
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LABELLED PRECEDENCE PARSING

Mario Schkolnick

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

July 1973

This w o r k was supported by the Advanced Research Projects Agency of the Office of the
Secretary of Defense (F 4 4 6 2 0 - 7 3 - C - 0 0 7 4) and is monitored by the Air Force Office of
Scientif ic Research. This document has been approved for public release and sale; its
d is t r ibut ion is unlimited.

1

Abstract

Precedence techniques have been widely used in the past in the construction of parsers.
However , the restrict ions imposed by them on the grammars were hard to meet. Thus,
a l terat ion of the rules of the grammar was necessary in order to make them acceptable to
the parser. We have shown that, by keeping track of the possible set of rules that could be
appl ied at any one time, one can enlarge the class of grammars considered The possible set
of rules to be considered is obtained directly from the information given by a labelled set of
precedence relations. Thus, the'parsers are easily obtained. Compared to the precedence
parsers, this new method gives a considerable increase in the class of parsable grammars, as
we l l as an improvement in error detection. An interesting consequence of this approach is a
new decomposit ion technique for LR parsers.

1. Introduction

Among the large variety of techniques used for parsing, one can distinguish the bo t tom-
up parsers , as those which attempt to make succesive reductions on a given string so as to
eventual ly get to the starting symbol of the grammar. These parsers can be thought of
opera t ing in two modes (or phases). On the detection phase, the parser attempts to
determine the port ion of a right hand side of a phrase within the string which is being
considered. Once this boundary is detected, the parser goes into a reduction phase,
consist ing of selecting a production which is a handle at the determined position.

I f we classify different types of bottom-up parsers according to the amount of
in format ion they carry while in the detection phase, we can distinguish two extremes. On
one hand w e have the precedence parsers, which are characterized by the fact that they
ca r r y no information while looking for the righthand side of a phrase and by making its
decisions in the reduction phase by using local context only. The parsers obtained are
re lat ive ly simple but the classes of grammars they can parse is restricted by the existence of
local ambiguities.

By vary ing the amount of context examined one can define different families of

2

grammars. Among the most popular ones, we have the Wirth-Weber precedence [1] , the
simple weak precedence [2 .3] , and the simple mixed strategy precedence [3] .

On the other side of the spectrum lie the LR(k) parsers [4] . While in the detection pha*.e,
they car ry enough information so that the decision to reduce can be made immediately after
a r ight hand side is detected. The number of states an LR(k) parser has can become
immense. Part of this high number of stales is due to the fact that different information that
is carr ied fo rward has to be further distinugished for the same local context.

A n intermediate situation is obtained if one separates what is to be considered information
which has to be carried forward and information that can be obtained from local context.
A parser thus constructed will consist of two machines: a forward machine 7 and a decision
machine D. The parser will work as follows: Initially the control is given to the 7 machine.
While on 7 , the parser behaves like a precedence parser but every time it shifts an input, it
s tores in the stack the input symbol together with a symbol denoting the state it is current ly
in. The decision to shift, which is accompanied by a transition to a new state, is done by
examining local context. The 7 machine can also determine acceptance, an error condition or
a call on the V machine for a decision. The D machine determines whether a shift or a
reduce has to be performed, by examining local context together with the state information
that exists on the pushdown. A shift is performed like the 7 machine. I f a reduce is called
for , the right hand side of the production used is removed from the stack, the 7 machine is
init ial ized to the state denoted by the topmost symbol, and the left hand side of the
product ion used is given as input to it (this is like an LR(k) parser). A parser of this type is
g iven in Example 1.

Example 1

Let G be given by : S cA.bB
A • ad:aA
B • adlaB

G is not a member of any of the classes of precedence grammars mentioned above. An
L R U) (or an LR(O)) parser for G has 10 states. We can see that we really need 2 states to
car ry information forward (i.e. whether a "c" or a " b " was first seen). The rest of the
informat ion can be determined from local context. A diagram for the 7 machine could be:

The D machine would check the contents of the stack to match a right hand side of a subset
of the productions, determined by the state of 7 from which it was called and it would give
a decision on which reduction to make. A diagram for D can be given as a forest:

C a l l e d

r e d u c e r e d u c e r e d u c e r e d u c e r e d u c e r e d u c e
S - c A A - a A A ad S b B B >aB B ad

In th i s p a p e r we e x a m i n e p a r s e r s built using this a p p r o a c h . Di f fe ren t c l a s s e s of p a r s a b l e
g r a m m a r s c a n be o b t a i n e d by a p p l y i n g dif ferent c r i t e r i a for the c o n s t r u c t i o n of t he 7 and V
m a c h i n e s . W e will s e e that any c l a s s of p r e c e d e n c e g r a m m a r s can be e x t e n d e d th i s w a y ,
w i t h o u t a s ign i f i can t c o m p l i c a t i o n of the p a r s e r s and wi th the big a d v a n t a g e of not h a v i n g to
a c c o m o d a t e t he r u l e s of the g r a m m a r to sat isfy the r e q u i r e m e n t s of the p a r t i c u l a r
p r e c e d e n c e m e t h o d u s e d . A l t h o u g h the intent of this s tudy w a s to e x t e n d p r e c e d e n c e
p a r s e r s , we g e t as a s ide e f fec t a d e c o m p o s i t i o n me thod for LR(k) p a r s e r s . T h i s a p p r o a c h is
a m a t t e r of fu r the r s t u d y .

