 until no further applications are possible. This continues
until the rules have all been applied to the last line of data. Now
if search - F (the default condition) processing stops. However, if
search = T the processing starts over again from line 1 and this
cycle continues until no rules are applicable to any fines of data.

4.3.9, Suppress Flag

In the Hnguistic2 node, if suppress = T then during processing the
parse tree is not printed. I|f suppress « F (the default condition)
the tree is printed.

In the semanticl, semantic2, and graphic3 nodes, if suppress - T then
during processing the state vector values and the s-a rules matched
are not printed. |If suppress = F (the default condition) they are
printed.

4.3.10. Time Flag

If time - T then during nmode processing timng information is
printed. If time = F (the default condition) it is not printed.

4.3.11. Versionl and Version2 Flags

If versionl = T (the default condition) then the system expects to
find the old type of formats used in the granmar and space rules, and
the old parser is used for processing data during parsing in the

PAS- 11 REFERENCE MANUAL 47
4.3. FLAG FUNCTI ONS

linguistic2 nmode. If version2 = T, the system expects the new granmar
and space formats and uses the new parsing system when parsing in the
i nguistic2 node. Note: when versionl is set to T, version2 is
automatically set to F and vice versa. Thus the flags versionl and
version2 never have the sane value at the sane tine.

4. 4. PROCESS FUNCTI ONS
4.4.1. Again Function

The again function takes the data out of the current run nmode buffer,
puts it into the previous run node buffer (deleting any data left
there), and executes go.

4.4.2. Apply Function

The apply function applies rules from the current rule node to lines
of data in the appropriate run node and places the result at the end
of the scratch buffer. The 'appropriate' run node is the one defined
by the control cycle to provide input to the run node associated with
the current rule node. Thus calling apply in the space node applies
space rules to the data in linguisticl (see control cycle |ayout).
The function has the general form

(APPLY linesl TO Ilines2)
where linesl are the lines of rules from the current mode, and Mnes2
are the lines of data from the appropriate run node. M ssing
arguments are given the default val ues shown bel ow

ARGUMENT DEFAULT VALUE
li nesl all lines in the current rule node
li nes2 all lines in appropriate run node
Any nunber of Ilines nmay be specified as argunments to the apply

function.

Exanpl es of the use of apply are shown below It is assunmed that the
current nmode is SPACE.
(APPLY 1-8 TOG : applies rules 1 through 8 in space to
line G in linguisticl and puts result in scratch.
(APPLY TO 4 I1B) : applies all rules in space to lines 4
and 10 in linguisticl and puts result in scratch.

(APPLY 8) : applies rule 8 in space to all lines in
linguisticl and puts result in scratch
(APPLY) : applies all rules in space to all lines in

linguisticl and puts result in scratch.
Not e that apply does not affect the contents of any run or rule

PAS-11 REFERENCE MANUAL 48
4. 4. PROCESS FUNCTI ONS

modes. It only modifies scratch, an auxiliary mode.

4.4.3. Copy, Go, Recopy, Restart, and Start Functions

The go function takes data from the previous run mode, processes it,
and adds the result to the end of the current mode buffer. The data
is deleted from the previous mode buffer, but a copy is made.

The start function deletes all lines in the current mode buffer and
then executes 'GO'.

The restart function puts the copy of the data deleted from the
previ ous mode (when GO was executed) back into the front of the
previous mode's buffer and then executes 'START*.

The copy function sinmply prints at your termnal the |lines which
comprise the copy of the data in the current mode.

The recopy function puts the current copy of the data back into the
front of the mode buffer, but it does not delete the data in the
following mode. Thus executing 'RECOPY NEXT GO' is not equivalent to
executing ' NEXT RESTART' since in the latter case the data in the
following mode is deleted. For example, if you are in the topic mode
and execute 'GO' the data in the text mpde is automatically deleted
as it is processed. To restore that data to the text mode, enter the
text mode and execute ' RECOPY'.

