NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU PDP-10
INTRODUCTORY USERS MANUAL

Editors: Jack Dills
Art Farley
Mary Shaw

JANUARY 1973

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

PREFACE

The following manual is intended to provide a usable introduction to
computing on the CMU FDP-10. To accomplish this, a discussion of general
computing procedures and the PDP-10 monicor is given, followed by descrip-
tions of the available language systems, The manual does not provide full
language descriptions (references are provided to necessary, useful lan-
guage manuals); but through a shorc introduction, sample problems to try,
and an annotated script, the manwal hopes to impart to the user an intro-
ductory knowledge of what 1t is like,and what te expect, when using each
of the discussed languapge systems on the CMU PDP-10,

Hote that timely information can be found for wmany of the language
gystems in a printable text file <languege>,DOC on the PDP-10, Informa-
tion on which files are available can be found im DOC,DOC, To get a copy

of a DOC file print SYS:<language>.DOC.

Wi,

sal, KW

TABLE OF CONLENTS

Page
I. PROCEDURES AND MONITOR
1. Gemeral Procedures.......c.ioiranrearcaarssinestoarvsnonsanns 1
Usage Humbers. . oo ive i iameannerivanvrnsssrnansassssnssun 1
00 o | T sereiresieaan 1
Trouble Report FOTmS.cotouervarnonroasncenvarcennss 2
= = o = T 2
Control characters,......c.vvcuiarq essanaanran beissanasenas 3
Getting Tapes Mounted. cuvvirnvanninansoisnisaaraas 7
Line Printer CuEput., curvsrrssrnnrnnanenasonisaan 8
Utility ProgramB.coteveirorrorinaronincaasuntenarsans 8
Learning to Type. ... vuvrrnvernaresnsassrs crraasaen serensesl1d
Datel Terminals........c.iccuvavauisas Pesernerearasenany 16
2. PDP-10 MOnItOr...couiununsrosnvaasoarnnsnne erererarsaas ieen18
I1. THE LANGUAGE SYSTEMS
KN 24) feertesaaeanas .. 28
T Y s Cebserseanesnnanas cesarraaaas 39
5 BLIS S . ittt sasaniantananrenrastoaraatnarsnsnnsnarranes 58
6 LISP. i iisinasronnnins Gt bbate s st ascaucana e st aressenes 66
P 0 terrssrratanerenannnnos teseesalD
8, MACRO-T0. ... iveanvnannas ferreriaieratnr ettty .. 79
9 MLISP.....0... deotsetratsuanuanra tasaarssanttananrua v aarena 86
10, PIP.. ... ieivancsscassasnnsnas Peuseraasrasiaarasansene . 93
1. PPL..iiuivvarcancarearnoaneas fatrasrrairacienrtnnnns vesesra.99
T2, SAIL.....evceanaa vearsatsss s rEsennn . Nesrdar st 101
13, SHOBOL.....:ovvravearnctnnrracnnsis et s st e A 108
ITI. THE EDITORS
14, 3508,....... T 120
0 T I X X
1B, RCRIBL.....v0 st ecarensanettarsossuaesassnaratinasusassansas 148

HOTE: The FORTRAN and BASIC language systems are fully described in
the PDP-10 Timesharing Handbock. Thus, no discussion of either
is included.

i1

GENERAL PRCCEDURES

D. Bajzek, B. Anderson, H. Wactlar

USAGE NUMBERS

A computer usage application may be obtained from the Manager of
Operaticng, Science Hall 3204, and should be returned there when
conpleted. You will be notified by campus mail, probably within a week,
ag to your ugage mumber. It will contain eight alphanureric characters.
The first four characters are your account number; this is used for
departmental accounting and statisticg. The lagt four characters are
your man number; i.e. the initials of your first and last names with two
digits appendede Your man rumber will be the first part of your dectape

name {s), and is sufficient to identify you in most cases.

DECTAPES

CECtapes may be purchased in the (MU bookstore. Members of the
Computer Science Department may borrow DECtapes for their personal use
free of charge from the Manager of Operaticns, Science Hall 3204. For the
benefit of students in the Immigration Course and other graduate courses
in the Department, one DECtape will be assigned to each student in the
course and will be filed in the machine rcom for your use during the
duration of the course. If additiconal tapes are needed, see the Manager
of Operationg. Each DECtape ig named with from five to seven alphanumeric
characters. The first four characters will be your man number, with from
one to three characters of your choice appended. Thisg is the name which

you will uge when requesgting that a DECtape be wmounted.

TROUBLE REPCORT FORMS

Hardware trouble report forms are located in the teletype room,
Science Hall 5201. These are to be filled out when you encounter
hardward trouble with Datels and teletypes. The yellow copy should be
put in a conspicuous place on the terminal, and the white copy should
be put in the container marked BEPAIR REJQUESTED.

Software bugs can be reported by running the cusp GRIPE described
under the headinpg UTILITY FROGRAMS.

If a hardware or software problem is seriously impeding your work
and should receive immediate attention, call the operator on extension

350, He will report the problem to the appropriate staff member.

TELETYEES

We currently have two dial-in lines for teletypes on the PDP-10/A:

687-3411 and 687-3412,

4 knob is located on the vight front panel of the teletype, with
three positions: LINE, OFF, and LOCAL., Line indicates that the
telétype is on-line to the computer; that is, ryped characters are sent
to the computer for interpretation and response by the system. Local
indicates that the teletype is being used off-line from the system, as a

typewriter.

To change teletype paper, insert the red spindle through the center
of the roll of paper, and place the spindle in the appropriate grooves
in the teletype, making sure that the paper unrolls from beneath the roll.
Unrell a foot or so of paper, and tear the paper unevenly so that a corner
protrudes when inserted into the carriage. Lift the view plate and pull

forward the rubber tipped lever at the right of the platem (black roller).
Tilt cthe metal paper bale toward you and imsert the paper under the platen.

Pull the paper through toward you, tilt the paper bale back again, and
insert the paper under the metal paper holder. Align the paper and then
push the rubber tipped lever back. Lower the view plate and pull the
paper through over the paper bale. Tear along the edge of the view plate.
The knob on the left of the tty will advance the paper manually.

To change the ribbon, examine another tty to see how the ribbon is
inserted. Be sure to keep one of the spools which is already on the tty,
as the ribbon replacement has only one spool.

CONTRCL CHARACTERS
On the Teletype, there is a special key marked CTRL called the Control
Key. If this key is held down and a character key 1s depressed, the Tele-

type types what is known as a control character rather than the character

printed on the key. In this way, more characters c&n be used than there
are keys on the keyboard. Most of the control characters do not print on
the Teletype, but cause special functions to occur, as deseribed in the
following sections.

There are several other special keys that are recognized by the system.
The system constantly monitors the typed characcers and, most of the time,
sends the characters to the program being executed, The important characters
not passed to the program are -Blso explained in the following sections,
Cont¥ol - C

Control - C (+¢)interrupts the program that I1s currently running and
takes you back to the monitor. The monitor responds to a control - C by
typing a period on your Teletype, and you may then type another monitor
command. For example, suppose you are running a program in BASIC, and you
now decide you want to leave BASIC and run @ program in AID, When BASIC
requests input from your Teletype by typing an asterisk, type contrel - C
to terminate BASIC and return to the monitor. You may now issue a command
te the monitor to Initialize AID (,R-AID), If the program is not requesting
input from your Teletype (i.e., the program is in the middle of execution}
when you type control - €, the program is not stopped immediately. In this
case, type control - C twice in 8 row to stop the execution of the program
and return control to the monitor. If you wish to continue at the same
place that the program was interrupted, type the monitor command CONTINUE,

As an example, suppese you want the computer to add a million numbers and

to print the square root of the sum. Since you are charged by the amount

of processing time your program uses, You want to make sure your program
doeg not take an unreasonable amount of processging time to run. Therefore,
after the computer has begun executicn of vour program, type control - C
twice to interrupt vour program. You are now communicating with the monitor
and may issue the monitor command TIME to find out how long vour program has
been running. If you wish to continue your program, tCype CONTINUE and the
computer begins where it was interrupted.

The RETURN Key

Thig key causes two operations to be performed: {1} a carriage-re-
turn and (2) an automatic line-feed. Thisg means that the typing element
returns to the beginning of the line (carriage-return) and that the paper
is advanced one line (line-feed). Commands to the monitor are terminated
by depressgsing thig key.

The RUBQUT Key

The RUBOUT key permits correction of typing errors. Depressing this
key once causes the last character typed to be deleted. Depressing the key
n times causes the last n characters typed to be deleted. RUBOUT does not
delete characters bevond the previous carriage-return, line-feed, or alt-
mede. Nor does RUBCUT function if the program has already processed the
character you wish to delete.

The monitor types the deleted characters, delimited by backslashes.
For example, if you were typing CREATE and go as far as CRAT, vyou can correct
the error by typing two RUBOUTS and then the correct letters. The typecut
would be

CRAT\TA\EATE

Notice that vou typed only two RUBCUTS, but \TA\ wag printed. This shows

the deleted characters, but in reverse order.

-5-

Control - U

Control - U (1U) is used if you have completely mistyped the current
line and wish to start over again. Once you type 3 carriage-return, the
command is read by the computer, and line-editing features can no longer
e used on that line. Control - U causes the deletion of the entire line,
back to the last carriage-return, line-feed, or altmode. The system re-
sponds with a carrisage-return, line-feed so you may start again,

The ALTMODE Key

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as
a comuand terminator for several programs, including TECO and LINED, Since
the ALTMODE is & non-printing character, the Teletype prints an ALTMCDE
as a dollar sign ($).
Control - O

Control - © (t0) tells the computer to suppress Teletype output. For
example, if you issue a command to type out a 10} lines of text and then de-
cide that you do not want the type-out, type control - O to stop the outputf.
Another command may then be typed as if the typeout had terminated normally.
Control - Z

This is the end-gf-file character when the input device is the tele-

type, similar to and end-cf-file mark on a magtape,

Modifying the terminal characteristics

When you legin to the system the teletype characteristics are defaulted
to the appropriate set for that terminal. If you wish bo modify them, there
is 4@ TTY command which declares special properites of the Teletype line to
the scanner service., The command format is:

TTY dev: NO WORD

dev:= the device argument that is used to control a line other than the

one where the command is typed. This argument is optional and is legal
only from the operator's consele. It may be used to modify the charac-
teristics of any Teletype lines in the system.

NO = the argument that determines whether a bit is to be set or cleared.
this argument is optional.

WORD = the various words representing bits that may be modified by
this c¢ommand. The words are as follows:

TTY TAEB This terminal has hardware TAB stops set
every eight columns,

TTY NO TAB The monitor simulates TABR output from
programs by sending the necessary number
of SPACE characters.

TTY FORM This terminal has hardware FORM (PAGE)
and VT (vertical tab) characters.

TTY NQO FORM The monitor sends elght linefeeds for a FORM
and four linefeeds for a VT,

TTY LC The translation of lower-case characters input
to upper case is suppressed.

TTY NO LC The monitor translates lower-case characters
to upper case as they are received. In either
case, the echo sent back matches the case of
the characters being sent.

TTY WIDTH n The carriage width (the point at which a free
carriage return is inserted) is set to n. The
range of n is 17 (two TAB stops) to 200 decimal.

TTY NO CRLF The carrviage return normally outputted at the
end of a line exceeding the carriage width is
suppressed,

TTY CRLF Restores the carriage return.

TTY NO ECHO The Teletype line has local copy and the computer
should not echo characters typed in.

TTY ECHO Restores the normal echoing of each character typed
in,

TTY FILL n The filler class n ig assigned to this terminal, The
filler character is always DEL (RUBOUT, 377 octal).
No fillers are supplied for image mode output,
Teletypes are class O, 30 character per second termi-
nals use classes 1 and 2, and datels are class 3 fillers.

TTY NO FILL Equivalent to TTY FILL 0.

GETTING TAPES MOUNTED
The first thing to do is to get a unit assigned for your tape,
Type: .A5 DTA (FOR DECTAPE) or
.AS MTA (FOR MAGTAPE)
The monitor will respond with:
DTAZ ASSIGNED
or, if no unit iz available, it will respond:
NGO SUCH DEVICE
After a unit is assigned to you, you will notify the operator to mount
your tape by using the wonitor command PLEASE. PLEASE is described under
the heading UTILITY PROGRAMS, In your request specify the tape name,
tape unit, and whether the tape should be enabled for writing. If you do
not specify "write enabled," the operator will write lock the tape, Re-
main in PLEASE mode until the operator responds to your request, He may say
NNASABC MOUNTED ON DTA2 ENABLED
or, since the monitor recognized eight DECtape units and eight wmagtape
units, and we have only five DECtape drives and two magtape drives, there
may not be a drive free for yvou even though you have a unit assigned. If
this is the case, the operator will try to get a drive for you as soon as
possible. The drives are allotted on a first-come-first-served basis.
If you need a drive urgently or only for a minute, the operator can try
contacting other users to see if someone can give up a drive, When a
drive is free the operator will mount your tape and notify you,
The tape drives are very much in demand, so please be considerate of

others, When you finish with a tape, be sure to tell the operator to

dismount it immediactely, thus freeing the drive for someone else. If

you are logging off, the unit will be returned to the pool. 1If not, you
can type
.DEAS DTAZ
to make the unit available for others. If you are using the same unit
number for more than one tape, be sure to reasaign the unit between tapes
.AS5 DTA2
and so a fresh copy of the directory will be read into core and you will
not be using the directory from the last tape,
A unit can be reassigned to another job without first being returned
to the pool by typing
.REAS DTAZ n

where n is the job number,

LINE PRINTER OUTPUT

The line printer (LPT) is currvently located at the far end of the
machine room, behind the cperator's console, The operator bursts output
as soon as it comes off of the printer if possible; however, i1f he is
busy mounting tapes it may take a few minutes. OQutput is filed alpha-
betically by man number just inside the door to 3103. This door will be
left unlocked for users to retrieve their output from 0800-2400. It will

be locked from 0000-0800.

UTILITY PROGRAMS

Two monitor commands, PLEASE and SEND, may be used for inter-console
communication, including communication between your teletype and the
CTY (console teletype).

PLEASE is a monitor command which puts the issuing terminal, and
eventually the CTY, into a special communications mode. This mode is
evoked by typing, when logged in apd in monitor mode,

. PLEASE text <ot

If the CTY is logged in, or rumning SYSTAT, or in another PLEASE, the
message
OPERATOR BUSY, PLEASE HANG ON
will print on the teletype. You can terminate the PLEASE with a CONTROL C
or wait until the CTY is free. When it is free your teletype will print
OPERATOR. HAS BEEN NOTIFIED
and your message will print on the CTY along with identifying information
about you and several "bells." MNow both terminals are in PLEASE mode. Any
line typed on either terminal, terminated by <cr> will print out on the
other terminal and will otherwise be ignored by the system. Thus a two-way
communication is established, This mode is terminated with & CONTROL ¢
or an ALTMODE typed on either terminazl. Both terminals will then be in
monitor mode. The most frequent use of PLEASE is to request mounting of
tapes, or to talk with the operator via teletype.
SEND provides a mechanism for cne-way inter-console communication.
One line of text is transmitted to another terminal, TTYn, by typing
.SEND TTYn text <cr>
SEND leaves the user in monitor mode. The format of the message on the
receiving terminal is
TTYm;: text <cr>
where m is the terminal where the message coriginated. If the sender or
receiver of the message is the CTY, the message will be transmitted
regardless of what the receiving terminal is doing. The message will
print out, leaving the terminal in its former state. If CTY is not involwved,
a busy test is made to see if the receiving terminal is in monitor mode,

If so, the message is transmitted; if the designated terminal is not

-10-

in moniter mode, the sender will get the message

TBUSY
on his terminal. You can do a gshort SYSTAT

.5Y &
to determine which terminals are in use by whom and what they are running.

Another monitor command, 5YSTAT, will give you current running informa-

tion about the system. To get all the information printed on your tty,
type

.8Y
Subsets of the STSTAT information are available by running variations of
SYSTAT. To get & short version of SYSTAT, giving the current status of
all users on the gystem, type

.8Y 8
To determine. the status of a particular job, type

S5Y n
where n is the job number. To find out which I/0 devices are assigned to
which users, type

5T B
To list all jobs waiting in the line printer queue, type

.5Y Q
Also

.8Y H
lists all the SYSTAT commands, including those given above.

Two CUSPs (commonly used system programs), MAIL and GRIPE, may be

used to write a message onto a file in another's disk area. MAIL will

create or update a file called MAIL.BOX on another user's disk area.

-11-

To send mail to a user type

.R MAIL
The CUSP will respond

ENTER PPN:
After the colon, type the user number (all eight characters) of the user to
whom you are sending mail, and the <¢r>. MAIL responds

ENTER A MESSAGE TERMINATED WITH AN ALTMODE:
Type your message, followed by <cr> and ALTMODE. There is no need to
identify yourself as this information will be recorded in the file., Your
terminal will then be returned to monitor mode. When the user next logs
onto the system, the message

MATL PENDING
will print on his tty at the beginning of the logon message. He can read
the message by listing his file MAIL.BOX; i.e.

* R PIP

*TTY:<-MATIL.BOX

GRIPE will create a file for your message on one of the system disk

areas. If you have a comment or gripe about the hardware, software,
operations, etc. of the system, you can rumn the GRIPE CUSP.

+R GRIPE
GRIPE will respond with

YES? (TYPE ALTMODE WHEN THROUGH)
Type your comments as instructed; that is, £first type <c¢r>, then your
message, ancother <cr> and ALTMODE. There is nco need to identify yourself,
as that information will be recorded along with your comments in the GRIPE
file. Systems personnel regularly review the GRIPE files and an answer

will be sgent to you by campus mail if appropriate.

-12-

PRINT is a2nother useful CUSF, PRINT can be used to print files on
the line printer. Unlike printing with PIP, PRINT supplies the filename
on the file header page, and enables the user to print several copies of
the file if desired, To run the CUSP, type

R PRINT |
When PRINT prompts you with a *, type the names of the files to be printed
separated by commag. If you want the file to be deleted after being
printed, type /D after the filename; if you want several copies, type /n
after the filename where n is a number from 2 through 9 indicating the
number of coples wanted. An example followsa:

.R PRINT
*F00,LST /D, *.MAG /2, ,F00.F4

Now FOO,.LST will print on the line printer and then that digk file will be
deleted. Two copies of all files with MAC extensions will be printed and
FOO.F4 will be printed. If the files to be printed are on a device other
than DSK, you must precede each filename with the device name ¢n which it is
located; 1.e.,

.R PRINT
*DTA2:FILE1,DTAZ:FILE2,FILE3

Now files FILEl and FILE2 from DTA2 and FILE3 from DSK will print.
Another useful CUSP is SAVE., SAVE will save on magtape, or restove
from magtape, &ll or selected disk files for a single user. For instructions

on how to run SAVE, type

.R SAVE
*/H

The instructions will print on the TTY; or type
.R SAVE
* /21,
*/H

to get the typeout on the line printer.

SHrfbED

LEARNING TO TYPE

You will probably be spending many hours at the teletype. It will
greatly 1ncrease your efficiency 1f you learn to type properly at the
beginning. Following are a few brief instructions tec get you started.

Study the keyboard chart below. Find the left-hand home keys on it;
the left-hand home keys are "a-s-d-fNow find them on your teletype
keybeard. Place your finders on them. Study the chart again. Find the
right-hand home keys on it. Find them on your teletype keyboard. Place
your finders on them. Take your fingers off the kevs. Replace them.
Repeat two or three times. Get the feel of these home keys. Curve your
tingers. Hold them lightly just above the home keys. Drop your wrists
slightly, but do net let them rest on the frame of the teletype. Strike
the space bkbar with a guick inward motion of your right thumb.

Type the line of home keys sghown below. Say each letter as you satrike
it. Repeat geveral times.

ff dd 88 aa jj kk 11 ;; £f dd ss aa jj kk 11 ;; £j

TELETYPE KEYBOARD

SPACE BAR

KEYS ritfE HOME hChYS

14 -

Carriage return is operated with the little finger of your right hand.
Type each line twice. Double space after the second line,

ff jj dd kk ss 11 aa ;; fi dk sl a; fdsa jkl; £isl

a lad; a fall; a lad; a fall; a lad; a fall; a lad

all lads; all lads fall; a lad falls; a lad falls;

Regardless of what key you are typing, the other fingers should
always remain just above their homs keys. Operate h with the j finger;
g with the £ finger,.

'Jhj fgf jhj fgf jhj fgf jhi fgf jhj fgf jhj fgf f] gf

S5tudy the chart again. The a finger alsc operates the ¢ and z keys.
Similarly, each finger operates the keys in a line with its home key.
Practice the exercises below.

agaz aqaz swsx swsx dede dede frfv friv gtgb gtgb

hyha hyhn juim jujm kik, kik, lol. lol. ;p;/ :p:/

The six sets of exercises below will give you more practice in
learning where the keys are. Do not go on to the next set until you are
fairly sure of the current cne.

fdsa jkl; fdsa jkl; gf hj gf hj fall hall glad had

juj iej uj uj full jug dull dud lugs hug hugs gulf

ded@ ded ed ed led fled he held she shed fell shell

1ol lol ol ol old sold fold do so gold log loss go

keg jug she shall fog half log; he had a dull duel

fdsa jkl: vj ed uj ed full fled dull fell jug held
frf kik rf ik rf ik fur fir furl fire ride hire or
1ol ded ol ed ol cd so sod sold cod code ice slice

jnj jnj nj nj fin fund and lend land gain sun sung

a large jug; and hold; did shake; and can fill all

-15-

sws sws ws ws will will with loss low how show who
imj jmi mj mj mad mede mar make am same me come me
ftf ftf ef tf to told the then them thelr lot late
karl saw the gold mine shaft. lou called. jouran
fvf fvf vE v five live strive move love have give
k,k k,k ,k .k work, rack, trick, to give, for all,
i¥j i¥i ¥j ¥3j vet yell year sly they lay flay gray
ws n} ws n} win wing wink drink won now know knows
they just like to drive down fog street in my car.
sP: ;p: P p; pled pledge help plain gulp tip trip
fhf fbf bf bf bug but bluff bring rub rib rob bold
aza aza za £a zone size maze zones zeal doze dozed
vj vEf ¥j vf live five vet they sly move love stray
jess dent gave buz a small pay check for his work.
aqa aqga qa gqa quit quip square squid squash squint
sXs s¥Xs Xs xXs xs8 six fix heax mix flax box tax box
p; bf p; bf pled bring trip blot gulp bold rip rub

gay guick foxes run and jump with bold vim or =zip.

-16-

USING DATEL TERMINALS ON THE PDP-10

There are currently four dial-in lines for Datels on the PDP-10/a:
683-8330 to 683-8333. The procedure for getting onto the system on a Datel
iss

1. Dial.

2. Place receiver on coupler, making sure the ON switch is lit.

3. Switch to remote.

The PDP-10 monitor has been modified to handle Datel terminals with the
ASCII type head. Almost every character on the Datel keyboard has a direct
ASCII equivalent in the PDP-10. However, some characters do need explanatien.
See the table below.

The ATTENTION key has two different functions depending on whether the
keyboard is locked. If it is locked, ATTENTION unlocks the keyboard but dees
not result in any character being input. If the keyboard is unlocked,
ATTENTION may be used to send an end-of-message; i.e., to release the key-
board control without inputting a carriage return.

The PDP-10 monitor can handle both lower and upper case characters from
a Datel, and these terminals are initialized to have both cases., TTY commands
can enable or disable this feature; that is, lower case characters will be
mapped into upper case if the proper command is used. These commands are:

TTY LC (tells the monitor that the keyboard has a lower case

keyboard so lower case letters are not mapped into
upper case)

TTY NO LC (no lower case keyboard, therefore, mapping is necessary)

Remember that TTY LC is the initial state of the Datel when logging in.

-17-

Typing a CONTROL Q on the Datel puts the terminal into the non-standard
APL mode, in which no characters can be input to the Datel. Exit from APL
mode 15 by hitting four successive ATTENTIONs.

Monitor assumez that tabs are set to B print positions. 1If tabs are

set to more than 8, early printing may occur,

CHARACTER TABLE

PDP-10 INPUT TYPE ON DATEL OUTngPaéoDATEL
CONTROL C#% lc e

LINE FEED INDEX NONE
ALTMODE $ (also —) $

t I l

] 1)

L | ¢ (

\ |/ / !
$ |$ $

- _ {underline)

' (grave) ¢ 4

%% aimilarly for all control characters

-18-

PLP-10 MONITOR

H. Wactlar

Commonly used monitor commands:

ASSIGN

ATTACH

COMPIL

CONT

CREATE

DDT

DEASSTIGHN

<physical deviee> <«logical name>

allocates an I/0 device (dectape, magtape) to the users job and
optionally assigns a legical name designated by the user to that

device

e.g., .ASS DTA3 IN
DTA3 ASSIGNED

<iob no.>[project programmer No.]<paissword>

detaches the current job, if any, and connects the
congole to 2 detached job,. Exclude <password> 1f

attaching te a job detached during logout,

<list of source file names separated by commas>>

produces relocatable binary files for the specified program(s)
by calling the appropriate compiller as determined by the source
file name extension (ALG for ALGOL, MAC for MACRO, F4 for FORTRAN
BLI for BLISS, SAI for SAIL)

e.fg., LCOMP TEST.MAGC

starts the program at the saved program counter address stored
by a TC (halt) command

<filename>

calls the line editor to create a new file

2.8, LCREATE TEST,MAC

saves the program counter and starts the program at the dynamic
debugging module optionally loaded with the compiled program
<logical or physical device name>

returns the I/0 device to the systemks available pooi

S8, .DEASS IN

DEBUG

DELETE

DETACH

DIRECT

EDIT

EXECUTE

-19-

<list of file names separated by commas>

performs the compile and loading functions and in addition
loads DDT which it enters on completion of loading

e.g., .DEBUG TEST.MAC, TEST2.F4

<list of file names or groups separated by commas>
automatically runs PIP to delete the specified files

e.g., .DELETE TEST.MAC,*,REL

Disconnects the conscle from the users job without

affecting 1its status. Console is now free to control

another job.

<logical or physical device name>:

runs PIP to list the names and space occupied by files on that
device (DSK is assumed if no device name given)

e.8., .DI DTA3:

<file name>

calls the live editor to edit an already existing file

e.g., .EDIT TEST.MAC

<list of file names separated by commas>

performs the compiling and loading functions and initiates
program execution

e.g8., .EXEC TEST.MAC

KJOB

LOAD

LOG

-20-

initiates log-off sequence

e. g.

+.KJ
CONFIRM: H

IN RESPONSE TO CONFIRM:,TYPE ONE OF: DFHIKLPQSU
D TO DELETE ALL FILES
(ASKS ARE YOU SURE?, TYPE Y OR CR)
F TO TRY TO LOGOUT FAST BY LEAVING ALL FILES ON DSK
H TO TYPE THIS TEXT
I TO INDIVIDUALLY DETERMINE WHAT TO DO WITH ALL EXCEPT TEMP FILES
WHERE TEMP IS .LST, .CRF, .TMP, .TEM, .RPG
AFTER EACH FILE NAME IS TYPED OUT, TYPE ONE OF: EKPQS
E TO SKIP TO NEXT FILE STRUCTURE AND SAVE THIS FILE IF
BELOW LOGGED OUT QUOTA ON THIS FILE STRUCTURE
K TO DELETE THE FILE
P TO PRESERVE THE FILE
Q TO REPORT IF STILL OVER LOGGED OUT QUOTA, THEN REPEAT FILE
S TO SAVE THE FILE WITH PRESENT PROTECTION
K TO DELETE ALL UNPRESERVED FILES
L TO LIST ALL FILES
P TO PRESERVE ALL EXCEPT TEMP FILES
Q TO REPORT IF OVER LOGGED OUT QUOTA
S TO SAVE ALL EXCEPT TEMP FILES
U SAME AS I BUT AUTOMATICALLY PRESERVE FILES ALREADY PRESERVED
IF A LETTER IS FOLLOWED BY A SPACE AND A LIST OF FILE STRUCTURES
ONLY THOSE SPECIFIED WILL BE AFFECTED BY THE COMMAND. ALSO
CONFIRM WILL BE TYPED AGAIN.