*<L L a b e j e d P r e c e d e n c e P a r s i n g

In th i s s e c t i o n we e x a m i n e the c o n s t r u c t i o n of different p a r s e r s and the c l a s s e s of g r a m m a r s
t h e y c a n p a r s e . W e a s s u m e the r e a d e r is familiar w i th the t e r m i n o l o g y for c o n t e x t f r ee
g r a m m a r s [7 , 8] - S i n c e our or ig inal a t t empt w a s in the d i r e c t i o n of e x t e n d i n g p r e c e d e n c e
t e c h n i q u e s , all t he g r a m m a r s c o n s i d e r e d h e r e will be p r o p e r . E x t e n s i o n s to non A - f r e e
g r a m m a r s c a n be s t u d i e d a long the s ame l ines .

D e f i n i t i o n U A p r o p e r c o n t e x t free g r a m m a r G = (V , V T , P , S) is a r e d u c e d , A - f r e e , c y c l e - f r e e
c o n t e x t f r e e g r a m m a r . V d e n o t e s the v o c a b u l a r y , VT is the set of t e r m i n a l s , VN is t he se t of
n o n t e r m i n a l s . We a s s u m e the p r o d u c t i o n s in P are i n d e x e d . T h e set I of i n d i c e s will c o n s i s t
of s y m b o l s of t he form A k w h e r e A < V N . A n index i=A k (I will d e n o t e the k - t h p r o d u c t i o n
w h o s e left h a n d s ide is A . I f this p r o d u c t i o n is A S we will w r i t e i : A & (or A k : A &) .
If t h e r e is o n l y o n e p r o d u c t i o n for nontermina l A we will use A i n s t e a d of Ai as its i n d e x .
T h e r e wil l be an i ndex 0 to d e n o t e an a u g m e n t e d p r o d u c t i o n of the form S' LSI (S ' C V) .
(T h i s is j u s t a c o n v e n i e n c e to m a k e def in i t ions s impler .)

E x c e p t w h e r e o t h e r w i s e n o t e d , the fo l lowing c o n v e n t i o n s a p p l y t h r o u g h o u t t h e p a p e r :
A , B , C , D < V N ; a ,b,c ,d,e ,g,r < V T ; f t t f ,S,c ,P , i / ,P ,cr ,7 < V*; X,Y,Z < V

W e wil l n o w d e f i n e c e r t a i n r e l a t i o n s b e t w e e n pa i r s of s y m b o l s in V. T h e s e r e l a t i o n s will be
d e f i n e d in a s imilar w a y as w a s d o n e in [1] but t h e r e will be a label a t t a c h e d to t h e m . T h e
l a b e l s wil l p r o v i d e in fo rma t ion abou t the w a y the r e l a t ion b e t w e e n the s y m b o l s w a s
o b t a i n e d .

D e f i n i t i o n 2i Le t X , Y C V. Le t C4, c i 2 , a 3 , a* £ I. T h e n ,

1) X is l e s s t h a n Y u n d e r a j , a 2 , w h i c h we will w r i t e as [a*; a 2] : X <• Y, if Vi < c*i, 3
A , B , X , P , i y , s u c h tha t i : A • > p X B i / and a2 = {j | B U C c r , j : C - Y 7 } .

2) X [s e q u a l t h a n Y under cr 3 , w h i c h we will w r i t e as [03] : X = Y, if
03 = {i I i : A > pXYiy}

3) X js greater than Y under o 4) which we will write as [ct A] : X » Y, if Y € V T | 3 i < I , i :
A -> \>BDv, D U YP and a* = {j | B U crC, j : C -• 7X}

Notice that, ignoring the labeling, the relations are defined as in [1] . Example 2 shows a
grammar together wi th a matrix of labelled relations.

Example 2 , Let G be defined by the productions

S i : S • • bZg Y : Y - ag
S 2 : S - crY Z : Z - ra
S3: S brX X : X - a

The labelled precedence relations can be displayed in matrix form:

b c g 1 CO

Y [S 2] :»
Z [S i] : *
X
a [Y] : - [X]:>

[Z]:>
g [Y,Si]:>
1 [0] : = [0 ;S i ,S 3] :< [0 ;S 2] :<

Y
b

c
r

Z

TsIF
x

[S 2] : = E S 3] : * [S 2;Y]:«
[S 3;X]:<
[Z]:=

[Si;Z]:«
[S3]:*

[S2]:*

a r

(We have listed the elements of the sets o, instead of using the usual set notation.)

The matrix of labelled precedence relations will be denoted by M. Note that for two
symbols X and Y there may be more than one pair of labels ah ct 2 such that [« i ;o 2] :X<Y.

We wil l later per form reductions on this matrix. These will amount to merging some indices
into one. We can think of I he set of labels as coming from a set L and having a mapping
f:I -L. The original matrix is defined with L - I and f 1 -1 . I n general though, we will have
a labelled precedence matrix M with labels from a set L.

Given a labelled matrix of precedence relations we now define a parser for the grammar.
The (forward) states of the parser will be subsets of L.

