
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU PDP-10
INTRODUCTORY USERS MANUAL

Editors: Jack Dills
Art Farley
Mary Shaw

JANUARY 1973

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

PREFACE

The following manual is intended to provide a usable introduction to

computing on the CMU PDP-10. To accomplish this, a discussion of general

computing procedures and the PDP-10 monitor is given, followed by descrip­

tions of the available language systems. The manual does not provide full

language descriptions (references are provided to necessary, useful lan­

guage manuals); but through a short introduction, sample problems to try,

and an annotated script, the manual hopes to impart to the user an intro­

ductory knowledge of what it is like,and what to expect, when using each

of the discussed language systems on the CMU PDP-10.

Note that timely information can be found for many of the language

systems in a printable text file <language>.DOC on the PDP-10. Informa­

tion on which files are available can be found in DOC.DOC. To get a copy

of a DOC file print SYS:<1 anguage>.DOC.

TABLE OF CONTENTS

Page
I. PROCEDURES AND MONITOR

1. General Procedures 1

Usage Numbers 1
D E C t a P f i S 1

Trouble Report Forms

Teletypes 2

Control characters 3
Getting Tapes Mounted 7
Line Printer Output 8
Utility Programs 8
Learning to Type 13
Datel Terminals 16

2. PDP-10 Monitor 18

II. THE LANGUAGE SYSTEMS
3. ALGOL 28
4. APL 39
5. BLISS 58
6. LISP 66
7. L* 76
8. MACRO-10 79
9. MLISP 86

10. PIP 93
11. PPL 99
12. SAIL 101
13. SNOBOL 108

III. THE EDITORS
14. SOS 120
15. TECO 143
16. XCRIBL 148

NOTE: The FORTRAN and BASIC language systems are fully described in
the PDP-10 Timesharing Handbook. Thus, no discussion of either
is included.

GENERAL PROCEDURES

D. Bajzek, B. Anderson, H. Wactlar

USAGE NUMBERS

A computer usage application may be obtained from the Manager of

Operations, Science Hall 3204, and should be returned there when

completed. You will be notified by campus mail, probably within a week,

as to your usage number. It will contain eight alphanumeric characters.

The first four characters are your account number; this is used for

departmental accounting and statistics. The last four characters are

your man number; i.e. the initials of your first and last names with two

digits appendede Your man number will be the first part of your dectape

name(s), and is sufficient to identify you in most cases.

DECTAPES

DECtapes may be purchased in the CMU bookstore. Members of the

Computer Science Department may borrow DECtapes for their personal use

free of charge from the Manager of Operations, Science Hall 3204. For the

benefit of students in the Immigration Course and other graduate courses

in the Department, one DECtape will be assigned to each student in the

course and will be filed in the machine room for your use during the

duration of the course. If additional tapes are needed, see the Manager

of Operations. Each DECtape is named with from five to seven alphanumeric

characters. The first four characters will be your man number, with from

one to three characters of your choice appended. This is the name which

you will use when requesting that a DECtape be mounted.

TELETYPES

We currently have two dial-in lines for teletypes on the PDP-10/A:

687-3411 and 687-3412.

A knob is located on the right front panel of the teletype, with

three positions: LINE, OFF, and LOCAL. Line indicates that the

teletype is on-line to the computer; that is, typed characters are sent

to the computer for interpretation and response by the system. Local

indicates that the teletype is being used off-line from the system, as a

typewriter.

To change teletype paper, insert the red spindle through the center
of the roll of paper, and place the spindle in the appropriate grooves
in the teletype, making sure that the paper unrolls from beneath the roll.
Unroll a foot or so of paper, and tear the paper unevenly so that a corner
protrudes when inserted into the carriage. Lift the view plate and pull
forward the rubber tipped lever at the right of the platen (black roller).
Tilt the metS paper bale toward you and insert the paper under the platen.
Pull the paper through toward you, tilt the paper bale back again, and
insert the paper undL the metal paper holder. Align the paper and then
push the rubber tipped lever back. Lower the view plate and pull the
paper through over the paper bale. Tear along the edge of the view plate.
The knob on the left of the tty will advance the pape; manually.

