NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17. U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document withoul permission of its author may be prohibited by law.

LABELLED PRECEOENCE PARSING

Mario Schkolnick

Computer Science Department
Carnagie-Mellon University
Pittsburgh, Pennsylvania 15213

July 1973

This work was supported by the Advanced Research Projects Agency of the Office of the
Secretary of Defense (F44620-73-C-0074) and is monitored by the Air Force Office of
Scientific Research. This document has been approved for public release and sale; its
distribution is uniimited.

Abstract

Precedence techniques have been widely used in the past in the construction of parsers.
However, the restrictions imposed by them on the grammars were hard to meet. Thus,
alteration of the rules of the grammar was necessary in order to make them acceptable to
the parser. We have shown that, by keeping track of the possible set of rules that could be
apptied at any one time, one can enlarge the class of grammars considered. The possible set
of rules to be considered is obtained directly from the information given by a labelled set of
precedence relations. Thus, the parsers are easily obtained. Compared to the precedence
parsers, this new method gives a considerable increase in the class of parsable grammars, as
well as an improvement in error defection. An interesting consequence of this approach is a
new decomposition technique for LR parsers.

1. Introduction

Among the large variety of techniques used for parsing, one can distinguish the bottom-
up parsers, as those which attempt to make succesive reductions on a given string so as to
eventually get to the starting symbol of the grammar. These parsers can be thought of
operating in two modes (or phases). On the detection phase, the parser attempts to
determine the portion of a righl hand side of a phrase within the string which is being
considered. Once this boundary is detected, the parser goes into a reduction phase,
consisting of selecting a production which is a handle at the determined position.

If we classify different types of bottom-up parsers according to the amount of
information they carry while in the detection phase, we can distinguish two extremes. On
one hand we have the precedence parsers, which are characterized by the fact that they
carry no information white looking for the righthand side of a phrase and by making its
decisions in the reduction phase by using local context only. The parsers obtained are

relatively simple but the classes of grammars they can parse is restricled by the existance of
local ambiguities.

By varying the amount of context examined one can define different families of
)

grammars. Among the most popular ones, we have the Wirth-Weber precedence [1], the
simple weak precedence [2.3), and the simple mixed strategy precedence [3)

On the other side of the spectrum lie the LR(K) parsers [4] While in the detection pha-e,
they carry enough information so that the decision to reduce can be made immediately after
a right hand side is detected The number of states an LR(K] parser has can become
immense. Fart of this high number of stales is due to the fact that different information That
is carried forward has to be further distinugished for the same local context.

An intermediate situation is obtained if one separates what is to be considered information
which has te be carried forward aned information that can be obtained from local context.
A parser thus constructed will consuist af two machines: a forward machine F and a decision
machine D. The parser will work as follows: Imilially the contral is given to the ¥ machine.
While on F, the parser bohaves dike a procedence parser but every time i shifts an inpul, &
stores in the stack the input symbot tonelher with a symbol denoting the stale it is currently
in. The decsion ta shift, which 1. accompanied by a transition to a rew stale, is done hy
examiring local context, The F madliae can alsg delermine acceptance, an error condition or
a call oan the D machine for a decimian. The T machine determines whether a shift or a
reduce has to be performed, by examining focal context forether with the state information
that exists on the pushdown. A whift is performed iike the ¥ machine. If a reduce 1s callcd
for, the right hand side of the preduclion used is removed from the stack, the F machine (=
initialized to the stale denoted by the topmost symbol, and the left hand side of lhe
production used is given as input to it {this is like an LR{k} parser). A parser of this type is
given in Example |.

Example |

Let G be given by: S - cADbl3
A adal
B . adaB

G is not a member of any of the ¢lasses of precedence grammars mentioned above. An
LR(1} {(or an LR{O)) parcer for G has 10 states. We can see thal we really need 2 states to
carry information forward {ie. whether a "c” or 2 "b" was firsl seen). The rest of tihe
information can be determined from local context. A diagrara for the F machine could be:

< P

a 1 1 a

d d

it D B

The D machine wauld check the contents of the slack to match a right hand side of a subzet
of the productions, deternwned by the state of F from which it was called and it would give
a decision on which reduction 1o make, A diagram for D can be given as a forest:

Called
from: 2
d d
c a a b a a
reduce reduce reduce reduce reduce reduce
S-cA A-aA A ad S bB B =aB B ad

In this paper we examine parsers built using this approach. Different classes of parsable
grammars can be oblained by applying ditterent criteria for the congtruction of the 7 and V
machines. We will see that any class of precedence granmumars can be extended this way.
without a signilicant complication ol the parsers and with the big advantage of nol having to
accomodate the rules of the grammar to satisfy the requirements of the particular
precedence method used. Although the intent ol this study was 1o exiend precedence
parsers. we get as a side effect a decomposition method for LR(k) parsers. This approach is

a maller of [urther study.