5

In fo rma l l y , the parser can be defined as follows: Define a directed graph whose nodes are
the members of V (plus two other nodes, denoted by 1 , one of them will be the unique
source node, the other, the unique sink node in the graph). An arc exists between nodes X
and Y if the X - Y entry of Iho M matrix is not empty. The initial state will be the set
consist ing of the label for production 0, and we will say it is incident to the source node 1 .
Now w e per form the following operation at every node; Let state s be incident to node X
and let there be an arc from X into Y. Let [o h ^ X ^ Y and [o 3] : X ± Y . (There may be more
than one label of the form [c i j ; a ?] for the < relation.) We then define a state t incident to
node Y as s 0 a 3 together with the set of all indices of productions in cr2 such that s fl a ^ .
The state t will be referred to as the successor of state s. When no new states are created
the process stops. Note that the computation of the states is done using only boolean
operat ions on sets and that checking if a state has already been created is st ra ight forward.
(The whole process can be viewed as a parallel operation at all nodes.)

The set of states so created constitutes the set Q F of states of the 7 machine. The
under ly ing fsa will be called the unrrstr idedTmachine. The parsing of a word proceeds a i
fo l lows: In i t ia l ly the 7 machine is in the initial state s 0 , incident to node 1. There is a stack
which will have two channels, subsequently referred as ^ and V 2 . *1<W u { J - }) * . V Q f * -
In i t i a l l y ¥ 1 =X,V 2 =so. Let U^J l fX for some K<V* t * H 0 } ^ s for o-(Q F * , |«|=|o-|, be the
contents of the stack at some point in the computation. (Thus the 7 machine is in state s
incident to node X.) Let Y be the next input symbol (normally this is the next symbol in the
input str ing). Let [o 4] : X ? Y . I f sMc<4--<|>, a shift is performed. This consists in changing state
to the successor state t of s and pushing in the stack the symbols Y on the first channel and
t on the second. I f sfkV<t> we -ay that a potential conflict occurs. The set of all
product ions whose indices are in sfKo^lJr^Llcii), for all cn, is made available to the T> machine
wh ich (hopeful ly) will give a unique decision of what to do.

The D machine will either determine a shift, by examining productions in sfl(a 3 t la j) , or a
reduce to one of the productions in r . l l a 4 . I f a shift is determined, control is t ransferred to
the succesor state of s in the machine 7 . I f a reduce is determined, the right hand side of
the product ion being reduced is popped up from the stack, control is transfered to the
topmost state now appearing on channel 2, and the input symbol fed to machine 7 is the left
hand side of the production used. The parser accepts if the input symbol is 1 , 7 is in its
f inal state and V ^ I S .

We wil l now define the 7 machine.

7 is a f inite state machine, 7 - (Q r ; VxV,S F ,<P- 1 (0) , ! f - l (O))) , where Of is a subset of the set
of all subsets of L, VxV is the input alphabet, the initial (and final) state is the set containing
? - i (0) and & F is defined as follows: Let S(QF,(X,Y)<VxV. The (X,Y) entry of M contains labels
[a i ; a 2] , [c t 3] , [a 4] ((here may be many labels of type [aha2]l

M s , (X , Y)) = If s n o f 4 = 4 > then (s (la 3) II 11 cr2

s i l e n t
else TJ

(D in the range of & F is interpreted as a call to machine D). The empty state is in terpreted
as an e r ro r indication. The transition function for the unrestricted 7 machine is

S r ' (s , (X , Y)) « (s H a .) I J I) a 2

s H a A

T h e D m a c h i n e c a n b e d e f i n e d i n d i f f e r e n t w a y s , g i v i n g r i s e t o d i f f e r e n t c l a s s e s o f p a r s a b l e

g r a m m a r s . W e w i l l g i v e s o m e d e f i n i t i o n s h e r e . F o r s i m p l i c i t y , w e w i l l r e s t r i c t t o l o c a l

c o n t e x t s o f o n e s y m b o l , b u t t h e s e c o n s t r u c t i o n s c a n b e e x t e n d e d t o o t h e r c o n t e x t s . W e w i l l

n e e d s o m e d e f i n i t i o n s w h i c h w e n o w g i v e :

D e f i n i t i o n 3± L e t & (V * . W e d e n o t e by ir a n o p e r a t o r s u c h t h a t f , & i s t h e l o n g e s t p r e f i x o f

S o f l e n g t h < k W e d e n o t e by f > * an o p e r a t o r s u c h t h a t f K * & = { f , P | & ! > P } . S i m i l a r l y w e

d e f i n e l k S f o r s u f f i x s t r i n g s .

L e t (Z , s) b e a n i n t e r i o r s y m b o l o f a 2 - c h a n n e l s t a c k (i . e . , t h e s t a c k i s A = (# I / 2)) l A l H A A -| >

a n d f o r s o m e n > 1 , f i l n t f i ~ Z , f i ' n A - s) -

L e t i :A A & be t h e p r o d u c t i o n w h o s e i n d e x is i. If [c q ; 02] * . Z <? f i & , s f l a A 4 > , A < c t 2 w e s a y

t h a t (t h e d i s t i n g u i s h e d o c c u r r e n c e o f) Z l e a d s i n t o p r o d u c t i o n i .

I f 3 n > l , l n V i = f n Z & = Z S ' a n d (t h e d i s t i n g u i s h e d o c c u r r e n c e o f) Z l e a d s i n t o p r o d u c t i o n i t h e n

(t h e d i s t i n g u i s h e d o c c u r r e n c e o f) £>' is a v a l i d e x p a n s i o n of p r o d u c t i o n i.