A FILE IS PRESERVED IF ITS ACCESS CODE IS GE 18§

CONFIRM:

<list of file names separated by commas>

perform the compiling and loading functions to execute core image
of runnable program

initiates log-in sequence; prompts for password

Passwords may be modified during login by typing altmode (ESC)
after the password instead of a carriage-return. Prompting

for the new password will follow.

PJOB

RENAME

RUN

SAVE

5YS

-21-

types job number and project programmer number of job running

cn terminal on which this command is typed

<CUSP name>

executes the named commonly used system program

e.g., .R PIP

<new file name> = <eld file name>

rung PIP to change a file name

e.d. RENAME TEST1 .MAC = TEST.MAC
FILES RENAMED:
TEST.MAC

<file namex

rung the core 1inage previously lcaded and SAVE'd with that

file name

e.g., RUN DSK:TEST.SAV

<file name>

Coples the core 1mage currently loaded 1in core onto the specilfied
file sc that 1t <¢an be RUN at a later time

e.g., .LOAD TEST.MAC
.SAVE TEST

rung a CUSP to provide system status information

a.d.

.8Y8 H

BYSTAT INSTRUCTIONS:

TYPE “'SYS<C.RET.>" TO LIST THE ENTIRE STATUS, OR

TYPE "d¥Ss ¥ FOLLOWED BY ONE CR MORE LETTERS AS FOLLOWS —

“<8TRING>"
<S8TRING> IS AN ACCQUNT NO. ,MAN NC.,STRUCTURE,DEVICE, CUSP
THIS OUTPUTS THE SYSTEM STATUS QF <STRING>

BUSY DEVICE STATUS

DORMANT SEGMENT STATUE

FILE STRUCTURE STATUS

THIS MESSAGE

oW m g w

-22 -

JOB STATUS
QUTPUT TOQO LPT
NON-JOB STATUS
DISK PERFORMANCE
PRINT QUEUE
SHORT JOB STATUS

Wmo "= By

TYPE ®8YS " FOLLOWED BY A JOB NUMBER FOR THAT JOB'S STATUS

TIME <job no>

causesg typeout of total runtime saince laat TIME

command, total runtime since legin, and integrated

product of runtime and core size

TYPE <file name>

rung PIP to type on the terminal the specified fille

e.g., TYPE TEST.MAC

Note:

PIP and the two editing systemg TECO and S08 are discussed separately

as langquage gystems 1n this manual.

Extended Command Forms

The commands previously explalined are adequate for the compllation and
executicon of a single program or a small group cof programs at one time.
However, the assembly of large groups of programs, such as the FORTRAN 1li-
brary or the Timesgsharing Monitor, ig more easgily accomplished by one or
more of the extended command forms.

Indirect Commands (@ Ceonstruction) - When there are many program names
and swltches, they <¢an be put into a file; therefore, they do not have to
be typed in for each compilaticn. This is accomplished by the use of the

@ file constructicen, which may be combined with any CCMFIL-class commands.

-23-

The @ file may appear at any point after the first word in the command.
In this construction, the word file must be a filename, which may have an
extension and project-programmer numbers, If the extension is omitted, a
search is made for the command file with a null extension and then for a
command file with the extension .CMD. The information in the command file
specified is then put into the command string to replace the characters

@ file.

MONITOR
For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED

then the command

.COMPILE FILFA,FILEB,FILEC/LIST,FILED,FILEZ

could be replaced by

.COMPILE FILEA,@FLIST,FILEZ

Command files wmay contain the @ file construction to a depth of nine levels,
If this indirection process results in files pointing in a loop, the maximum
depth is rapidly exceeded and an error message is produced,.

The following rules apply in the handling of format characters in a command

file.

a. Spaces are used to delimit words but are otherwise ignored.
Similarly, the characters TAB,VIAB, and FORM are treated like spaces.

b. To allow long command strings, command terminators (CARRIAGE RE-
TURN, LINE FEED, ALTMODE) are ignored if the first nonblank char-
acter after a S§=quence of command terminators is a comma. Otherwise,
they are treated either as commas by the COMPILE, LOAD, EXECUTE,

and DEBUG commands or as command terminators by all other COMPIL-class

commands,

=24 -

c, Blank lines are completely ignored because strings of returns
and line-feeds are considered together,

d. Comments may be Included in command files by preceding the com-
ment with a semicolon, All text from the semicolon to the line-

feed is ignored.

e, If command files are sequenced, the szsequence numbers are ignored,

The + Construction*

« A single relocatable binary file may be produced
from a collection of input source files by the "+" construction. For example:
a user may wish to compile the parameter file, $,MAC, the switch file,
FT508.MAC, and the file that is the body of the program, COMCON.MAC,
This is specified by the following command:

.COMPILE S+FT5#S+COMCCN
The name of the last jnput file in the atring is given to &ny output (.REL,
JCRF, and/or .LST) files. The source files in the "+" construction may each
contain device and extension information and project-programmer numbers.

The = Cﬂnstructiﬂn+ - Usually the filename of the relocatable binary
file iz the same as that of the source file, with the extension specifying
the difference. This can be changed by the "=" construction, which allows
a filename other than the source filename to be given to the associated
output files., For example: if a binary file is desired with the name
BINARY.REL from & source program with the name SOURCE.MAC, the following
command is used.

,COMPILE BINARY=S(QURCE
This technigque may be used to specify an output name to a file produced
by use of the '"+" construction. To give the name WHOLE.REL to the bipary
file produced by PART1.MAC and PART2.MAC, the following is typed.

,COMPILE WHOLE=PART1+PART 2

TUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only,

-25-

Although the most common use of the "=" construction is to change the filename
of the cutput files, this technique may be used to change any of the other
default conditions. The default condition for processor output is DSK:
source.REL[{self]. TFor example: if the output is desired on DTA3 with the
filename FILEX, the following command may be used:

EXECUTE DTA3:FILEX=FILE1.F4

The < > ConstructionT

- The < > construction causes the programs within
the angle brackets to be assambled with the same parameter file. If a + is
used, it must appear before the < > construction. For example: to assemble
the files LPTSER.MAC, PTPSER.MAC, and PTRSER.MAC, each with the parameter
file S.MAC, the user may type

. COMPILE S+LPTSER, S+PTPSER, S+PTRSER
With the angle brackets, however, the command becomes

.COMPILE S+<LPTSER,PTPSER,PTRSER>
The user cannot type

.COMPILE <LPTSER,PTPSER,PTRSER>+5

Compile Switches'

The COMPILE, LOAD, EXECUTE, and DEBUG commands may be modified by a
variety of switches. EFEach switch is preceded by a slash and is terminated
by any non-alphanumeric.character, usually a space or a comma, An abbreviation
may be used if it uniquely identifies a particular switch.
These switches may be either temporary or permanent. A temporary switch
is appended to the end of the filename, without an intervening space, and
applies only to that file.
Example:

.CCMPILE A,B/MACRO,C (The MACRO assembler applies only

to file B,)

TUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only,

26—

A permanent switch is set off from filensmes by spaces, commas or any com-
bination of the two. It applies to all the following files unless modified
by & subsequent switch,
Example:
.COMPILE /MACRO A,
.COMPILE A /MACRO

B
B
.COMPILE A,/MACRO,B
.COMPILE A,/MACRO B

T

»C
,C
sC
,C
Compilation Listings' - Listing files may be generated by switches.
The listings may be of the ordinary or the cross-reference type. The op-
eration of the switch produces & disk file with the extension,LST ,queues
it, prints it, and then deletes it,
The compile-switches LIST and NOLIST cause listing and nonlisting of programs
and may be used as temporary or permanent switches,
Listings of all three programs are generated by
.COMPILE /LIST A,B,C
A listing only of program A is generated by
.COMPILE A/LIST,B,C
Listings of programs A and C are generated by
.COMPILE fLIST &,B/NOLIST,C
The compile-switch CREF is like LIST, except that & cross-reference listing
is generated (FILE.CRF), processed later by the CREF CUSP which generates
the .LST file, queues, prints and deletes it, Unless the /LIST or /CREF
is specified, no listing file is generated.
Since the LIST, RO LIST, and CREF switches are comnonly used, the switches
L,N, and ¢ are defined with the corresponding meanings, although there are
{(for instance) other switches beginning with the letter L. Thus, the
command

,COMPILE /L A

Tused in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

-27-

produces a listing file A,LST (and A.REL).

Standard Processor - The standard processor is used to compile or
agssemble programs that do not have the extensions .MAC, .CBL, .F4, or .REL.

A variety of switches set the standard processor, If all source files are
kept with the appropriate extensions, this subject can be disregarded,
If the command

.COMPILE A
is executed and there is a file named A. (that is, with a blank extension),
then A, will be translated to A, REL by the standard processor. Similarly,
if the command

.COMPILE FILE;NEW
is executed, the extension ,NEW, although meaningful to the user, does not
specify a language; therefore, the standard processor is used. The user must
be able to control the setting of the standard processor which is FORTRAN IV
at the beginning of each command string.

Forced Compilation - Compilation (or assembly) occurs if the source
file is at least as recent as the relocatable binary file, The creation time
for files is kept to the nearest minute. Therefore, it is possible for an
unnecessary'compilation to occur, If the binary is newer than the source,
the translation does not usually have to be performed.

There are cases, however, where such extra translation may be desirable
(e.g., when & listing of the assembly is desired). To force such an assembly,
the switch COMPILE is provided, in temporary and permanent form. For example:

.COMPILE /CREF/COMPILE A,B,C
will create cross-reference listing files A.CRF, B.CRF, and C.CRF, although

current .REL files may exist. The binary files will also be recreated.

-28-

ALGOL

T, Teitelbawm, L. Snyder, J. Dills
(Revised Jan, 1973}

Algol 60 is an algebraic programming language developed by an
international committee in 1960. Algol was designed at a time when many
computer installations had their own ad hoc algebraic programming languages.
Algol was intended to be a machine independent standard for the communication
(and execution) of algorithms. Most of the arbitrary restrictions found
in languages such as FORTRAN were eliminated., Algol was the first language
for which a complete and precise syntactic and semantic definition was
attempted. The terminology used in this definition (in the Algol Report)
has come into wide use in computer science. Algoel is characterized by
dynamic array allocation, recursive procedures, bleck structure, and a

generalized parameter passing mechanism.

REFERENGES

Manual

{1] Dpigital Equipment Corp. PDP-10 Algol Manual.

Definition

[2] waur, P. (ed.) Revised Report on the Algorithmic Language
ALGOL 60. Comm,ACM 6 (Jan 63).

(3] HKnuth, D. E. The remaining trouble spots in ALGOL 60,
Comm.ACM 10 (Oct 67).

(4] Abrahams, P. W. A final solution to the dangling else of
ALGOL 60 and related languages. Comm,ACM 9
(Sept 66).

[5] Kmuth, D. E., Merner, J. N. ALGOL 60 Confidential. CACM, Vol. 4, 1961,

Philosophy

[6] Perlis, A. J. The synthesis of algorithmic systems.
J.ACM 14 (Jan 1967).

History-Bibliography
(7] Bemer, R. W.

(8] Sammet, Jean

Introductory
[9] Bottenbruch, H.

[10] Higman, B.

[11] Ekman, T. and
Froberg, C.

(12} Dijkstra, E. W.

Imp lementation
[13] Evans, A.

[14] Randell, B. and
Russell, L. J.

[15] Dijkstra, E. W.

Extensions

[16] Wirth, N.

[17?] Perlis, A, J. and
Iturriaga, R.

[18] wirth, N. and
Weber, H.

[19] wirth, N. and
Hoare, C. A. R.

[20] Dakl, ©. J. and
Nygaard, K.

f21] Hoare, C. A. R,

29

4 politico-social history of ALGOL.
Annual Review In Automatic Propramming, 5
Pergamon Press, 1969,

Programming Languages: History and Funda-
mentals, Prentice-Hall, 1969.

Structure and use of ALGOL 60. J.ACM 9
{(Apr 62).

What everybody should know about ALGOL.
Computer Journal 6 (1963} p. 50.

Introduction to ALGOL programming.
Oxford University Press, (1%487).

A Primer of ALGOL o0 Programming, Academic
Press, London, 1962.

An ALGOL 60 Compiler.
Annual Review in Automatic Programming, &,
Pergamon Press {1964).

ALGOL 60 Tmplementation.
Academic Press, (1964}, 418 pp.

"Making a Translator for ALGOL 60,' Annual
Review of Automatic Programming, Vol. 3.,
MacMillan, 1963, pp. 347-356.

A Generalization of ALGOL., Comm.ACM 6 (Sept 63).

An extension to ALGOL for manipulating
formelae., Comm.ACM 7 (Feb 64},

EULER: A generalization of ALGOL and its
formal definition. Comm.ACHM 9 {Jan, Feb 68).

& contribution to the development of ALGOL.
Comm,.ACM 2 {(June 66}.

SIMULA - An ALGOL-based simulation language.
Comm.ACH 9 {Sept 66},

Record Handling, in F. Genays (Ed.) Programming

Languages, Academic Press, 1968, pp. 291-347.

-30-

SAMPLE PRCBLEMS

1. Continued Fractions

1
" rrr e°, = 141 + Q3= Ly ete.
1

+ 1 1 + 1
1+ 1

Ao 1 -* «, Q ->0Q = 0.61803.

Write an ALGOL 60 function preocedure Phi (n) that will return the

value Q6 « For example, Phi (2} = 0.6666.

Write twe versgions of

Phi, one recursgive and the other ilterative.

2 Palindromes

A palindrome 18 a vector V of wvalues such that V = XY where

X = reversal of Y. E.g., 110011.

Write a Bococlean function that determines if a vector is a

palindrome.

Write another which determines if a vector consists of a list of

palindromes; e.g., 110110.

kk:3 Tower of Hanol

Write an ALGOL program to print the solution sequence tc the towers

of Hanoil puzzle. Given,

A
£

1 2 3

Move the stack of digks on pin 1 to pin 2 (poseibly using pin 3 as=s

intermediate storage} so that (1) the disks finally end up in the

game order as they started (az shown); (2} at no time is a large

disk on top of a smaller disk; and (3) cnly one digk at a time 1s

moved. Your program should allow an arbitrary number cof disks.

-31-

Partitions
Write an ALGOL procedure PART(X) which prints the partitions of the
integer X. A partition ig defined ag a gequence of pogitive integers

which sum to X. If that's too easy, find the unigque partitions of X.

Pagcal's Triangle

Recall that Pascal's triangle begins:

13 3 1

1 456 41

Write an ALGOL procedure, PASCAL(N) , which prints the Nth row of
Pascal's triangle. It sheould be possible to compute the result
witheout a factorial routine and with only a single vector for a

data structure.

Pattern of Primes

Write a program which fills an N x N array A with the integers

2

1 through N arranged in a spiral.

E.g., when N = 3, then A =

7 8 9
6 12
5 4 3

The pattern of primes in this arrangement (for large N) has been

of some interest (to some people}. Try a printout where primes are
and non-primes blank.

Can you think of a more efficient storage arrangement for the pattern

of primes when N 1z large?

7.

8-

Answers for odd number problems follow the Algol Script.

as it seems.

~32-

BEGIN REAL A,B;

REAL PROCEDURE INCV (X);VALUE X;REAL X;
BEGIN XeX+1; INCV<X END;

REAL PROGEDURE INCN(X) ;REAL X;
BEGIN XeX+1; INCN<X END;

REAL PROCEDURE ADDV(Y);VALUE Y;REAL Y;
 ADDVY+Y; 3

REAL PROCEDURE .ADDN(Y) ;REAL Y;
ADDNeY+Y ;

Acl; BcADDV(INCV(A));

COMMENT A IS NOW ------ ; B I8 NOW -w--- 3

Acl: B<ADDV(INCN(A));

COMMENT A IS NOW ~----- » B IS NOW ----- ;

A-l; B-ADDN(INCV(A));

COMMENT A IS NOW ---—--- , B IS NOW ----- ;

Acl; B-ADDN(INCN(A));

COMMENT A IS NOW ------ » B IS NOW ----- ;
END;

Exchange

Write a procedure EXCH(A,B) that exchanges A and B.

How well do you understand call-by-name and call-by-value?

This is not as easy

Consider the problems exchanging T and A[I],

MGOL SCRIPT

Delete » . AT A .

SOS P A SOS 5% 9% imoa o f

+ CKEATE FIB*ALG
00100 BEGIN

00200 INTEGER PROCEDURE FIBONACCI(NMVALUE NI INTEGER NI

-33-

N Y

00300 BEGIN IF N<=1 THEN FIBONACCI:=1
00400 ELSE FIBONACCL:=FIBONACCI(N-1>+FIBONACCICN-2);
00500 ENDI

00600 READ(K):

00700 J.:=FIBONACCICK>;
00600 PRINK J,6)i
00900 END

01000

*E

EAIC

R ALGOLY

*FIB>TTY:-11B</

DECSICSTEM 10 ALGOL-60= V. 2B«<l406>:

1h-ITAN-73 14:24:07

00100 BEGIN !

00200 INTEGER PROCEDURE FIBONACCI <N >iVALUE NJIINTEGER N*
00300 BEGIN IF N=<=1 THEN FIBONACCI:=1

00400 ELSEFIBONACCI:=FIBONACCI(N-1)*FIBONACCI(N-2):
00100 END;

00600 KEAD{K)/

* 4c de 41 do 4o T L

600 UNDILECLARED IDENTIFIER)—
REL FILE DELETED

00700 J.=FIBONACCI(K) *

E ek o e T i

700 UNDECLARED IDENTIFIER)"
00800 PRINK J#6>]

00900 END

72 ERRORS

*{%’C Contsol C

-

¢

eCt'll

IVdS»V

lii—td

on

Iry

-Ihm

- 54

SEDIT < ———vnec weed +0 nume +he file because i+ g

*]159 : alroad B
Pd158 INTEGER JaK3 L4 in ore

*E

JEX FIB commind — Cauges compiling

ALGOL: FI1B of program , 10uding and Crecuvicn

LOADER 1K CORE
- KECUTION
?;E;E_Li__ vl énter a ig . .

9)\9
8 "‘"‘1"‘““ returns %9

END OF EXECUTION - 2K CORE

, +he 10ty Fiboageci Number

EXECUIION TlME: @.17 SECS.

FThe (o”ow.’nj Procedure iS @ psqudo random
Number~ gerneravor. T4 .,

ELAPSED TIME: 11.88 SECS.

with g npw mere

7 about +his *ypPe of alyorithm gp A
« CREATE RAND.ALG Stminumgrical ﬂf'jori'“'m’s,"ﬂu Are a;- C'am,::;.':.-p i,.t,:‘.’. ;21
‘ Ym ;
0109 INTEGER PROGEDURE RANDCLESS)3INTEGER LESS3 -

PB209 COMMENT THIS PROCEDURE RETURNS AN INTEGER BETWEEN & AND
pa308 : LESS~13;

0400 BEGIN OWN INTEGER SEED,MUL,MOD3: Er this Alsoi compiler, Omwn verinbles
PRS0 IF SEED=0 THEN ‘;"' in'tialjped +o @, Thus +his blucir
00680 BEGIN * Performud only the €irsvy +time the

D708 COMMENT SEED,MULEMOD MUST BE LESS THAN 185364 Precedure
P VEo0 TO PREVENT OVERFLOW. THE FOLLOWING 15 called.
PYIBO NUMBERS ARE 716,517,2t17 RESPECTIVELY}

01000 SEED*117649;

1100 © MUL-78125;

01200 MOD+-1318723

13080 END;)/ofh.s line ic reafi, the randem Numpy~
1400 SEED~(SEED*MUL) REM MOD: Genera vor,

21590 RAND«(LESS*SEED) DIV ™MOD3
B1600 END

21700 s
*E _)

This P rog ram will rtad pumbiers and priatr
+ CREATE TESTR.ALG rardom nambe-s less them +ht nNumbtss just
0108 BEGIN INTEGER I,R3 resd wnvil o @ is read. The
BP2P2 EXTERNAL INTEGER PROCEDURE RAND; ‘ s
#9302 READCI)S rasdom nambirs are ganecared b,
P abee precedine it i

. /

V3600 R:=RANDC1); called @ »tarngliy.)
AVBT0P PRINT(R»>3)3
@@8@9 NEWLINE’ 'S —-“\D Meq"‘ne chausec a Cﬁfﬂ.‘i'jg céturn qﬂJ @
op909 BREAKOUTPUT 3 . botfer -
B1000 READCI); [int €ted 0 e placed in the outpar buffer.
91149 END3 .
61200 END : B"‘fq}f"“"'P‘l"’ causes +hé outpar but'fer 1o
@1300 s be Jumpe&‘ to the ouv pur dew‘Ce/ in Has

xE
. caca +he_ T)y

-35-

«EX TESTRsRAND
LUADING

LOALDER 1K CURE
EAECUTION
1
26
160
4

1o
¥3

18y
2

13}

END OF EXECUTION = 2K CORE
LXECUTION TIME: V.03 SECS.

ELAPSED TIME: 42«78 SEGS.

+EDIT TESTR. T€ don+
*A109)___’_.AEM you dort underseund the A command uie a R command,

Puloe BEGIN INTEGER Lasl,sJ,R3:

*[250

YWa254 WRITEC("RANGE ") 3BREAKQUTPUT;

*1325,25 The Program s aleered so
325 WRITEC"'NUMBER ") JBREAKQUTPUT S -
WB3ba READ{L)Y;

PAE3ITS $ G‘-f'l:lifrary numba~ of random ﬂﬂmbt"-‘/

tha+ ‘t witl produce an

ff‘(élﬁu . all in +he same I‘Qnﬁg .
B4y FOR J:=1 UNTIL L DO

U425 $

* 308 Yo Hera
*lgud

%k

I dateve Newerrw |
€ nor +i
/ e ¢ effecy ‘
be’Ow,

EAIT

s EA TESTRsRAND
ALGOL: TESTR
LOADING

LOADER 1K CORE _
EAECJUTION T anter +he f'ﬁﬂ:e .and Nnambe-.

RANGE 2 i
NUMBER 3
60 21 96 4a4 7
n

26 4 93 2 84 27 55 30 3- 86 92 27 175
7 9% B9 12 66 13 62 96 64 17 50 B 15 6 94 75 87
B4 74 93 99 6t 35 1 68 16 35 25 19 B89 2
END OF EXECUTION - 2K CORE
EAECUTION TIME: D35 SECS.

ELAFSED TIME: 32410 SECS.

+EDIT TESTR.ALG

*1360,10 ‘//’
 QUTPUT(45"DSK") 3

80360

99370 SELECTOUTPUT(4)3
V380
203958 s
*E Y
EXLT |

+EX TESTR,RAND
ALGOL: TESTR
LOADING

LOADER 1K CORE
EXECUTION -

RANGE:198
NUMBER :58

END OF EXECUTION ~ 2K CORE
EXECUTION TIME: 9.22 SECS.
ELAPSED TIME: 11.6@ SECS.

« TYPE RAND.DAT

26 4 93 2 B84 271 55
7 92 89 12 66 13 62
B4 74 93 99 61 35 1
«EDIT TESTR.ALG
*D250
*D325
* 225,25
Bp225 INPUT(3,'""DSK") 3
BO250 SELECTINPUT(3) 3
806275
xE
EXIT

+« CREATE RANGE«NUM
pe109 199

OPENFILE(C4,' "RAND.DAT*)}

n'm-nbcf U o

-36=
| .

e dis¥ T chunn el
SO _

pesian®

Now

tht oarpur
RAND.DAT.

; +he Program 1

will jo v g d'f

N

+hy

Chapnel number,

30

qiteres

So +thaw

k €.0e calley

above statements i3 the

3 B6 92 27 IS5 68 21 96 48 75
96 64 17 58 8 15 & 94 175 87 32
60 16 35 25' 19 89 2
Seltcts chaantt 3 for +he [npur.
Here +hg Prosg ram s ahered 5o iy ¥
the inpgut will come from a disk ¢,

Called ~ RANEE, Mum .

OPENFILE(So"RANGE.NUM")3}5\\\,
_ ' opens Cile RANGE.NUM £o,

90200 50
pal3Bd %
*E
EXIT
S+rips the lint. mumbers ot fhr data il
+R PIP
*RANGE « NUM/ N+RANGE « NUM nl?”’ can not handle lne numbiers - on
*tC h
+EX TESTRsRAND
ALGOL: 1ESTR
LOADING

LOADER 1K CORE

channg{ 3.

dava Files.

-37=
EXECUTION

FATAL RUN-TIME ERROR AT ADDRESS Bﬂﬁ!ﬁ?

MORE HEQP SPACE REGUIRED FOR 1-0 BUFFERS

TACTION (H FOR HELP)? F

END OF EXECUTION - 2K CORE
EXECUTION TiME: @.85 SECS.

ELAPSED TIME: 17.33 SECS.

+R ALGOL .

*TESTR,=TESTR/ 10088D :

*tC : Cauces t+he
«EX TESTR,RAND

LOADING

LOADER 1X CORE
EXECUTION

END OF EXECUTION - 2K. CORE
EXECUTION TIME: B.13 SECS.

ELAPSED TIME: 3«13 SECS.

« TYPE RAND.DAT ,

26 4 93 2 Ba 27 55 3P 2
7 99 89 12 66 13 &2 96 64

~Ba T4 93 99 61 35 1 68 146

END OF ALGoOL SCRIPT

Heap

S vmeit

an¥p
Heep slae
86 92
17 58
35 25

This

W

/o Bufers ars

Fhur ntp

and the deLuwtt

+a oo

dis ke,

27

19

bo+h

+o become

15
15
B89

NOTE: There is useful information om the file S5¥S:ALGOL,DOC,

Srke

faused because

the

[

it Gad

8oL

21
24

Lo &~

26
75

oy,

49
87

foo

[=17} fpu 1

75
32

-38~

Solutions to Sample Problems

REAL PROCEDURE PHIR(N)JVALUE N3 INTEGER N3
PHIR«IF N=0 {HEN 1.0 ELSE 1.8/(1.0+PHIR(N~-1))3
REAL, PROCEDURE PHII{(N)3VALUE N3 INTEGER N3
BEGIN REAL P3;P+~0.8:
WHILE (NeN<1) > @ DO P=1.0/(1.0+P);
PHII~PZENDS

PROCEDURE HANOI(N,START,OTHERLFINISH);
VALUE N»START,OTHER>FINISH3 INTEGER N2START,OTHER,FINISH3

BEGIN IF N=} THEN BEGIN
WRITE("MOVE DISC 1 FROM")IPRINT(START»3)3
WRITEC™ TO")3IPRINT(FINISH,3) INEWLINESEND

ELSE BEGIN '
HANQ I (N=1,START>FINISH,OTHER)
WRITE('"MOVE DISC")3PRINT(N,3)IWRITEC(™ FROM*)}
PRINT(START>3)IWRITEC(" TO"™)3PRINT(FINISH,3)INEWLINES
HANO I (N~-1,0THER, START,FINISH) }END3

BREAKQUTPUT;ENDS

PROCEDURE PASCAL{(N)IVALUE N3 INTEGER N3J
' BEGIN INTEGER ARRAY PL1:NIIINTEGER 1,J
Plil:=1: :
FOR I3:=2 UNTIL N DO
‘BEGIN PL1]:=03;
CFOR Jisi STEP =1 UNTIL 2 DO PLJYe=PLJI+PLI-11]3

END3
FOR 1:=t UNTIL N DO PRINT(P(IJ),4)3
END3
1.0 440
2.@ 4-@
1.8 4.0
3«0 5.0

-39-

A reprint from COIYlpUTtQPS

"and automation

November, 1969
vol 18, No. 12

APL: A PERSPICUOUS LANGUAGE

Garth H. Foster

Department of Electrical Engineering
Syracuse University

Syracuse, N. Y. 13210

"In APL,

a great many highly useful functions which are required

in

computing have been defined and given a notation consisting of a

single character.”

The news and promation copy now beginning to appear
in many computer-related publications proclaiming APL (A
Programming language) to be everything from a successor
to PL/I (Programming Language One) to the most powerful
interactive terminal system available, has no doubt been
widely noticed. Such copy has led many to wonder what
APL is, and after seeing its notation, many wonder about
its clarity.