*<f T.abejed Precedence Parsing

In this section we examine the construction of different parsers and the classes of grammars

they can parse. We assume the reader 1s ltamiliar with the tlerminology for conlext [ree
grammars [7,8]- Sincc our original attempt was in the dircction of extending precedence
techniques, all the grammars considered here will be proper. Dxtensions 1o non A-{ree

grammars can be studiced along the same lines.

Definition & A proper context free grammar G=(V.V_1’.8) is a reduced. A-free, cvele-free
context lree grammar. V denotes the vocabulary, V, 15 the sel ol ferminals, V. is the sel of
nonterminals. We assume lhe productions in P are indexed. The sel T ol indices will consist
of symbols of the form A, where A < VN. An index i—A, (I will denote the k-th production
whose left hand side is A. If this production is AS we will write 11 A & (or A, A &).
If there is only one production for nonterminal A we will use A instead of A1 as its index.
There will be an index O to denote an auvgmented production of the form 8 LSI (8' C V).

(This is jusl a convenience Lo make delinitions simpler.)

Excepl where otherwise noted, the [ollowing c¢onventions apply throughout the paper:
AB.C.D <V, abedcgr< V. . fttf.S.c.P,i/Per,7 =~ V¥ XY.Z =V

We will now define certain relations between pairs of symbols in V. These relations will be
defined in a similar way as was done in [1] but there will be a label attached to them. The
labels will provide information about the way the relation between the svmbels was

obtained.
Delinition 21 let X.Y C V. Tet C4, ¢i,, a,, a* £1. Then,

1) X is less than Y under aj. a.. which we will write as |a*. a,| : X = Y, if Vi < ¢*1, 3
A.B.X.P.iv. such that 1 : A «>» pXBi/ and a, - | BUCer,) :C -YT7}.

23 X [s equal than Y under «c¢r,, which we will write as [03] : X =Y, il
03 - 4111 : A o pXYiv}

3} X ig greater than ¥ under o, which we will write as [og] X 2 Y, fY eV, 3i¢ T, 0
A «pPBDv, D . ¥YPand oy =14j| B s oC,j:C ~ 3X}

Notice that, ignoring the labeling, 1he relations are defined as in [1) Example 2 shows a
grammar together with a matrix of labelled relations.

Example 2. Let G be defincd by the productions

S 5 -bipg ‘ ¥:Y - ag
Sz: 5 ¥ 2:7 -ra
Sar 5 - brX X1X -a

The labelled precedence relations can be displayed in matrix form:

S b ¢ g 1
S [@T=
Y [82)»
Z [S1):=
x IS3]:?’
a [Y]: [X}:>
[Z):>
B [¥,51)»
1| [0 [0:5),83]:¢ [0:52)¢
Y Fi X a v
b [51)= [Si:7):¢
{S3):2
C . [52]:é
r| (Sz2k= [S3]= [S2;¥]
[S3:%):¢
{z}:=

(We have listed the slements of the sets o, instead of using the usual set notation.}

The matrix of labelled precedence relations will be dencied by M. Note that for two
symbols X and ¥ {here may be more than one pair of labels oy, oz such that {cap]X €Y.

We will later perform reductions on this matrix. These will amount fo merging some indices
into one. We can think of lhe set of labels as coming from a set L and having a mapping
$:1--L. The original matrix is dofined with LeI and $ 1-1. In general though, we will have
a labelled precedence matrix M with labels from a set L.

Given a labelled matrix of precedence relations we now define a parser for the grammar.
The (forward) stales of the parser will be subsets of L.

Infarmally, the parser can be defined as follows: Define a directed graph whose nodes are
the members of V (plus two other nodes, denoted by L, one of them will be the unique
source node, the other, the unique sink node in the graph). An arc exists between nodes X
and Y if the X-Y entry of the M malrix is not empty. The initial state will be the set
consisting of the label for production @, and we will say it is incident to the source node 1.
Now we perform the following operation at every node: Let state s be incident to node X
and let there be an arc from X into Y. Let [ogp]:X<Y and [a3)X=Y. (There may be more
than one labe! of the form [ny;as] for the <€ relation) We then define a state t incident to
hode Y as s N ag together with the set of all indices of productions in ay such that s 1 o y#é.
The siate t will be referred to as the successor of state s. When no new states are created
the process stops. Note that the computation of the states is done using only boolean
operations on sets and that checking if a state has already been created is straightforward.
(The whole process can be viewed as a parallel operation at all nodes.)