PAS- 11| REFERENCE MANUAL
5.1. CHANGES TO PAS-1I

5. EVOLUTI ON

5.1. CHANGES TO PAS-1 1
Changes to PAS-11 are listed bel ow,

Version 29 June 17, 1973

1. Apply is a new process function for applying a
subset of the rules in a node to sone subset of
the associ ated data.

2. Scratch is a new auxiliary nmode, used as the desti -
nati on node for the apply function.

3. Move is a new basic function for moving rules or data
from one node to another (or within a mode).

4. Prior is a new basic function that puts the user into
the prior nmode as defined in the control cycle.

5. Core is a new basic function that indicates how nmuch
free storage is left.

G It is now possible to wite when PRINT - T.

7. Semanticl and semantic2 now have an expanded trace when
SUPPRESS = F.-

8. The status of flags can be obtained by using as
the argunent to the flag function.

9. The conmment flag can now be used to record coments
on your consol e output.

Version 28 April 38, 1973
1. Trace nodes were renaned: tracel, trace2, trace3,

trace4.
2. Match is now the rule node for trace4.
3. Search is now flag. If search-T processing using

i ntegration and normalization rules becone nmore
exhausti ve.

4. Again is a new control function which reprocesses the
data just processed.

5. Association is a new node that defines the associations
bet ween run and rul e nodes.

6. Control is a new node that defines the control cycle.

7. The create function has been generalized to permt
creation of different types of npdes.

8. The erase function has been generalized.

Version 27 Decenber 22, 1972
1. Buffer Ilines containing nothing but coments are now
al | owed.
2. Nunbers is a new flag, if nunmbers=T, disk files with
bufferline nunmbers can be created.
3. Versionl and version2 are new flags, if versionl-T, the
system uses the old parser (and space and gramrar

49

PAS-11 REFERENCE MANUAL 58

5.1.

w

CHANGES TO PAS-11

formats) . If version2=T the new, inproved parser (and
formats) are used.
Graphic4, tracel, trace2, and match are new run modes.

Version 2G September 18, 1972
' (HELP DEM) ' tells you how to get a PAS-II
demonstration listing.
Print is a new flag. |If print=T all tty interactions
are written on a disk file.
Create and erase are new functions which create a new
producti on system mpde or erase it.
PS is a new rule mode which holds production rules
which together define a production system
Memory is a new rule mode which holds rules defining
the memories used by the production system nodes
and their current contents.
Tracel is a new run mode associated with the production
system and memory modes, (not yet operational)

Version 25 August 15, 1972

PAS-11 starts from the text rather than the information
mode.

Comments may now be added to buffer |ines.

(HELP PAS)' tells how to run old versions of PAS-11.
Comment is a new flag. |If comment=F, comments are

Versi on 24 August 1, 1972
Parent heses are no longer needed in function calls,
except for disambiguation.
Two new control functions: copy and recopy have been
added.

Al | i ndex words are now legal arguments for the help

funct i on.

The editing functions now interpret an asterisk () in
the argument 1list as refering to the last item in the
buffer.

ED is a new function which lets you use the Lisp editor
(Alvine) to modify a buffer.

Version 23 July 21, 1972
Save nmode conpletely revised: wll now accept rules in
save buffers; can read or wite partial contexts.
Read function now expects a different format on disk
files.
File names with extensions are now allowed.
Fast is a new flag; if fast=T, reading disk files is
faster.

PAS-11 REFERENCE MANUAL 51
5.1. CHANGES TO PAS-I1

5.2. OLD VERSI ONS OF PAS-11

Version n of PAS-11 can be found on dec-tape DW28- PASn. Thus, version
27 is on dec-tape DU28- PAS27, etc. Below is a script showi ng how to
| oad old versions of PAS-I1.

.R LISP 65

ALLOC? Y

FULL U Ds

Bl N. PROG. SP=

SPEC. PDL- 3888

REG. POL- 3888

HASH-

AUXI LI ARY FI LES?

DECI MAL?Y

ft (INC (I NPUT DTAL: PAS27))

ft (PAS-1)

I NI TI ALI ZED

ft (BEG N)

To obtain help information for version 27 of PAS-11 (or ol der
versions) the followi ng steps are needed:

ft (I NC (I NPUT DSK: | NFO7))

ft (I NFO 1)

I NI TI ALI ZED
before executing (BEGIN). Also, Lisp should be loaded with 80K of
core.