This article is not intended to a tutorial on APL, for that
would take more space than is warranted here. However, let
us discuss some of the aspects of APL which have excited
the academic communities at a number of colleges and
universities and at least one high school system, and which
have triggered a number of implementation efforts in
Canada, France, and the United States. The interested
reader may then investigate further the many features of
APL which cannot all be covered here. To assist in this
direction, a rather complete bibliography of APL source
material is appended to this article.

Definition

The initials APL' derive from the title of the boak "A
Programming Language" by K.E. Iverson, published by
John Wiley and Sons in 1962; and it was that publication
which served as the primary vehicle for the publication of
the initial definition of APL. Subsequent development of
the language by Iverson has been done in collaboration with
A.D. Falkoff at IBM's Thomas J. Watsan Research Center,
Yorktown Heights, New York.

The present form of APL is the APL\360 Terminal
System, the implementation of APL on the system 360.
Although there are implementations for the IBM 1130 and

'‘APL should not be confused with "ABL — A Language for Associative
Data Handling in PL/l!' by George G. Dodd, General Motors Research,
1966 Fall Joint Computer Conference,

1500 computers, when we speak of APL we shall mean
APLY360.

The terminal system was designed by Falkoff and lver-
son with additional collaboration from L.M. Breed, who,,
with R.D. Moore (LP. Sharp Associates, Toronto) devel-
cped the implementation. Programming was by Breed,
Mocre, and R.H. Lathwell, with continuing contributions
by L.J. Woodrum (IBM, Poughkeepsie), and C.H. Brenner,
H.A. Driscell, and S.E. Krueger (SRA, Chicago). Experience
had been gained from an earlier version which was created
for the IBM 7080 by Breed and P.S. Abrams (Stanford U.,
Stanford, California).

A computer language which is classified as algebraic is
generally, but not exclusively, used to program problems
requiring reascnably large ameounts of arithmetic. Generally
such languages have available, as formalized arithmetic
operators with a notation, the operations of addition,
subtraction, multiplication, division, and exponentiation;
and there the list ends. To achieve other arithmetic cpera-
tions either calls to pre-written subroutines must be made
or the user must supply his own.

This is not true of APL; a great many highly useful
functions which are required in computing have been
defined and given a single character notation {socme of these
require 3 keystrokes, striking a key, backspacing and then
striking another key; but usually only a single keystroke is
required.)

The APL Keyboard

Figure 1 shows the APL Kkeyboard. The letters and
numbers all appear in their usual places on a typewriter,
except that the capital letters are in the lower case positions
(the lower case letters do hot appear). The up-shift posi-
tions on the keyboard are occupied by symbols used to
represent the powerful set of APL operators.

MAR I z | 2 VoA) . ATTN
REL 1 21 3 4,5,6 7 0|+ | SPACE
Eal)
CLR _ 7 | € P t J[o ON
u /]
0O | w R L - RETURN
A s,D F|GIH|J KI|IL|C|3
SHIFT ¢ nuw || T/ 1]; \ SHIFT
SET X c v N Af t . { OFF
Figure 1
Reprinted with permission from "Computers and Automation", November, 1969, copyright 1969 by
and published by Berkeley Enterprises, Inc, 815 Washington St, Newtonville, Mass. 02160

40~

Besides +, -, x, +, {the familiar symbols for addition,
subtraction, multiplication, and division located on the two
right-most keys on the top row) and the symbol * assigned
to represent exponentiation (the star over the P as ih raising
to a power), there are distinct single character notations for
the operations of: negation; signum; reciprocal; logarithms
{tc both natural and arbitrary base); combinations and
factorials; base e raised to a power; the residue of a number
modulo any divisor. There are characters which represent
taking: Pl times a number; sines; cosines; tangents; hyper-
bolic sines, cosines, and tangents; and the inverse functions
for the six preceding functions. Available too are: floor
{truncating a number to the largest integer less than or
equal to the number); ceiling (rounding up to the smallest
integer greater than or equal to the number); and maximum
or minimum of a pair of numbers.

APL also provides the relations which test whether two
numbers are: less than; less than or equal to; greater than or
equal to; greater than, equal; or not equal. The last two
relations are also applicable to characters. These relations
check to see, for example, if a relation is true and produce
1 {representing TRUE) or O {(FALSE}; these binary quanti-
ties may be operated upon by the logical functions of: OR;
AND; NOT; NOR; and NAND. All these are also available
as standard functions in APL, and are designated by a single
character graphic. These operations are all summarized in
Figure 2.

Honadic form {2 f Dyadic form gfa&
Definition Hame Name Definiticn
or example or exampla

8 ve OB Flus + [Plus 2¢2.7 =+ 502
B e 0-F Negatlyve + [Minus 2-3,1 ~- T1.2
g +e (F20)=18c0) Signum s | Timas 273,27 ++ 6.4
18 -+ 1B Reciprocal ¢ | Divide 213,30 -+ D.EIS
¥ 8] ¥ Ceiling I | Maximum al? ex 7
T 3
Taau)Ty | e Floor L |Minimum AT ..y
«PF «+ (1.71878..)+8|Exponential | «+ | Power 283 o B
82X 2s N one ap¥ Natural » | Logarithm ABB ++ Log A basze A
logarithm ABP =« (aB)rwd
17310 - 3o tu Magnitude | | Residue
A=0,8+¢0]Domain errox
IR ractorial Binamial AR s (18):(TAXRIR-A
B osx Aald-d coefficint [2!% -« 10 3i5 == 10
or A -+ GammalF+1)
78 ~+« handom choice|Roll ? | baal A Mixed Function
from .2
Of ++ AeX, 44049, . |[Pi timan o | Circular See Table at left
-1 ~= 0 = ++1 |Nat -
4 | hnd Alg|Aass|AavB| AnR]dvE
{-A)on A AoB v [OF ofo] @) 1 1
(1-Ba2bs.% O] (i-Be2)ed » | Nand ol o 1 1]
Arcsin ¥ 1] Sine 2 « | Nox 1o ¢ 1 1 L]
Arccos & |2 | Cosine & t{al 1 1 o /]
Arctan & |} | Tangent A
(T1eBegie.d Ju| (2e8a2)s. « | Leas Relstions
Arcsinh M (5| Sinh & 1 | Not greater Resukt is 1 if the
Arecouh 5 |6 | Cosh & s | Equal relation holds, 0
Arctanh £ [7] Tanh & @ | dNot less if 1t doem notrs
» | Grmater IST v+ L
Table of Dyadic o Functionm = | Hot Equal T$Y «+ 0

Figure 2

Order of Operations

Of course when such a host of generalized and powerful
operations are at the disposal of the programmer, there is
immediate concern as to the order or precedence of
operations in an arithmetic expression written without
parentheses. o

Traditionally in algebraic languages, exponentiations
were performed before multiplications and divisions, and

-2

these were done before additions and subtractions. One of
the reasons for this choice {of hierarchy of operations) was
that normal conventions in algebraic notation provided that
the expression

5.6y +8y? + 2.84y+ 9.06
could be written as
EE"y""3+B "y *"2+284"y+9.06

without the use of parentheses.

If one wanted to make the compiler work more effi-
ciently when programming in the higher order language,
then paréns {parentheses} were used and the polynomial
was ‘'nested”, so that in the above example one coded:

({B6*"y+8)"y+284) "y +9.06

That is to say, one discarded the built-in precedence order.

Clearly, in APL having all the functions shown in Figure
2. the establishment of any hierarchy of operators would bé
arbitrary and open to question at best; and more than likely
it would border on the impossible to justify the hierarchy
in any reasonable way,

Thus in APL there is only one rule for evaluating afl
unparenthesized expressions (or within a pair of parens),
and that rule is:

Every operator takes as its right-hand argument the
value of everything to the right of it (up to the
closing parenthesis).

Now such a rule may seem strange and unfamiliar to
someone who is now programming, but it has advantages:
{1} Uniformity—it is applied in the same way for all
standard or primitive functions provided by the
APL system as well as all functions {programs}

written in APL by the user;
{2) Utility—this approach, for example, allows the
nested polynomial to be written without paren-

theses as:?

906+Yx284+Yx8B+Yxb6

it is also possible to write continued fractions without
parentheses and the rule given provides other interesting
and useful results as a by product,

Sum Reduction

Another area in which looping (of computer instruc-
tions) is explicitly required’in most programming languages
but not in APL is that of summing the components of a
vector, which we will call for the sake of example, X, The
usual approach is to initialize the sum to zero and then use
a running index variable of a DO or FOR loop, and then
take the summation by an expression like

SUM =SUM + Z(l}.

In APL we use what is called sum reduction. This is the
name for conceptually taking the vector X, inserting plus
signs between each of its components, and then evaluating
the resulting expression; its notation is simply +/X. 1f we
had wanted to take the product of the elements of a vector
Q, then in APL we write x/Q and this provides the times
reduction.

There are even more powerful ways to evaluate a polynomis! ex-
pression in APL, but the availability of such methods does not reduce
the affectiveness of the right to left rule just described.

w41 -

The Valua of Powerful Operators

Thus the first area in which APL provides clarity in
programming is by providing a large set of powerful
functions, Now one may ask whether writing AT™ B in APL
is only marginally more compact than say writing
MAX{A B). However, in APL we are allowed to use AIB 10
denote the combinations of taking B things A at a time,
Such an gperation in languages other than APL generally
require the user to write his own program, perhaps calling
upon routines to provide the factorials and if they in turn
are not available, writing that routing also. The claim is that
the presence of the APL operator |in a program provides
much mare clarity than the presence of the equivalent
routine in another programming language.

Of course one may argue that factorials and combina-
tions are not needed all that much anyway. In many cases
such a point of view may be correct; however, the fact still
remains that the need for, say, the FORTRAN Library of
subroutines indicates a need for arithmetic computations
which are more complex than the operations included in
the language as primitives. What APL has done therefore is
to mave in the direction of a library increasing the sophisti-
cation of the language, and ot the samne time simplifying the
notation for using a much more powertul set of operators.

Extending the Scope of Functions

The next step forward which APL has taken is to extend
the scope of those functions shown in Figure 2, in tha
following way. {n most languages extant today, if one
writes A + 8, then one commands the computer 1o add the
nurmber A 1o the number B. In APL the command stili
produces the addition of the single numkbers, called scalars,
if that is the nature of the variables A and B. |f on the other
hand, A and B are each names for a collection or string of
numbers, called a vector, then the addition takes place on
an element by element basis, with the tirst element of A
being added to the first element of B, the second 10 the
sacond, and so forth, The requirement is that either A or B
may be a scalar while the other is a vector, but if they are
toth vectors, then they must have the same number of ele-
ments, that i, they must be of the same sice.

If A and B are matrices of the same size {having the same
number of rows and columns), then A + B in APL adds, on
an element by element basis, matrix A 1o matrix B, To
perform equivalent gperations in most computer languages
requires @ DO or a FOR loop when adding vectors, or
nested 10ops when adding matrices,

Two comments are relevant here. First, the explicit-
loops embodied in the DO or FOR loops are required by
the ianguage, but they gre ancillary to communicating the
process 10 be performed, say adding two matrices. Second,
the utility of providing an extension of this nature, where
the system assumes additional responsibility, is borne out,
for example, in the MAT commands of BASIC. APL
extends such ideas and applies them uniformly to all data
structures treated in the language. In fact, from the pro-
grammer’s point of view, one does not care in what
sequence the operations in the loops implied in such an
APL command take place. They could just as well be done
all in parallel; the fact that the computer does not process
the matrix elements in parallel does not matter. The
extension of scope of the notation allows the algorithm to
ke thought of as acting ‘'on the data in parallel. Thinking
about the computing process in this way gives new insight
into the way the programs manipulate or transform the
data.

-3 -

Alfpcating Space for Arrays

The philosophy is that the system should perfarm the
tasks which are required by the computer but not essential
to tha algorithm, A useful extension is to have the compu-
ter assume the burden of allocation of space for arrays on a
dynamic basis. This is done in the APL terminal system; for
axample, {f one creates the vector X having components 2,
5, and 10, then X + 2 & 10 is the spacificatipn or assign-
ment of thase constants to be the value of the variable X.
No dimensioning is required. Later if we wish to respecify

Hama Sign' |Dafinition of waamplad
gize oA of ==y TETENY 2k =+ 19
Rdahipe [TT] Asshapa A to dimansion V 1 spi1t v+ F
1188 ~= 1132 ReE = 1@
Raval LA A s+ [nladbed WF == 12 P2 B)
| Chtana pe v, ¥ Pard #2315 T AL AL T AN S T £
4] PLI] ~=1 Flw 312 1] «=7 % 3 2
Tondaw3s MELA A) F(y 343 2 1) «+ 3 ¥ A
[R I
ALA;., E(1:) == 1 2 3 ARCD
vl] E[;1) == 1 & ¥ VARCOEFGHNIJRLILE]) +~ EFCN
L8l
Indan s Ficut ¥ iftegard 1hor= 12 3N
genaratord 10 == an ampty vektar
Indey of¥ Vid Least indax of A P13 =7 11718
in ¥, orF 1vpV ML ~r= 3} 5 0 §
4 uis 4] - I3
Taka [ZT] Taka or drop 1F(7] Pirat 7 atd v~ ARC
{V(I]zt) o Laak (¥{T])+0) Erg

C2ip ea y t
TT 5 3 2 #2 5 1 3}

Drop Vi wlewmpity of =aardinaca I
Trada wpLF [I4 }‘l‘h! perutAtlon which

would order 4 [sicend=

Crada down|¥a ing or descending)

#3 § 3 2 =+ 1 1 3 &
i

3
Comprassa? Vi 101 0/P ++ 3% 101 0/E == : 1-:
0 L/AE #4127 3 4 o=anoa 1AL
9 1% 11 117
4 BCE
Expand?¥ ¥ya 18 112 == 1 8 2} 10 1 % Ivg == F FoK
1 JRL
achd Idxt
Revarset o &r == NGFE #(L]X -+ oI ++ EFGN
LEST #F -2 3 5 32 ABCE
_ Bcoa
Aoeacal 444 P ++ T 203 re T1RE 10 "1k -- EFER
LiJk
j Al
Pad Coordinata I of A 1 18K == #F4
bécamed conrdinate (111
Transposs vII]] &af gwaule 1 iRE ++ 1 b i DRL
oL Transpoue last bwe cosrdinacss of +~ 1 I&E
& T T8
Mambarship [d«4 abel ++ aW EeF == 1 018
Poeyw ++ 1 1.9 § 2 900

Chintes dul oV 100l 7 7 & ++ 1778 74 B0 8051 7] e= 37373
_Emg. vrs T4 40 pATIPIN ++ 1 2 3 50 §Qr377Y =+ 7 3
tenl [525 W¥*Y = Randam dil__l. of v elements from .1
Hotas!

1 Waatricelona on argument ranks are indicated by: 5 for
acalay, ¥ far vaekoar, N for matrix, 4 for Any. EXCRpt av
the firet ascgument of Syv4 oy S(A], & scalar may ba uaad
instaad of a vector. A goni=s#Llamant AFray may eaplaca any
wCalar.

T Mrreys udaed ! 1 2 1 w ABCD
in sxamplas) F a7 3857 E~~% & T @ X ++ EFCN
¥ 10 11 12 IJRE

3 runction dapends on index origin.
i Elivion of sny index solects 41} along thae cooydinace,

% Tha function ix applied aldng tha laad oddcdinatd; the
symbols £, %, and * are squivalant es /%, afd &,
zespectivaly, eucept that the function iv sppliad along the
tirst coordinaea. If (5] appears after any of the symbols,
tha relavant coordinats is determined by the acalar £,

Figure 3

v R+AVERAGE V
[1] Fe(v/¥ivp¥
v

Figure 4

V R+OTATS I.50; VAR MEAN .
(i1 R=MEAN VAR SD«{VAR®{ +/ (X -MEAN+AVERAGE K)#2)4 lepk)+
0.5
v

Figure 5

X to be all of those elements currently comprising X
followed by the numbers 1.5 and 20.7, then X«-X, 1.5
20.7 catenates the constant vector 1.5 20.7 toe X and
respecifies X. The wvariable X is now a data object with §
elements where X[1J is 2 X[4] is 1.5 and X[5] is 20.7. We
may query the system as to the size (humber of compo-
nents} of X by use of the function denoted by the Greek
letter Rho. Thus, pX produces 5. The functions of size and
catenate are summarized together with the rest of the
mixed APL dyadic functions in Figure 3.

We will not here treat further the powerful functions of
data manipulation illustrated there. However, we have now
exposed the reader to a sufficient amount of detail in APL
to understand Figure 4. This shows the listing of a user-
written function, the name of which is AVERAGE. The
first or header tine of AVERA GE declares the syntax for
that function, that is, it indicates that the explicit result
will be called R and the vector of data to be averaged will
be denoted by V. The line numbered [1] is the algorithm;
and it is self explanatory, even at this point.

Figure 5% shows how AVERAGE is called within the
function STAT to calculate the mean, variance, and stan-
dard deviation of a set of values. Here the variable names of
MEAN, VAR, and SD refer to the result of the AVERAGE
program and the calculated variance and standard deviation.

We do not illustrate the comparable programs in other
languages; we leave to the reader the task of noting the
coding coempression achieved by APL. The APL array
operations obviously provide both brevity and clarity in

An APL

1. Abrams, P. S., An niGorGi%r for "lverson Notation". Stanford,
Calif.: Computer Science Department, Stanford University, Tech
Report CS47, August 17, 1966,

2. Anscombe, F. J ., Use of Ivorson's Language APL for Statistical
Computing. MNew Haven: Department of Statistics, Yale Univer-
sity, July, 1668. TR-4 (AD 672-557)

3. Berges, G. A and F. W. Rust, APL/MSU Refer*** Manual. Boze-
man, Montana: Department of Electrical Engineering, Montana
State Univ., September 26, 1963

4 Berry, P. C, API!1130 Primer. |BW Corporation, 1988 {C20-
1697-0)

5 Berry, P. C, APLX360 Primer Student Text. [EM Corporation,
1869. (C20-1702-0).

5] Breed, L. M. and R. H. lathwell, "The Implementation of APIA
360", Interactive Systems for Applied Mathematics. New York
and London: Academic Press, 1988 pp 380-399

7 Calingaert, P., Introduction to A Programming Language. Chica-
go: Science Resesarch Associates, field test edition, October (967,

8. Creveling, Cyrus J (Ed.), Experimental Use of A Pregramming
Language (APL) at the Goddard Space Flight Center. Greenbelt,
Marvland: Goddard Space Flight Center, Report No. x-550-63-420,
November, 1968.

9. Charmonman, 5., 8. Cakay and M. |. Louie-Byne, Use of APLX160
in Numerical Analysis. Edmonton, Alberta, Canada: Department
of Computing Science, University of Alberta, December, 1987.

10. FalkefT, A, D and K. E Iverson, APLX360 User's Manual. York-
town Heights, N.Y.: T. J. Watson Research Center, IBM Corpera-
tion, 18968

11. FalkofT. A D. and K. E. lIversan, "The APL 380 Terminal System",
Interactive Systems for Applied WMathematics. New York and
London: Academic Press, 1863, pp. 22-37. (Also Research Note
RC 1922, October 16, 1967, T. J Watson Research Center.)

12, FalkofT, A. D, K. E. Iverson and E. H. Sussenguth, "A Formal
Description of System/360". IBM Systems Journal, I, No 3
(1984}, pp. 193-262

13, Gilman, L. I. and A. J. Rjse, APLX360 An Interactive Approach.
IBM Corperation, 1969.

14, Hellerman, H., Digital Computer System Principles. New York:
MecGraw-Hill, 1867

15. Iverson, |. E.. "A Common Language for Hardware, Software and
Applications" Eastern Joint Computer Conference, December,
1*62, pp. 121-129 (RC 749).

-42-

expression, and in that sense the programs may be thought
of as somewhat self documenting.

The symbolic nature of APL makes it multilingual.

Evaluatiocn of APL

In these pages we have only scratched the surface of
APL. The availability of a powerful set of functions having
a generality and a sense of wuniformity in definition is
important in providing capability to program complex
algorithms. The extension of operations unifermly to
strings of guantities or tables of numbers is a step forward
in programming, because a great deal of computing in
science, government, and business may be cast in terms of
those data structures. Also it Is important to relieve the
computer user of the burden of bookkeeping and house-
keeping operations in computer programming in higher
level languages, particularly in an interactive environment.

Enthusiastic supporters of APL have claimed that rather
than standing for either A Preogramming Language or
Another Pregramming Language, the initials APL stands for
A Permanent Language. APL was first conceived of as a
means of communicatien; and it will have importance in
that regard independent of the availability of APL on a
terminal system. The heart of communicating, describing,
or programming a process is to make clear what is to be
dene. In fact | might suggest that Ken Iverson and his
colleagues meant APL to be a toeol so that we all could
program lucidly. .

Bibliography

18. lverson, K. E., "The Description of Finite Sequential Prccesses",
Information Theory, 4th London Symposium, Colin Cherry (Ed)
Lendon: Butterworth's 1981.

17, Iverson, K. E., Elementary Fupctions: An Algorithmic Treatment.
Chicago: Science Research Associates, 1966.

18. lverson, K. E., Formalism in Programming Language. Ycrktown
Heights, M.¥.. T. J. Watson Research Center, IBM Corpcration,
July 2, 1963 (RC-992).

19. Iverson, K. E., A Programming Language. MNew York: John Wiley
and Sons, Inc., 1962

20. Iverson, K. E., "A Programming Language". Spring Joint Com-
puter Conference, May, 1862, pp. 245-351.

21 Iverscn, K. E., "Recent Applications of a Universal Programming
Language”. MNew York: IFIP Congress, May 24, 1885 (Also Re-
search Note NC-511. T. J Watson Research Center)

22 Iverson. K. E. The Role of Computers in Teaching. Kingston,
ont., Canada: Queen's University, Queen's Papers on Pure and
Applied Mathematics, No. 13, 1688 Alsc issued as The Use of
APL in Teaching, IBM Corporation, 1969, (320-0995-0)

23 Kolsky, H. G., "Problem Formulation Using APL". IBM Systems
Journal, 8 3(1969), pp. 204-217,

24, Krueger, S. E. and T. P. McMurchie, A Programming Language.
Chicago: Science Research Associates, 1868.

25 Lathwell R. H, APLX360: Operations Manual. |IEM Corporation,
1968.

26. Lathwell, R.H., APLX360: System Generation and Library Main-
tenance. |BW Corporation, 1968,

27, MacAuley, Thomas, GAL/APL: Computer Aided Learning/A Pro-
gramming Language, Author's Manual. Costa Mesa, Calif.. In-
formation Services and Computer Facility, Orange Coast Junior
College.

28 Pakin, Sandra, APLX3B80 Reference Manual. Chicago: Science Re-
search Associates, 1968 (No. 17-1)

29. Rose, A. J., 6 Teaching the APLX360 Terminal System. Yorktown
Heights, N.Y.: T. J. Watson Research Center, IBM Corporation,
August 28, 1968 (RC 2184)

30. Rose, A J ., Videotaped APL Course. |BM Corporation, 1967,

31 Simillie, K. W., STATPACK II: An APL Statistical Package. Edmon-
ton, Alberta, Canada: Department of Computer Scisnce, University
of Alberta, Publication No. 17, February 18959,

32, Woodrum, L. J ., "Internal Sorting with Minimal Comparing”
IBM Systems Journal, 8, 3(1968) pp. 189-202

X}

(2]

(3]

43

€51

53

Selected Bibliography for APL

Berry, P.C., APL/360 Primer Student Text. !8M Corporation, 1969,
{C20-17n2-0).

An excellent introduction to the fundamentals of APL.

Falkoff, A.D. and K.E, I1verson, APLS/360 User's Manual.
Yorktown Heights, M.Y.: T.J. Watson Research Center, [3¥
Corporation, 1968,

Bilman, L.}, and A.Jd., Rose, APL/360 An Interactive Approach.
IBM Corporation, 1969,
A& textboolk on APL {used in advancerd undergraduate
prozrarming course at C-MU), Discusses some extensions to
basic APL/36D0,

Iverson, K.%., A Programming Languaze. Hew York: John Wiley an-d
Sens, lnc., 19G2.
The ariginal definitlon.of the notatiormal scheme,
Excellent in its own right, hut not directly useful in
learning one of the APL {mplementations,

Pakin, Sandra, APL/36% Reference Manual. Chicago: Science
Research Associates, 1968.
The definlitive work on APL {as of 1968): explains each
operator {(with many examples), tMote: this book is =3
reference manual, not a primer.

Documentation for APL/10 system at C-MU can he
found on the file APL.DOC, This file explains
the differences hetween APL/10 and AFPL/360 and
discusses the extenslons implemented in APL/1D,
as well as how to get onto the APL/1D system at
C=-HU,

* % X ¥ % &
* X % ¥ % %

Y.

APL

Simple Examples and Problems

Write APL expressions to perform the following:

1.

Remove all duplicate elements from a vector V, and call the
resulting compressed vector RES,

Determine which vowels ('AEIQU') and how many of each appear
in a given character string C.

Given a vector V, whose components are decimal integers,
determine how many decimal places each component has,

Write APL functlions to perform the following:

u.

5.

Write a function PRI to list the prime numbers that lie
between the Integers R and S, inclusive,

Let X he a vector whose components are arranged In ascending
order, Define a function MERGE which will insert the
components of a vector V so that the resulting vector R is
still in ascending order,

Write a one-line function to determine 1f a square matrix M
is symmetric or not and have it print out either 'THE MATRIX
1S SYMMETRIC' or 'THE MATRIX 1S NOT SYMMETRIC',

Without using the array catenation extension of the ravel
operator, write a function to:

a. catenate a vector R rowwlise to a given matrix M.

h. catenate a vector € columnhwise to a given matrix M,
Do not assume that the lengths of R or C are proper,

=45

APL

ANSWERS T0Q SIMPLE EXAMPLES AND PROBLEMS

RES+((AV)Y="\V)/V

+/"AETQUY e, =C

1+l 10@|V

11

[t}

{11,

(11
£2]
{31

VZ<R PRI ;7
2«(RsTY/T+(2=+/[110=(18)e. |\ S)Y/1 5
v :

Vv X MERGE V
R+RLAR+X,V]-
v

v 5¥YM M

'THE MATRIX IS ';(0cM=QM)/'NOT ', 'SYMMETRIC,'

v

v M PLUSROW R

(1 o+pM)p(MY R, ((pM)[(2]p0)

A NOTE--NUMERIC INPUD IS ASSUMED SINCE R IS
n EXTENDED BY ot2 IF TOO SHORT,

v

v M PLUSCOL C
&(1 o+plM)p(,8M),C,((pM)}{1]pe0)
A NOTE--NUMERIC INPUT IS ASSUMED SINCE ¢ IS

A EXTENDEDRD BY 05 IF TOQ SHORT.
v

TTY

+AL
.DE
. DU
.FL
.EP
+US
.DL
.LD
.10
.50

+BX
+AB
. EN
.LO

+RO
.CE
+NT
.DA
.Uu
«OM
. LU

«RU

DD
.GE
.GO
».LE
.NE
- NG
+OR

a4 -

APLSS\APL

TELETYPE SYSTEM MNEMONICS

APL

N+ UE C+ 0 “ 9% 04— =0~pD<I|] MDD PR

U WO

<

ALTERNATE
TTY

@A
@B
@c
@p
@E
@F
@G
@H
@1
@J
@K
QL
@M
@N
@0
@p
@Q
@R
@s
QT
au
Qv
ew
@x
ay
@z

TTY

.CB
.CR
.C5
oDQ
+GD
«.GU
. IB
. IQ
LG
.NN
.NR
.0Q
. 0U
+PD
-QD
.QQ
« RV
. TR
. XQ
+ZA
+ZB
J2C

etc.