The set of stales so created conslifules the set Qp of stales of the F machine. The
underlying fsa will be called the unrestndedFmaching,. The parsing of a word proceeds as
follows: Initially the F machine is in the initial state sq, incident to node 1. There is a stack
which will have two channels, subsequently referred as ¥ and ¥o. ¥jc(V U {LD*, ¥rQc™.
Initially ¥j=1%>=59. Let ¥;=1¥X for some ¥V¥ ¥r={0}os for o(Q* |¥|=icl, be the
contents of the stack at some point in the computation. (Thus the F machine is in state s
incident to node X.) Let Y be the next input symbol (normally this is the next symbaol in the
input string). Let [ag:X>Y. If «iley=0, a shift is performed. This consists in changing state
to the successor state t of & and pushing in the stack the symbols ¥ on the first channel and
t on the second. TIf slloy#d we cay thal a potential conflict occurs. The set of all
productions whose indices are in sfi{agllasliog), for all ay, is made available to the D machine
which (hopefully) will give a unique decision of what to do.

The D machine will either determine a shift, by examining productions in sil{asllag}, or a
reduce to one of the productions in sllcg. If a shift is determined, control is transferred to
the succesor state of s in the machine 7. If a reduce is determined, the right hand side of
the production being reduced is popped up from the stack, control is transfered to the
topmost state now appearing on channel 2, and the input symbot fed to machine F is the left
hand side of the production uzed. The parser accepls if the input symbol is L, F is in its
final state and ¥ =1S.

We will now define the F machine.

F is a finite state machine, T=(Qr VxV,S5¢,P-1{0),]F-1{0}}), where Qp is a subset of the cet
of all subsets of L, VxV iz the input alphabet, the initial (and final) state is the set containing
P-1{0) and &¢ is defined as follows: Lel scQr,(X,Y)(VxV. The (X,Y) entry of M contains labels
[ogie2), [a3)[cg] (there may be many labels of type [oyez]).

Sp(s,(X,Y)) = if shog=¢ then (sl U U«
st #¢
else D

(D in the range of &¢ is interpreled as a call to machine D). The empty state is interpreted
as an error indication. The transition function for the unrestricted F machine is

Sri(s,(X,Y)) « (sHa,) IJ 1y a.
g Ha?

The D machine can be defined in different ways, giving rise to different classes of parsable
grammars. We will give some definitions here. For simplicily, we will restrict to local
contexts of one symbol, but these constructions can be extended to other contexts. We will
need some definitions which we now give:

Definition 3+ Let &(V-. We denote by : an operator such that f& is the longest prefix of
3 of length <k We denote by f>* an operator such that f*& = {{.P| &!>P}. Similarly we
define |,S for suffix strings.

Let (Z,8) be an interior symbol of a 2-channel stack (ie., the stack is *=(#1,2) |*|H**1>

and for some n > 1, fil tfi~Z, fi'n*-5)-

Let i:A *& be the production whose index is i. If [ecqg; 27 * Z <? fi&, sflard4>, A<ci2 we say
that (the distinguished cccurrence of) Z leads into production i.

If 3n>Il, [, Vi=1,Z&=ZS5' and (the distinguished occurrence ofy Z leads into production i then
{(the distinguished occurrence of) £' is a valid expansion of production i.

If [ar,cc2]: X< ¥ or [c<3]:X=Y and for some siate s, sfifevificy™”™ then we will say that X leads
into ¥ under s. We will write [s]:X Y.

If iCa and [cr]:X=Y we will sometimes write (i):X=Y. A similar convention holds for the other
labels.

Now we c¢an give a definition for the D machine. The D machine is specified as follows:

a: if 3i, yiCsfla*, itA (3X, n«||3X|+], |,*i=ZEX and Z leads into i, then "reduce i"
b: {Pi|9i<t=(sna.} Il U a., itA £XC& YCfrC,
sU<V<t>

nHOX |+, |,*i=Z(3X and Z leads into i}"

{when D is called, the parser has Y as input and ifj*crX)

This {2 machine works as follows: For each preduction itA # in sfla* it checks that &
appears as a valid expansion of i. |If so, machine P outputs "reduce i". Also, it may output
a state consisting of the set of all labels of productions itA £XCS such that Y<fi*C, [s]:X ¥
and such that (& appears as a valid expansion of i. Thus, the D machine could produce
more than one output. We are interested in deterministic behavior so we will say that a
parser is well defined if the D machine has at most one output. (An empty output from D is
an indication of error.)

