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ABSTRACT 

This paper describes an iterative method for factoring a polynomial 

that bears the same relation to Bairstow's method as the secant method in 

a single variable bears to Newton's method. Like the secant method, the 

generalized secant method requires only one function evaluation for each 

iteration, and like the secant method it converges to a simple factor with 

order (l+^S)/2. 



This note is an addendum to an earlier paper by the author [4]. For 

the convenience of the reader we shall begin with a brief summary of the 

notion and results of that paper. 

Let f be a monic polynomial of degree n having complementary relatively 

prime, monic factors u and v of degrees m and n-m. Let p and q be monic 

approximation to u and v. We seek correction d and e of degrees m-1 and 

n-m-1 so that p* = p+d and q* = q+e are better approximations to u and v. 

Samelson's method [1,3] determines such corrections by dropping second 

order terms in the equation 

(p+d)(q+e) = f 

to obtain 

(1) pd + qe = f-pq. 

Equation (1) determines a system of linear equations for the coeffici

ents of d and e. However, the system is of order n-2, and its solution by 

ordinary methods is prohibatively expensive for the application at hand. 

This difficulty can be circumvented as follows. Let 

p(z) = bp + bjZ+...+z", 

and let 
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be the companion matrix whose eigenvalues are the zeros of p. Then it is 

shown in [4] that if h is rational and h(F ) is defined, the first column 



of h(F ) is the vector of coefficients of the polynomial interpolating h 
P 

at the zeros of p. In particular, since d is of degree m-1 , the first 

column of d(F ) is the vector of coefficients of d itself. Since p(F ) = 0, p' P 
it follows from (1) that 

(2) q(F )d = f(F )e., 
P P I 

where denotes the vector of coefficients of d and e ] = (1,0, , 0 ) T . If 

p and q are relatively prime, then q(F p) is nonsingular. Moreover, if p is 

small (in the most immediate application, finding quadratic factors of a 

real polynomial,p is two), then the system (2) can be solved inexpensively. 

Of course the process can be iterated by replacing p by p*. Depending 

on the choice of the complementary approximation q*, different iterations 

are obtained. Samelson's iteration takes q* = q+e, where e satisfies (1). 

This iteration converges quadratically to a simple factor. A generalization 

of an iteration of Jenkins and Traub [2], takes q* to be the result of apply

ing Samelson's method to p* and q. This method converges with order about 

2.62. A generalization of Bairstow's method takes q* to be the quotient 

obtained by dividing f by p*, and like Bairstow's method the iteration con

verges quadratically. 

The iteration of this note is obtained as follows. With a slight change 

in notation, let p Q and P ] be initial approximations to u. Let q 1 be the 

quotient of f and p Q. Then p 2 is taken to be the approximate factor obtained 

by applying Samelson's method to P ] and q ] . 

To see that this method is a generalization of the secant method, let 



If the equation 

P 0
ql + r o = f 

is evaluated at F , the result is 

From (2), (3) and the fact that P n ( F ) .= -d~(F ) we get 

(4) [r„(F ) - f(F )]a*. = d n(F )f(F )e, . 
0 P ] P ] 1 0 p t P l 1 

When m=l, this reduces to the secant method for correcting the single zero 

of P l . 

The method may of course be a P Plied iteratively, generating a sequence 

of a P Proximate factors p ,p ,p The calculation of p k + ] requires the 

evaluation of r, ,(F ) and f(F ). The first quantity may be obtained from 
P k P k 

the vector r = f(F )e.., which was evaluated at the previous iteration. 
Pk-1 

Thus, like its prototype, the generalized secant method required only one 

function evaluation for each iteration. 

If m is small, the solution of the system (4) will not be prohibitively 

expensive. However, it may happen that the matrix r Q(F p ) - f(F ) is singular. 

It should be noted that this does not mean that the iteration is not well 

defined. As long as p Q and ? 1 are sufficiently near u, the quotient q ] will 

be near enough v so that q ] ( F ) is nonsingular, and this is all that is 

needed for the existence of p 2. We shall return to the problem of the singular

ity of r n(F ) - f(F ) at the end of this note. 
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The machinery developed in [ 4 ] makes the analysis of the generalized 

secant method easy. Let 

and 

V i = v _ q i 

be the errors in p.. and q±. Let ||. || denote the vector 1- norm and the 

subordinate matrix column sum norm. Then if p Q is sufficiently near u, 

p Q(F v) is nonsingular. Moreover from equation (4 .6 ) of [ 4 ] , 

(5> I M - n. 0(v" 1ni ^ P o ) i i i i F v i r ,iP 0 i i . 

Thus as p Q approaches u, q approaches v, and for p ] sufficiently near u the 

matrix q ](F ) is nonsingular, which guarantees the existence of p 2» Also 

from equation (3.6) of [ 4 ] , 

Combining (5) and ( 6 ) , we obtain the following Lemma. 

Lemma. For all p Q and P l sufficiently near u, the generalized secant 

approximate is well defined and satisfies 

l F 2 l l * s < W M I M -
where 



Since S is a continuous function of {T, and there is a neighborhood 

Uof u for which S is bounded by a constant, say S. If P Q,P 1 £ ̂  a^e suf

ficiently small, then all subsequent iterates belong to J and their errors 

are bounded by the corresponding solutions of the difference equation 

ei+l = S ei €i-1' 
where 

e0
 = W» ei = 1̂ 1 ̂  ' 

As is well known, if e n and e, are sufficiently small, the e converge to 
0 I i 

zero with order (l-h/5)/2. This proves the following theorem. 

Theorem. There is a neighborhood U of u such that whenever p Q and p 

belong to U, the generalized secant iteration converges to u with order at 

least (l+A/5)/2 =1.62. 

In practice the iteration is preferable to Samuelson's or Bairstow's 

method only if the explicit computation of q can be avoided, which requires 

that we use equation (4) to determine the corrections d . Since we never 

expect q.(F ) to be singular, it follows that the singularity of the matrix 
1 p i 

r. ,(F ) - f(F ) is equivalent of the singularity of the matrix p. ,(F ), l-l p i p i l-l p t 

which can occur only when p i 1 and P i have common zeros. This of course 

can happen if p Q and p are unfortunately chosen. It can also happen if at 

some stage the iteration produces an approximate factor with one zero far 

more accurate than the others; for that zero will remain undisturbed in sub

sequent iterations, in effect a common zero. However, in the most important 

application, where m=2, such partial convergence can be easily detected and 

the offending zero removed. 
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