To change the ribbon, examine another tty to see how the ribbon is
inserted. Be sure to keep one of the spools which is already on the tty,
as the ribbon replacement has only one spool.

TROUBLE REPORT FORMS

Hardware trouble report forms are located in the teletype room,

Science Hall 5201. These are to be filled out when you encounter

hardward trouble with Datels and teletypes. The yellow copy should be

put in a conspicuous place on the terminal, and the white copy should

be put in the container marked REPAIR REQUESTED.

Software bugs can be reported by running the cusp GRIPE described

under the heading UTILITY PROGRAMS.

If a hardware or software problem is seriously impeding your work

and should receive immediate attention, call the operator on extension

350. He will report the problem to the appropriate staff member.

CONTROL CHARACTERS

On the Teletype, there is a special key marked CTRL called the Control

Key. If this key is held down and a character key is depressed, the Tele­

type types what is known as a control character rather than the character

printed on the key. In this way, more characters can be used than there

are keys on the keyboard. Most of the control characters do not print on

the Teletype, but cause special functions to occur, as described in the

following sections.

There are several other special keys that are recognized by the system.

The system constantly monitors the typed characters and, most of the time,

sends the characters to the program being executed. The important characters

not passed to the program are also explained in the following sections.

Control - C

Control - C (tC)interrupts the program that is currently running and

takes you back to the monitor. The monitor responds to a control - C by

typing a period on your Teletype, and you may then type another monitor

command. For example, suppose you are running a program in BASIC, and you

now decide you want to leave BASIC and run a program in AID. When BASIC

requests input from your Teletype by typing an asterisk, type control - C

to terminate BASIC and return to the monitor. You may now issue a command

to the monitor to initialize AID (.R AID). If the program is not requesting

input from your Teletype (i.e., the program is in the middle of execution)

when you type control - C, the program is not stopped immediately. In this

case, type control - C twice in a row to stop the execution of the program

and return control to the monitor. If you wish to continue at the same

place that the program was interrupted, type the monitor command CONTINUE.

As an example, suppose you want the computer to add a million numbers and

to print the square root of the sum. Since you are charged by the amount

of processing time your program uses, you want to make sure your program

does not take an unreasonable amount of processing time to run. Therefore,

after the computer has begun execution of your program, type control - C

twice to interrupt your program. You are now communicating witb the monitor

and may issue the monitor command TIME to find out how long your program has

been running. If you wish to continue your program, type CONTINUE and the

computer begins where it was interrupted.

The RETURN Key

This key causes two operations to be performed: (1) a carriage-re­

turn and (2) an automatic line-feed. This means that the typing element

returns to the beginning of the line (carriage-return) and that the paper

is advanced one line (line-feed). Commands to the monitor are terminated

by depressing this key.

The RUBOUT Key

The RUBOUT key permits correction of typing errors. Depressing this

key once causes the last character typed to be deleted. Depressing the key

n times causes the last n characters typed to be deleted. RUBOUT does not

delete characters beyond the previous carriage-return, line-feed, or alt-

mode. Nor does RUBOUT function if the program has already processed the

character you wish to delete.

The monitor types the deleted characters, delimited by backslashes.

For example, if you were typing CREATE and go as far as CRAT, you can correct

the error by typing two RUBOUTS and then the correct letters. The typeout

would be

CRAT\TA\EATE

Notice that you typed only two RUBOUTS, but \TA\ was printed. This shows

the deleted characters, but in reverse order.

Control - U

Control - U (tU) is used if you have completely mistyped the current

line and wish to start over again. Once you type a carriage-return, the

command is read by the computer, and line-editing features can no longer

be used on that line. Control - U causes the deletion of the entire line,

back to the last carriage-return, line-feed, or altmode. The system re­

sponds with a carriage-return, line-feed so you may start again.

The ALTMODE Key

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as

a command terminator for several programs, including TECO and LINED. Since

the ALTMODE is a non-printing character, the Teletype prints an ALTMODE

as a dollar sign ($).