I f [a r , c c 2] : X < : Y o r [c < 3] : X = Y a n d f o r s o m e s t a t e s , sJ\.(cxi[)cxA)A t h e n w e w i l l s a y t h a t X l e a d s

i n t o Y u n d e r s . W e w i l l w r i t e [s] : X Y .

I f i C a a n d [c r] : X = Y w e w i l l s o m e t i m e s w r i t e (i) : X = Y . A s i m i l a r c o n v e n t i o n h o l d s f o r t h e o t h e r

l a b e l s .

N o w w e c a n g i v e a d e f i n i t i o n f o r t h e D m a c h i n e . T h e D m a c h i n e i s s p e c i f i e d a s f o l l o w s :

a : i f 3 i , y i C s f l a * , i :A (3X, n « | | 3 X | + l , l n * i = Z £ X a n d Z l e a d s i n t o i , t h e n " r e d u c e i " ;

b: , , { (P i | 9 i < t = (s n a 3) II U a2 , i:A £XC&, Y C f A C ,
sU<V<t>

n H 0 X | + l , l n A i = Z (3 X a n d Z l e a d s i n t o i } "

(w h e n D is c a l l e d , t h e p a r s e r h a s Y a s i n p u t a n d t f j A c r X)

T h i s ID m a c h i n e w o r k s a s f o l l o w s : F o r e a c h p r o d u c t i o n i :A h in s f l a * it c h e c k s t h a t &

a p p e a r s a s a v a l i d e x p a n s i o n o f i . I f s o , m a c h i n e P o u t p u t s " r e d u c e i" . A l s o , it m a y o u t p u t

a s t a t e c o n s i s t i n g o f t h e s e t o f a l l l a b e l s o f p r o d u c t i o n s i :A £ X C S s u c h t h a t Y < f i * C , [s] : X Y

a n d s u c h t h a t ($X a p p e a r s a s a v a l i d e x p a n s i o n o f i . T h u s , t h e D m a c h i n e c o u l d p r o d u c e

m o r e t h a n o n e o u t p u t . W e a r e i n t e r e s t e d in d e t e r m i n i s t i c b e h a v i o r s o w e w i l l s a y t h a t a

p a r s e r i s w e l l d e f i n e d i f t h e D m a c h i n e h a s a t m o s t o n e o u t p u t . (A n e m p t y o u t p u t f r o m D is

a n i n d i c a t i o n o f e r r o r .)

T h e c l a s s o f g r a m m a r s w h i c h h a v e d e t e r m i n i s t i c p a r s e r s w h o s e D m a c h i n e a r e d e f i n e d a s

a b o v e a n d w h o s e 7 m a c h i n e s h a v e n s t a t e s w i l l b e c a l l e d t h e c l a s s o f n - s t a t e l a b e l l e d

p r e c e d e n c e g r a m m a r s w i t h i n d e p e n d e n t le f t a n d r i f th t c o n t e x t (n - L P I g r a m m a r s) .

Let us compute the machines 7 and D for the grammar in Example 2 :
7 machine

States

<X,Y]

I S
l b
l c
bZ
br
cr

Zg

rY
rX
ra
g i
Y l
X I

ag
a l
S I

{ 0 } {S i ,S 3] {S 2 } {S i } {Z,S 3} {X.ZJ {Y} | S 3 }

{ 0 }
{S l ,S3 i
{ S 2 }

{S i }

{Szl

{S 2 J

{Y}

» (S 2)

{S i }

D(Si)

{S 3 }
{X,Z}

X>(Y)

D(Z) {Y}
D(X)

D(S 3)

end

Whenever a call to the
g iven. The D machine
label led by an element

D machine is given,
be represented

product ions
product ion.

S i

b
Z4

i such that

S2

Y"

g *
reduce

can
I of L

the set of atl i such that fKsfKai lJai lJt fa) is
as a forest where the root of each t ree is

and the corresponding tree represents all right hand sides of
I n this case, L - I and ? is 1 -1 so there is one tree for each

S 3

Si
c,

reduce S 2

r e

b l
reduce

Y Z X

A J a l
a l shift Y*

{Y}

S 3 reduce Y reduce Z reduce X

X

The parsers constructed as above will be such that their 7 machines usually have more
states than it is necessary. We can get minimal machines 7 as follows: Assume we have a
def in i t ion for the class of D machines. We then define an incompatibility relation on the set
of product ions I . We will say that two productions i 1 (t 2 , are incompatible if when a call to V
occurs w i th state r . - f i ^ f i j , J> will produce more than one output. Once we have
determined all incompatible pairs of productions we will define a new set L and a new
funct ion f such that if i j and i 2 are incompatible then ? i i * ? i 2 . (I n other words we are
def in ing an equivalence relation on I.)

Note that a call to D occurs whenever there is an entry in the matrix M containing a relat ion
». The incompatibilities are defined below. Let 4 denote incompatibility between
product ions.

I) Ai*Ck if 3 X , Y such that (Ck;Bj):X«Y, (A,):X*Y, A i : A H X Y 0 Z , Bj:B - Y 0 Z i / and
(A () : Z » W for some W<f A * i / or v = A and 3W such that (Aj,Bj):Z->W.

2) C k * D m if there are productions A | : A •YpZi/, B j : B Y0Z, there is V such that
(C k ;A i) :V<Y and (Dm ;Bj):V<Y and (B;):Z>>W for some W<fi* i / or v = A and 3W such that
(A i ,B j) :Z>W.