PAS- 1| REFERENCE MANUAL 52
6. EMERGENCY PROCEDURES

When usi
in case
probl em

1. If

6. EMERGENCY PROCEDURES

ng PAS-11 it can be useful to know the proper action to take
of system trouble, whether it be a PDP-10, LISP, or PAS
Li sted bel ow are emergency procedure recomrendati ons:

you get a LISP error nessage such as X UNBOUND VARI ABLE,

or X UNDEFI NED FUNCTI ON then do:

to

2. |If

w (PAS)
return to the PAS-11 system

you get the LISP error nessage NO FREE STORAGE LEFT,

or NO FW STORACE LEFT then do:
ftfcontroDC
.CORE n
. REE
ft (PAS)
This will change your core allocation from GSK to nK, where
n should be a nunber such as 75 or 80.
3. If PAS does not cone back with a pronpt(ft) after a reason-
able length of time then do:
(control)C
. REE
ft (PAS)
This wil | return you to PAS.
4. |If you have a large investnent (time or effort) in rules,
data, or processing then do:
ft(control)C
. SAVE DSK: filenanme
. REE
ft (PAS)
This saves your core inmage on the disk as file 'ft | enanme'.
5. If the system crashes and you have previously done a
SAVE DSK: filename, then do:
.RUN f il ename
ft (PAS)
This restores your old core image and returns you to PAS.
6. If PAS continually gives LISP error nessages (or | FEEL
SI CK messages) then do:
ft (PAS)

ft SAVEWRI TE fil enane
ft (control)C

.R PAS

ft (PAS)

ft SAVE READ fil enanme

PAS- 11| REFERENCE MANUAL
6. EMERGENCY PROCEDURES

This will save the contents of the PAS buffers,

a fresh version of PAS,

and restore the buffers.

read

in

53

PAS- 1| REFERENCE MANUAL
7. REFERENCES

7. REFERENCES

1. Newell, A., and Sinmon, H A, Human Probl em Sol vi ng,
Prentice-Hall, Englewod Cliffs, N J., [S7I.
2. Waterman, D. A, and Newell, A, An interactive,

task-free version of an automatic protocol analysis
system CMJ Conputer Science Report, 1973.

3. Waterman, D. A., and Newell, A., Protocol analysis as
a task for artificial intelligence. Artificial
Intelligence, vol. 2, nos. 2 and 3, 1971, pp. 285-318.

4. Waterman, D. A, and Newell, A, Prelimnary results

with a system for automatic protocol analysis. CIP
Paper no. 211, WMay, 1972.

ACKNOW.EDGVENTS

The contribution of M ke Rychener, both in devel oping the inproved
parser and describing it in this manual is gratefully acknow edged.
Al so, the help of Al Newell and Dick Hayes in revising this nanual
is much appreciated.

PAS-11 REFERENCE MANUAL 55
8.1. PAS-11 RULES

8. APPENDI X

8.1. STATE VECTORS

Rul es using a state vector format mnmust have a state vector definition
in the first line of the buffer and situation-action rules (s-a
rules) in the rest of the buffer. The state vector definition mnust
have the form

SV = (var var ... var)
where var refers to state vector variables which have a val ue defined
by the current situation, i.e., the data stored in the run node

associated with this particular rule node.

The s-a rules nust have the form

(val val ... wval) -> (action)
where val is a legal value of the corresponding sv variable in the
current situation. To decide what action to take, the sv variables in
the first line of the buffer are evaluated and these val ues matched

agai nst the values in the situation part of the s-a rules below The
first match determines the action to be taken. A * can be used in the
situation part of the s-a rules to indicate A match with any sv

val ue.

8.2. PAS-I1 RULES
The following rules are designed to handle the very simple
cryptarithmetic protocol shown in the text node below. These rul es

were used in PAS-1l to generate a script of a PAS-1l1 denonstration.

TEXT MODE
1. DISS5 ; THEREFORE T IS 8 . ASSUME R EQUALS 4 . SINCE YOU
CARRY 1 , RIS ODD . ASSUME RIS 7 , NOT 5 .