[IR N N R - o

APL

®

m

i xroEEBYIIHT I 0HH-SE O -

Mo e e X > D

Sy \g'\'
%. -\"en“t\) F. ?o\\ &C.K

.R APL
CHARACTER SET..
TTY
APL-QOLS _ .
TTY100) 19311316 8/19/71 [L65,10]
CLEAR WS
344
12
X=3#4
X
12
Ye=5
x+Y
7
1 44E.NG2
1«44
Pe1 2 3 4
P#P
1 4 9 16
P#Y
-5 =18 -15 -20
0+« *CATS"®
Q
CATS
3+445+2
31
X*3
Y4
(X#Y)+ 4
16
X#Y+ 4
24
XYy
VALUE ERROR
XY
+
X=015
X
1 ¢ 3 4 5
el O
Ye5-X
Y

4 3 2 1 o

=47 -

Gets vou into APL
type tty if you are at teletype

or APL if at datel
"You are now in APL
entry 1s automatically indented
response 1s not
X 1s assipgned the value of 3 times 4
value of x tvped out
y assipgned -5
the sum of x nlus v
exponentlal form. .ne 1s speclal minus
for constants. It 1s not an onerator
assipgn the vector 1 2 3 8 to p
multiply p by itself
scalar is apllied to all elements

assign a a 4 element character vector

evaluation 1is from rierht to left
wlth no operator precedence

the varlable xy has not been defined

Index generator function

the vector of 0 elements

all scalar functlons extend to vectors

1 1

3.141592

1.

n

3*141592
0.8414709

0.5403022

Cl3
C23

20

Cl3
C2D

VALUE

cn
C23
C33
C43
C33
C63
C73

120

0 X 1 2
1.570796

-0.4161468

‘DL Z-X F Y
Z-C<X®2)+Y*2>% 5

Q-CP+15F P-l
4#3 F 4

<6 B-G A
B-<A>0)-A<0

DL H A
P¥-<AZ(>-A<0

t
DL Z-FAC NII

L1.I-I+1
« G0 0# tl

-48-

regsult of relational operator ig 0 or 1
Pi times 1

3 divided 2

pi divided by 1 2

sin 1

coa 1 2

Function Definition

function header, result plus 2 parameters
function body

close of function
executing function
result

function c¢all with expressions
value assigned to g

g is sgignum function. IA and B are
locals, function is monadic.

monadic function call

assignments may be anywhere in statement

same as G but no result

value error since function call returns
no explicit result

PAC is factorial function

LI becomeg 3 at entrance into function
11 isg local.

49~

TOHFAC+3 5 set to trace lines >
b 3 and 5 of FAC
FACC 3]
FACES]
FACC 231
FACLS)
FACL 3]
FACL 51
FACC 31

X

Trace of RACQ

O DO -

&
TeHFAC~0 set trace off
oG G~M GCD N

£11 G=N

(2l MM aM N

C 4l £11G~M

£zl [AIN=G

L5] t1-BX1

ireatest common divisor

correction of line 1
resume with line 4
display line 1

€t GeM
11l L+BX) disnlay entire functi

« DL, G GCD N on
£11 G+M

£2] M=M.AB N
31 +GO 44M-NE 9

Lal NeG
« DL
[5) + GO 1 enter new line
[s] 26 close of F
e GCD 44 unction, #g and ,dl1 are the same
4

reopen definlition
(6) Cads1IM,N insert new line

C4¢2) FapBX] display function
«bBL GeM GCD N

£11 GrM
£zl M=M.AB N
£31] «G0D 4A#MM.NE 9

LA} NeG
L4.11 MLN
€5 « GO 1
IDL
&) « DL ¢lose funetion,
36 GCD 44

36
8

b b O

05 GCDL.BXJe6
«DL G+M GGD N
£1} G-M
{21 M*M.AB N
£31 GO 4#M.NE @

(4) N~G
£5] MuN
[6) GO 1§
«DL

.DL GCD
{71 LEHS)
£E51 G

«DL Z~ABC X

€1l Z={33#Q+(R#5)-6
£2} t1.BX 8]
L1l Z+(33#Q+(R#5)-6

/ 1 721
£11 Ze(3#QY+(TH#SI~6
£2l + DL
FAC 5
120
YERASE FAC
FAC 5
SYNTAX ERROR
: FAC 5
1
YFNS
ABC F G GCD
P2 3 51
#RP
4
T+*0H MY'
OR T
5
P:P
g 3 s 7 2 3.5 1
T»T
OH MYOH MY
PaT
DOMAIN ERROR
P.T
T
N5

v ¢ "
/ for ‘delete; number’ for ‘leave space”

=50-

reopen,dlisplay, and close function
notice that when function is closed,
the lines are automatically renumbered,

delete line 5 of funetion
to demonstrate line editing

edit 1line 1, print line and space in 8

L

enter) and t in proper place
FAC s8t1l11 defined

Erase 1t

FAC no longer defined

Lis& defined function in this workspace

. agsign p the vector 2 3 5 7
dimension of p

character vector
dimension of ¢t

catenation of two numeriec vectors

catenation of two character vectors

catenation of numbers wilith characters

not permitted

INOTE? +10'sN3° IS *3.10 N Mixed output

NOTE: 105 IS 1 2 3 4 5

2

]
OH M
YOH
203
2 3
5
I
7 3
13
3
2

5

5
BCE
GKM
EC
EC

IE

;
5 2
503
5
WAS 1
;
2 3
o 1

M-23tR 23 57 11 13
M

k) 5
11 13
2 4tR T

69RM

s 7 11 13
+ BX«-P-#M

s 7 11 13
PC33

PC1 3 53
11
PCOI33

5

PCYRP3
MC 1123
MCU3
i

MCI U3 23

3
3

-31-

create matrix of dimension 2 3

reshape t into 2 4 matrix

reshape matrix into wvector
ravel in row major order
indexing

indexing by a wvector

first 3 elements of p

last element of P

element in row 1 column 2 of m

row 1 of M

roweg 1 and 1, cclumns 3 2

A« *ABCDEFGHIJKLMNOPQRSTUYWXYZ »

ACM3
ACMCI i93 133

MCIM-15 3 12
M

3012

11 13

Q3 1 5246
PCQ3

11 3 7 13
0CQ3

4 12 6
PC33

ORI GINO
PC33

PCO1 23
5

©

15
2 3 4
JORIGIN 1

A matrix index produces a matrix

raegpecifying the first row of M

set origin to 0
fourth element of P

first 3 elements of P

result

-52-

V«?730R9 get random 3 element vector whose elements
M«?3 3@R9 are less than 10, and 2 random matrices
Ne3\3\?3 38R 9
v

6 8 1
M

8 1 5
8 4 8
6 6 6
N
4 7 2
9 6 4
4 6 4
M+N sum element by element
12 8 7
17 18: 12
te 12 18
M @D N Minimum
4 1 2
8 4 4
4 6 4
MeN comparison(result 0 Ho 1)
p 1 0@
1 1 @
p 0 @
+/V sum reduction of v

15
/Y product reduction

48
+/C1IM sum over first co-ordinate of m

22 11 19 .
+/§2]M sum over 2nd co-ordinate of M

14 28 18
+/M sum over last co-ordinate of m

14 20 18
#S/M max over last co-ordinate of M

8 8 6

M+« #N

61 92 40

108 128 64

192 114 60
M'.'.' <N

1

@

2
M'l-_t#V
61 88 99
Vv

b
[T\)

6 8 1
veJ.#e15

6 12 18

9+?180RS
a
4 3 2

24
32
4

27 s 2 3 5

+/011g8J.=015

i 31 2 3

2 1.TR M
[

P 6
4 6
8 6

Uoee (0O

«TR M

—

8 6
4 6
8 6

30
40
5

1

4

-53-

ordinary matrix inner product

inner produqt

+.# inner product with vector right
argument

Outer product (times)

Outer product with 1 2 3 4 5(less than)

Outer product of rank 3

random 10 element vector(l-5)

Ith element of result is number of
occurences of the value I in @
ordinary transpose

same as monadle transpose

-5 -

4]
4 3 2 2 S 2 5 5 1 4
3 «RV @ rotate q to left by 3
2 5 2 5 5 1 4 4 2 &2
+NGA.RV 9 Rotate Q to right by 3
5 1 4 4 3 2 £ 5 2 5
=3 «RV Q negative of rotate Q to left by 3
-2 =5 =2 =% -5 =] =~4 -4 -3 -2 i
P 1 2.RVI1IM Rotate columns by different amounts
8 q [
8 6 5
6 1 8
+NG2.RVLE2IM rotation of all rows by 2 to right
} s g8
4 8 8
6 & [
! 2 3.RV M Rotaticn of rows
H 5 B
8 8 a
é é 6
RY Q Reversal of Q
4 1 5 5 ¢ 5 2 g 2 4
«RVL 1IM Reversal of M along first co-ordinate
6 é é
8 4 8
8 1 S
« RVM Reversal along last co-ordinate of M
5 } 8
8 4 8
& é &
U=Q> 4
U .
g @ 0 & 1 & 1 1 9 @
. s g/ﬁ Compression of Q by logical vector U
(8T /0 compressicn by not U
4 3 2 2 2 I 4
+/U/¢a

1 6 101IM
SYNTAX ERROR
1 8 1C1IM
t . -
[1.BX 93
1t @ 1010
1
1 6 171 1M
8 1 S
6 6 &
(sM>5)/M
g8 8 8 6 6 &
V=t @ 1 6 1
VANRI3
1 # 2 @& 3
\TAN |
8 2 1 L] 5
B # a4 e 8
6 @ &6 B 6
Vs taBC!
A BC
tpeB 1 7 7 6
1776

B PB1 7717 6
SYNTAX ERROR
8 PB1L 7T 1T &

{1+BX71

8 PBt 7T 7 &
/71

8 @B1 7T 71 &

19
¥
19

24

24
25

10 10 108N1776

&
108N1776

60 688B1 3 25

60 608N3BO5

20R1 2 1 10

=55~

type-1n error

editing of immediate line

1n$ert‘/!

compression along first co-ordinate of M

all elements of M which exceed §

expanslon of ilotg 3

expansion along last co-ordinate of M

expanslion of character inserts blanks
base 10 value of 1 7 7 6

typing error

P should be @
base 8 value of 1 7 7 6

4 digit base 10 representation of 1776
2 dgit base 10 representation of 1776

mixed base value

base 2 value

P
g 3 5 7T 11 13
s P 10 7 least index of 7 in p
] P .10 6 6 not in p, result is 1+.ro P
P 10 45 6 7
7 3 7 a least index of 4 5 § 7 in p
6«5 1 3 2 4
R*Q+.I0 «IO®RG
R _
2 4 3 5 1
QL Rl
1 2 3 4 5
A= *ABCDEFGHI JXLMN*
AvAs "OPARSTUVWXYZ '
A
ABCDEFGHI JKLMNOPORSTUVWXYZ
- ARl'CaAT' rank of ¢ 2 t in alphabet
3 1 28
J+=A®] 'CAT®
ACJI '
CAT
s a ??5 random cholce of 3 out of 5 with ne repeat
873
RANGE ERROR
6?73
X+328 a random permutation vector
X
7 1 3 2 8 &6 5 4
« GUX . the grade up of X
2 4 3 8 T 6 1 S5
X[« GU X1 X In ascending order
1 2 3 4 5 & 7T 8)
%[G0 X3 X 1n descending order
8 7T & 5 4 3 2 1
Ura 8E *NOW IS THE TIME®' Membershlp
{«BX«UY/A
g ¢ 0 2 1 @ & 1 1 2 # 8 1 1 1 @ & % 1 1 ¢ 8 1
a @
EHIMNOSTW

=36~

(RI9IEE3 &6 2 9
t 8 8 1 8 @ 1

DL Z-BIN N
cn Z-i
C23 LAnZ*-<Z#0>+0*2Z
C33 +GO LA#N.6E .RO Z

-57-

* DL
>FNS List of functions in workspace
ABC BIN ENTERTEXT F 6 6CD H
MULTDRILL
JVARS List of variables in workspace
A D LA M N P 0 R
T u X Y
A" *)FNS gtring containing two APL gtatements
JVARS*
A
>FNS
JVARS
B<tE A Execution of string, wvalue of first printed
ABC BIN ENTERTEXT F G GCD H
MULTDRILL Second assigned to B
B
A D LA M N 0
T u X Y
A-'BIN 3*
B~#E A Execute string value returned in b
B print wvalue of function call
13 3 1
B*-8N 'BIN* get lines of function BIN
B
«DLZ-BIN N
t+
LAIZ*-<Z#0)+0*2Z
*GOLA#N.GE.ROZ
DL
JERASE BIN erase function
BIN 3
SYNTAX ERROR
BIN 3
=
OE B execute will redefine function
BIN 3 try it out
13 3 1
INV-.DQ M get inverse of matrix
M+ #INV result should be identity matrix
1»000000ED 2.980232E-38 0.0
0.0 1*000000E0 0.0
0*0 2.980232E-8 1«000000EO
>OFF.HOLD sign off APL
TTY100) 20:62J05_ 8/19/71
CONNECTED 1:40:48 CPU TIME 0:00:17

-58-

BLISS

C. Geschke (Revised, 6/29/72, C. Weinstock)

INTRODUCTION

BLISS-10 is a language specifically designed for writing software
systems such as compilers and operating systems for the PDP-10. While much
of the language is relatively "machine independent" and could be implemented
on another machine, the PDP-10 was always present in our minds during the
design; and as a result, BLISS-10 can be implemented very efficiently on
the 10. This is probably not true for other machines.

We refer to BLISS-10 as an "implementation language.' This phrase
has become quite popular lately, but apparently does not have a uniform
meaning. Hence, it is worthwhile to explain what we mean by the phrase
and consequently what our objectives were in the language's design. To us
the phrase 'timplementation language'" connotes a higher level language
suitable for writing production software; a truly successful implementation
language would completely remove the need and/or desire to write in assembly
language. Furthermore, to us, an implementation language need not be machine
independent~-in fact, for reasons of efficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language
for implementing software. One of the most often mentioned is that of
speeding up its production. This will undoubtedly occur, but it is one of
the less important benefits, except insofar as it permits fewer, and better
programmers to be used. Far more important, we believe, are the benefits of
documentation, clarity, correctness, and modifiability. These were the most
important goals in the design of BLISS5-10.

Some people, when discussion the subject of implementation languages,

have suggested that one of the existing languages, such as PL/I, or at most

=50,

a derivative of one, should be used; they argue that there is already a
proliferation of languages, so why add another. The only rational excuse for
the creation of yet another new language is that existing languages are
unsuitable for the specific applications in mind. 1In the sense that all
languages are sufficient to model a Turing machine, any of the existing
languages, LISP for example, would be adequate as an implementation language.
However, this does not imply that each of these languages would be equally
convenient, TFor example, FORTRAN can be used to write list processing
programs, but the lack of recursion coupled with the requirement that the
programmer code his own primitive list manipulations and storage control
makes FORTRAN wvascly inferior to, say, LISP for this type of pregramming.
What, then, are the characteristics of systems programming which should
be reflected in a language especially suited for the purpose? Ignoring
machine dependent features {such as a specific interrupt structure) and
recognizing that all differences in such programming characteristics are
only one of degerr, three features of systems programming stand out:
1. Data structures. In no other type of programming does the
variety of data structures mnor the diversity of optimal
representations cccur,.
2. Control structures. Parallelism and time are intrinsic parts
of the programming system problem,*
3. Frequently, systems programs cannot presume the existence of
large support routines (for dynamic storage allocationm, for

example).

Of course, parallelism and time are intrinsic to real time programming

as well.

-60-

These arc the principal characteristics which the design of BLISS-10
attempts to address. For example. taking point (3), the language was
designed 1n such a way that no system support 1s presumed or needed,
even though, for example, dvnamic storage allocation is provided. Thus,
code generated by the compiler can be executed directly on a "bare"
machinec. Anothcr cxample, taking point (1), is thc data structurc dcfini-
tion facility. BLISS contains no implicit data structurcs (and hence no
presumed representations for structures), but rather provides a method for

defining a representation by giving the explicit accessing algorithm.

(MJ 1.0, and Periphcrals

There are several peripheral packages built around the BLISS-* 10
language. Here is a list of the packages and their implementations, which
can provide more detailcd information;

10/DYI0O:

The BLISS-10 language has no 1/0 facilities. This package
provides a library of routines which can be used to build /0 handling

capabilitics within BLISS-10 programs,

Documentation: 10.DOC Also in Bliss
Reference Manual
Implementor: J. Newcomer

HELP:

This 15 a sct of routines wscful in augmenting the DODT dcbugging
facility which unfortunately is not geared to stacks. block-structured

symbol tables. etc.
Documentation: HELP.DOC

Imp lementor: W. Wulf

-61.

TIMER:

4 package which can be loaded with your BLISS5-10 to provide
statistics on the run-time of routines in your BLISS-10 program.
Extremely useful in the design-implementation cycle of an efficient
programming system.

Documentations: TIM. DOC

Implementors: J. Hewcomer

POOMAS .
"Poor-Mans-Simulation-Package." An adjoint to BLIS5-10 of the
same flavor as the union of SIMULA and ALGOL.
Documentations POOMAS . DOC

Implementor: A. Lunde

5I1X12;
A high level debugging package. Since it knows about the Bliss-10
run time enviromment it is useful in interactive Bliss deburring.
Documentation: SIX12.D0C

Implementors: C. Weinstock
W. Wulf

- REFERENCES

[1]
[2]
[3]

[4]

[5]

Wulf, Russell, Habermann, Geschke, Apperson, Wile, Brender, "BLISS
Reference Manual," Computer Science Department Report, CMU, 1970.

Wuli, Russell, Habermamm, "BLISS: A Language for Systems Programming,"
DECUS Proceedings, Spring, 1970.

Wile, Geschke, "Efficient Data Accessing in the Programming Language
BLI55,'" SIGPLANConf. on Data Structures in Programming Languages,
SIGPLAN Notices, February, 1971,

Wulf, Geschke, Wile, Apperson, "Reflections on a Systems Programming
Language,'" SIGPLAN Conf. on Implementation Languages, SIGPLAN
Notices, October, 1971.

Wulf, Russell, Habermann, "BLISS: A Language for S5ystems Programming,"
C.A.C.M, {(to be published).

-62-

Some fairly extensive examples have been prepared as an appendex to

the BLISS-10 Reference Manual. Anyone interested in these can see the

BLISS-10 implementors for a copy.

SIMPLE EXAMPLES
1) 1! find index of first space in a line
! image of 80 characters (one per word)

! index = -1 implies none found

index « incr j from ¢ to 79 do

if . line [.j] eql #44 then

exitloop .j;

2) !} find last item of simple list
link « . beginning of linked list;
while .. link neg § do link « ..link;

! link contains address of last item

3) ! add the first N numbers
sum<—¢;

incr j from 1 to .n do sum « .sumt, j;

4} § routine to compute factorial
routine factorial {(n) =

if .n eql ¢

then 1

else .n*x factorial (.n-1);

THE FOLLOWING 1S5 AN EXAMPLE OF A TERMINAL SESSION USING
ALISS19. COMMENTS ARE DISTINGUISHED FROM ACTUAL MACHINE INTERACTION
BY BEING ENCLOSED IN ----*ED LINES. SINCE BLISS19d HAS NO BUILT-IN
I/0 FACILITIES, YOU WILL FIND THE USE OF A FILE I10PRE.BLI WHICH
WAS CREATED USING TECO. 1ITS CONTENTS ARE:

Y e = = = e S vk B D S BN AN AR BN BN AP TR TR WP W v mm e skl vk ol R R N AP W EP e e e ek e ok S MWW R e g e e e Wl sl R

«TYPE IOPRE.ELI
MODULE TTIO(STACK)=
BEGIN

MACHCP TTCALL=#513}

MACRO INC= (REGISTER Q; TTCALL(4,Q)}3 -Q)%,. .
OUTGCC(Z)= (REGISTER Q5 &+~C2); TTCALL{1,Q)>%,
OUTSACZY= TTCALLC3»Z)&,

OQUTSCZ)Y= OUTSACPLIT ASCIZ 235 :

OUTMC(C,N>= DECR I FROM (W)-1 TO @ DO OUTCC(C)E.
CR= QUTCC(#15)%; LF= OUTC(#12>%, NULL= OUTC(®)%.,
CRLF= QUTSC"7IM?J7970'1%., '

TaB= OUTCL{#151%;

ROUTINE OUTN(NUM, BASE,RERDY}=
BEGIN GOWN N.B.RD,TJ
RQUTINE XN=

BEGIN LO0CAL R;)
IF N EQGL 2 THEN RETURN OUTM(™@"™,.RD=.T>;
ResN MOD +Bj N+~«N/eBi T+~:T+13: XNC();
OUTCC - R+"A™)

END;

IF «NUM LSS5 9 THEN QUTC(™-"):
B-«BASE: RD+~.REQD: T+-8i N+-ABS{.NUM): XNC(D
END}

MACRO OUTDCZ)= OUTNC(Z.18:13%.
QUTOCZ)= OUTN(Z,8-13%,
CUTDHC(Z,NY= QOUTN(Z,i0-N}S$,
OQUTORC(ZsNY= OQUTN(Z,8.N)%3

R Y R MR R Ak kil e e R R P WP EE S U e e e e e e e e A W A S D AR e A e e e Y R WP NP AR S W e e e e e A

NOW WE WILL BUILD A PROGRAM TO PRINT THE FACTORIALS FROM @ TO
12 AT THE TTY. WE HAVE ALREADY CREATED THE FILE FACT.BLI USING TECO.
ITS CONTENTS AREt '

64

«TYPE FACT.BLI

ROUTINE FACTORIAL(N)=
IF N EQL & THEN | ELSE «N#FACTORIALC¢.N-1);

CRLF; TABs OQUTSC('N')>3 TAB; OUTS('N!")>3 CRLF: CRLF;
INCR I FROM & TO 12 DO ' '
BEGIN
TAB}
OUTDC I3
TAB3
QUTD(FACTORIALC.1))3
CRLF;
END}

END ELUDOM

NOTICE THAT THE FILES IO0OPRE.BLI AND FACT.BLI WHEN CONCATEN-
ATED WILL FORM A SYNTACTICALLY VALID BLIS5518 MODULE. NOW WE ARE
READY TO COMPILE THE PROGRAM. BL1551@ ACCEPTS THE STANDARD DEC
OOMMAND STRING ALONG WITH A LARGE NUMBER OF OPTIONAL ¢(AND DEFAULTED)
SWITCHES WHICH ARE DESCRIBED IN THE MANUAL. IN THIS EXAMPLE WE
ARE NOT GOING TO USE ANY OF THE CCL COMMANDS ALTHOUGH THE CMU MONITOR
DOES RECOGNIZE THE +BLI EXTENSION AND WIiLl, HANDLE BLISS10 FILES.

THE COMMAND STRING WILIL PRODUCE A «REL FILE NAMED FACT.REL.

* R BLISS
*FACT»~I0PRE,FACT

MODULE LENGTH =91+16

COMPILATION COMPLETE

-65-

NOW WE ARE READY TO LOAD THE PROGRAM.

.LOAD FACT
LOADING

LOADER 2+IK CORE
EXIT

.START

N N!

0

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880
10 3628800
11 39916800
12 479001600

EXTT

-66-

LISP

D. Waterman

The following quote from the introduction to the LISP 1.5 Primer

by Clark Weissman will serve to introduce the language:

"LISP is an unusual language in that it is both a
formal mathematical language, and (with extensions) a
convenient programming language. As a formal mathematical
language, it is founded upon a particular part of mathemat-
ical logie known as recursive function theory. As a
programming language, LISP 1s concerned primarily with the
computer processing of gymbolic data rather than numeric data.

From childhood we are exposed to numbers and to ways of
procesaing numerical data, such as basic arithmetic and solu-
tions toalgebraic equations. This exposure is based upon
a well-establighed and ripgorously formalized gelence of
dealing with numbers, We are also exposed to symbolic data--
such ag names, labels, and words--and to ways of proceszzing
such data when we sort, alphabetize, file, or give and take
directions, Yet the processing of symbolic data is not a
well-establighed geience. In learning al algebraic program-
ming language, such as FORTRAN or ALGOL, we call upon our
experience with numbers to help us understand the structure
and meaning (syntax and semantics) of the language.

In.learning a symbolic programming language such as LISF,
however, we cannot call upon our experience, because the
formalism of symbolle data processing is not part of this
experience. Thus, we have the added task of learning a basic
set of formal skills for representing and manipulating symbolic
data before we can study the syntax and semantics of the LISP
1.5 programming language.

LISP is designed to allow symbolic expressions of arbitrary
complexity to be evaluated by a computer. To achieve a thorough
understanding of the meaning, structure, comstruction, and

evaluation of aymbolic expressions, is to learn how to program
in LISP."

-67 -

REFERENCES

[1] Quam, Lynn, Stanford LISP 1.6 Manual, Stanford AI Project, September,
1969.

{21 McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer's Manual, Cambridge,
Magsachusetts, The MIT Press, 1962.

[3] Hart, Timothy P., and Thomas G. Evans, "Notes on Implementing LISF
for the M-460 Computer," in Edmmd C. Berkeley and Daniel G.
Bobrow (eds.), The Programming Language LISP: Its Operation
and Applications, 2nd ed,, Cambridpe, Mazzachusetts, The MIT
Press, 1966, p. 191.

f4] Weissman, Clark, LISP 1.5 Primer, Dickenson Fublishing Co., 1967.

The first reference, the Stanford LISP 1.6 Manual, containg most of
the special features of the CMU LISP and outlines the differences between
CMU LISP and the LISP described in the last three references., Reference 3

contains an excellent set of LISP exercises with solutions, pp. 73-92.

68

RECURSIVE EXAMPLE

A simple example of a recursive LISP program to sum the digits in

a list is shown below.

(DEFPROP SUM (LAMBDA (L} (COND
((NULL L) 0)
(T (PLUS (CAR L) (SUM (CDR L)}})})

}) EXPR)

Executing (SUM (QUOTE (1 9 7 1))) produces 18.

69~

SAMPLE PROBLEMS

Write LISP functiong for the following purposes:

1.

to determine whether an atom is a member of a list.

a.g, member [B;(ABC)] =T
member [X;(A B C)] = F
member [A;(B (A B) C) =F

to produce a tale (list of dotted pairs) given two lists,
one of the references, and other of values.

e.g., pair [(ONE TWO THREE);(1 2 e)] = ((ONE , 1) (TWO . 2) (THREE . 3))
pair [(PLANE SUB);(B47 THRESHER)] = ((PLANE . B47) (SUB , THRESHER))

to append one list onto another.

e.g. append [(ABC);(DEF)]=(ABCDEF)
append [(A B) C (D E)));((A))] = ((AB) C (D (E)) (A))

to delete an element from a list.

e.g. delete [Y;(X Y Z)] =X 2)
delete X;((UV) X ¥)] = ({U V) Y)

to reverse a list. (Hint: wuse append.)

e,g. reverse [(ABC)] = (CBA)
reverse [(A (B C) D)] = (D (B C) &)

to produce a list of all the atoms which are in either of two lists.

g, wmion[(UVW);(WXD]=UVWIY
union{(ABC):(BC D)] = (ABC D)
unfon{(ABC);(A B C)] = (A B C)

to produce a list of all the atoms in common to twe lists,

e.g. intersection [(ABCY;(BCD)] = (B C)
intersection [(ABC);(ABC)] = (ABC)
intersection [(A B C);(D E F)] = NIL

to find the last element on a list.

e.g. last[(ABC)l=2¢C
last[((A B)(C))] = (C)

10.

=70~

to reverse all levels of a list.

e.g. superreverse[(A B (C D))] = ((DC) B A
superreverse[((U V){((X Z) Y] = (X (Z X))V 1))

to determine whether a given atomic symbol is some part of an
S-expression.
e.g. part[A;A]l =T

part[A; (X . (Y . A1 =T
part[A;(UV (W . X) Z)] =F

Eempless (MU LS P
. {OEI R
JOB 1 CMUL0A 6,M JDEC 5502,C° TTY33
#3330dwi8

PASSWCRD: BZ3ADR

@035 20=Aug-71

WELCOME BACK.

READ SYS:NOTICE FCR INFCRMATION ABOUT YOUR DISK FILES.