The class of grammars which have deterministic parsers whose D machine are defined as
above and whose 7 machines have n states will be called the class of n-state labelled

precedence grammars with independent left and riftht context (n-LPI grammars).

Lat us compute the machines F and D for the grammar in Example 2:
T machine
Stales
(X,Y) {0} {5153} {S2) {S1} {ZS3} (X7} {¥} ({S3}

15| (B9}

1b } {51,535}

le | {Sg}

bZ 151}

br {2153}

cr {Sz}

Zg, {81}

ry {52}

rX 153}

ra {Y} {®,2}

gl D(Sy) Dy}
Yl D(S;)

X1 D(S3)
ag D) {Y}
al DX)
s1|end

Whenever a call to the D machine is given, the set of all i such that PiCsiMoglhagllag) is
given. The D machine can be represented as a forest where the root of each tree is
lahelled by an element | of L and the corresponding tree represents all right hand sides of
productions i such that Pi=l. In this cate, L=I and ¥ is 1 -1 s0 there is one tree for each
production.

Sy S2 53 Y Z X
b Y X g% ai aI
z r r as shift Y

{Y}
g c b

reduce 5; reduce Sz reduce S3 reduce Y reduce £ reduce X

The parsers constructed as above will be such that their F machines usually have more
states than it is necessary. We can get minimal machines F as follows: Assume we have a
definition for the ¢lass of D machines. We then define an incompatibility relation on the set
of productions . We will cay that two productions ij, i, are incompatible if when a call to D
occurs with state s=Fi=%i;, D will produce more than one output, Once we have
determined all incompatible pairs of productions we will define a new set L and a new
function ¥ such that if i) and i are incompalible then Pi#¥Piz. (In other words we are
defining an equivalence relation on 1)

Nole that a call to D occurs whenever there is an entry in the matrix M containing a relation
. The incompatibilties are defined below. Let # denole incompatibility between
productions,

1) A#C, i IXY such that (GB,):X<Y, (A)XeY, AjApXYRZ |, 8;:8 -vgZv and
(A 1:Z>W for some Wefi®v or v=A and IW such that (4,,8;):7>W.

2) Cy#Dq if there are produclions Aj:A ¥B3Zwv, BB -YRZ, fthere is V such that
{CiA VY and (DB hVeY and (3,:Z2>W for some W(H*y or v=A and IW such that
(A8, 1W.

Given the set of incompatible productions, we can define a partition n on the et of
productions such that if i1 are incampatible productions they belong to different ¢lasses,
For each class we define a symbol, Let L be the set of all ihese symbels and define the
natural map F:I L such that Fi=Fj if i and] belong to the same class of n. We tan now
define the ¥ and D machines as before. For some partitions n it may happen that D will not
be well definred. But if the parser defined on the identity partition was well defined, there
exist a partition for which the parcer is well defined and for which the number of states of
the machine F is minimal. This nuinber gives an indication on the amount of informalion that
has to be carried forward in order to sucesssfully parse the seniences of the languase
generated by the grammar. It is clear thal, for each n, we can define grammars for which
the F machine will have at least n states, sq this gives a measure of the complexity of the
grammar,

As the following result shows, cven the simple class of grammars in this hierarchy, ie., those
for which the number of states of the ¥ machine is [, is an extension of the largest class of
grammars defined using prectdence relalions over VeV, e, the cdlass of simple mixed
stratepy precedence.

Thearem }: The class of SMSP grammars is contained in the class of 1-LPI grammars.

Proof: let G be a SMSP grammar. Assume there are two produclions Aj:A -pXY{3Z,
B;:8 - YBZv. Let v*A and Wif{™Wy. Since Z¢W or Z*W we cannot have ZPW. In
particular, we cannat have (A 7MW, Tf v=A we cannct have X2B or X<B so, in particular,
there is no index Cy such that (G B, €Y. 50 no incompatibilities of type 1 ¢an occor. If
there are two productions A;:A YR7Zv, B;:¥AZ then again, if v#A there can be no
WF UV such fhat (B 1Z>W. 1F v=A then A; and B; have identical right hand sides. So,
there is no V sucl that (VAX4l: and (WB) 4z In particular, there are no G, Dy such
that (Cy;A |):V4Y and {Dy:B;):V4Y. Thus no incompalibilibies of type 2 occur. Thus, we tan
define F with ane state. Tt is easy to see the © is delerministic. |

The class of | state labelied grammars with independent left and right comtext has been
presented in the literature under anocther name as indicated by the following result.