Given the set of incompatible production-., we can define a partit ion n on the set of
product ions such that if \ h \ 2 are incompatible productions they belong to different classes.
For each class we define a symbol. Let L be the set of all these symbols and define the
natural map f;I L such that <pk?j if i and j belong to the same class of n. We can now
def ine the 7 and D machines as before. For some partitions n it may happen that D will not
be wel l defined. But if the parser defined on the identity partition was well defined, there
exist a part i t ion for which the parser is well defined and for which the number of states of
the machine 7 is minimal. This number gives an indication on the amount of information that
has to be carr ied forward in order to successfully parse the sentences of the language
generated by the grammar. I t is clear that, for each n, we can define grammars for which
the 7 machine will have at least n states, so this gives a measure of the complexity of the
grammar.

As the fol lowing result shows, even the simple class of grammars in this hierarchy, i.e., those
fo r which the number of states of the 7 machine is I , is an extension of the largest class of
grammars defined using precedence relations over VxV, i.e., the class of simple mixed
s t ra tegy precedence.

Theorem U The class of SMSP grammars is contained in the class of 1 - L P I grammars.

Proof: Let G be a SMSP grammar. Assume there are two productions A j : A
B j t B Y0Zi / . Let and W<f i *v f lV T . Since Z<iW or Z*W we cannot have Z»W. I n
part icular, we cannot have (Aj):Z»W. I f u - A we cannot have X±B or X<B so, in particular,
there is no index C k such that (C k;Bj}:X«Y. So no incompatibilities of type 1 can occur. I f
there are two ' productions A j : A Y(3Z^, B j : Y£Z then again, if t * A there can be no
WCf^i/riV-p such that (Bj):Z>W. I f i / = a then A; and Bj have identical right hand sides. So,
there is no V such that (V,AX<-1J- and (V,B)C<IJ= I n particular, there are no C k , D m such
that (C k;Ai):V<-Y and <Dm;Bj):V< ;Y. Thus no incompatibilities of type 2 occur. Thus, we can
def ine 7 w i th one state. I t is easy to see the X> is deterministic. |

The class of 1 state labelled grammars with independent left and right context has been
presented in the l i terature under another name as indicated by the following result.

Theorem 2 : The class of 1 state labelled grammars with independent left and right context
coincides wi th the class of overlap resolvable (OR) grammars [5] .

Proof: The reader is referred to [5] for the definition of OR grammars. A case analysis
shows that T> has a deterministic behavior iff every conflict is left or right resolvable. |

Thus w e get the following corolary, which answers a conjecture of Wise:

Coro la ry J_: The class of OR languages coincides with the class of deterministic languages.

Proof : Follows from the fact that every deterministic language has an SMSP grammar. |

Example 2 presented a grammar which failed to be OR. There are two entries in M which
can cause incompatibilities, namely M(a,g) and M(g, l) . For the latter we have that
product ions Y and S A are not of the form occuring in case 1 or 2 for the definit ion of
incompatibi l i ty. For the former, we do have that S 2 * Z . Thus, at least 2 states are required
for the 7 machine. I t turns out that 2 states are sufficient to get a parser for this grammar.

Because we have defined the V machine as one which checks left and right context
independent ly we have the following result.

Theorem 3 : For any n, the class of n-state labelled grammars with independent left and
r ight context is proper ly included in the class of SLR{1) grammars [6] .

Proof : Given the set Q 0 of sets of LR{0) items for a grammar and the set Q F of states of
the unrest r ic ted 7 machine, we can define a mapping h from Q 0 to Q F as follows: h(SoHO'<-
Let S j be a set of LR(0) items. For each symbol Y(V we can partition S s in 5 sets, S i - S ^
U Sj2 U S i 3 II S j 4 II S |5 , S . H A c-X.Y(5}, S (2={A •oX.Zf3|Z*'Y}} S j 3 = { A aX.}, S j * = { A
S J M A .Zf3|Z*Y}. I f h(Si)=qj then h(&(S i l Y)) -& , {q i l (X l Y)) , where &' is the transit ion
funct ion of the unrestricted 7 machine and &(Sj,Y)=Sj is the set of LR(0) items obtained
as the GOTO(S i (Y) (see [7] for undefined terms). Now we make the following claim.

Claim: I f S (is a set of LR(O) items partitioned as above, then h(S;) contains the indices of
all product ions in S S M 1 S (2 tJ S s3.

The claim is certainly true for S 0 because S o

l = S o

2 - S 0

3 = + . Now, assumming the claim holds
for S | , we note that GOTO(Sj,Y) is obtained by taking all productions in S (M I S i * w i th the
dot shi f ted over the symbol Y (which becomes the set S; i II Sj2 It Sj3), and applying a
closure operator to get the set S j* II Sj&. But, for every index t of a production in S j * we
have (i):X=Y, and for every index j of a production in S j 4 . there is an index i of a product ion
in S j 1 U Sj2 such that (i;j):X^Y. Thus, all indices of productions in S j l U S ; 2 U S j 3 appear in
state h (S j) and the claim holds.