Control - 0

Control - 0 (tO) tells the computer to suppress Teletype output. For

example, if you issue a command to type out a 100 lines of text and then de­

cide that you do not want the type-out, type control - 0 to stop the output.

Another command may then be typed as if the typeout had terminated normally.

Control - Z

This is the end-of-file character when the input device is the tele­

type, similar to and end-of-file mark on a magtape.

Modifying the terminal characteristics

When you login to the system the teletype characteristics are defaulted

to the appropriate set for that terminal. If you wish Do modify them, there

is a TTY command which declares special properites of the Teletype line to

the scanner service. The command format is:

TTY dev: NO WORD

dev:= the device argument that is used to control a line other than the

one where the command is typed. This argument is optional and is legal
only from the operator's console. It may be used to modify the charac­
teristics of any Teletype lines in the system.

NO = the argument that determines whether a bit is to be set or cleared,
this argument is optional.

WORD = the various words representing bits that may be modified by
this command. The words are as follows:

TTY TAB This terminal has hardware TAB stops set
every eight columns.

TTY NO TAB The monitor simulates TAB output from
programs by sending the necessary number
of SPACE characters.

TTY FORM This terminal has hardware FORM (PAGE)
and VT (vertical, tab) characters.

TTY NO FORM The monitor sends eight linefeeds for a FORM
and four linefeeds for a VT.

TTY LC The translation of lower-case characters input
to upper case is suppressed.

TTY NO LC The monitor translates lower-case characters
to upper case as they are received. In either
case, the echo sent back matches the case of
the characters being sent.

TTY WIDTH n The carriage width (the point at which a free
carriage return is inserted) is set to n. The
range of n is 17 (two TAB stops) to 200 decimal.

TTY NO CRLF The carriage return normally outputted at the
end of a line exceeding the carriage width is
suppressed.

TTY CRLF Restores the carriage return.

TTY NO ECHO The Teletype line has local copy and the computer
should not echo characters typed in.

TTY ECHO Restores the normal echoing of each character typed
in.

TTY FILL n The filler class n is assigned to this terminal. The
filler character is always DEL (RUBOUT, 377 octal).
No fillers are supplied for image mode output.
Teletypes are class 0, 30 character per second termi­
nals use classes 1 and 2, and datels are class 3 fillers.

TTY NO FILL Equivalent to TTY FILL 0.

GETTING TAPES MOUNTED

The first thing to do is to get a unit assigned for your tape.

Type: .AS DTA (FOR DECTAPE) or

.AS MTA (FOR MAGTAPE)

The monitor will respond with:

DTA2 ASSIGNED

or, if no unit is available, it will respond:

NO SUCH DEVICE

After a unit is assigned to you, you will notify the operator to mount

your tape by using the monitor command PLEASE. PLEASE is described under

the heading UTILITY PROGRAMS. In your request specify the tape name,

tape unit, and whether the tape should be enabled for writing. If you do

not specify "write enabled," the operator will write lock the tape. Re­

main in PLEASE mode until the operator responds to your request. He may say

NN^ABC MOUNTED ON DTA2 ENABLED

or, since the monitor recognized eight DECtape units and eight magtape

units, and we have only five DECtape drives and two magtape drives, there

may not be a drive free for you even though you have a unit assigned. If

this is the case, the operator will try to get a drive for you as soon as

possible. The drives are allotted on a first-come-first-served basis.

If you need a drive urgently or only for a minute, the operator can try

contacting other users to see if someone can give up a drive. When a

drive is free the operator will mount your tape and notify you.

The tape drives are very much in demand, so please be considerate of

others. When you finish with a tape, be sure to tell the operator to

dismount it immediately, thus freeing the drive for someone else. If

you are logging off, the unit will be returned to the pool. If not, you

can type

.DEAS DTA2

to make the unit available for others. If you are using the same unit

number for more than one tape, be sure to reassign the unit between tapes

.AS DTA2

and so a fresh copy of the directory will be read into core and you will

not be using the directory from the last tape.

A unit can be reassigned to another job without first being returned

to the pool by typing

.REAS DTA2 n

where n is the job number.