Theorem 2: The class of | state labelied grammars with independent left and right context
coincides with the class of overlap resolvable (OR) grammars [5])

Proof: The reader is referrec fo [5] for the definition of OR grammars. A case analysis
shows that D has a determinislic behavior iff every conflict is left or right resolvable. |

Thus we get the following corolary, which answers a conjeclure of Wise:
‘Corolary 1: The class of OR languages coincides with the class of deterministic languages.

Praof: Follows from the fact that every deferministic language has an SMSP grammar. ||

Example 2 presented a grammar which failed to be OR. There are two entries in M which
can cause incompatibilities, namely M{ag) and M(g,d). For the latter we have that
productions ¥ and S; are not of the form occuring in case | or 2 for the definition of
incompatibility. For the former, we do have that S»¥Z. Thus, at least 2 states are required
for the F machine. Tt turns out that 2 states are sufficient to get a parser for this grammar.

Because we have defined the D machine as one which checks left and right context
independently we have the foliowing result,

Theorem 3: For any n, the class of n-state labelled grammars with independent left and
right context is properly included in the class of SLR{1) grammars [6].

Proof: Given the set Qg of sets of LR(G)} items for a grammar and the set Q¢ of states of
the unrestricted T machine, we can define a mapping h from Qg to Q as follows: h{(Sg)={0}
Let S; be a set of LR(®) items. For each symbol Y(V we can partition §; in B sels, §;=5;!
U Si2 U-Si3 U G4 1S5, S, 1={A -«X Y8}, Si2={A -«X.IBIZ2Y}, S;3={A aX.}, S;¢={A ¥},
SiS={A-.ZB|Z#Y}. If h{S;)=q; then h(5(5;,Y))=6(q;,(X,Y)), where &' is the transition
function of the unrestricted T machine and &(S5;,Y)=S; is the set of LR(0) items obtained
as the GOTO(S,;,Y) (see [7] for undefined terms). Now we make the following claim.

Claim: If S; is a set of LR{(O} items partitioned as above, then h(S;) contains the indices of
ali productions in $;1 U 5;2 11 5;3.

The claim is certainly true for Sg because Sgl=502=5S¢3=¢. Now, assumming the claim holds
for S, we note that GOTQ(S;,Y) is oblained by taking all productions in 5;1.1) §;4 with the
dot shifted over tie symbol Y (which becomes the set §;11)5;211§;3), and applying a
closure operator to get the set 5;4 11 5;5 But, for every index i of a production in §;1 we
have (i):X2Y, and for every index j of a production in 5,8, there is an index i of a production
in S;1 11 52 such that (i;)):X4Y. Thus, all indices of productions in §;1 1} 5;2 U S;3 appear in
state h(S;) and the claim holds,

It is now straightforward to verify that if G is not SLR(1), ie., if there are two conflicting
items in some set S; of LR(Q) items, then the corresponding state of the F machine will
produce a call of the D machine which will in turn, give more than ore output. Thus the
parser will not be a determinislic one and the grammar will not be an n-state LPI grammar.

We note that 1o generate the ¥ machine we do not distinguish positions within a production,
as an LR(or SLR} parser does. Thus, we are able to gel the F machine faster, but we
restrict the class of grammars which can be parsed, excluding those which have productions

in which a repeated occurrance of a symbol may cause problems, as suggested by the
following example:

Example 3: Let G have productions
S ‘abcabA | abB
Ad
B d

19

Since [0;5),S2]:L¢a, [S1,5:):azb and [Sy;Alb4d, [S$2:B)b4d and [ABl:d>L we have that the
T machine calls the D machine when in state {AB} and reading symbol {(d,1). The D
machine gives as outpu! both “reduce A" and "reduce B". This behavior will occur even if
the D machine checks the left and right context simultaneously as is done later,

On the other hand, it is easily seen that G is an SLR(1) grammar. Example 3 leads us to the
following definition:

Definition 4: Let A X)X, . X,1X. he a production. We wilt say that this production is free
of repetitions (FOR} if for all 1<ij<n we have #j implies X,#X; {ie, there is no repeated
occurrence of a symbol among the first n-1 symbols), A grammar will be free of repefitions
(FOR} if all of its rules are FOR. FOR grammars and FOR productions occur very often. Any
grammar in normal 2 forni is a FOR grammar and every CF language can be given a trivial
FOR grammar. Among the grammars used in programming languages, a quick glance at some
reveals that: PL360 as defined in [9, pages 39-53] is FOR; SNOB(OLA, as defined in [7,
pages HBP5-S27], has only one nen FOR rule; ALGOL 69, as defined in [12], has only one
non FOR rule {which happens to be a production for the <for list element>1); PAL, as defined
in [7, pages B512-514], is FOR.

If we are dealing wilh FOR grammars, we can strengthen the result of Theorem 3:
Theorem A: If Gis FOR and SLR(1], then it is n-LPL.

Proof: Define the F machine using the identity map ®:I--L=I. If G is FOR, the claim
stated in the proof of Theorem 3 becomes the following:

Claim: If S; is a set of LR{Q) itcms partitioned as before,then h{S,;) coincides with the set
of indices of all productions tn S;1 U 5,24 5,3,

To prove the claim, it suffices 1o show that there are no indices of productions in h{5;)
which are not in ;111 5,21 §;3. Thes follows from the fact that, if {):X=Y or {i;}:X<Y then,
since G is FOR, there is only one occurrence of X in the production whose index is L Since
an LR(®} item is identified by this symbol, the map h is 1-1. It is easy to see thai the
parser constructed is isomorphic to the SLR(1) parser. |

Thus, if we restrict our attention to FOR grammars, both classes coincide. Moreover, the
SLR{1} parser can be oblained very casily from the F machine so that a fast procedure for
constructing SLR(I) parsers is obfained. As mentioned above, FOR productions and
grammars occur frequently in programming larguages. Thus, we should take advantage of
this fact when constructing parsers for them.

We will now modify the defirition of the D machine s0 as to make it check for snmuitaneous
left and right context. We need to introduce the following definition.

Definition 5: A symbol ¥ s adiacent to symbols X and Z

within the context of a production C; f either

1} (C;hX=Y and either {C;1Y -7 or {C;hYHZ
or
2} (C;D X<y and (D 1:¥--Z for some production Dy,

11

Let Aj:A & be a production and P(A)={B|BA:.A}. We say that A is a valid reduction for &
within symbols X and Z, and stale s if

1) (Cj;A 1% <15 for some Cjfs
2) IYCP(A) such that ¥ is adjacent 1o symbols X and Z
within the cantext of production C;.

Note that we can check the condition of valid reduction by inspecting the matrix M. As the
following lemma shows, we get informalion about possible simullaneous left and right context
in which a nonterminal may appear.

Lemma }: Let C;:C ¥Xc , ¥VhcrVP. Let $XuaCl=a¥Xofia¥XYe'BE:an¥XYIc", with

a B¢ 2" VE {but Z06*(e'6)) for =ome YCP(A) such that P(Y)=¢é. Then A is a valid reduction
for & within symbols X and Z and some slate s such that Cj¢s.

Proof: We know C=¥XcX.¥XYe'. There are two cases: ¢=Ye' or efYe'\g'#A (since
P(Y)=¢). In the first case, (C;hX<Y. Also, cither Z¢fy*(e') or ¢'=A and Z(i*{B). Then,
either {(C;):¥«Z or (C;h¥Y>Z. If c#¥Ye' then J0,;:0 'Y such that cXZDp'=rYpp'=Ye' with
BEA. Then Zafi* (1) so {C;0;0:X<Y and (D;hY -2, In cither-case, Y is adjacent to symbols
X and Z within the context of C,. Since Y2aA25 we have (C;;A ;X415 where A;:A &,
Thus we have that conditions 1) and 2) of definition © are satisfied. §

We are now in a position 1o specify another class of parsers, by changing the D machine.
The change will only affect the instruction labelled a. This instruction is changed to:

a ‘u Ji, Picsog, A BX, na|B3Xi+], 1,¥=20%, 2 leads into i and A is a valid reduction for
X within symbols 7 and ¥ andl stale s, where s=1}1,¥; (ie, the state which appears next to
Z) then "“reduce i"

We will now construct a parser for a graremar using this machine D.