FCUR DAL UP TTY LIHES (6837-3411) AND FOUR

DATEL LINES (683-8330) NOW IN SYSTEM. -
NEW BLISS IN SYSTEM. OLD VERSICON CALLEC OLDBLI....BAQ3

Lty no le < LTtP wants upper cost, his Yl the 555+‘m no lower case
create filel ©«— ,] . - o

00160 {defprop factorial I C"""‘"‘a s Hile wung 505

o008 {1lambda (x){cond

60300 {{zerap n) 1)

J0uQo0 {t {times n {factorial (subl n}}))

005040 } expr)

00600 "):D _ aldmde

$

*ig

KIT

AA\ADS 3‘-\']

...Lz-

.r lisp 15 - -
Locs & : — — i ocrower 3 rno‘ +5$l Q Gpaca, (-‘or "T‘()
. ? (o a Spaca, attantion (for 17%\ or dq.'h-\)

AXTLFTARY FILES?

CECINAL? y € -
STAUFORD Al LISP 1.6 AT CKU 9-SEP-70 \ If onswer 15 (ges) type o {for T14)

SEE LISP.DOC FOR HELPFUL (SIC) HINTS
or a L),tﬁtn’hén (for 228V or Anfe/)
(setq *nopoint t) €—— — whe s i T, the deuimd pont in inTegeys is oot prafed
T
ind . . .
H grindef factorial) this VNists o LIS Fum‘hon‘, i§ the ;W(hm
ML ADQS ng’f Qil's:\' it re'furns N1
«(inc (input dsk: filel)) (\

. d — e Sonchion FACTMIAL 15 not in Hhe
. s3ﬁe..‘ , 5o 4 is real in from Tha
RCTOR!AL pisk file qust CreaTed

s{grindaf factoriall

(EEFPROP FACTORIAL

{LAMBDA(X)

(COND ((ZERCP N) 1) (T (TIMES N (FACTORIAL (SU8B1 M}))1}}
EXPR)

NL

*{ed] &
g factorial ¢

bhe fundionis row v dhe systen

L'Ivueftr it is elear thef it
conlar oy error i (X) shatd be (N)

Y ¥ lie LISP editor to corret the ervor
lnside the eifer | ‘get’ FactoRIAL

w(x)7(n)" €
gl

**p factorial S—e s,

rquu" (ﬁ) wrih (N y L O Py

H

T—————

«{grindef factorial)

LEFPROP FACTORIAL

(LAMBDA(N)

(COND ((ZERCP N) 1) (T (TIMES N (FACTORIAL (SUB1 N} 1)
EXPR)

NIL

(Pu.‘l’\ wreted vergen nto Systew With
the rame FACTRRIAL

exst Srom I LISP editor (dbus g P
on +hg TTX)

Ihe gunc‘tfu lms daed L’*h
Corrgcted

-£L-

«{(factorial 3)

6
*(factorial k)

tk

*(defprop prints (lambda (xMcond
*((nul1 xHterpri))
*(t (and (princ {(car x))(princ {(quote " "))
= (prints {cdr x)))))) expr)

(RINTS
*(grindef prints)

fIDEFPROP PRINTS
(LAMBDA(X)
(COND ({NULL X) (TERPRI))
(T
(AND (PRINC {CAR X))
(PRINC (QUOTE " ")»
)

(PRINTS (CDR X)1))))

EXPR)

ML PHINTTS pwvi*ts O- fat UidUut p*W¥**«*
*{prints (quote (this is a print test))) *
THIS IS A PRINT TEST

i : .
*(print {quote (this is a print test))) = ?ﬂ-l'\\'\',a 5._.‘1'.,,, ‘;wac'hm, phd‘.; *"-c. ?M"‘SES

(TH!S 15 A PRINT TEST)

SI:L.;,([EA PRINT TEST) baw Jo He LIsE ditor

«f (factorial prints) dsk: filel ¢— ($i1e’ Facromial ord PRDNTS on 025K worith
.k Silemee. Frigd

L

wtype fllel - __ hst FiLE4

CEFPROP FACTORIAL

(LAMBDA (N) (COND ((ZERCP M) 1) (T (TIMES N (FACTORIAL (SUB1l H))))))

APR) '

CEFPRCP PRINTS

(LAMEDA (X) (COND ((NULL X) (TERPRI)) (T (AND (PRINC (CAR X)) (PRINC (QUOTE "™ ")) (PRINTS (CCR X))}
IXPR)

k

T =76-

L*

G. Robertson and D, MeCracken

L* is a system on the PDP-10 for conatructing software systems, which
is under development at CMU by A. Newell, D. McCracken, G. Robertson, and
P. Freeman. The current version, L* (G), is the seventh to be designed for
the PDP-10 and the fourth to become a running system. There are alsc three
running systems on the PDP-1l, the most current version being L#11 (C). A
running system on 360 T55 also exists, L*360.

The design raticnale for L# is discussed in the article, "The Kernel
Approach to Building Software Systems," which appears in the 1970 Computer

Science Research Review. This guide makes brief references to the principles

set forth in that article.

L* is intended to be a complete system for running and constructing
software systems. Completeness implies that one should be able to perform,
and to construct systems for performing, the following:

a) Procéssing of arbitrary data types, e.g., symbolic structures,

lists, numbers, arrays, bit strings, tables, text

b) Editing

c) Compiling and assembling

d) Langu;ge interpreting

e) Debugging

f) Operating systems, e.g., resource allocation, space and time

accounting, exotic control (parallel and supervisory control)

g) Communication between user and system, e.g., external languages,

dynamiec syntax, displays, etc.

-77-

L* 1s a kernel system. It starts with a small kKkernel of code and
data and 1s grown from within the system. Thus, L* does not perform all
the functions above when 1t exists only as a kernel. It does have means to

congtruct systems for them all.

L* ias degigned for the profesgional programmer. It agsgumes someone
gophisticated in sgystems programming who wantg te build up hig own aystem
and who will modify any presented sgystem to hig own regquirements and
prejudices. Thus, L* is intended tec ke transparent. All mechanisms in
the total sgystem are open for understanding and modification. No mechanisms
are under the floor.

One of the design goals of the L*(G) system was that 1t should be entirely
gelf-documenting on-line to the maching, but thils gecal was not fully reallzed.
The listings of the gystem which are avallable on the [AILJBLG]dif] disk area
may be used as docunentation. There 1s availabkle an interactive script which
teaches L*L, the simple list processing language at the heart cf the L*(G)
gysdtem.

Getting 1nteo L*(G) 1s very simple. All that 1s neccessary 1s:

R LSGA

HELP
The responsge of the HELP command will ke sufficlent to get you started in
the system.

There 1s alsce a file 8YS: LsG.DOC which contains a few helpful hints
on usging L*{G)

There 1is a new (and hopefully final) wversion cf L*, called L*({(H)
which should be completed during the fall of 1972. Along with L#*(H) there

wlll also be a new PDP-11 version of L*.

-78-

L*(H) will have complete facilities for assembly, translation, filing
and documentation, and will be written up in final form for publication.
As soon as L*¥(H) becomes available for use, documentation on getting

into the system will appear on file S¥S: LSH,DOC

=70~

MACRO 10

D, Bajzek

MACRO 10 is the symbolic assembly language for the PDP-10 machine
language. It is characteristic of most machine languages in that is is
most useful in fully utilizing the facilities of a PDP-10.

The PDP-1(Reference Handbook is & complete reference guide for
the MACRQ 10 assewmbler since no special CMU features have been added to
this processor. Chaptets 1 and Z contain a complete description of the
PDP-10 instruction set and the MACRO 10 assembler.

Chapter 3 contains detalled information on commmication with . the
TOPS-10 monitor. Section 4.10 of this chapter is very important since
it deseribes all the input/output operators. In particular, this section
describes the uée of the directory devices, disk and DECtape, which are
mest commonly used since they provide random access data storage. Also
included are diagrams and explanations of data structures and programming
examples on

1} thow to create data files and transfer data in buffered

mode (pp. 3-197),

2) how to transfer data in unbuffered mode (pp. 3-199),

3} a general subroutine to input one character {pp. 3-200},

4) and a general subroutine to output one character (pp. 3-201).

In general, to create or update a data file on disk or DECtape, it

is necessary to understand the following operators:

OPEN
INIT {pp. 3-189) The OPEN and INIT programmed operators initizlize

a file by specifying a device (or data channel), logical device name,

initial file status, and the location of the input and output buffer headers,

80

INBUF
{OUTBUF (pp. 3-193) can be used to establish buffer data storage areas.

LOOKUP (pp. 3-194) selects a file for input on the specified channel.
ENTER (pp. 3-195) selects a file for output to a specified channel.
RENAME (pp. 3-196) is used to

a, alter the filename, filename extension, and the
protection, or

b. delete a file associated with a specified channel
on a directory device.

INPUT
IN (pp. 3-198) transmits data from the file selected on the specified

channel to the user's core area.

OUTPUT
ouT (pp. 3-198) transmits data from the user's core area to the

file selected on the specified channel.
CLOSE (pp. 3-203) terminates data transmission on the specified chammel.
RELEASE(pp. 3-205) releases the channel.
The following is an example of a MACRO 10 program which merely reads

a string on one-digit octal numbers, ignoring all other characters, from

an ASCII text file called DATA.FIL. It then sums these digits and prints

out their octal sum on the TTY,.

TITLE ADDER

P gvE ACGUHULATORI SYNBOLIC NAMES

Apd
AS82
010178y
SuUM=d
COUNTSY
PNTsé

i BEFINE 1/0 CHANNEL
INCHNBY

INOW BEGIN
sTART1 INTY INCHN, 4

SIABLY 08K/
XWh 8, {BUF

JRST NOTAVL
INBUF INCHN, 4
LOOKUR {NCHN, INNAME
JRST NOEPND

} PREFPARE T0 STARY SUMMING
SETEM SUM

LOOPL1 JSR GETCHR
calc DIGIY,87
CAIGE DIG1T,40
JRSY LOOPY
sust BDIGIT, 8P

ADDM DIGIT,SUM
JRST LOOPY

PINITIALIZE INPUT CHMANNEL IN
1ASCI1 LINE MODE

ILOGICAL DEVICE NAME IS8 0SK
SNEED *0 GIVE NAME OF INPUTY
JIQUFFER HEADER ONLY, SINCE WE
JONLY WISH TO {NPUT FROM TWIS
jREVICE,

16O YO ERROR RAUTINE }F DEVICE
118 NOP AVAILABLE,

ISMALL AMOUNT OF DATA, WE ONLY
INEED § BUFFER IN RING,

1L00K UP FILE WHIGH 1S DESCRIBED
1IN INNAME, ‘

IERROR 1F FILE NOT FOUND

FPINIYLIALIZE SUM 1O ZERO

IGETCHR RETURNS W1TH ASCI! CHAR
}IN DIGIT

IMAKE BURE ASCII CHAR IS REALLY
IAN OCYAL DIGIY

117 1798 NOT, 1GNORE T AND GO
JGET ANOTMER CHAR

1GET AcTUAL VALVE OF ASCI] OCTAL
lD!G!T.

FADD DIGLY TO siv

IGO0 GEY NEXT DUGITY

INEOPI IWMEN THME END OF FILE IS REACHED ON THE INPUT FILE
JTHE GETCHMR SUBROUTINE WILL TRANSPER CONTRAOL YO HERE,

INOW THE VALUE IN SUM MUST BE CONVERTED YO AN ASCII STRING
JOP OCYAL OIGITS Yo BE QUTPUT TO THE TTY,

MOVE PNT:QUTENTY

MOVS] COUNT, =14
MOVE A1,5UN

LOOP2) SETIM A
LSHE Ay3
CAMN PNY, 0UPPNT

JLOAD PNT WITH A BYTE POINYER
JINTO THE AREA THE RESULT 18 TO
1BE STORED INTS,

IMAXIMUM OF 12 DIGIT RESULT

} CASSUMING NO OVERPLOW)

JTHE QCTAL DIGEITS CAN BE .
10BTAINED BY S{MPLY SHIFTING THE
ISUM 3 BITS AT A TIME INTOD
IREGISYER 4,

JINITIALIZE A

IMOVE LEFT 3 BITS OF AL INTO A
11F POINTER HAS CHANGED, SXIP

-B2-

| OVER TEST FOR LEADING ZEROC

JUMPE AILEND?2 lir LEADING HERQO JUST INCREMENT
(COUNTER BUT DON'T QUTPUT,

ADOI AB® | MAKE INTC ASCtl CHAR

IDPB AiPNT (PUT CHAR INTO TTV OUTPUT BUFFER

AOBJN COUNT,LOOP2 JIF THERE ARE MORE DIGITS LEFT,
IGO GET THEM TOQO

MOVEI AlO

IDPB A PNT ISTORE AN ASCIlI NULL AT END OF
«STRING

OQUTSTR OUTMSG (THIS SPECIAL PROGRAMMED

QUTSTR OQUtWRO | OPERATOR OUTPUTS AN ASCII
(STRING TC A TTYtSTRING IS
TERMINATED BY A NULL)

EXITTI CALL CSIXBIT /EXIT/3 (SPECIAL FUNCTION TO GRACE*

(
(
(FULLY TERMINATE THE EXECUTION
(OF A PROGRAM,

1TME FOLLOWING SUBROUTINE IS USED TO INPUT ONE ASCII CHAR

GETCHRI 3 {(RETURN ADDRESS IS STORED HERE

GETNXTI SOSLE [BUF*2 (OECREMENT THE BYTE COUNT

JRST GETOK (NON-ZERO RESULT MEANS MORE
(CHARS LEFT IN BUFFER

IN INCHM, (GET NEXT BUFFER PROM MONITOR

JRST GETOK (RETURN WHEN BUFFER 18 FULL

STATZ INCHN,740000 JIN OOF3 A SKIP RETURN IF THERE
(WAS AN ERRCR ON INPUT. THE
(STATUS BITS MUST BE TESTED TO
JDETERMINE WHAT KJMO OF ERROR,

JRST INERR (NOT END"OF"FILE, GO PROCESS THE
| ERROR
JRST INEOF (END OF FILE RETURN TO NEXT

IPHASE OF PROGRAM,

GETOKI ILDB DIGIT,'BUP™*1 (GET CHAR FROM BUFFER
JUMPN DIGIT,»GETCHR (IF NOT NULL CHAP, RETURN TO
(CALLING PLACE WHOSE ADDRESS IS
(STORED IN GETCHR,
(

JRST GETNXT IGNORE NULL AND GET NEXT CHAR,

(NEXT COME SOME ERROR ROUTINES WHICH TYPE OUT ERROR MESSAGES
jTC EXPLAIN ERRORS RECEIVED BY THE PROGRAM,

INERR! CUTSTR INPMSG (OUTPUT MESSAGE AND
JRST EXITT (EXIT FROM PROGRAM

INPMSGI ASCIZ /[ERROR WHILE READING INPUT FILE/
NOTAVLI OQUTSTR AVLMSG
JRST EXITT
AVLMSGI ASCIH /IDEVICE NOT AVAILABLE/
NOTFNDI OQUTSTR FILASG
JRST EXITT

FILMSGt ASCI* /FILE WAS NCT FOUND/

-83-

PR o gk sy sk fe ko m o - R T T N P S,
B e i g W e

INOW TO DEFINE SOME CONSTANTS AND DATA

1BUFE BLOCK 3 JTHIS 1S THE INPUY BUFPER WEADER
INNAMET SIXBIY /DATA/ INAME OF DATA PILE

s1xelY /riL/ JEXTENSION OF DATA FILE

¢)

2 117 WIS IS LEPT " TWE OWNER

10F THE FILE 18 ASSUMED YO BE
ITHE USER RUNNING THIS PROGRAM,
JTHIS NUMBER CAN BE OBTAINED BY
JRUNNING THE "MPN" CUSP,

OUTPNTI POINT 7,0UTWRD JPOINTER 10 OUTWRD WHERE THE
IASCi] REPRESENTATION OF THE SUM
e JOF THE DIGITS IS YO BE STORED,
OUFMSGE ASCII /esstWE SUM OF THE DIGITS IS /
oUtWRDY BLOCK 4

END START

The following is an example of a terminal session in which a data
file for tha ADDER.MAC example program is created, and the exemple program

{assumed to exist on dsk) is assembled, loaded, and executed.

-84a

+LOG
LB 17 CMUL0A 6+U10/DEC 5502.8/D TT740
#27991DRQ “;Your usage number goes here.

SS5wWiiDe ;Type your password here. It will not be echoed.
2l 41 17-JuL=-172 ;The system.will respond with a greet message.

DN 7=17e++OLL STRUCLTUGES I3 S¢STEMe v 3TSIMEWS (7-7)

:To run the ADDER program which we assume is on disk
jirom a previous secession, the data file must fir
1first be created.

LLAEATE DATE.FIL

{el oo | 2 35é420%06 T 8.9,
a200 $

*E

EX VT :Now that the data file has been created, we can
sexecute the ADDER program.

:We can assemble,load,and execute ADDER in

;jthree seperate steps, or we can gimply uvae the
;EXECUTE command to do all three.

LEXCCUME ADOER.MNAC

RO: ADDE :This statement indicates that cthe MACRO 10
;assembler is now assembling.
Lonp NG ;The loader is now loading the relocatable file

iproduced by the agsembler,

LOA omfm CORE

ﬂﬁﬂg&g}jﬂ? :Begin exacution.

FILE WAS NoT FOUND ;This message is coming from the ADDER program.

T ;It says there {s no file called DATA,FIL. If
iwe look back we see a spelling error inm the
;GREATE.

;:We can correct this error by using the RENAME
scommand to change the name of the data file.

, RENAME DATA. FLL=DATE. FI L

ElLES RENAMED:
DATEELL o3

EX

LoapiNg
MOADER LK CORE
EXECVIION

¥ALTeE SUM OF THE DIGITS IS 35
AT

N ¥ald
ADSK DA TA-FIL/NEDSK: DATALFiL
0"

2EX
LOA DING

LWADER 1K CORE
EcuTioN
WITHE SUM OF THE OLGITS IS 34

2.3y

KB
DONFIRMY U

DSKA:
DSK@:
DATA +FIL

055> 5. BLKS i P

ADOER -REL <0§5> §. BLKS ¢ K

JB 2, USEL L7991IDOO

LOGGED OFF TTYl

-85-

;Try executing ADDER again.
;Since the relocatable file already exists, the
;assembly step has been skipped.

;I1f we look back to the data file, the sum of the
;octal digits should be 34(we ignore the 8,9,and E),
;But notice, there is an octal non-zero digit in
;the line numbere the line number was included as
ipart of the data string.

;We can use "PIP" to remove the line numbers
;from the file.

;This command aimply causes the file to be
irewritten without the line numbers.

;jAgain execute the program.

;The sum 18 now correct.

;To get off the system it's necessary to execute
:the "KJOB" command which returns all 1/0 devices
;to the system device pool. In addition, if there
;are any files on our disk area, the monitor
sresponds with "CONFIRM:" to which we have
;several options, described on page 2-17 of the
;Timesharing Handbook.

;"'U" says list all unprotected files so they
;can either be protected or deleted,

;Here we've said protect the data file ,

;but delete the relocatable ADDER file.

;The monitor responds with gome file statistics
yand accounting information.

1420 20-AUG-"71

DELETED I FILES (5. DISK BLOCRS)
SAVED 7 FILES (85. DISK BLOCKS)
SONTIVME O MIN; 03.75 SEC

KILOCORE SEC: 23

CONNECT TIME U His 4 MINs 37 SEC

TOTAL CHARGE: 5033

http://tt.Lls.TKD
http://FIL.ES

-B&a -

MLISP
M. Rychener

The following 1s from the MLISP Manual by D.C. Smith (Stanford AIM-135,
October, 1970).

Most programming languages are designed w|th the Idea that the syntax
should be structured to produce efficient code for the computer.
Fortran and Algel are outstanding examples, Yet, It Is apparent that
HUMANS =zpend more t|me with any given program than the COMPUTER .
Therefore, It has been our Intention to construct a language which Is
as transparently ¢|ear and understandable to a HUMAN BEING as
possible, Considerable effort has been spent to make the svyntax
concise and uncluttered. It reduces the number of parentheses
requlred by LISP, Introduces a maore mnemonic and natural notatlon,
clarifies the flow of control and permits comments . Scme
"meta-exXxpress Ions" are added to Impreve the I I st-processIng power of
LISE. Strings and string manipulation featuresg, particularly ugseful
for Input/output, are Included, In addition, a subkstantial amcunt of
redundancy has been built Inta the language, permitting the
praogrammer to choose the most natural way of writing reoutines from a
varlety cf pocss|b|I Ities.

LISP TIs a T Tst-processIng and symbe|-man Ipul at Ton language created at

MIT by John McCarthy and hls gstudents (McCarthy, 1965, The
cutstanding features cf LISP are: (1} the simplest and most elegant
syntax of any language In existence, (2) high-1level symbol
manipulation capabilities, (3) an efficient set of 1list-processing
primitivesg* and (4) an cagily-usable power cf recursiocn.
Furthermore, LISP autcomatically handles all Internal storage
management, freeing the user to concentrate on problem solving, This
Is the single most Important Improvement over the other major
list-processing language, IPBL-V, LISP has found applicaticns In many
Important artificial Intel I Igenee Investigat|cons, IncIudlng symbol Ic

mathrratlcs, natural - I anguage handling, thecrem proving and logic.

Unfortunately, there are several Important weaknesses In LISPE.
Anyone who has attempted to understand a LISP program written by
anather programmer {or even by himself a month earlier) gqulckly
becomes aware of several difficulties:

A, The flow of control Is very difficult te follow. In fact, It
iz about as difficult to follow as machine language or Fertran, This
makes understanding the purpcse of routines (J.e, what do they do?)
difficult. Since comments are not usually Permitted, the programmer
Is unable to provide written assistance.

B, An Incrdinate amcunt of time must be gspent balancing
parentheses, whethexr In writing a LISP program cr trying to
understand one, It TIs freguently difflcult teo determine where one
expression ends and ancther kbegins, Formatting utility routines

pretty-pr |nt*) he|p; but every LISP programmer knows the dubicus
pleasure of laboriously matching left and right parentheses In a
function, when all he knows Is that one is missing scmewhere! !
C The notation of LISP (prefix notation for functions,

B

parentheses around all functions and arguments, etc.), while uniform

-87-

ML ISP [NTRODUCTION - SECTION 1 4

from a |oglclants point of vlaw, Is far from the most natural or
mnemoni¢ for a language, This c¢clumsy notation a|se makes |t
diffleujt to wunderstand LISP oprograms, SInce MLISP programs are
transliated Inte L]ISP s-gxpresslons, all of thes elagance of LISP |s=
nresarved at the trans|ated Jevel; but the unpleasant aspacts at the
surface |evel are e|{Iminated,

0, Thera are Important omlsslons |n the |lst=processing
capablllties of LISP, These are somewhat ramedled by the MLISP
"meta~axpreassjions", exprassiona which have no direct LISP

corraspondence but |{nstepad sre trangs|ated Into seguences of LISP
Instructlons, The MLISP mata-expresslons are the FQR expresslan,
WHILE exprass|oen, UNTIL wsxpresslon, Index axpression, ass|/gnmant
expressifon, and vector operationa, The particular deflclency mach of
these attempts to overcome Is dlacussed in the subsection of SECTION
3 deascribing the meta~axpresslon |n detail,

MLISP was written at Stanford University by Horace Epea for the IBM
362/67 (Enea, 1968), The present author has implemented MLISP on the
PDPwid tIime~shared computer. He has rewrjtten the transiator,
expanded and simpllfled the syntax, and Improved <*the run=-time
routines, All of the changas and edditlons are |Intended elther to
maks the janguage more readable and understandable or to make |t mare
powarful,

MLISP programs are flrst translated into LISP programs, anmd than
these are passad to the LISP |nterpreter or compller, As 1ts name
Implles, MLISP (s a "meta«LISP" tlanguage; MLISP programs may be
viewad as a superstrugture aver the underiying LISP processor, Al
af the uynderlylng LISP funct|ons ere avajlabla to MLISP programs, In
addltlon to severa! powerful] MLISP run-time routines, The purpose of
having sueh a superstructure Is to Improve the reagablitlity and
writeab|l|ty of LISP, long (In)famous for 1ts obscurlty, Simce LISP
1s one of the most sg|egant and powerful symbol|-manlpulation languages
(but not ong of the most readablje), |t seems approprlate to ¢try fto
facllitate the use of It,

MLISP has baen runnjng for several years on the Stanford FDP=19
time~shared c¢omputer, [t has been distriputed to the DEC User
Services Group (DECYSY, The MLISP translator and run=time roautines
are themselves gcomplled LISP programs, The Stanford verslon runs
under the Stanford LISP 1,6 system (Quam, 1949), Some affort has
been Made to keap the translator as machlne Indepandent as possible;
Iln theory MLISP cou|d be Implemented on any machine wlith a working
LISP system by maklng only minor changes, The one probable sxceptlon
to this Is the MLISP scanner: te enable scanning {whare most of the
tima Is spent) tg be as efficlent as posslipla, the trans|ator uses
machinae tanguage scannlng routines, White these routlnes have
greatly Jnereasad transl|ation speed (MLISP now transliates at a rate
of 3200-5P9QQ)lnas per minute,), thelr use means that soemeocne wishing

-88-

MLI1SF INTRODUCTICN - SECTION 1 5

to Implement MLISP on a system without LISP 1,6 wiil have to use an
equlvalent scanner package, For this reason, a whole Sectfion of this
manua| (SECTION 7) |s devoted to presenting an equivalent scanner,

While LISP was created wlth the goa| of belng machine independent, It
has turned out that most LISP systems have unlique features, The
sftuation Is so difficult that Anthony Hoarn has attempted to def|ne
"a wunlform subset of LISP 1,5 capable of assembiy under a wide range
of exlsting compliers and Interpreters,”™ called STANDARD LISP (Hearn,
1969, MLISP helps to allevliate this sltuation by Introducing
another |evel of machline Independence: to Impiement MLISP on a given
LISP system, one changes the underlylng transiator rather than the
surface syntax, Dr, Hearn has al|so constructed apn MLISP-like
language called REDYCE (HEARN, 1970),

For sample exercises, see the Lisp section of this document. There also is
a program available on SYS:, writtep in MLisp, called MEXPR, In that program,
the function convert tékes a lisp source-filename, reads the file, and writes
an MLisp equivalent of the file. A slightly augmented version of MEXPR is a-

vailable from M. Rychener, SCH 4211.

-89.

« 3 MLISP SCRIPT

.TY ICSCR.MLI

00100 BEGIN -
00200. EXPR MLISTN()$ % READ - EVAL MLISP EXPRS %

00300 AHILE T DO BEGIN. _
00400 TERPRI(NIL)$ PRINC(":");
00500 PRINT EVAL MTRANS()j

00600 END3

00700 END.

<R MLISP
*(MLISP (ICSCR.MLI)) -

* .

MLISTN

*

0. SECONDS TRANSLATION TIME
0. ERrRORS #kRE DETECTED

O, FUNCTIONS wWERE REDEFINED

kk=END=OF ~RUN ~%%x%
*(MLISTN)

ax. % NOAN NE/RE TALKING TO MTRANS, WHICH TRANSLATES AN MLISP EXPRESSEION
* INTO LISP. THIS LISP IS TAKEN BY THE ROUTINE MLISTN ABOVE AND

* EVAL/D, THEN PRINT’D, MUCH LIKz THE TOP LEVEL OF LISTNT\P %

*EXPR FACT(N)s IF ZEROP N THEN 1 ELSE N*ANANFACT(N-1)3

FACT
NIL
s*FACT(3) 3

6.
sxFACT(7) 5
5040,

% % COMPARE THAT DEFINITION OF FACT TO THE FOLLOWING LISP EQUIVALENTY
* EVAL 4 (GRINDEF FACT) 3

-90-

(DEFPROP FACT

(LAMBDA (1M} (CCND ((ZERCP N) 1.) (T (TIMES N (FACT (SUBL N)!)}))
EXPR)

NIL
ei* &% NOW TRY AN ITERATIVE VERSICN
*EXPR FACT2 (N); BEGIN NEW M1 M 1. I DO BEGIN M _ M*N;

o

FACT2 * N _N-1; END UNTIL ZEROP N; RETURN M END;
NIL

c*FACT2 (3) ; !