I t is now stra ight forward to veri fy that if G is not SLR(I), i.e., if there are two conflicting
items in some set Sj of LR(0) items, then the corresponding state of the 7 machine will
p roduce a call of the D machine which will in turn, give more than one output. Thus the
parser wi l l not be a deterministic one and the grammar will not be an n-state L P I grammar.
I

We note that to generate the 7 machine we do not distinguish positions within a production,
as an LR(or SLR) parser does. Thus, we are able to get the 7 machine faster, but we
restr ic t the class of grammars which can be parsed, excluding those which have productions
in which a repeated occurrance of a symbol may cause problems, as suggested by the
fo l lowing example:

Example 3 : Let G have productions

S abcabA | abB
A d
B d

Since [0 ; S i , S 2] : l « a , [S i ,S 2] : a -b and [Si;A]:b4d, [S 2 ;B]:b«d and [A ,B] :d» l we have that the
7 machine calls the D machine when in state {A,BJ and reading symbol (d , I) . The D
machine gives as output both "reduce A" and "reduce B". This behavior will occur even if
the T> machine checks the left and right context simultaneously as is done later.

On the other hand, it is easily seen that G is an SLR(l) grammar. Example 3 leads us to the
fo l lowing definit ion:

Defini t ion 4 : Let A X 1 X Z . . . X N _ 1 X R I he a production. We will say that this production is f ree
of repet i t ions (FOR) if for all 1 <i,j<n we have *\ implies X ^ X j (i.e., there is no repeated
occurrence of a symbol among the first n-1 symbols). A grammar will be free of repetit ions
(FOR) if all of its rules are FOR. FOR grammars and FOR productions occur very often. Any
grammar in normal 2 form is a FOR grammar and every CF language can be given a tr ivial
FOR grammar. Among the grammars used in programming languages, a quick glance at some
reveals that: P L 3 6 0 as defined in [9 , pages 3 9 - 5 3] is FOR; SNOBOL4, as defined in [7 ,
pages 5 0 5 - 5 0 7] , has only one non FOR rule; ALGOL 60 , as defined in [1 0] , has only one
non FOR rule (which happens to be a production for the <for list e lements) ; PAL, as defined
in [7 , pages 5 1 2 - 5 1 4] , is FOR.

I f we are dealing with FOR grammars, we can strengthen the result of Theorem 3 :

Theorem 4 : I f G is FOR and SLR(l) , then it is n-LPI.

Proof : Define the 7 machine using the identity map ? : I - L = I . I f G is FOR, the claim
stated in the proof of Theorem 3 becomes the following:

Claim: I f S, is a set of LR(0) items partitioned as before.then h(S|) coincides wi th the set
of indices of all productions in S |UJ S< 2 U S|3.

To p rove the claim, it suffices lo show that there are no indices of productions in h(S|)
wh ich are not in S j 1 U S , 2 U Sj3. This follows from the fact that, if (i):X±Y or (i;j):X<-Y then,
since G is FOR, there is only one occurrence of X in the production whose index is i. Since
an LR{0) item is identified by this symbol, the map h is 1 -1 . I t is easy to see that the
parser constructed is isomorphic to the SLR(l) parser. |

Thus, if we restr ict our attention to FOR grammars, both classes coincide. Moreover, the
S L R (l) parser can be obtained very easily from the 7 machine so that a fast procedure for
construct ing SLR(t) parsers is .obtained. As mentioned above, FOR productions and
grammars occur frequently in programming languages. Thus, we should take advantage of
this fact when constructing parsers for thern.

We wil l now modify the definition of the D machine so as to make it check for simultaneous
left and r ight context. We need to introduce the following definition.

Def in i t ion 5 : A symbol Y is adjacent to symbols X and Z
wi th in the context of a production Cj if either

1) (C i) : X = Y and either (Cj) :Y -Z or (Cj):Y»Z
or
2} (CJ ;D |C) :X«Y and (D K) : Y -Z for some production D K .

1 1

Let A j : A & be a production and (P(A)={BiB^,A{. We say that A is a vajid reduction for £>
w i th in symbols X and L and state s if

1) (Cj;Aj} :X<-f : & for some C / s
2) 3Y (P (A) such that Y is adjacent to symbols X and Z

wi th in the context of production C,.

Note that we can check the condition of valid reduction by inspecting the matrix M. As the
fo l lowing lemma shows, wc get information about possible simultaneous left and right context
in which a nonterminal may appear.

Lemma U Let Cj :C -¥Xc , x<V* ,c 'V + . Let S ^ o C / S ^ o l f X c f J ^ c t t f X Y c ' f J ^ a y X Y Z c " , w i th
a , & c \ c " < V * (but Kii*(c'0)) for some Y<P(A) such that F(Y)=*. Then A is a valid reduct ion
for £> wi th in symbols X and Z and some slate s such that C ^ s .

Proof : We know C ^ X c ^ - W Y c ' . There are two cases: e=Yc' or c^Yc ' , cV /v (since
P (Y)=*) . I n the first case, (C/hX-'Y. Also, either Z<fi*(c') or c ' = A and Z i f i * (0) . Then,
e i ther (Cj):Y >Z or (Cj):Y»Z. I f c . A V then 3DJ:D YF such that c ^ D p ' ^ Y p p ^ Y c ' w i th
K * A . Then Z<f i * (p) so (C i SDj):X<Y and (Dj) :Y-Z. I n either case, Y is adjacent to symbols
X and Z wi th in the context of C,. Since Y ^ A - ^ S we have (Cj;Aj}:X<fi& where A J : A &.
Thus w e have that conditions 1) and 2) of definition 5 are satisfied. |

We are now in a position to specify another class of parsers, by changing the D machine.
The change will only affect the inslruction labelled a. This instruction is changed to:

a: if 3i, <pi<sncr4, i:A -(IX, nH0X|+] , l nVi-Z(3X, Z leads into i and A is a valid reduction for
(3X w i th in symbols Z and Y and state s, where s= f 1 l n t f 2 (i.e., the state which appears next to
Z) then "reduce i".