SPACE RULES

1. (NEG IND
2. (0ODD <V>) KN
3. (EQ <V> <DIG T>) KN
4. (THEREFORE) |IND
5. (BECAUSE) |IND
6. (ASSUME) |ND
7. (DGAT <DIGIT>) KN
8. (<V> <LETTER> <CARRY>) SPASET
GRAMVAR RULES
1. <EQ@ = (<CARRYEQ>) (<LETTER>ft <EQUAL> ft <D1G T>)
2. <CARRYEQ> = (<CARRY>ft <DI G T>) (<CARRY>)
3. <ODD> - (<LETTER> ft <EQUAL> ft ODD)
4. <EQUAL> - | S EQUAL EQUALS BE UAS ARE

PAS-11 REFERENCE MANUAL 56
8.1. PAS-11 RULES
5. <NEG> = CANNOT NOT NO N T
6. <THEREFORE> = THEREFORE | MPLI ES
7. <ASSUME> = ASSUME ASSUM NG
8. <BECAUSE> = BECAUSE SI NCE
9. <CARRY> = CARRY CARRYI NG CARRI ED
10. <LETTER> = ABDEGLNORT
11. <DIGT> =0123456789
SEGMENTATI ON RULES
1. ./
2. ;1
3. <DaT>, |/
4. <LETTER> , /
EXTRACTI ON RULES
1. 12
| NTEGRATI ON RULES
1. (XI CARRY X2) => (X <C X2)
2. (EQXI X2) / (DAT X3) => (EQX X2) / (EQ Xl X3)
3. (NEG (EQ <LETTER> <DIA@ T>) => (NEQ <LETTER> <DI Gl T>)
4. (ASSUME) (EQ <LETTER> <DIG T>) => (AEQ <LETTER> <DI Gl T>)
NORMALI ZATI ON RULES
1. Al / (THEREFORE) A2 => (BECAUSECF Al A2)
2. (BECAUSE) Al / A2 -> (BECAUSECF Al A2)
CONFLI CT RULES
1. SV - ((SAME 2) (ITEM1 1) (ITEM 1 2))
2. (Fftft) => NO CON
3. (ft ODD NEQ) => NO CON
4. (ft ft *) => ASK-|F- CON
PBG RULES
1. sV - (TYPE (ITEM 1 2))
2. (CON NEQ => BLOCKREJ
3. (CONft) -> (BLOCKREJ COPY)
4, (ft ft) -> BLOCKREJ
8.3. PAS-I1 SCRIPT
A listing of the PAS-I1 denonstration given at the cognitive workshop
on June 21, 1972 is on disk file PAS2. CEM[X3200U28]. This
demonstration consists of using PAS-11 to analyze a short crypt-
arithmetic protocol, using the rules in disk file RULES. CAl X320DU28] .
Below is a relatively short script of a PAS-1l denonstration using
the rules and cryptarithmetic protocol listed in section 7.1. of the

PAS-1 | REFERENCE MANUAL 57
PAS-11 SCRI PT

PAS-11 reference manual . | terns in upper case were typed by the PAS-II
system those in |ower case by the user.

fttext display
TEXT MODE
1. DIS5 ; THEREFORE T IS 8 . ASSUME R EQUALS 4 . SINCE YOU
CARRY 1 , RIS ODD . ASSUME R IS 7 , NOT 5

Anext go
TOPI C MODE
1. DIS 5 ;

THEREFORE T 1S 8
ASSUME R EQUALS 4
SI NCE YOU CARRY 1
R 1I'S ODD
ASSUME R IS 7
NOT 5
OK? yes
TOPI C MODE FI NI SHED
>vnext go
LI NGUI STI CI MODE
1. D IS & ;
2. THEREFORE T IS 8
3. ASSUME R EQUALS 4
4. SINCE YOU CARRY 1 ,
5. R IS ODD
B. ASSUME R IS 7 ,
7. NOT S
OK? yes
wnext go
LI NGUI STI C2 MODE
<EQ> <LETTER> D
<EQUAL> IS
<DIGIT> 5
1. (EQ D 5)

FROM : DIS 5 ;
OK? yes batch suppress
BATCH: - T
SUPPRESS=T
2. (EQ T 8) (THEREFORE)
FROM : THEREFORE T 1S 8
3. (EQ R 4) (ASSUME)
FROM : ASSUME R EQUALS 4
4. (EQ CARRY 1) (BECAUSE)
FROM : SINCE YOU CARRY 1
5. (ODD R)
FROM : R IS ODD
S. (EQR 7) (ASSUME)
FROM : ASSUME R IS 7