:*FACT2(7);
3040.
(*FACT2 4,

24,

:* ¥PARENTH ER\ R\ S E S ARE NOT NECESSARY AROUND UNARY FUNCTICNS %

*EVL\L\AL ' (GRINDEF FACT2)
(DEFPROP FACTZ

(LAMBOA (N}
(PROG (M)
(SETQ M1.)
(ADO (QUOTE FEBROG2)
(QUCTE
(PROG NIL ({(SETQ M (TIMES M N))} {(SETQ N {(SUBL N))}))
(QUOTE (ZERQP N))
(RETURN M))) '
EXPR)
nIL
»* % ADO IS AN MLISP FUNCTION TO PERFORM THE INDE\E\ICATEDe ACTION.
* WITHIN THE MLISP INTERPRETER %

* % THE ABOVE CALLS TO GRINDEF ILLUSTA\A\RATE HOW TC SPEAK IN LISP

* TO THE FUNCTION MTRAN'S, IN CASE IT DOESN'T. LIKE WHAT YQU'VE TRIED
* TO TYPE IN MLISP. FOR INSTANCE **\s %

¢ GRINDEF (FACT) ;

-91-

*%% ERROR IN TOP-LEVEL

. #%x [LLEGAL SYMBOL BEGINNING A SIMPLE EXPRESSION

~*x%% CURRENT SYMBOL IS) . _
**xx SKIPPING T(O NEXT SEMICOLON

% ERROR IN TOP-LEVEL

*%% [LLEGAL ARGUMENT

*%% CURRENT SYMBOL IS 3 :
*%kx SKIPPING TO NEXT SEMICOLON

(DEFPROP (FACT NIL)
(NIL)
VALUE)

NTL - o . ' ' .
¢x % SOMEHON, MTRANS DOSNSN\ESWH/T LIKE TO SEE GRINDEF %
*CDR 4 (G\G(\GRINDEF 3

(FSUBR #6164 PNAME (#50763 #50764)) ,
tx % PERHAPS BECAUSE IT/S AN FSUBR % EVAL Z(GRINDEF FACT) & #%DOES WORK,
HONEVER % :

(D=FPROP FACT : ‘ o
(LAMBDA (W) (COND ((ZEROP nN) 1.3 (T (TIMES N (FACT (SUBI d))))))
EXPR))

HIL ' _ '
tx % MLISP DOESN’T REQUIRE PARENTHESE FOR BINARY FUNCTIONS EITHER :%
*2% MEMBER (A B CDXY Z) 3

T :
tx/(A B C) CONS #(D E F) 3

(CABCYDEEF) :
2 x/(A 8 C) @ 2D E F) 3

(A B CDceF)

i% % @ 1S USED FOR APPEND % <A, 4B\B,,A<\ C<ALB,C> 4 <D, E,F>3
A

U~BOUND VARIABLE - EVAL

RACKTRACE

MAPLIST-? LIST-*EVAL PRINT=- tVALARGS PROC—*;VAL RAHILE-*EVAL ?2-%EVAL
*(ALISTN) '

-92a

¢% %LISP ERRORS TAKE US BACK TO LISP READ-EVAL LLOOP
* THE ERROR +1AS OMMITTING QUOTES ABOVE % <A, 783> 4 <7C,"7U>3

(43 C D) .

:x ZANGENENLE BRACKETS DENOTE. THE LIST FUNCTION I “YLISP %
% UTRAAS() 3 _

* <PALTH>G

(LIST (QUGTE A3 (NUOT=z B
pezXPR HAVE(X)S X3 '

HAVE

AIL :

twiE A pd ATININTHEXY Y3 ~U

FoAdl WITH(X Y)3 REUNINTURN 20K 3

Wl T
HIL
sxHAVE FlUn HITH MLISP3

FAFEXSR ATHNHNTHOX, Y03 20K 8

AITH %%k ARNING, FUNCTION REDEFINED

WEL :
txHAYeE FUd oITY MLISP! 3

0K
swEEXbd wIHNANTHOR Y) 20K 4

AITH *dk HARNING, FJNCTIDN QeDEFIAED

HIL _
s*HAVE UNNAUN"U

~U

HAYE FUN oITH MLISP!Y 3

Dk 1l
LR 2

1
—

-93.

PIP - Peripheral Interface Program

B, Anderson

FIF is a basic systems program of the PDP-10 which provides the user
with the necessary facilities for handling existing data files. Actions
possible, among others, are transferring files from one standard I/0 device
to another standard I/0 device, listing and deleting directories, simple
editing, changing protection codes, and controlling wmagnetic tape functions.
The following script shows the typical uses and efficient methods for

handling such uses.

REFERENCES

(1] PDP-10 Reference Handbook, pp. 585-596.

-94.

A8 DTA

DTA2 ASSIGNED v ®

e e AJtt: w CWYV 4c.MxceS

DTA4 ASSIGNLED I =EQEN < ~

+PLEASE MOUNT BAO3IBC ON DTAZ ENABLED AND BAO3IDF ON DTA4 ENABLLD
OPERATOR HAS BEEN MNOTIFIED

BAG3IBC I8 ON DTA2 AND BAO3IDF 18 ON DTA4 BOTH ENABLED

THANK YOU

tC
*ROPILP
] COPYING FILES
TUNDERLINING DENOTES SYSTEM TYPEOUT
:SEMI COLONS DENOTE COMMENTS
FDSK:A EXT-DSK:B.EXT i A COPY OF B.EXNT CALLED A.EXT
18 MADE ON DISK. ANY FORMER
{CONTENTS OF A* EXT ARE LOST
*DTA2:A EXT-DSK;B.EXTCQ502BA033 JB.EXT FROM O3502BA03'S DISK
JAREA 18 COPIED ONTO TIE USELER'S
:DISK AREA WITH THE NAME A.EXT,
cPROVIDED B.EXT IS NOT READ
:PROTECTED
*LPT:-DSK:B.EXT ;,LPT IS A NON-DIRECTORY DEVICE
:AND 80 A FILENAME IS NOT
:REQUIRED, IF ONE 18 GIVEN, IT
1§ IGNORED
*DTA2:A EXT-DSK:B.ENXT. CEXT : B.EXT AND CEXT TFROM DISK APE
: COPIED ONTO DTAZ 1IN THE ORDER
- SPECIFIED AND COMBINED IN THE
I FILE A.LXT
FPDTA2Z: A EXTe-DTAd: ¥ MAC ALL FILES WITH MAC EXTENSIONS
;ON DTA4 ARE COMBINED IN A EXT
0N DTA2
DTA2: AL EXT-DTA4: TILE.* .ALL TILLS WITHH TIHL TFILENAME
cFILE, REGARDLESS OF EXTENSION,
:ARL COMBINED IN A.EXT ON DTAZ
IDTA2; A, EXT«-DTA4: * ;ALL FILES ON DTA4 APE COPIED
(iIMTO A EXT ON DTA2
*DSK: FILE1-DTA2: A EXT, DTA4: FILE.MAC A EXT FROM DTA2 AND

:FILE.MAC FROM DTA4 ARE COPIED
INTO rFILE1 ON DI SK

-95.

FJEND OF FILE ON TTY 1S DENGTED BY tZ (CONTROL Z)

*DSK:AEXTeTTY!? .

THE TEXT OF THE FILE GOES HERE
AND HERE

tZ

iTHE TEXT OF THE TTY FILE IS5
fsCOPIED INTO A.EXT ON DiISK

iCOPYING SPECIFIED FILES WITHOUT COMBINING THEM.

7 ORDINARILY ONLY ONE DESTINATION FILE IS PERMITTED BY
5PIP. THE X SWITCH ALLOWS FILES TO BE COPIED AS THEY
FARE, KEEPING THEIR NAMES AND INDIVIDUAL FILE STATUS

AD5K: /X-DTAZ; A« EXT

iDSHffX*DTAQIA-EXT:DTﬂﬂlFILE-MQC

*DTAZ: {DX)+DSK: A« EXT,sB.EXT

$DELETING FILES

*#DSK: /D-DSK:1FILE.MAC
FILES DELETED:
FILE.MAC 151

*DTA2: /X+DSKt FILE+MAC
7 NO FILE NAMED FILE.MAC

JA.EXT 15 COPIED TO DISK WITH
¢ THE SAME NAME .

FA+EXT AND FILE.MAC ARE EACH
JCOPIED TO DISK WITH THE SAME
FNAMES N

J(DX) DENOTES TO COPY ALL FILES
s EXCEPT THOSE SPECIFIED. ALL
FFILES EXCEPT A«EXT AND B.EXT

s ARE COPIED TD DBTAS '

JFILE«MAC 15 DELETED FROM THE
$DISKY PIP TELLS YOU SD

sFILE-MAC HAS BEEN DELETEDs PIP
STELLS YOU IT IS5 NOT THERE

3RENAMING FILES

*DSK:FILE2/R<DSKtBe EXT
FILES RENAMED:
B« EXT a5

*DSK: A« EXT/R~DSK: R« EXT
? NQ FILE NAMED B.EXT

3DSHiBek /R+DSK2 Ak
FILES RENAMED:
A« EXT a5 :

-96-

JR+EXT IS RENAMED AS FILEZ2.
JIF /R WERE LEFT OUT, ANOTHER
s COPY OF B.EXT WOULD RBE HMADE
5 CALLED FILE®2

;B.EXT WAS RENAMED AROVE AND S0
$NO LONGER EXISTS UNDER THAT
i NAME

JALL FILES WITH THE FILENAME A
s ARE RENAMED WITH FILENAME R
s AND THE SAME EXTENSIONS

5 CHANGING FILE PROTECTIONS

%DSK: /R<155>=DSK: Be EXT
FILES RENAMED:
B.EXT _ @15

*¥DEK: A« EXT<155>+D5K: Bs EXT

KXDSK etk ek< 155> /R DSK % +%
FILES RENAMED:

FILEZ A5
Ce EXT a5
B.EXT _ @5
FILE1

Ha FOIT A5

ADSKik ek <1 55> /R-DSK %« EXT
FILES RENAMED:

FBWEXT'S PROTECTION IS5 MADE 155.
+ DEFAULT PROTECTION IS @855

SBEXT IS COPIED INTO A.EXT
SWITH THE PROTECTION 1535.
JKEEPS ITS5. OLD PROTECTION

Re EXT

JALL FILES ARE RENAMED TO THEIR
5 SAME NAMES, RUT THEILIR
SPROTECTIONS ARE CHANGED TO 155

$alL FILES WITH EXT EXTENSIONES
3 GET THE PROTECTION CODE 155

:p?hQ:/Z*

$ ZEROING A DECTAFPE DIREGTORY

*DTA2tA.EXT/Z+~DSK? Be EXT

TTY:/L~DSKi*e*

sGETTING A DIRECTORY LISTING

-97-

3DTA2'S DIRECTORY 1S ZEROED OUT

3FIRST THE DIRECTORY IS ZEROED
JAND THEN B.EXT 1S COPIED INTO
‘;A.EXT o

DI RECTORY Q5@2BAG3 14136 25-AUG-T7]
DSKB: . N
FILE2 @5 <155> 25=-AUG-71
[EXT g5 <]155> 25 AlIG=71
5. EXT @5 <155> 25-AUG-71
FITE] a5 <1555 55-alUG-71
A EXT a5 <155> 25-AUG~7]
TOTAL BLOCKS 25
DSKA:
*TTY: /Le . i
DI RECTORY QS@2BAB3 14:37 25-AUG-17]
KRz . X
FILE? @5 <155> 25-aUG-71
C EXT @5 <155> 95-AUG=71
B EXT 35 <155> 25-AUG=71
FILE] as <155 o516~ 71
Py EXT @5, <155> 25-alUG=71
10TAL BLOCKS 25

DSKA:

A®LPT: /L+DTAZ2t% %

*TTY:/L/Fe
DSKR:

EILE2 :
C EXT
B - EXT
FILEL

A EXT

3A DIRECTORY OF YOUR .DI 8K
3 AREA PRINTS ON THE TTY.

3THIS IS EQUIVALENT TO

3 THE NEXT EXAMPLE

;A DIRECTORY OF ALL FILES ON
s DTAZ PRINTS ON THE LINE PRINTER

3A SHORT DIRECTORY. LISTING ONLY
JFILENAMES, PRINTS ON THE TTY

-98-

INSERTING OR ELIMINATING SEQUENCE NUMBERS

%DSK: /X/S+DSK: Ae EXT 3RESEQUENCES OR ADDS SEOUENCE
$NUMRERS, INGREMENTED RY 16,
ITO AEXT

*DSK: /X/N*DSK2 Ae EXT 3 ANY SEQUENCE NUMBERS IN A.EXT

} ARE DELETED

*LPTt /N=DSK: A« EXT sCOPY THE FILE ON THE
JLPT WITHOUT SEQUENCE NUMBERS

JLESS FREQUENTLY USED SWiTCHES, INCLUDING MAGTAPE
3CONTROL SWITCHES, CAN BE FOUND IN THE REFERENCE

SHANDBOOK, PAGES 6-=9 TO 6-23.
JAFTER FINISHING WITH YOUR DECTAPE, ALVAYS HAVE THE

$0OPERATOR DISMOUNT THE TAPE. THEN DEASSIGN THE UNIT

+PLEASE DISMOUNT BAG3BC AND BAG3DF FROM DTA'S 2 AND 4
OPERATOR HAS BFEEN NOTIFIED

TAPES DISMOUNTED

1C

JWAIT UNTIL THE TAPES ARE
3 DI SMOUNTED DEFORE DEASSIGNING
JTHE UNITS

- «DEAS DTA2

+DEAS DTA4

-99 -

PPL

3. Gerhart

PPL (Polymorphic Programming Language) was developed by Tim Standish,
formerly of CMU and now at Harvard. PPL is a conversational, extensible
language, 1in many respects like APL. C(onversaticonal features include line
and character editing of functions, trace and suspension, and I/0 to tele-
tvpes. Also, functions may be written onto files and edited by TECO or
S0S5.

PPL is a typeless language with extensibility for operator and data
definitions. Built-in types includes integer, real, double precision,
Booleau, and string, with the usual operators for atomic data. Data
definitions for structures, variadic sequences, fixed sequences, and alternates
may be given, each having association construction, predicate, and selection
operationsg. New operatorg are defined by associating user-defined functicns
with strings. Other features are Iversconian precedence, structure sharing,
and both call by reference and call by value.

PPL is not supported here but is falrly stable. A gocd users’ manual
is available in the Computer Science Department Library. PPL is recommended
for programg which require variability of data structures, structured data

repregentation, and conversation.

A
Suew! ~100-

«B PPL
PPL.26 31-JaN-71
READ("PROTO™)

WRITEC()
BINARY("&™",CATAND)
UNARY (@', RETURN)
SLIST = {1t] GENERAL
$CATANDC A2 B)
[l AND{C(AS=LISTY»B==LIST)-->CAT.0OP

(2] ««>3CATAND-AND(A,B)
[3] CAT.0P: CATAND-CONCATCA.,B)

L
SFRETURNCEAD
£11 RETURN+3
3
FAPPENDC(ASL?Y
[13 NOT(L==LIST)-->*ERROR «ss == I5 THE "INSTANCE OF" OPERATOUR
£21 -->8APPEND~LELISTCA)
[3) ERROR: PRINT("APPEND TRIED ON NONLIST')
Lail 7
&

SEXPLANATION
[l ++4@ IS5 A DEFINED OPERATOR WHICH COMPUTES AND EXPRESSION
[2] ...THEN RETURNS FROM A FUNCTION(BRANCH TO & IS5 AN EXIT)Y.
L3l
[4) ++e& I5 THE BUILT-IN SYMBOL FOR THE '"AND" OPERATOR
[5] +..HERE, & IS5 REDEFINED TO HAVE THE MEANING CATENATION WHEN
6] +.«ITS5 QPERANDS ARE BOTH LISTS.
[71 :
[8) .22 A LIST IS5 DEFINED A5 A VARIADIC SEQUENCE WITH ELEMENTS OF
9] «..ANY TYPE IN THE SYSTEM.

%

XeLISTC(L1s2,32
Y~LIST(6.5)
AEY
[1,25,3,6,51
APPENDCX,Y)
[6s5,01,2531]
APPEND{ X LISTC))

[C1:2531]

RL2I-Y

X
[1-0{6451531

W==LIST
TRUE

XL11==LIST

FALSE

-107-

SAIL

J. Nugent

INTRODUCTION

SAIL is a high-level programing system for the PDP-10 computer,
developed at the Stanford AT Project to be the major language for the hand-
eye robot project. It includes an extended Algol compiler and a companion
set of execution-time routines. A non-standard Algol 60 compiler is extended
to provide facilitles for describing manipulations of an associative data
structure. This structure contains information about items, stored as
unordered collections of items (sets) or as ordered triples of items
{associations). The algebraic capabilities of the language are linked to
the associative capabilities by menas of the datum operator, which can
associate an algebraic datum with any item.

The associative data structure is a slightly reworked version of the
LEAP language, which was designed by J. Feldman and P. Rovner, and implemented
on Lincoln Laboratory's TX-2. This language is described in some detail in
an article entitled "An Algol-Based Associative Language' in the August, 1969,

issue of the ACM Communications (Feldman and Rovmer). The implementation

was modified to tolerate the non-paging enviromment of the PDP-10.

SAIL in a sense has something for everyone. For those who think in
Algol, SAIL has Algol. For those who want the most from the PDP-10 and the
time-sharing system, SAIL allows flexible linking to hand-coded machine
language programs, as well as inclusion of machine language instructions in
SATL source programs. For those who have complex input/output requirements,
the languape provides complete access to the I/0 facilities of the PDP-1D

system. For those who aspire to speed, SAIL generates fairly good code.

http://c3p3hiXiti.es

-102-

The user should, however, be warned that SAIL falls several man-decades
short of the extensive testing and optimization efforts contained in the

histories of most commercial compilers.

COMPILER OPERATION

SAIL accepts commands in the same format as other DEC processors, i.e.,
<Binary>, <listing> « <source 1>, <source 2>, . . .

where <Binary>, <listing>, <source 1>, etc., are of the form
Device>: <file name>, <extension> [<PPN>].

If <Device> is omitted, the last device specified will be used. If none has
been given, DSK will be used.
1f <device> is not a disectory device, it is the only specification necessary.

If <extension> is omitted, the following will be assumed:

.REL for binary

.LST for listing

.CRF for CREF listing

+5A1 for source file

(See DEC reference manual for explanations of CREF.)
1f [<PPN>] is omitted, the user's PPN will be used.
Switches, if given, should follow the listing file name. See section 14 of
the SAIL manual for a description of valid switches.

For example,

+R SAIL
* MYPROG « MYPROG

would compile the program MYPROG,SAI and place the output file MYPROG.REL

on the user's disk space.

-103-

The following:
* MYPROG, MYPROG ¢ MYPROG,NEW [A740HU¢d]

would compile the program MYPROG,NEW on HUQQ'S disk area, again generating
output MYPROG.REL, but also creating a listing of the program in MYPROG.LST.

Also:
#DTA2; MYPROG, MTAQ: /C « PTR:

would compile a program read in from paper tape, place output file MYPROG.REL
on DTA2 (dectape), a CREF listing on HTAQ (magtape).

The SAIL compiler can be invoked in the same ways as FORTRAN or MACRO.
The Default extension for SAIL SOURCE PROGRAMS is .5AI.

The COMPILE, EXECUTE, LOAD, or DEBUG commands may be used. For example:

.EX PRGRAM.SAI
.DEB PRGRAM {where the extension is the default for SAIL)

. EX PROG1l, SUBl, SUB2 (where SUBl and SUB2 are separately compiled
procedures)

For details on these commands, see the PDP-10 Reference Manual.
If a CREF listing is to be generated, AICREF must be used instead of
CREF’ i-e.,

+R AICREF
* {commands are the same as for DEC!s CREF.)

—_— — o — — = —

To load a SAIL program, use AILOAD, as above. The correct DDT to use is
(what else?) AIDDT.
If you use DEBUG, EXECUTE, LOAD, etc., they will do the above things

correctly automatically upon seeing the .SAI extension.

NOTE:

-104-

Since SAIL 1s a very fast (onc pass) compiler, it is gecncrally a

good 1dea to delete REL files after using them. This will save space and

avoid possible confusion in the effects of the load, debug and execute

commands*

REFERENCES

|1] Swinehart, D. and R. Sproull, SAIL Manual. (MJ version of May, 1970,
available from Computer Science Department.

[2] Most recent OMJ manual update, available from Computcr Scicnce Dcpartment.

[3] Erman, L., SAIL Pocket Guide (Sailing Chart), available from Computer
Science Department.

[4] Feldman, J. and F. Rowvnar, "An Algol-Based Associative Language," CACM,

12(8). August, 1969, pp. 439-449.

-105-

EXERCISES

1. Write a SAIL program to merge two 505 files, according to
sequence numbers.

2. You are given an M x N matrix of numbers where M and N can be very
large. The values of the entries are 0 - 15. In order to conserve DISK
space, it is desirable to pack the data {each number can be represented in
4 bits) nine entries to a PDP-10 word before writing the matrix onto a
DISK file. Write a SAIL program which does this packing, writes out the

file, reads it in, and "umpacks'" it,

3

-106-

SOME SIMPLE PROGRAMMING EXAMPLES

BEGIN M"FACTrR1ALY
COMMENTY THIS PROGRAM READS NUMBERS FROM Tie TELCTYPE AND
TYPES RASK TwbIR FACTGRIALSS

NDEFINE 1anCOMHENT VorowMENT IS TAD LONGS
DEFINE CRs"'15",[Fs'r12") ' OASCTIY F4R CR OAMT LFS
INTEGER PROGE.URF FACTLINTFGFR NI

BEGIN "FafT®

INTERFEH 13

lel) A POINITIAL VALUE FAS TeE LODPY
FOR Nety STEP -1 UNTIL 1 DO)
Jelevn; t NOTE THAT FCR Ns?2, [wILL BE 1;

RETURNII D)
END nEACTY
INTEGER X;
WHILE TRUE 0O
BEGIN "INFINITE LOOQP®
! WHDM FIMISHFD WITH THE PROGRAM, TYPE C YO BREAK GUT)
QUTSTR(CRALFE"NUMBER, PLEASE:!")}
XeCVDUINCHWL) ! READ THE NUMBER])
QUTSTR(IF X<2 THEN "NOW REALLY™ ELSE CVS(FACTIX)))}
END “INFINITE LOOP™)
END "FACTORIALY;

-107-

2) BEGIN "FIXER®
COMMENT TH!S PROGRAM READS A FILE AND REPLACES ALL OCCURRENCES
OF OLDORR W]TH urucnn THIS 1S ESPECIALLY USEFUL FOR
FIXING UP PILES ORIGINALLY OESPINED FOR TWE LPY, —
WHICH GONYAIN SPECIAL PRINYER EONTROL eMARACRERS <
INSTEAD OF REGULAR LINE FEED CWARACTERS (SUCH
cﬂanacvzas CAUSE SPECIAL PRINTER ACTION, BUT ARE IGNORED
A TELETYPE, MAKING IT IMPOSSIBLE YO PRINT THEM ON
A f:L:#vrti
OEF INE OLDCHRa" 1237, NEWGHRS"'42%]
DEFINE 1E®COMMENT",NOTER"COMMENT™;
LABEL SV}
TRING $:82,33,54)
EGER EEOF ,BRK,D8K{N,DSKOUT,EEEOF
ours RETINPUY FILE®})
S4e INOHWL)
BSKINeGETCHAN}
OPEN(DSKIN, "DSK", 9, 4.4.4aa.anx.:zor:|
%00KUP!DSK!N.S¢.!EOFI! |
F EEQF YHEN USERERR(#,2,"FILE NOT FOUND™)|
AUTSTREMOUTPUY FILE"})
S4eINCHUL)
BSKOUT«GETCHANI
DPEN(DSKOUT . "DSK" 0, 4,4,4080,BRK,EEEQP)
ENTER{OSKQUT,S4,EEEOF))
1F EEEOF THEN USERERR(Q,0,"CANNOY ENYER PILELI!")}
BREAKSET(4sOLDCHR#18%)] ! INPUT BREAK ON
OLOCHR}
WHILE NOT EEOF DO
BEGIN "READ FILE"
NOTE =~ THIS LOOP WILL CONTINUE UNTIL END OF FILE 1S REACHED]
S«INPUT(DSKIN,L}) |
QYT (DSKOUT, 98 ! INPUT ENDED ON EITWER)
(IF BRKSOLDCHR ¥HEN NEWCHR ELSE BRK)}J | OLDCHR OR 4P2 CHARS;
END "READ FILE") _
RELEASE(DSKOUT)J RELEASE (DSKIN)§ ! RELEASE 1/0 DEVICESS
END "FIXER%) ! AND CLOSE FILESS

TYPE PROMPY MESSAGE}
READ INPUYT FILFE NAME}
CHANNEL POR INPUT;
BPEN DSK OM CHANNEL}
LOOK UP THE FILE)

IF EEOF 1T FAILED)
DITTO FOR OUTPUTY

- Se 4w P Aw B. .

-108-

SNOBOL4

Script: 8. Schlesinger

SNOBOL4 is a computer language, developed at Bell Telephone Laboratories,
which contains many features not commonly found in other programming
languages. The basic data element is the string. The language has opera-
tions for joining and separating strings, testing their contents, and
making replacements within them, Strings c¢an be broken down and reassembled
differently. Also, examination of a string for a desired structure of
characters, an operation called pattern matching, is possible and most
powerful. Because SNOBOL4 is mainly character oriented, the numerical
capabilities with both integers and reals exist, but are limited. Array
variables also exist.

Execution of SNOBOL4 is interpretive. This allows easy tracing of
variable values, and the ability to redefine functions during execution.

The language can be extended by using data type definition facilities and
defining operations on these through function definition (i.e., 1lists,

complex numbers) .

REFERENCES

[1] Griswold, R. E., J. F. Pocage, and I. P. Polonsky, The SNOBOL4 Programming
Language, Prentice Hall, 1968.

[2] Modified Chapter 8 of above, for local PDP-1Q, I.0. conventions, available
from Computer Science Department.

[3] SNOBOL.DOC, a printable text file on the PDP-10.

-109-

CMU PDP-10 I/0 Notes - SNOBOL

SNOBOL4 I/0 is similar to FORTRAN I1/0 as described in Griswold, et al.[1]
The following list is the current device assigmments as used for input and

output.

The SNOBOL 10 list of device numbers:

UNIT DEVICE
1 DSK
2 TTY
3 PTR
4 PTP
5 DSK1§ - Program input file.
6 DSK1l - .LST file
7 cDp
8 CDR
9 LPT
14 DTAf
11 DTAl
12 DTA2
13 DTA3
14 DTA4
15 DTAS
16 DTAb
17 DTA7
18 PLT
19 FORTR
24 DSKg
21 DSK1
22 DSK2
23 DSK3
24 DSR4
25 DSK5
26 DSK6
27 DSK7
28 DSK8
29 DSK9
3¢ MTA@
31 MTAl
32 MTA2
33 MTA3
34 MTA&
35 MTAS
36 MTA6
37 MTA7
99 TTCALL

~110-

To perform input and output from within a SNOBOL4 program, variables are
associated with devices or file names, If & variable is associated in an out-
put relation with a device or file then each time the variable is assigned a
value, a copy of the value is written to the device or file. Similarly each
time an input variable is used, a new value is read from the associated de-
vice or file to become the value of the variable,

The function

OQUTPUT {variable pame, unit number, format)
{e.g. QUTPUT ('DONE', 23, '"(1X,20 A5)")]
associates the variable DONE with unit 23 which is a disk device, OQutput
data will be written in the indicated FORTRAN IV format. Unit 23 may be
associated with a particular file by coding the function,
OFILE (unit number, file name)
Input associations are similarly accomplished using
INPUT (variable name, unit number, length)
IFILE (unit number, file name)
where length is the number of characters to be vead into the input variable
each time it is referenced. Files may be closed using ENDFILE (unit number),

Other I/0 functions and an extended discussion of those named here ap-
pears in reference [2]. Examples of these functions appear in the following
script.