Example; Let G be

S S-:Aa S3: & :
Sa; 5 -dAb S: 5 dBa B:

@ >
A& A

The matrix M is:

S A &} a b C d 4
(2]):=

[S1)= [Sp)=
[Se:= [S3)=
[51,5s)2
REREN
[AB)]:» [AB):»
[Sz):= [S4]:= [S4:8):4,[52A):¢4
[0]):2 [0;51):¢[0;53):¢ [0;ABL:¢ [0;52,54]):¢

=00 52 G Ppw

12

The machine 7 is:

{or {si {S} {AB} {S.84} {S} {8}

1S {0}

i A {Si} -«

IB {s.}

1c| {A,B}

id {S.,8.}

S end

Aa {Si}

Ab (S}

Ba {s.}

Bb {8}

ca D({A.[3D)

cb »({A,B})

dA {3.}

dB

dc {A.B}

al X>({Si})

bl D{sS.h DS)

The forest for machine D is as follows:

{si} {S.} {s} {S} {AB} {A.B}
iy 4 a b

b b a
A B " B f c*
d d

reduce Sireduce S, reduce 53 reduce S. direduce B reduce A
i:reduce A reduce B

When D is called with {A,B} it knows its lookahead symbol. Assume it" is an "a". Then it
checks that the stack contains V and locks at the left context. If it is a (d,{S.,3.}) it
checks to see if A or B are valid reductions of ¢ within d and a and state {S.>3}. From the
matrix M we see that B is valid while A is not. Thus the output "reduce B" is given.

We could proceed as before and give a criteria for incompatible preductions. We will not do
this here, but is clear we again get a hierarchy depending on the number of states the 7
machine has. In the above example we really didn't need the states in the 7 machine in
order to decide the output for the D machine. Thus, we could have built a parser with 1
state in the 7 machine. Actually, we have

Theorem 5: The class of 1-state labelled precedence grammars with simultaneous left and
right context is properly included in the class of (I-DBRC. If the grammars are restricted
to be FOR, these classes coincide.

Proof; Because the D machine can check for context of at most one to both left and right of

13

the right hand side of a production we have thal we are within the (1-1)BRC. The following
grammar is (1-1)BRC but not in the class of labelled precedence grammars considered:

It thus remain to be shown that any FOR grammar which is (1-1}BRC is in this class.

This follows from the fact that for a FOR grammar, the converse of lemma 1 holds, i.e, if A
is a valid reduction for & within symbols X and Z then XAZ is a substring of some sentential
form. Thus, if the D machine gives more than one output, it means that knowledge of the
left and right context of a handie of a senlential form does not uniquely determines it. Thus,
G is not (1-1)BRC.

3. A decomposition of LR parsers

So far, we have considered parsers which operate as precedence parsers, in the sense that,
once a reduction could occur (as determined by the T machine) we would check the contents
of the stack to either determine the production to use in the reduction, or ta continue the
forward scan. '

This sequenliality of actions is clearly not necessary. Since the D machine, when called, only
inspects a bounded amount of tape {not more than one plus the length of the tongest right
hand side of any production), we can construct a (definite) machine which can operate in
parallel with the F machine and which performs the checking that D does. (We will also
refer to this new machine as the T tnachine.) In this way, the decisions are already taken
when the F machine requests them. '

Now the parser is behaving cxactly as an LR parser, but since we have separated the
functions in the F and D machines, the total number of states is reduced. As an example of

these ideas, consider the following grammar:

S: S.-DADB Bi: B«

D: D -aC B Bd
Ap: A b Ci:r C Ce
At A-c C: Cee

From the M matrix we can determine the incompatibilities. We find there are none. Thus one
state is sufficient for the T machine. {In fact, G is an OR grammar,though not an SMSP).
The F machine is obtained direclly from the matrix of {unlabelled) precedence relations. It
has only one state, which is denoted by . A call to D is denoted by D.

14

Input Action Input Action Input Action
IS a ae a CA »
ID a AD a Chb D
la a Aa o Cc D
Sl end Bl D Cd D
DA a bD Ce a
DB a ba D eA D
Db a cD D eb D
Dc a ca D ec D
Dd a cl v ed D
aC a dl D ee

To obtain V we reduce (using standard techniques of finite state machines) the machine
which checks all productions. Since there is only one state in 7, the only infermation J> has,
to determine its output, is the input from which it is called from 7. The following is the
transition table for D. It has & states. Notice that the input to D is taken as the second
component of the input to 7 (i.e., the "new" input symbol, not the one already on top of the
stack). The output depends on both.

Next state, under new symbol.