7. (NEG (DIGT 5)
FROM : NOT 5

PAS-11 REFERENCE MANUAL
PAS-11 SCRI PT

LI NGUI ST1C2 MODE FI NI SHED
*(batch f)(suppress f) automatic
BATCH=F
SUPPRESS=F
AUTOMATI C=T
*next go
SEMANTI C1 MODE
RULES APPLI ED : 4 12 4 3
(EQ D b5)
(EQ T B) (THEREFORE)
(AEQ R 4)
(BECAUSE) (EQ <C 1)
(OO R)
(AEQ R 7)
(NEQ R 5)
OK? yes
SEMANTI C1 MODE FI NI SHED
SEMANTI C2 MODE
RULES APPLI ED : 1 2
1-7. (BECAUSEOF ((EQD5)) ((EQT 8)))
(AEQ R 4)
(BECAUSEOF ((EQ <C> 1)) ((0DD R)))
(AEQ R 7)
(NEQ R 5)
OK? yes
SEMANTI C2 MODE FI NI SHED
SEMANTI C3 MODE
1. (BECAUSEOF ((EQ D 5)) ((EQT 0)))
2. (AEQ R 4)
3. (BECAUSECF ((EQ <C> 1)) ((ODD R)))
4. (AEQ R 7)
5. (NEQ R S)
OK? yes
GRAPHI CI MODE
1. (BECAUSECF ((EQ 0 5)) ((EQT 0)))

NOOsWONE

FROM : (BECAUSECF ((EQ D 5)) ((EQT 8)))
OK? yes
2. (AEQ R 4)
FROM : (AEQ R 4)
OK? yes
3. (BECAUSEOF ((EQ <C 1)) ((ODD R)))

FROM (BECAUSECF ((EQ <C 1)) ((0DD R)))
OK? yes batch suppress r: (becauseof ((eq c2 I))((odd r)))
BATCH=T
DO YOU REALLY WANT BOTH AUTOMATI C=T AND BATCH=T ? yes
SUPPRESS- T
4. (AEQ R 7)
FROM : (AEQ R 7)
5. (NEQ R 5)
FROM : (NEQ R 5)

58

PAS-11 REFERENCE MANUAL
PAS-11 SCRI PT

GRAPHI CI MODE FI NI SHED
GRAPHI C2 MODE

FOR (BECAUSEOF ((EQ D 5))
OP = (pc 1)

OUTPUTS - (eq t 0)

I NPUTS » (eq d 5)(eq cl 0)
FOR (EQ D 5)

OP = (recall d)

I NPUTS =

OTHER ORI GI NS FOR (EQ D 5)
FOR (EQ Cl 0)

OP - (recall cl)

I NPUTS =

((EQ T 8)))

? no

OTHER ORI GINS FOR (EQ Cl 0) *?

ORI GI N TREE :
(EQ T 0) (PC 1) (EQ D)
(R d 0
1. (RECALL D) NIL (EQ D S)
(RECALL Cl) NIL (EQ Cl
(PC 1) ((EQD5) (ERC
FROM : (BECAUSEOF
GRAPHI C3 MODE
1. GROW (EQ D 5)

FROM : (RECALL D)
2. GROW (EQ Cl 0)
FROM : (RECALL ClI)

3. GROW (EQ T 0)

FROM J (PC 1) ((EQ D)

GRAPHI C3 MODE FI NI SHED
GRAPHI C2 MODE
FOR (AEQ R 4)
OP = (av r)
I NPUTS =
OTHER ORI GI NS FOR (AEQ R 4)
ORI GI N TREE ;
(AEQ R 4) (AV R)
2. (AV R) NL (AEQR 4)
FROM : (AEQ R 4)
GRAPHI C3 MODE
1. GROW (AEQ R 4)
FROM s (AV R NIL
GRAPHI C3 MODE FI NI SHED
GRAPHI C2 MODE
FOR (BECAUSEOF ((EQ C2 1))
OP = (pc 2)