We wil l now construct a parser for a grammar using this machine D.

Example: Let G be

S i : S-'Aa S 3 : S Bb A: A - c
S 2 : S -dAb S 4 : S clBa B: B^c

The matrix M is:

S
A

B

a
b
c
d

S A B b

[S i] : * . [S 2] : ±
[S *] : * [S 3] :=

[0] :=

[Si,S4]:->

[A,B]:» [A,B]:>
[S 2] : = [S 4] : = [S « i B K [S 2 A] : «
[0 ; S i] : < [0 ; S 3] : < [0;A,B]:< [0 ;S 2) S 4] :<

d 1 a

The machine 7 is:

{9}
IS {0}
i A {Si} •
I B { S 3 }
1c {A,B}
i d {S2,S4}
SI end
Aa
Ab
Ba
Bb
ca
cb
dA
dB
dc
a l >

b l

{Si} { S 3 } {A,B} {S ;,S4} {S2 } { S J

{Si}

{ S 3 }
D({A,[3})
»({A,B})

{ S 2 }

{A,B}
X>({Si})

D ({ S 3 })

The forest for machine D is as follows:
{ S i }

 { S 2 } { S 3 } { S 4 }

• 4

{ S 2 }

{ S 4 }

D ({ S 2 })

{A,B}
a

{A,B}
b

b b a
A B * b f c*
d d

reduce Sireduce S 2 reduce S3 reduce S4 d:reduce B reduce A
i:reduce A reduce B

When D is called with {A,B} it knows its lookahead symbol. Assume it" is an " a " . Then it
checks that the stack contains V and looks at the left context. If it is a (d,{S2,S4}) it
checks to see if A or B are valid reductions of c within d and a and state {S2>S4}. From the
matrix M we see that B is valid while A is not. Thus the output "reduce B" is g iven.

We could proceed as before and give a criteria for incompatible productions. We will not do
this here, but is clear we again get a hierarchy depending on the number of states the 7
machine has. In the above example we really didn't need the states in the 7 machine in
order to decide the output for the D machine. Thus, we could have built a parser with 1
state in the 7 machine. Actually, we have

Theorem 5: The class of 1-state labelled precedence grammars with simultaneous left and
right context is properly included in the class of (l - l)BRC. If the grammars are restricted
to be FOR, these classes coincide.

Proof; Because the D machine can check for context of at most one to both left and right of

13

the r ight hand side of a production we have that we are within the (l - l) B R C . The fol lowing
grammar is (l - l) B R C but not in the class of labelled precedence grammars considered:

S aAbAclaBc
A -d
B d

I t thus remain to be shown that any FOR grammar which is (1 -1)BRC is in this class.

This fol lows f rom the fact that for a FOR grammar, the converse of lemma 1 holds, i.e., if A
is a val id reduct ion for b within symbols X and Z then XAZ is a substring of some sentential
fo rm. Thus, if the D machine gives more than one output, it means that knowledge of the
left and right context of a handle of a sentential form does not uniquely determines it. Thus,
G is not (l - l) B R C .

3. A. decomposition of LR parsers

So far, we have considered parsers which operate as precedence parsers, in the sense that,
once a reduct ion could occur (as determined by the 7 machine) we would check the contents
of the stack to either determine the production to use in the reduction, or to continue the
f o r w a r d scan.

This sequential i ty of actions is clearly not necessary. Since the D machine, when called, only
inspects a bounded amount of tape (not more than one plus the length of the longest r ight
hand side of any production), we can construct a (definite) machine which can operate in
parallel w i th the 7 machine and which performs the checking that D does. (We will also
re fe r to this new machine as the D machine.) I n this way, the decisions are already taken
w h e n the 7 machine requests them.

Now the parser is behaving exactly as an LR parser, but since we have separated the
funct ions in the 7 and TJ machine;,, the total number of states is reduced. As an example of
these ideas, consider the following grammar:

S: S DADB B i : B -c
D: D aC B 2 : B d
A i : A b C i : C Ce
A 2 : A c C 2 : C -e

From the M matrix we can determine the incompatibilities. We find there are none. Thus one
state is sufficient for the 7 machine. (I n fact, G is an OR grammar.though not an SMSP).
The 7 machine is obtained directly from the matrix of (unlabelled) precedence relations. I t
has only one state, which is denoted by ex. A call to X> is denoted by D.

I n p u t Ac t ion Inpu t Act ion I npu t Ac t ion

IS a ae a CA »
I D a AD a Cb D
l a a Aa ot Cc D
S I end B l D Cd D
DA a bD Ce a
DB a ba D eA D
Db a cD D eb D
Dc a ca D ec D
Dd a c l V ed D
aC a d l D ee

To ob ta i n V we reduce (using standard techniques of f in i te state machines) the machine
w h i c h checks all p roduc t ions . Since there is only one state in 7, the only in fo rmat ion J> has,
to d e t e r m i n e its ou tpu t , is the input f rom which it is called f rom 7. The f o l l ow ing is the
t r a n s i t i o n tab le for D. It has 5 states. Notice that the input to D is taken as the second
c o m p o n e n t of the input to 7 (i.e., the " n e w " input symbo l , not the one already on t o p of the
s tack) . The ou tpu t depends on both.