There does exist a SNOBQL4 system which permits saving of SNOBOL programs
and variables during execution in order to restart them at a later date.
Documentation on this version of SNOBOL may be obtained from the system file

SNOBLX.DOC,

-111-

SAMPLE PROBLEMS

Write SHOBOL programs to do the following:

1. BRead and print cards, removing all blanks before printing.

2. Read cards and print those beginning with '/*.

3. Read cards and print those not containing '*',

4. Reverse the order of characters in a atring.

5, Count all the wvowels in the input text,

6. Read left-justified text; print it centered on the line.

7. Alphabetize the characters of a string.

&. Count the occurrences of pronouns in English text.

9. Read a deck. For each card, 1if a vowel appears in the first five
columns, print the card as it was read. If not, and if '$' or '*7
appears between columns 60 and 70, reverse the card, prefix two
slashes, and print the result,

10. Read numbers in free form {e.g., separated by commas)}. Every
time you have read ten numbers, print them in columnar format.
Agsume that no number is more than ten characters long.

11. Devise a simple cipher (e.g., letter substitution). Write programs
to encode and decode messages using this cipher. Generalize to
accept a description of the cipher as an input. How complex can you

make the cipher?

-
< HOROL Sev \?E

WMAKE REV.SND - Cvectes Gle REV. S0 awd lo TELD verby Cov

o] DEFINE(*REVERSE(X)A®) 3 ¢ REVEND) "‘a‘\'wﬂ‘
REVERSE X LENCL) « A » $ FCRETURN) :

REVERSE =» SSREVERSE A # { REVERSE) ReveRs®E
REVEND ' o\ wvevsS e

DATA « TRIM{INPUT) p{CFC(END)

OUTPUT « DATA * REVERSED 18 * REVERSE(DATA} & (oY

¢ CREVEND) \

END : AV
SHTSS Pryoms Q'\ ,

DEFINE{ * REVEHSEC(X)A') s (REVEND) E;TV‘TJ
HEVERSE X LENCI) « A = 2 FCRETURND

REVERSE = REVERSE A % (REVERSE)
AEVEND

DATA = TRIMCINPUT) $ FCEND)

QUIPUT = DATA * REVERSED IS * REVERSECDATA)

t C REVEND)

crABCDEFa &(Al X C pveavawm Cle
1834567890 Nte - ke 15 X The end oF } S
SEXSS
EXIT

- -

;:E‘s’uu-n—uij—l—-—-— -“\';5 c.\'{.}cts G C\\L ?\'E,\I, LST t_m.}ia-\ LR L

iy (e B o
*TTVa-REV m;\r?q"f oL sdoBoL Puslssov & puoRV

DUTQJT- *L
This cavses new Q-""‘C"C}Y\Vi M T f oS
et v 5T \sted owm)

Go Wowd s
SNOBOLA (VERSION 3.4+3, JANe. 16, 19712 .
DIGITAL EQUIPMENT CORP.» PDP~10
1 DEFINEC * REVERSECXIA*) 3 CREVEND)
2 REVERSE K LENC1) +» A = ¢t FCRETURND
e | REVERSE = REVERSE A ¢ { HEVERSE)
a REVEND
5 DATA = TRIMCEINPUT) 1 FCEND)
& QUTPUT = DATA ®* REVERSED 15 * REVERSE{DATA)
7 t{ HEVEND)
a END

N ERFORS DETECTED IN SOUNCE PROGRNAM

-113-

ABCDEFQ REVERSED IS ABCDEFO
1234567890 REVERSED IS 12345678@ OJ_

roym ~ 7

TV. >E'C
NORMAL, TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED VAS 5
SNQOBOL4 STATISTICS SUMMARY -
700 MS8* COMPILATION TIME
417 MS. EXECUTION TIME
44 STATEMENTS EXECUTED* 3 FAILED
0 ARITHMETIC OPERATtO
*EC
*TECO REV.SNO
e9I.S- SIA SS AS-8DOTTSS
REVERSE - A REVERSE t (REVERSE)
®OLStSRI SOL-TTSS
RUVERSE X LEN(1) e A - «F (RETURN)
REVERSE - A REVERSE t (REVERSE)
¢ SH-8DOL-TTSS
REVERSE X IEtf<l> e A e e F(RETURN)
REVERSE ¢ A REVERSE (REVERSE)
®SCSRIESOTTSS
REVERSE - A REVERSE t (REVERSE)
*TQg
(REVERSE)
®R-DOL-TTSS
REVERSE X IEN(l> o A e t F (RETURN)
e (REVERSE)

REVERSE - A REVERSE
*HEXSS
EXIT

~114-

R SNOBOL 4l '
*REV — Cwvease O\ LEVLWSY as above.

¢
«TTY$~REV/U — /U Tuvns Jr& ?vucessqv \\s‘\T\nj o ‘\ -&c
_ e ’

‘ ?qjofsﬂaawx
N0 ERRORS DETECTED IN SOURCE PROGRAM

' ~ h
ABCDEFG REVERSED 15 GFEDCBA REV. LST v g
1234567890 REVERSED 15 0987654321 \
/U sw e

‘;‘tm,i‘\s:\"\cs OW\A('\'Q—X
(‘01 Ckkbvs>

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS S

+MAKE REV.DAT Grete wn ‘m@\ . Cle

=1 ADBCDEFGHJKLMN
¢ragroeang
LS5

-115-

SNOBOLA (VERSION 3+4¢3, JAN. 16, 19701)
\)s\rSS 'IZPQF"IT‘

ow;X T TWE .
s CREVEND) qhlregXame Yo

DIGITAL EQUIPMENT CORP., PDP~10

1 DEFINEC * REVERSECX)A®)

8 REVERSE X LENC1) « A = § FCRETURN) "

3 | REVERSE = A REVERSE ¢ ¢ REVERSE) T;:\' gy

A REVEND Lk
s INPUTC * FILE® » 20, 78)

6 ILEC 20, *REVsDAT*) Cvom \>

7 DATA = TRIMCFILE 8 FCEND) \

8 QUTPUT = DATA ° REVERSED 18 * REVERSEC(DATA) \\Q_.

9 | § ¢ REVEND)

10 END

NO ERRORS DETECTED IN SOURCE PROGRAM

ABCDEFGHJHLMN ‘REVERSED 1S NMLKJHGFEDCBA
ABCDCFGHJKLMN REVERSED 1S NHLKJRGFEDCBA ol i\e evvoy

ABCDEFGHJULMN REVERSED 1S NMLKJHGFEDCBA W
ABCDEFGHJKLMN REVERSED I$ NMLKJHGFEDCBA :
ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA \'t‘“&%x Q\LQ-C\’* AL
ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA

ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA Q. *(\-\Q Q\\t \S

ABCDEFGHJKLIN REVERSED IS NMLKJHGFEDCBA
ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA
ABCDEF@HJKLMN REVERSED IS NM10 Neo ?‘“"‘X dov ‘“j

E.\\e.spl \oo?-— '\\,\\)5
C:Soo_ \\em Mo ?C;\' a\\ T_',F\LE)
THPIY J OFWLE | av) OUT PUT
SQ&C\Q\Co}V\ws oX \ea) oF

e ' OSVQ“\ - o5 Qn\\ou)s

'C

-116-

INPUTC*PILE®» 20.78)

IFILEC80, *REV.DAT*)
PEFINE(* REVERSECXIA®Y) t {REVEND)>

REVERSE X LEN(I) . A = s FCRETURNDY
REVERSE = A .EVERSE s { REVERSE)

REVEND

' DAYA = TRIMIFILE) s F{END)
OUTPUT = DATA * REVERSED 13 * REVERSE(DATA)
* { REVEND)

END

*EX3S

EXIT

« HEAE\ SNOBOL Al

«TTYt=REV/U

NO ERRORS DETECTED IN SOURCE PROSRAM

ABCDEFGHJKLMN REVERSED IS NMLXJHGFEDCBA | _ F{m of BV D.}-T?\}(‘) xS

098763A432% REVERSED 1S 1234567890 |
&tﬁ'\vel,

117-

1 OUTPUT! «OUTFILE*»ei» »<1X#&7A5)e)

3 OFILEfoeU »REV.QUT*> !

3 INPUT!*FILE*#80*78>

4 IPI LE< 80# * REV* DAT *)

s DEFINE! ¢REVERSE!X)A' » t ! REVEND)
6 REVERSE X LENC1l) . & - IFCRETURN)
7 REVERSE - A REVERSE t < REVERSE)
8 REVEND

9 DATA- TRIM!FILE) 1F<END}

10 (OUTFILE")" DATA * REVERSED IS e REVERSE! DATA)
11 I < REVEND)
12 END

NO ERRORS DETECTED IN SOURCE PROGRAM

NORMAL TERMINATION AT LEVEL 0
LCST STATEMENT EXECUTED VAS 9

to
*tC

p»TY REV.OUT
*.TECO REV*S

¢ SF< END)S4R3DEFILESOTTSS

DATA - TRIMCFILE) ¢ FCLE)
*(L8S<S1EFISOTTSS

DATA - TRIMCFILE) * F<EFILE)
*3LIEFILE ENDFILEC21)
SEXSS
7NQ FILE FOR QUTPUT <x9Q*%

*»in

FAVAY
NS

-118-

OUTPUTC *OUTFILE', 21, *(1X,27A8) ")
OFILECCI, *REVL.0UT?®)
IUPUTC'FILE 220, 78)
IFILEC20, *REV.DAT®)

DEFINEC * REVERSECX)A®) $ CREVEND)
REVERSE X LENCIS o A = s FCOETURD
REVERSE e A REVERSE $ CREVERSE)
REVIID |
DATA = TRIMCFILE) s FCEFILE)
OUTFILE = DATA * REVERSED 1S ' REVERSE(DATA)
. $ CREVEND)
EFILE ENDFILE(21)
F71D AeXe ¢ \ +
EXIT
-R SHOBOL 37
*«REV/U
1C
= \5 Q{(i‘d . ()\jwr
TY REV.OUT — o
ADCDEFGHJKLITY REVERSED IS MNLKJHGFEDCPA 5
0987654321 REVENRSED IS 1234567890 \n v o '\IOLT'\ 0
as V
«TY HEV.LST x X
oS \v\‘\e_\\
NO ENRORS DETECTED IN SOURCE PROGRAM :
e.QcNQ'

Me¥e REV.ALST q\so Q*\%Ts QS¥
R AR AR ‘>V(J?r4qhyn Q)d&'§\$ -

-119.

OUTPUTC *TTYOUT 52, *C1X, 14A5)")
INPUT('TTYIN'32072)"

.FI‘MC'R&VARSE(X)A') 8 { REVEND)
REVZASE X LWIK(1Y « A - s FCRETURNY
REVZIRSE = A REVERSE s (REVERSE)
REVEND '
’ TTYOUT =» *ENTER DATAs *
DATA = TRIMNCTTYIN - s F(END)
TIYOUT =» DATA * REVERSED IS * REVERSE(DATA)
' - b 8 (REVEND)
EMND
*EXSS
EXIT
L]
R SNOROL 37
*RFY1
ENTER PATAt
ASDF@ HJKL

ASDFQ HJKL REVERSED 1S LXJH GFDSA

UNTER DATAR

Zeplid INC DE3 678

Ze st BVC DEI 678 REVERSED IS 876 JED Cvb Nﬂ'o/

- -

ENTER T IA:
REVENRSED 1§ _\"N& WO Q""x Q\I\(L\[ﬂ. ci_tv —-*\\\)‘5 Y
ENTER PATAS Tav i wXW A C .
tC |
) wad \”Qv W
«TY REVI.LST } This as keN -
7 NO FILE NAMED REV].LST
Q&S UbngS\ C_ Q}E)

k“\t q\bov 2 GOV \QX(\\'\" ? QQJ*‘
ConNe Qﬂx, 3(\;\4. 25S Qv&m&. \\O.t\s GQ‘ '\"\\-Q_

R S

-120-

$0S Primer

Joseph M. Newcomer

Introduction

This document is merely intended as an introduction to the S0%
editor. For further explanations and a more complete set of commands,
consult the 505 manual.

505 is a tcletype-oriented text editor written by Bill Weiher and
Stephen Savitzky of the Stanford Artificial Intelligence Laboratory.
In addition to the common editing capabilities of inserting, deleting,
and shifting of lines of text, S0S includes string search and
substitute commands, an intra-line edit capability, text-justifying
features, and a few other assorted bells and whistles,

SOS does not edit a file "in place”, as some editors do. Changes
are made on a temporary copy of the file, and ordinarily are made
permanent only upon completion of the eadit, However, you may request
at any time that all changes up to that point be made permanent. This
is an especially recommended practice for beginners, as it insures all
changes made in the file since the EDIT command or the last save
request against loss due to system failure or user inexperience,

S0S is oriented towards full-duplex devices, such as the
teletype, the ARDS display, the Infoton display, and other such
devices. Before attempting to use it from a half-duplex device such
as an [BM 2741 terminal or a Datel terminal, you should become
thoroughly familiar with using it from the teletype or similar
full-dupiex device. You must then familiarize yourself with the
conventions for using half-duplex devices on the. PDP-10 as implemented
here at C-MU. In general, it is not worthwhile for the novice to
learn how to wuse S0S from half-duplex devices, since the effort
involved in using them does not really make up for the BO7 faster
typeout.

121

Basic _commands

The basic operation in a file-oriented system is the creation of
a file. To invoke the editor and request it to create a file, give
the CREATE command when the console is in monitor mode i.e., the
computer has typed a period.

In all examples, the computer output is underscored.
Example \ Creating a file:

.CREATE BLAT.DOC

00100 THIS IS AN EXAMPLE OF HOW TO CREETE

00200 A FILE USING THE EDITOR.

00300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE(CHARACTER, WHICH ECHOES
00500 AS A DOLLAR SIGN.

00600 «

When the asterisk is typed, you may enter any editor commands you
want. The E command (End) terminates the edit, saves the file, and
returns to the monitor.

Example 2 Terminating an edit:

*E
EXIT

The file now exists and you may access it in any of the normal
modes in which files are accessed. For example, you may type it:

Example 3 Typing a file:

.TYPE BLAT.DOC

00100 THIS IS AN EXAMPLE OF HOW TO CREETE

00200 A FILE USING THE EDITOR.

00300 IN ORDER TO GET OUT OF NUMBERING MODE. TYPE
00400 AN ALTMODE (ESCAPEt CHARACTER. WHICH ECHOES
00500 AS A DOLLAR SIGN.

122

_ if upon examining the typeout, you find there are some errors {as
in the typeout abowve) you may invoke the editor with the EDIT command
tc make the corrections. The se! of commands for simple editing is:

[- Insert
D - Delete
R - Replace
P - Print

L - List

The Replace command is used to replace lines of the file. In its
simplest form it is the single letter R fecllowed by the line number to
be replaced. The editor then types the line number aut and new text
F\ay be typed in. This new line replaces the previous contents of the
ine.

The Delete command is used to delete lines from the file. In its
stmplest form it is the single letter D feollowed by the line number of
the line to be deleted. The editor deletes the line and returns
control with the asterisk. There is normzlly no other typeout. To
delete a group of contiguous lines, a range may be specified; see
"Specifying Ranges”, below. '

The Insert command is used to insert new lines in a file. its
basic format is the lelter | followed by the line number of the line
to be inserted.

Example 4 Simple editing

EBIT BLAT.DOC

*R100

00100 THIS IS AN EXAMPLE QF HOW TO CREATE
#0400

#1400

00400 AN ALTMQODE (ESCAPE}; CHARACTER, WHICH ECHOES
x o

MNote that the Replace command has the same effect as a Deletle
command followed by an Insert command. In order i use insert to
replace a line, the line must first be deleted. The Insert command by
itself does nol replace the line specified if it already exists, as in
some editing systems, but instead creates a new line whose number is
equal to the line given plus the line increment (normaliy 100) The
Insert command will always insert a new line in a file, never replace
an oid one. If the line following the specitied line has a line
number less than or equal to the computed insertion line number, then
the insertion is given a number which is halfway betwesn the line
specified and the next line.

123

Example 5 Interpolated insertion

%1200

00250 SINCE THE INCREMENT IS 100, THIS LINE IS HALFWAY
*1250

00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.

X

In order to see what your file now looks like, you can use: the
Print command to print it on the teletype. The Print command is the
letter P followed by the line number of the line to be printed. The
letter P by itself will print the current line and 15 following lines.
To specify a range of lines, a colon may be used to indicate a
beginning and ending line number specification; see “Specifying
Ranges™, below, for more details on this.

Example & Printing part of a file

*P100:500

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR.

00250 SINCE THE INCREMENT IS 100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS,

00300 IN ORDER TO GET QUT OF NUMBERING MODE, TYPE
00400 AN _ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES

00500 AS_A DOLLAR SIGN.

In addition to the P command, two keys on the teletype will also
" cause printing. A linefeed (in this text, !), will print the next
tine, and an altmode (escape, shown as a "§") will print the previous
line.

Example 7 Linefeed and Altmode commands

*P300
00300 |N _ORDER TO GET QUT OF NUMBERING MODE, TYPE
%l

00400 AN_ALTMODE (ESCAPE) CHARACTER, WHICH _ECHOFS

_ *800300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
X

1f there is too much information to conveniently type on the
 teletype, the L (List) command may be used o output the lines on the
printer. Its format is precisely the same as the P command, except
that if just "L" is specified the entire file is listed. Note that
the file may not come out immediately on the printer, as print files
are queued waiting for the printer to become available. Consequently,
your file may not be printed for some time after the L command
completes. You may continue editing the file, however, since the
information is copied into a temporary buffer and held until printed.
The file name on the listing printed will be of the form “"nnn.LPT",

124

where "nnn" is a number assigned by the monitor, and "LPT" indicates a
print buffer file. You should not then be looking for a listing with
the file name printed on the front.

Example 8 Listing a file

*L
ES

This has printed the entire file on the line printer.

Specifying Ranges

Whenever you wish to specify more than a single line, you may
specify a range. This is done by using a colon to separate the two
line numbers (where the second must be higher than the first). Thus
100:600 specifies lines 100 to 600. Most commands accept a range of
lines to be operated upon, and this is one way of giving that range.
However, in some cases it is easier or more appropriate to specify a
quantity of lines (5 lines, 17 lines, etc.) regardless of the line
number of the last line. This is indicated by using an exclamation
point (! to specify the range: 100!3 is line 100 and the following
two lines (so "100!1" is the same as "100").

Example 9 The exclamation point

%*P10014

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR

00250 SINCE _THE INCREMENT IS 100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.
*D25012.

xP10014 -

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE_EDITOR.

00300 IN ORDER TO GET OQUT OF NUMBERING MODE, TYPE
00400 AN _ALTMODE (ESCAPE] CHARACTER, WHICH ECHOES
*

125
Intermediate commands

The intermediate editing 'commands are:
C - Copy

T - Transfer

N - Number

W - save World

M - Mark page

G - Go

The Copy command copies lines from one place in the file to
- another. The first location specified is the “destination” line
number. The second location (which may be a range) is the "source”
location. The editor will choose an increment which will allow ail
the specified lines to be copied to the destination without
overfiowing; this increment is printed out in the message
"INCL=nnnnn". If the editor cannot compute an increment such that all
lines will fit, then an error message will be typed and appropriate
action will be taken by the editor (see the SOS manual, page 28).

The Copy command can also copy from another file, so that
portions of program files can be extracted to form a new file. Again
for details, consult the SOS manual (page 28).

The Transfer command is much the same as the Copy command, except
that the lines which are copied into the specified destination in the
file are then deleted from the source location.

Note: In the SOS manual it states that Copy and Transfer behave
as Insert, ie, "C200500" would copy line 500 to somewhere after
line 200 (the exact number depending on the line number following line
200). This is not true! The Copy (or Transfer) command will copy line
B00 and put it after line 200, but will also number it 200, giving two
line 200’s. To get out of this problem, use the N command to renumber
the file. The extra line 200 will be numbered correctly.

Example 10 Copy & Transfer commands
.CREATE COPY.DOC

00100 THIS IS
00200 A SHORT

00300 FILE
00400 $
*C 150,300

INC 1=00050

126

%P 100:300
00100 THIS IS
00150 FILE
00200 A SHORT
00300 FILE
%T350,100

%P 100:400
00150 FILE
00200 A SHORT
00300 FILE
00350 THIS IS
k

The*'Number command is used to renumber files. This is usually
done after a number of insertions have been made and no more room
exists between line numbers for further insertions. The simplest form
of the Number command is simply the letter N, which renumbers the
entire file with an increment of 100. For more information on the
Number command, see the $OS manual, page 13. :

Example 11 The Number command

%P100:400
00150 FILE
00200 A _SHORT
00300 FILE
00350 THIS IS
N

*P100:99999
00100 FILE
00200 A_SHORT
00300 FILE

00400 THIS 1S

The W command is particularly useful to the beginner. The W
command makes permanent all changes made in the file up to the time it
is given. Changes made in a file are temporary until either a W or an
E command is given. There are two reasons you should do a W command
often: 1) The system could crash, and all editing done would be lost
when it came back up, or 2) you might attempt using some new command
(say, "substitute”, a somewhat tricky one), and confuse your file to
the point where you cannot recover the text you started with. In
either case, the loss will be back to the last "EDIT" command to the
monitor, or the last W command to the editor. By giving permanence to
those changes whose accuracy you are certain of, you will avoid losing
time in re-creation of those changes, or perhaps the entire file.

Papes

Files can be divided into logical subunits termed "pages". A
page in the SOS editor is merely a coliection of lines. It may be
less than one physical printer page, or it may be several physical
printer pages. When we need to make a distinclion, we will call the
SOS pages "logical pages" and the printer pages "physical pages”. We

127

will use the term “page" ordinarily to mean a logical page. Teo
indicate the separation into logical pages, a “page mark” is inserted
into the file by the Mark page command. The Mark page command places
a page mark immediately befere the line number specified. Each page
is numbered separately, and hence you may have several line 100*s in a
file. In order to specify what page you are on, use the slash {/) in
the line number specification, with the page number following the
slash. Line 100 on page 1 is then designated as "100/1". To minimize
the amount of typing required, the editor remembers what the current

page is, and subsequent commands need only specify the line number on
the current page.

Example 12 Multipage file

*P 100:400
00100 FILE
00200 A SHORT
00300 FILE
00400 _THIS IS
*M300

*P 100/1:400
00100 _FILE

00200 A SHORT
*P100/2:400

00300 FILE
00400 THIS IS
*N

*P 100/1:400/2
00100 FILE
00200 A SHORT
PAGE 2

00100 _FILE

00200 THIS IS

When listed on the line printer with an L command, each page has
the page number printed in the upper leftt The form of this page
number is the logical page number followed by a hyphen followed by the
physical page number (recall that logical pages can be longer than
physical pages). The physical page number is reset for each logical
page, so that the numbers proceed as "1-1, 1-2, .. , 1-n, 2-1, 2-2,

When using a listing as a guide to editing, remember that the
first number is the page number that SOS uses, e.g. when correcting
page 4-15 specify "/4" for the page number.

There are two other special characters which you can use to
designate lines in the file. The period () is used to designate
either the current line or the current page, depending on where it is
used. |If it is used in the line position, it is the current line; if
in the page position it is the current page. If page 2 is the current

128

page, and line 100 is the current line, then “/2" is "100/2", "./1"
is "100/1% "200/." is "200/2" and of course "./J" is the current
ting, 100/2. The asterisk is always the last line on the page
indicated, W the current line is 100/2 in the file of example 12,
then ™" is "200/2" and "#/1" is "200/i". If the line number is
omitted but a page number is given, it means the antire page, eg.,
"P/2" is the same as "P0/2=/2". For more details on specifying
ranges, see tha 505 manual, page 7.

Example 13 Period and asterisk designators

+P100/1:+

00100 FEILE
00200 A SHORT
H /2

00300 NEW LINE
00400
*P/2
00100 FILE
00200 THIS IS
00300 NEW LINE
WP/ 1 /2

00200 A SHORT

L)

PAGE 2

00100 FILE
00200 THIS_IS'
00300 NEW_LINE
xP/1:/2
00100
00200 A SHORT

—
m

PAGE 2

00100 FEILE
00200 THIS IS
00300 NEW LINE

kP,

Q0300 NEW_LINE
#=P100/1

00108 FILE

3

00150 INSERTION
I

0017% ANQTHER
HP.a*

;-50”5 ANQTHER
00200 A _SHORT

00100 FiLE
00150 INSERTION
00175 ANOQTHER
00200 A SHORT

129

X

The Go command is equivalent toc the End command in that it terminates
the edit; however, it also causes the iast COMPILE, EXECUTE, LOAD, or
DEBUG monitor command to be re-executed. This is a great convenience
when debugging programs.

Example 14 The Go command
.CREATE TEST.ALG

XE
EXIT

COM TEST

ALGOL: TEST

200 INCORRECT STATEMENT
REL FILE DELETED

300 UNDECLARED {DENTCTC
ED

*P200

00200 INTEGRE |, J, K;
R, |
00200 INTEGER 1, J, K;
%G

ALGOL: TEST

B

130

Advanced commands

The advanced editing commands are:

A - Alter
J - Join
S - Substitute
F - Find
B - Beginning

The Alter command is one of the most useful features of the SOS
editor. - It allows editing individual lines much as the normal edit
commands are used to edit files. You can alter a single letter in a
line, ie, change it, delete it, or even insert it The full
capabilities of the Alter command are explained in the S$0S manual,
page 14 ff; some examples will be given here,

Edit commands in intraline edit mode are not echoed by the
teletype. We will indicate this in examples by showing the edit
commands in lower case. One exception to this will be the altmode

character, which will still be a dollar sign. Remember that in
intraline edit mode it will not echo. The following notation will be

used: "_" will be a space, "W" will be a rubout, ")" will be a
carriage return, and TU will be control-U (the control key and U key
simultaneously).

The set of intraline edit commands is:

w - Accept the character under the pointer

B - Backspaces the pointer

cC - Chénge the character under the pointer

. D - Delete the character pointed to

i - Insert new characters (terminated by altmode)

)} - Terminate intraline edit

Q - Quit intraline edit without making changes

U - Start over
S - Skip

131

K - Kill

R - Replace

L - Print remaining line and continue edit
P - Print remaining line and resume edit
for

explanations of the commands, see the SOS manual, pp 15-17.

With this as a guide, you may follow the examples below. In these
examples, a) is a non-echoed carriage return; a B is a non-echoed

rubout, and a . is a non-echoed space.

Example 15 Intraline skip and insert
#P/1

00100 FILE

00150 INSERTION

00175 ANOTHER

00200 A SHORT

*A150

00150 selNSi*x++$)JERTION
*P.

00150 INS:#kkERTION

®

Example 16 Intraline delete and Kkill
*P150

00150 |INS:#=k:kERTION

KA.

00150 ssINd\\SJ\\:kkxERTION
*P.

00150 IN%:kkERTION

XA,

00150 s*INkr)\x:kEJ\\RTION
*P.

0015C INRTION

k]

You may precede a command with a number which causes it to be

repested, e.g.

"2sa" is equivalent to "sa" followed by another "sa". _

132

Example 17 Intraline skip and change

£1180

00175 THIS IS A (SMAPLE(LINE

AL

00175 2s(THIS IS A (SMAPLEC)J LINE
“P.

00175 THIS IS A (SMAPLE) LINE

Example 18 Intraline accept and rubout
*P175

00175 THIS IS A (SMAPLE) LINE

#A.

00175 3ssTHIS IS A (2*SMffINM2cWAMIPLE) LINE

00175 THIS IS A (SAMPLE) LINE

One of the most common errors made in using the Alter command is
failure to type the altmode temminating an Insert within the line.
This has the effect of terminating the line being edited and beginning
a new line. Although a sometimes desired effect, such as in indenting
Algol program files, it is more often just an error. Should you type
a >} after an insertion, and get a new line number instead of the rest
of the line, just type the altmode and i again. You now have two
lines where you had one before, and the Join command can undo this.
To use the Join command, type J followed by the original line number.

Example 19 The Join command

*P175

00175 THIS IS A (SAMPLE) LINE

*A.