OUTPUTS = (odd r)
I NPUTS = (eq c2 1)
FOR (EQ C2 1)
OP = (av c2)

I NPUTS =

no

(RECALL D)
*) (RECALL Cl)
0)
0)) (ERT 0)
((EQ D 5)) ((EQ T 0)))
NIL (EQ D 5)
NIL (EQ Cl 0)
(RCA 0)) (ERQRTO0
? no
(AEQ R 4)
((GDD R)))

PAS- 1| REFERENCE MANUAL
PAS-| I SERI PT

OTHER ORI GINS FOR (EQ C2 1) ? yes
FOR (EQ C2 1)
OP = (pc 1)
I NPUTS = (eq d 5)(eq cl B)
(EQ 0 5) FOUND IN PBG
(EQ A 8) FOUND IN PBG
OTHER ORI GINS FOR (EQ C2 1) ? no
ORI GI N TREE :
(ODD R) (PC 2) (EQ C2 1) (AV C2)
(PC 1) (EQDY5)
(EQ A 0)
3. (PC1) ((EQD5) (EQOA 0)) (EQC2 1)
(PC 2) ((EQC2 1)) (OO R)
FROM : (BECAUSEOF ((EQ C2 1)) ((0DD R)>
GRAPHI C3 MODE
1. GROW (EQ C2 1)
FROM : (PC1l) ((EQD5 (EQA 8)) (EQC2 1)
DO (AEQ R 4) AND (ODD R) CONFLICT ? yes
2. CONFLICT: N4 (AEQR 4) AND (DD R) WTH
(BLOCKREJ COPY CHAI NAEQ
FROM : (PC2) ((EQC2 1)) (GO R
GRAPHI C3 MODE FI NI SHED
GRAPHI C2 MODE
FOR (AEQ R 7)
OP = (av r)
| NPUTS =
OTHER ORI GINS FOR (AEQ R 7) ? no
ORI GI N TREE :
(AEQ R 7) (AV R
4. (AV R) NL (AEQR 7)
FROM : (AEQ R 7)
GRAPHI C3 MODE
po (oD B) AMD ("MEQ R 70 CONFLICT ? no
1. GROW (AEQ R 7)
FROM : (AVR NL (AEQR 7)
GRAPHI C3 MODE FI NI SHED
GRAPHI C2 MODE
FOR (NEQ R 5)
OP = (td r S)
| NPUTS = (eq d 5)
(EQ D S) FOUND IN PBG
OTHER ORI GINS FOR (NEQ R 5) ? no
ORI GI N TREE :
(NEQ R 5) (TD R 5) (EQ D 5)
S. (TDR5) ((EQDJ5)) (NEQRYS5)
FROM : (NEQ R 9)
GRAPHI C3 MODE
DO (AEQ R 7) AND (NEQ R S) CONFLICT ? no
1. GROW (NEQ R 5)
FROM : (TDR5) ((EQD5)) (NEQRY5)

6E

PAS- 11 REFERENCE MANUAL
PAS-11 SCRI PT

GRAPHI C3 MODE FI NI SHED
GRAPHI C2 MODE

GRAPHI C2 MODE FI NI SHED
SEMANTI C3 MODE

SEMANTI C3 MODE FI NI SHED
LI NGUI STI C1 MODE

LI NGUI STI C1 MODE FI NI SHED

PAS- 2 FI NI SHED
*graphi c3 display
GRAPHI C3 MODE

61

NI 0 OP (RECALL D) OUT (EQ D 5)

N2 OP (RECALL CI) OUT (EQ C 8)

N3 o (PC1) IN(EQDS) (EQC 8) OUT (EQT 8)
N4 P (AVR) OUT (AEQ R 4)

N5 oP (PC1) IN(EQD5) (EQC 8) OUT (EQ C2 1)
NG o (PC2) IN(EQC2 1) OUT (CDD R) 8

N7 3 op (PC1) IN(EQD5) (EQC 8) OUT (EQC2 1)
N8 o (PC2) IN (EQC2 1) OUT (CDD R)

N3 oP (AVR) OUT (AEQR 7)

N18 OP (TDR5) IN (EQD5) OUT (NEQR 5)