Next s tate, under new symbol .

State] A B C D a b c d e Output
1 2 3 1 - - - 2 (B,-):S

(b , -) :A !
(e , -) :C 2

(c,a):A 2

(c . l h B i

(d , -) : B 2

2 - 1 (C,-):D

(e , -) : C 2

3 4 x - - - 1 1 X -

4 - - 5 1 - -

5 x 1 - - - x 1 1 - -

(A don ' t care e n t r y is shown as An error ent ry is shown as x.) The fo l l ow ing examp le
s h o w s a sequence of conf igura t ion taken by the parser when given an input s t r i ng . Since 7
has 1 s ta te we do not show it on the stack. The state of D appears as a second componen t .

15

Stack

1
1

I a
1 I

1 a e
1 1 2

1 a C
1 1 2

1 D
1 3

1 D b
1 3 i

I D A
1 3 4

1 D A a
1 3 4 1

1 D A a e
1 3 4 1 2

1 D A a C
1 3 4 1 2

X. D A D
1 3 4 5

1 D A D c
1 3 4 5 1

1 D A D A
\ 3 4 5 x

Input

aebaecal

ebaecal

baecai

bacca l

baecai

aecal

aecal

e c a l

c a l

c a l

c a l

a l

3 X

Action of machine
7 V

shift

shift

D reduce C 2

D reduce D

shift

D reduce A>,

shift

shift

D reduce C 2

TJ reduce D

shift

D reduce A 2

©rror

16

Had the last symbol "a " not been there, the last two configurations would have been
changed to :

Stack Input Action of machine
7 D

1 D A D c
1 3 4 5 1

I D A D B
1 3 4 5 1

1 S 1

D reduce Bj

V reduce S

end

I t is interest ing to note that this grammar has an lS-state LRU) parser (constructed a la
Knuth), a 14-s ta te parser (using Korenjak's method [11]) , and a 10-state SLR(l) parser.
B y al lowing the parser to postpone error detection (as the one above does), Aho and Ullman
const ructed a 7-state parser [7] . We have shown that using decomposition techniques one
can get a 1+5-state parser for this grammar. Because of the simple way the 7 and D
machines are determined, this decomposition technique appears quite useful.

We should point out here that, although not explicitly mentioned, a similar decomposition
technique appears in [1 2] .

4. Conclusions

Keeping track of the possible productions which can be in use at any one time during the
opera t ion of a precedence parser can significantly enlarge the class of grammars to which it
applies. We have shown how to obtain such parsers and given some ideas about their
re lat ive power. An additional feature over conventional precedence parsers is the improved
e r r o r detect ion capability. The fact that we have more than one state during the detect ion
phase allows the parser to discover errors before they are detected by conventional
precedence parsers. I n fact, these parsers look very much like LR parsers, but are easier
to obtain, and they are considerably smaller than these. By "reversing" the machine which
decides which reduction to perform we were able to get parsers which are equivalent to LR
parsers obtained using error postponment techniques [7] but, again, at a substantial savings
in the number of states. More work is needed concerning this method of LR decomposition.

17

References

1. W i r th , N. and H. Weber [1 9 6 6] , EULER - a generalization of ALGOL and its formal
def in i t ion, Parts 1 and 2 , " Comm. ACM 9 : 1 , 13 -23 and 9:2, 8 9 - 9 9 .

2 . I chb iah , J. D., and S. P. Morse [1 9 7 0] , "A technique for generating almost optimal F loyd -
Evans productions for precedence grammars," Comm. ACM 13:8, 5 0 1 - 5 0 8 .

3 . Aho, A. V., P. J. Denning, and J. D. Ullman [1 9 7 2] , "Weak and mixed strategy precedence
pars ing," J.ACM 1 9 : 2 , 2 2 5 - 2 4 3

4 . Knuth, D. E. [1 9 6 5] , "On the translation of languages from left to right," In format ion and
Cont ro l 8 : 6 , 6 0 7 - 6 3 9 .

5 . Wise, D. S. [1 9 7 1] , "Domolki's algorithm applied to generalized overlap resolvable
grammars," P r p c I h j r d Annual ACM Symjfc on Theory p i Confut ing, 1 7 1 - 1 8 4 .

6 . DeRemer, F. L. [1 9 7 1] , "Simple LR(k) grammars," Comm. ACM 1 4:7, 4 5 3 - 4 6 0 .

7. Aho, A. V. and Ullman, J. D. [1 9 7 2 - 3] , The Theory of Parsing Translation and Comp_ilin5,
Prent ice-Hal i .

8 . Ginsburg, S. [1 9 6 6] , The Mathematical Theory of Context-Free Languages, McGraw-Hil l ,
New York.

9. Wi r th , N. [1 9 6 8] , "PL360 - a programming language for the 3 6 0 computers," J.ACM
1 5 : 1 , 3 7 - 7 4 .

19 . Naur, P. (ed.) [1 9 6 3] , "Revised report on the algorithmic language ALGOL 6 0 , " Comm.
A C M 6 : 1 , 1 -17 .

1 1. Korenjak, A. J. [1 9 6 9] , "A practical method for constructing LRftO processors," Comm.
A C M 12:1 1, 6 1 3 - 6 2 3 .

1 2 . Harr ison, M. A. and Havel I . M., "On the parsing of deterministic languages," to be
publ ished.