00175 s)THIS IS A (SAMPLEM)i OF A)
00187 8J LINE

*P17512

00175 THIS IS A (SAMPLE) OF A
00187 LINE

*J175

*P175

00175 THIS IS A (SAMPLE) OF A LINE

The Find command may be used to locate known strings in a file
when their line numbers are not known, or to check a file for
occurrences of strings. The basic format of the Find command is the
letter F, followed by a string to be searched for, followed by a

133

altmode, followed by a range specification. Again, more details may
be found in the SOS manual, pp 23-25. When a string is located, the
line containing it is typed out and search is suspended. To resume
the search with the same string, only an F followed by an altmode is
reqguired. '

Example 20 The Find command

.EDIT SOME.BLI
*FLOCALS/1
*

{(There were no occurrences of "LOCAL" on page 1)

kF$/2 :

00150 LOCAL A, B, C;

*F$§

20300 LOCAL AARGH BLAT[5];

*F$.+1:/99

PAGE 6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*F$

X

If you give further Find commands without specifying a range, no
more strings will be found, since the current line position is the end
of the file. To reset the file position, you could either specify the
first line of the file as the Ilower bound of search, e.g,
"Fstring$100/1:/999", which is clumsy, or, more simply, you could use
the Beginning command to reposition the file.

If you are not interested in stopping at each line where the
string is found, you can give a parameter to the Find command which
telis how many occurrences to print and bypass before stopping. To
find ali occurrences in a file, use some large number such as 999 or
99999,

Examg- le 21 The Begin and Find commands

 Assume the file is in the state it was left in at the end of
example 20.

*F§,
*B
*F$,999

PAGE 2
00150 LOCAL A, B, C;
00300 LOCAL AARGH BLAT[5];

134

PAGE &
00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*®

The Substitute command is similar to the Find command, in the
sehse that a string is searched for; in addition, a second string is
substituted for the one found. The format of the Substitute command
is the letter S followed by the string to be searched for, followed by
an altmode, followed by a string to replace it, followed by another
altmode, followed by a range. For more details, see the S0S8 manual,
pp 25-27.

Example 22 The Substitute command

Assume the file is in the state it was left in at the end of
example 21,

%B

£SLOCALSOWNS

PAGE 2

00150 OWN A B G

00300 OWN AARGH BLAT[S];

PAGE 6

00400 MEASURES OWNIZED PHENOMENA SUCH AS

As you see, the string substitution also replaced the occurrence
of "LOCAL" in line 400/6. This is one of the most common errors made
with the Substitute command. In this example the Substitute command
or the Alter command may be used to correct the problem; in another
example it may be neither simple or even possible to undo a bad
substitution. For this reason, we recommend giving 2 W command before
doing a Substitute. |f the Substitute command then destroys part of
the file, abort the edit without making the changes permanent by
typing TC (controt-C), and typing EDIT again. Since you are editing
the same file, the file name need not be given.

Example 23 Aborting an edit

Assume the file is in the condition it was in at the end of
example 22,

x1C

EDIT

TEMPORARY EDIT FILE ALREADY EXISTS! DELETE? (¥ OR N)
[4

*P400/6

135

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*P160/2

00150 LOCAL A, B, G

X

The message about the temporary edit file may not be typed if the
editor was left in a state where the temporary file did not exist.

136

Miscellany

In addition to the commands discussed here, there are several
others of marginal interest. One of the most useful of these is the

command, which types out information contained in the editor. |Iis
format is followed by the name of the internal parameter to be
displayed. The command is discussed more fully on pp 20-21 of the SOS
manual. The most useful parameters to display are the current line
(), the number of pages in the file (BIG) and the current line
increment (INC).

Along with the "=" command there is the complementary "set"
command which is a left arrow (<-). This is used to change the values
of the internal parameters. This is discussed on pp 19-20 of the
manual. The most useful parameter to set is the line increment (INC).

Example 24 The - and *- commands

.EDIT HUGE.BLI

*=BIG

62

*P100/41

00100 INCR | EROM 1 TO .N DO

00125 BEGIN A<-5; X<-Y<32>:
00150 $

*=INC

00025

*<IN
*,
00130 BLATO; THUD(.Q);
00135 END;

00140 $

o

00135/41

o

=5

Removing line numbers

In some cases it is necessary to remove the line numbers which
SQOS places in the file. To do this, you may use PIP with the "/N"
switch, as shown in the example below.
Example 25 Removing line numbers
R PIP
*BLAT.COC/N=<-BLAT.DCC

*TC

137

Using terminals with both upper and lower case

Some terminals are available with both upper case and lower case
letters, notably the ARDS display and the Western Union 300 terminals.
The PDP-10 monitor, however, always translates lower case input into
upper case unless instructed otherwise. S0S also assumes the terminal
has only upper case letters unless instructed to the contrary (except
for the ARDS display, which S0S knows has lower case). The example
below shows the commands necessary {0 use such terminals.

Example 26 Using a terminal with lower case

JTY LC

.edit garble.doc

*em37

*p 100

00100 This document describes the GARBLE system of
*

Note that when using the WU300 terminais, the "all caps" switch
must be turned off, or the terminal will convert lower case letiers to
upper case letters before transmitting.

When in intraline edit mode, a "skip" or "kill” command will
interpret its argument in the exact case it was typed in. Thus in the
last example, a skip to "r" from the beginning of the line will stop
in “"describes”, while a skip to "R" will go {from the beginning of the

line) directly to the R in "GARBLE".

Using terminals with only upper case

Most terminals available are Teletype model 33 terminals, which
have only upper case letters. Occasionally it is necessary to create
or edit a file containing both upper case and lower case letters on
one of these terminals. SOS allows the case of the input character to
be shifted by preceding it with a question mark (?). In normal mode,
for example, "A" represents "A", and "?A" represents "a". By changing
the mode, "A" will represent "a" and "?A" will represent "A". This is
shown in the exampie below,

Example 27 Lower case from a teletype

EDIT GARBLE.DOC

%P100

00100 T?H2?S ?2D?PQ?CPUMPEIN?T ?D?E?S?CIRZBIE?S ?T?H?E GARBLE
7S?Y?S?T?EPM 207F

x L OWER

%xP100

0010¢ ?THIS DOCUMENT DESCRIBES THE ?GPA?R?BIL?E SYSTEM OF
*

Exatrple

(e Mg N Bl I 0 NN

138

LIST OF EXAMPLES
{See index for page numbers}

Description

Creating a file

Terminating an adit

Typing & file

Simple editing

Interpolated insertion

Printing part of a file
Linefeed and altmode commands
Listing a file

The exclamation point

Copy and Transfer commands
The Number command
Multipage file

Period and asterisk designators
The Ga command

Intraline skip and insert
Intraline delste and kill
Intraline skip and change
intraline accept and rubout
The Join cemmand

The Find command

The Begin and Find commands
The Substitute command
Aborting an edit

The = and « commants
Removing line numbers

Using a terminal with lower case
Lower case from a teletype

139

I NDEX

(1), command

(1), example

(1), line feed

{m) (backspace pointer), example
(m) (rubout, backspace pointer)
(o) {accept character), example
(o) (accept character), intraline
(J) (carriage return), example
() (carriage return), intraline
]

(1), example

{$) Altmode

($), command

($), example

(*) Last line on page

(%), example

(.}, example

(.), Current line/page

{.), example

(/) Page specifier

2/)), example

(1), example

{=), command
{=), example
{<), command
{«), example

A (Alter), command

A (Alter), example
Aborting an edit
Advanced commands
Altmode

Altmode, example
Asterisk, example
Asterisk, line specifier

B (Beginning), command
B (Beginning), example
Basic commands

C (Change), example

C (Change), intraline

C (Copy), command

C (Copy), example
Colon

Colon, example
Commands, advanced
Commands, basic
Commands, intermediate

123

136,
130

132
132
123
123, 125, 128

136
131, 132, 133, 136

128, 131
126

137

132

123, 125, 128

133
134

126

140

CREATE 121, 129
D (Delete character), example 131
D (Delete character), intraline 130
D (Delete), command 122
D (Delete), exampie 122, 124
E (End), command 121
E (End), example 121, 129
EDIT command 122, 129, 134
Example 1 121
Example 2 121
Example 3 121
Example 4 122
Exampie 5 123
Example 6 123
~ Example 7 123
Example 8 124
Example 9 124
Example 10 125
Example 11 126
Example 12 127
Example 13 128
Example 15 131
Example 16 131
Example 17 132
Example 18 132
Example 19 132
Example 20 133
Example 21 133
Example 22 134
Example 23 134
Example 24 136
Example 25 136
Example 14 129
Example 26 137
Example 27 137
Examples, list of 138
Exclamation point 124
Exclamation point, example 124, 132
F (Find), command D130, 132, 133
F (Find}, example 133
G (Go}), command 125
G (Go), example 129
I {Insert character), example 131
| (insert characters), intraline 130
I {Insert), command 122
| (insert), example 122, 123, 136
Index 139
Intermediate commands 125

interpolated insertion 123

J {Join), command
J {Join), example

K (Kill), example
K (Kill}), intraline

L (List), command
L {List), example

L {print Line, continue), intraline

Line feed

Line feed, example
Line feed, command
Line numbers, removing
List of examples
Logical pages

Lower case terminals
LOWER command

M (Mark page), command
M (Mark page), example
M37 command
Misceliany

N (Number), command
N {Number), example

P (Print line, resume), intraline

P (Print), command

P {(Print), example
Page marks

Pages

Pages, iogical

Period, example
Period, line specifier
Period, page specifier
PiP

Q (Quit edit), intraline

R (Repiace), command
R {(Replace), example
R (Replace), intraline
Ranges, specifying
Removing line numbers

S (Skip), example

S {Skip), intraline

$ (Substitute), command
S (Substitute), example

Set command

Space (accept character)
Specifying ranges

141

130,
132

131
131

122
124
131
123
123
123
136
138
126,
137
137

125,
127
137
136

125,
126,

131
122
123,
127
126,
126,
128
127
127
136

130

122
122,
131
124
136

131,
130
130,
134
136
130
124

132

127

126

126
127

124, 128
127

127

129

132
134

T (Transfer), command

T (Transfer), example
Terminals with lower case
Terminals with upper case
TTY LC command

Upper case terminals
W (save World), command

TU (Restart edit), intraline

142

128
126
137
137
137

137
125, 126,

130

-143-

TECQ - Text Editor and Corrector

Script; T. Teitelbaum

TECO edits files recorded in ASCII characters on any standard device.
It can perform simple editing functions as well as sophisticated search,
match, and substitute operations, and operate upon arbitrary length character
strings under contrel of commands which are themselves character strings
(and can exploit this recursiveness).

The following script will show the uses and methods of TECO.

REFERENCES

[1] PDP-10 Reference Handbook, pp. 501-523.

(:}f_ﬂf‘t

MaN

5%

TECO 15 A TEXT EDITOR. THE TEXT REING EDITED
IS STORED AS A SINGLE CHARACTER STRIMG IN THE
TECC BUFFER. THIS RUFFER IS5 ALYAYS JUST A% LONG
A5 THE STRING IT CONTAINS. THE BOINDRARIES OF THE
BUFFER CELLS ARE MUMBERED STARTING TO THE LEFT OF
THE FIRST CHARACTER WITH ZERO. THE INDEX OF THE
BOUNDARY TO THE RIGHT OF THE LAST CHARACTER IS
KNOWN AS *'7*. THUS5, THE BUFFER CONTAINING THE
STRING "ARCDR"™ MAY BE PICTURED AS

iﬁIBICID}
1T 2 3 &=7 .

A SUBFIELD OF THE BUFFER IS5 DESIGHNATED BY THE
INTEGER PAIR "“M.N" WHERE M<M. THUS, Iy THE
EXAMPLE ARBOVE, THE SUBFIELD "1,3" CURREMTLY
CONTAINS THE STRIMG "BG'. WE MAY REFER T0 THE
WHOLE BUFFER BY "H"™ WHICH IS5 REALLY JUST AN
ABREVIATICGN FOR "@,7" .

TEXT IN TECO HAS MO LINE MIMBERS, UNLIKE S0S

OR EDITOR. THE RETURN KEY 0OF THE TELETYPE 15 TREATED
L.LEKE ANY OTHER SYMPROL, WITH THE EXCEPTIOMN THAT

IT IS INPUT TO THFE BUFFER A5 THE TWO CHARACTERS
“CARRIAGE-RETURN" AND "LINE-FEED" . THUS, THE

LINE

ABCD
<

WILI. APPEAR IN THE BUFFER AS

[AIBICID]l %)
A1 23 45 =7 .

ASSOCIATED WITH THE RBUFFER IS5 A CURSOR WHICH CAN
BE MOVED TO POINT TO PLACES 0OF INSERTION,

DELETION, ETC. THE CURRENT BOUNDARY
POSITION OF THE CURSOR IS5 HMOWW AS *.* .

TECO SIGNALS THAT 1T IS WAITING FOR COMMANDS
BY TYPING A "“x . ARBITRARILY MANY COMMANDS
MAY BEY STRUWG TOGETHER IN A COMMAND STRING
WHICH 15 TERMINATED BY TW(} ALTWMODES {(ESC OM
SOME TELETYPES)e WNOTE THAT THE ALTMODE ECHOS
AS A “S§" ., ON RECEIVING THE *"$%" TECO WILL
INTERPRET THE COmMmMAaND STRING FROW LEFT TO
RIGHT, THEN RETURN TD THFE USER FOR MORE WITH
ﬂ I‘*I‘ -

LET US NOV USE TECO IN ORDER TO CREATE

A NEW FILE NAMED ""SCRIPT.TEC™ .

REMARKS ADDED AFTER THE SESSION WILL APPEAR
INTERMITTEMTLY AND WIL1. BFE INBENTED.

lef\H".

SCRIPTLTERC

we=-h7=%%

7]
“
AUTHYS

w I AN

THT®S
AL

¥arZrwhlt

)
fy

+IREATI

1,051,
MO
7
+Hf™h
AL
IS ||
T. KL
MMOT

#ela o h R

)

*CEarnMm

e

L A O %

(7]
O
#amhn
7]

Y -GHITTRS

Gh G
Thet.

16, GRITVR S

I.I¢T.
+HICL S

-145-

WE FNTEN FEAM PLP~14
MNY1TOe ©ADE METH THE

CrlL COXMEAND MUAVYEY.

THIS 15 ULED YHE! A JEW
FILE 1L REINR CONSTRUCTED.

UHAT 1% THE VALUE OF “o“ 7
WHERF, IS THE CIURSOR?

WHERE 15 THFE CURSOR AMD VHERE 15
THF. EUD NF THE MIFFER?

Al ALTHMODY, BETVWEER COMMANDS
IS nBTIDMNAL TO IMPRDVE CLARITY.

TYP¥. THE VHOLE BUFFER. 1T'S EMPTY.

INSERT THE LIME “ABCD™ AND

TYPE WHOLE PUFFER. THE TEXT OF THE
INGEHTION STOPS AT THE FIRST ALTMODE “s*.
VWHEHE 15 CURS0R AND END OF BUFFER?

CURSOR J5 AFTER LAST IWSERTION.
HOFFER SIX LNONG (REMEMBER 2 FOR RETURN.)
INLERT SOME WMORE LINES. INSERTICN

ALYVAYS MADE AT POIMT OF CURSODR.

TYPE WHOLE BUFFER.

MOVE CURSOR TO BEGfNNING OF BUFFER.
ADVANCE CURSOR TWG.
MOVE CURS0OR TWO BACHK.

DELETE & CHAR TQ RIGHT OF CHURSOR AND LEFT
ADLIST STRING IN BUFFER.

AU CORSOR TO END, DELETE 6 CHAR TO LEFT,
TYPE WHOLF PUFFER.

HILL SURFIFLD RETWEEN A AND 6.
NOTE THAT R,6D WON'T WIRK.
KILY. THE WHOLF HUFFER.

*[ONE
TWO

THEE

S8
*.2T§S
TWO

THEE
*LTS$
THEE
*CCTSS
L1

£IR$$
*OLTSS
TIIRLL
*LIFOR
FIVE

55%
*TSFOSTSS
R
*TUSOLTSS
FOUR
*[SIX
SLEVLEN
EIGHT

88

TS §
ONFE,

TWO
THREE
SIX
SEVEN
EIGHT
FOUR
FIVE
*JSSIXSOL. %%
17

*3LT$$
FOUR

*] 7, *XASS
*11, KS$
*ZJGASS
*HT$S
ONF,

TWO
THRLEL
FOUR
F1VE

SIX
SEVEN
EIGHT

*TJ-PTT=§
Frve

SIX
*EX§S

EX IT

-146-

WE TNSERT SOME LINES SO
WE CAN EXHIBIT THF LINE
ORRIENTED COMMANDS-

TYPE THE PREVIOUS 2 LINES*

MOVE CURSOR BACK A LINE

AND TYPE 1 LINE*

MOVE CURSOR TFORWARD 2 CHARACTERS
AND TYPE REST OF THE ILINE.

INSERT THE CORRECTION.

RETURN CURSOR TO BEGINNING OF LINE
AND TYPE THE LINE.

ADVANCE CURSBOR A LINL

AND CONTINUE INSERTING.

JUMDP TO 0O AND SEARCH UNTILL *FO*. MOTE
CURSOR PLACED AFTER PATTERN FOUND.
INSERT CORRECTION AND TYPE LINE.

CONTINUE INSERTIONS.

TYPE WHOLE BUFFER.

WE FORGOT TO MOVE THE CURSQR BEFORE
TIIIS INSERTION AND S50 1T WAS
MISPLACED.

USE SEARCH TO PLACE CURSOR
AT LINL "SIX. TYPL CURSOR POSITION.
PLACE CURSOR THREE LINES DOWN.

SAVLE TROM 17 1O + IN RUEGISTER A.
DELETE SAME SUBFIELD IN BUFFER.
JUMP CURSOR TO END AND GET (INSERT)
REGISTER A. TYPE WHOLE BUFFER.
THATS BLETTLER.

DELETE THE PREVIOUS TWO LINES.
ASSURE CURSOR AT END AND TYPE
PREVIOUS TWO LINES.

EXIT. THIS WILL WRITE OUT THE BUTFFER
TGO THE OPENED FILE "SCRIPT.TEC*®
AND RETURN US TO POP-10 MONITOR MODE.

147 -

+«TECO SCRIPT.TEC ENTING EXISTING FILES IS DONE VITII A TECO
COMMAND WHICH FETCHES THE FIRST FEW CHARS.
*100<A>5S A BACKUP FILE (E.G. SCRIPT.BAK) IS ALSO MADE.
*HTSS THE REMAINDER OF THE BUFFER IS FILLED USING
ONE THE APPEND COMMAND. VALUES GREATER THAN
TWO ' 168 MAY BE NEEDED FOR LARGE FILES.
THREE MAXE SURE YOUR BUFFER IS FULL BY TYPING IT OR
FOUR THE LAST FEW LINES OF IT.
FIVE
SIX
*J5<S . HERE 'SPECIFIC® ITERATION IS USED TO CHANGE
$-2D1 $>%5% THE FIRST 5 OCCURANCES OF CARRAGE=-RET/
*HTS LINE FEEDS TO BLANKS. THE COMMANDS IN THE
ONE TW0 THREE FOUR FIVE SIX BRACKETS ARE REPEATED AS MANY TIMES AS IS SPEC
#J<S $3-DI *ARBITRARY' ITERATION (INDICATED BY THE
$>5S ABSENCE OF A NUMBER AND THE PRESENCE OF A ;)
*HTS$S ITERATES UNTIL THERE :IS NO MATCH, THEN THE.
ONE BRACKETS ARE EXITED.
TWO
THREE
FOUR
FIVE
SIX
*¥J5<8
$-DI
$>5%
#*HTS$
ONE
TVO
THREE
FOUR
FIVE
SIX
*J<SO0$3PLTSL>SS A FREQUENT USE OF ITERATION IS TO "PRINT ALL
ONE OCCURANCES"™,
TWO
FOUR
*HTSS
ONE
TVWO
THREE
FOUR
FIVE INTERPRETATION OF THIS COMMAND STRING IS LEFT AS
SIX AN EXERCISE TO THE READER.
*QUASJ<S

53~2C5.~RAUBSQC~AB"LABUC '$. +2UASL>$BUASJISQC+IUCSH<S
$5-2C.~-QAUBSQA+QC+2UASOLSQC~AB<] $>L>HT$%
ONE
TVO
THREE
¥OUR
FIVE
51X
HEX$ S

EXIT

-

-148-

XCRIBL---A Hardcopy Scan Line Graphics System for Document Generation?

R. Reddy, W. Broadley, L. Erman, R. Johnsson, J. Newcomer, G. Roberison and
J. Wright

in certain areas of computer science research, conventional line printers and
graphics terminals have proven to be inadequate output devices. Typical problems
such as a display of digitized (speech or visual) data require either displaying a very
large number of (flicker-free) vectors or simulating gray scale output. The need for a
hardcopy computer output device capable of producing arbitrary type fonts, graphics,
and gray scale images has been obvious. The XCRIBL system, developed at Carnegie-~
Mellon University (CMU), using a Xerox Graphic Printer (XGP) driven by a minicomputer
represents an inexpensive solution to the problem. Careful design of data structures
and interface permits the minicomputer to generate each scan line for the XGP as
needed without having to resort to brute force solutions. Although the XGP was
designed over ten years ago, it had not found wide acceptance as a computer output
device because of the excessive processing time and memory requirements of scan-
iine generation.

The XGP is a facsimile copying machine originally designed for transmission of
documents over high bandwidth teiephone lines. It has adjustable resolution; the one
described here is operated at 192 points per inch which is equivalent to an image of
approximately 3.5 million bits for an 8%x11 page. Because of its high resolution each
page can contain information equivalent to two pages of conventional computer listing.
The XGP printer is a synchronous device, requiring a complete raster line every 5
miilliseconds. In order to make the project economically reasonable, a decision was
made to use a low-cost minicomputer, a Digital Equipment Corporation PDP-11, with a
28k (16 bit) memory. The limited computing power of the machine influenced many
design decisions, sych as the inclusion of "modes" of operation of the interface.

The usual Xerox process consists of reflecting light from a printed page onto a
selenium drum. The change in electrical charge on the drum caused by the light is
used to transfer the "toner” to paper, where a high temperature “fuser” makes the
image permanent. Instead of reflected light, the XGP uses the image generated on a
cathode-ray tube, one scan line at a time. The image on the CRT is produced by
facsimile transmission or, in this case, under computer control. The image is
transferred to unsensitized 8%x{l inch continuous roll paper at a speed of 1
inch/second; the paper may be cut to size automatically under computer control.

The PDP-11/XGP system operates as a peripheral device to the main computer, a
PDP-10. The character set descriptions for various type fonts may be stored on a

This research was supported in part by Xerox Corporation and in part by the
Advanced Research Projects Agency of the Department of Defense under contract no.
F44620-70-C~-0107 and monitored by the Air Force Office of Scientific Research. We
would like to thank Bill Gunning, Dave Damouth, and Louis Mailloux of Xerox
Corporation for their help and assistance.

-149-

small head-per-track disk connected to the PDP-11, or kept on the PDP-10. Text and
graphic information are transmitted as needed from the PDP-10 across a high~speed
data link (160,000 bits/sec). In addition to textual and graphic information, the data
from the PDP-10 may also contain special purpose control information such as
changes of type fonts, variations in margins, and special formatting requests such as
line justification.

An interesting feature of the system is that every aspect of the output device now
becomes a variable when compared with conventional line printers. The character
sets, size, all margins, interline spacing, and page size are all variable, and can be
changed dynamically during the output of a document.

Representation of Information

Characters are represented internally as a rectangular bit matrix. Each row of the
matrix requires an integral muitiple of 8 bits (the byte size of the PDP-11), aithough
not all the bits of the last byte may be used. Characters may be any width from O to

255 bits wide and (theoretically) up to 2"-1 bits high.

Vectors are represented in a conventional scan line format. This format is
necessarily different from the ordinary representation of vectors, since for most
graphics terminals the entire screen is randomly accessible. In video terminals and
hard-copy scan line devices the data must be presented in the order that the scan -
lines are generated. A software solution to the problem of vector intersection with
scan lines was chosen in order to retain the capability for flexible formatting of the
output. Vectors are processed in real time, and the available computing power limits
the number of vectors which can cross any scan line.

Gray scale representation is achieved by dividing the page into 1/25 inch squares
{an area of .0016 square inches) in which an appropriate number of bits is set to
black to represent darkness. This is achieved at present by using a rectangular spiral
representation of increasing darkness. Generation of gray scale images thus turns

cut to be a special case of textual output in which a special gray scale type font is
used.

The generation of a scan line which contains both textual and graphic information
is not a problem for the PDP-11 if the text and graphics is non-overlapping. if the
latter is not the case, then one has to resort to an off-line solution of generating the
bit image on the PDP-10 or restricting the character set to only fixed-width
characters. This is a restriction in the present system but may not be permanent.

IMPLEMENTATION

In this section we provide a description of the overall implementaion of the
system. More detailed descriptions of the various aspects of the system may be found

in[1} «

-150-

The Interface

The purpcse of the interface between the PDP-11 and the XGP is t¢ accept a
coded scan line from the PDP-11 memory and decode it into a video signal, every 5
milliseconds. A scan line is a bit vector of about 1550 points, in which each point is
either on (biack) or off (white). There is no gray scale available at this level. The
interface has facilities for handling three different modes of data and means for
switching between modes, as well as providing control and interrupt functions. The
modes available are "tharacter mode”, "vector mode”, and "image mode”.

In the character mode, the first byte sent to the interface represents the number
of valid bits {and consquently, the number of foliowing bytes} which contain the data,
When the width count is given as zero, then the next byte represents a mode change
(to either vector mode or image mode) or a stop code, indicating completion of the
data.

In the vector mode, each pair of bytes represents a run-ceding of {part of} the
data. The first byte of the pair represents the number of white points and the second
byte represents the number of black points. When two successive bytes are zero,
the interface reverts fo character mode.

In image mode, every bit is treated as video information until an error condition
occurs, typically "overscan®, at which point an interrupt is caused for restart of the
next scan line. Because of the high data rate required, this is the only mode which
cannoi cperate in real time from the PDP-10; for this mode, the scan line images are
first sent to the PDP-11, where they are accumulated on the disk before being
transferred to the XGP.

The support system

There are two components {o the suppor! system; one resides in the PDP-!1; the
other operates as a user program in the time-shared PDP-10. The purpose of the
PDP-11 support system is to generate the scan line data needed by the XGP. The
support system also services interrupts from the PDP-10/PDP-11 link, examines the
incoming data for control information, and selects type fonts from the disk as needed.
All of this is done subject to the real-time constraints of the XGP.

The part of the support system which resides in the PDP-10 provides the users
with the facilities of sending text, vectors, and character sets across the link. It also
provides for conversion of vectars fram conventional format to scan line format,

The Character Set Design System

BILOS is a system for the creation and modification of character sets and has many
facilities that are common to cther interactive editing systems. Rather than
manipulating lines of text, BILOS manipulates the rectangular bit matrices which define
characters. Any bit of a character matrix may be set or reset by moving a cursor to
the appropriate point on a grid and issuing a command.

-151-

In addition to these manipulations, the system has facilities for copying,
substituting, translating, rotating, stretching, shrinking and reflacting characters. The
system currently runs on a storage screen display terminal connected to the PDP-10.

Document Generation Languages

The XGP provides a powerful and flexible tool for the production of printed
documents. Since there is a very low cost associated with producing a copy of a
document, the user is free to experiment with type fonts, typographic style, physical
arrangement of the text and illustrations, etc,, until the desired document is produced.
The flexibility of type fonts allows mathematical or technical notation to be used
freely, without the necessity of typing or drawing the symbols on the final document.
Furthermore, the output is "camera-ready"---a distinct advantage in light of rising
publication costs.

Two languages for text preparation exist on the PDP-10 at CMU -- XOFF and PUB.
Both have been modified to interface with the XGP and are documented in manuals
available from the Computer Science Department.

INTRODUCTION TO LOOK

LOOK is a PDP~10 program which transmits information from the 10 to the PDP-11
controlling the XGP. Complete documentation of look is available on file
LOOK.DOC[A730GR02]. Below is the sequence of commands used to print this
document on the XGP. User input is underiined, comments in lower case.

-R LOOK

*IOUTA NGR25.KST file name for the a partition character set
*!IQUTB NGRU25.KST | file name for the b partition

keNL=65 set the number of lines per page to 55
#*XCRIBL.XGO name of the file to be printed

*1C