State] A B C D a b ¢ d e | Cutput

1 2 3 1 - - - 2| (B,-):S
(b,-):Al
(e,-):C
(c,a)A
(c.IhBi
(dl_):B

2 - 1| (C,-)D
(e-):C

3|4 x - - -1 1 x =

4 | - - 5 1 - -

5|x 1 - - - x 1T 1 -~

(A don’'t care entry is shown as An error entry is shown as x.) The following example

shows a sequence of configuration taken by the parser when given an input string. Since 7
has 1 state we do not show it on the stack. The state of D appears as a second component.

15

Stack Input Action of machine
¥ D

L aebaecal

1 shift

1 a ebaecal

11 shift

lae baccal

| I T reduce Gz

lacC . baccal

112 D reduce D

1B baecal

1 2 shift

1 Db aecal

1 31 D reduce A

L DA accal

1 3 4 shift

18 Aa ecal

1 341 shif{

1 DAz e cal

1341 2 D reduce Cp

1 DAacC - cal

1341 2 D reduce D

LDAD cal

1 34658 shift

10ADC al

| 3451 o] reduce Az

al

(-
o}
bl

(S)

* I

error

16

Had the last symbol “a" not been there, the last two configurations would have been
changed to:

Stack Inpul Aclion of machine
¥ D

LDADC 1

1345 D reduce B

1 DADBR J

1 34651 D reduce S

LS L end

It is interesting to note that this grammar has an | &-state LR(1) parser (constructed a la
Knuth), a ! 4-state parser (using Korenjak's method [11]), and a 1@-state SLR{1) parser,
By allowing the par<er to postpone error detection {(as the one above does), Aho and Ullman
canstructed a 7-state parser [7]. We have shown that using decomposition technigues one
can get a 1+5-state parser for this grammar. Because of the simple way the T and D
machines are determined, this decomposition technique appears quile useful.

We should point out here that, although not explicitly mertioned, a similar decomposition
technique appears in[12].

Keeping track of the possible productions which can be in use at any one time during the
operation of a precednnce parser can significantly enlarge the class of grammars to which it
applies. We have shown how to obtain such parsers and given some ideas about their
relative power. An additional feature over conventional precedence parsers is the improved
error detection capability, The fact that we have more than one stale during the detection
phase allows the parser to discover errors before they are detected by conventional
precedence parsers. In f{act, these parsers look very much like LR parsers, but are easier
to obtain, and they are considerably smaller than these. By “reversing” the machine which
decides which reduction to perform we were able to get parsers which are equivalent to LR
parsers obfained using error postponment techniques [7] but, again, at a substantial savings
in the number of stales. More work is needed concerning this melhod of LR decomposition.

17

References

1. Wirth, N. and H. Weber [1966], EULER - a gencralization of ALGOL and its formal
definition, Parts 1 and 2, Comm, ACM 9:1, 13-23 and 9:2, 89-99.

2. Ichbiah, 1 D., and S, P. Marse [19707, "A technique for generating almost optimal Floyd-
Evans produclions for precedence grammars,”" Comm, ACM 13:8, 501 -5¢8.

3. Aho, A. V, P. I Denning, and J. D. Ullman {1972], "Weak and mixed stralegy precedence
parsing,” LACM 19:2.225-243

4. Knruth, D. E. [196%], "On the translation of languages from left to right," Information and
Cantrol 8:6, 607-639,

5. Wise, 0. 8. [1971}, "Domolki's algorithm applied to perneralized overlap resolvable
grammars,” Proc. Third Anhual AGM Symp, on Theary of Computing, 171-184.

6. DeRemer, F. L. [197 1], "Simple LR(K) grammars,” Comm. ACM 14:7, 4563-460.

7. Aho, A. V. and Ullman, J. 13. [1972-3], The Theory of Parsing, Translation and Compiling,
Prentice-Hall.

8. Ginsburg, 5. {1966], The Mathematical Theory of Cantext-Free Languages, McGraw-Hill,
New York,

9. Wirth, N. [1968]}, "PL36@ - a programming language for the 360 computers,” JACM
16:1, 37-74,

18, Naur, P. (ed) [1963], "Revised report on the algorithmic langusge ALGOL 69," Comm,
ACM 6:1, 1-17.

11, Korenjak, A. 4 [1969), "A practical method for comstructing LR(k) processors,” Comm,
ACM 12:11,613-623.

12. Harrison, M. A. and Have! 1. M, "On the parsing of deterministic languages,” to be
published.