LINE PRINTER OUTPUT

The line printer (LPT) is currently located at the far end of the

machine room, behind the operator's console. The operator bursts output

as soon as it comes off of the printer if possible; however, if he is

busy mounting tapes it may take a few minutes. Output is filed alpha­

betically by man number just inside the door to 3103. This door will be

left unlocked for users to retrieve their output from 0800-2400. It will

be locked from 0000-0800.

UTILITY PROGRAMS

Two monitor commands, PLEASE and SEND, may be used for inter-console

communication, including communication between your teletype and the

CTY (console teletype).

PLEASE is a monitor command which puts the issuing terminal, and

eventually the CTY, into a special communications mode. This mode is

evoked by typing, when logged in and in monitor mode,

If the CTY is logged in, or running SYSTAT, or in another PLEASE, the

message

OPERATOR BUSY, PLEASE HANG ON

will print on the teletype. You can terminate the PLEASE with a CONTROL C

or wait until the C T Y is free. When it is free your teletype will print

OPERATOR HAS BEEN NOTIFIED

and your message will print on the CTY along with identifying information

about you and several "bells." Now both terminals are in PLEASE mode. Any

line typed on either terminal, terminated by <cr> will print out on the

other terminal and will otherwise be ignored by the system. Thus a two-way

communication is established. This mode is terminated with a CONTROL C

or an ALTMODE typed on either terminal. Both terminals will then be in

monitor mode. The most frequent use of PLEASE is to request mounting of

tapes, or to talk with the operator via teletype.

SEND provides a mechanism for one-way inter-console communication.

One line of text is transmitted to another terminal, TTYn, by typing

.SEND TTYn text <cr>

SEND leaves the user in monitor mode. The format of the message on the

receiving terminal is

TTYm: text <cr>

where m is the terminal where the message originated. If the sender or

receiver of the message is the CTY, the message will be transmitted

regardless of what the receiving terminal is doing. The message will

print out, leaving the terminal in its former state. If CTY is not involved,

a busy test is made to see if the receiving terminal is in monitor mode.

If so, the message is transmitted; if the designated terminal is not

in monitor mode, the sender will get the message

?BUSY

on his terminal. You can do a short SYSTAT

.SY S

to determine which terminals are in use by whom and what they are running.

Another monitor command, SYSTAT, will give you current running informa­

tion about the system. To get all the information printed on your tty,

type

.SY

Subsets of the STSTAT information are available by running variations of

SYSTAT. To get a short version of SYSTAT, giving the current status of

all users on the system, type

.SY S

To determine the status of a particular job, type

.SY n

where n is the job number. To find out which I/O devices are assigned to

which users, type

.SY B

To list all jobs waiting in the line printer queue, type

.SY Q

Also

.SY H

lists all the SYSTAT commands, including those given above.

Two CUSPs (commonly used system programs), MAIL and GRIPE, may be

used to write a message onto a file in another's disk area. MAIL will

create or update a file called MAIL.BOX on another user's disk area.

To send mail to a user type

.R MAIL

The CUSP will respond

ENTER PPN:

After the colon, type the user number (all eight characters) of the user to

whom you are sending mail, and the <cr>. MAIL responds

ENTER A MESSAGE TERMINATED WITH AN ALTMODE:

Type your message, followed by <cr> and ALTMODE. There is no need to

identify yourself as this information will be recorded in the file. Your

terminal will then be returned to monitor mode. When the user next logs

onto the system, the message

MAIL PENDING

will print on his tty at the beginning of the logon message. He can read

the message by listing his file MAIL.BOX; i.e.

• R PIP

*TTY:<-MAIL.BOX

GRIPE will create a file for your message on one of the system disk

areas. If you have a comment or gripe about the hardware, software,

operations, etc. of the system, you can run the GRIPE CUSP.

.R GRIPE

GRIPE will respond with

YES? (TYPE ALTMODE WHEN THROUGH)

Type your comments as instructed; that is, first type <cr>, then your

message, another <cr> and ALTMODE. There is no need to identify yourself,

as that information will be recorded along with your comments in the GRIPE

file. Systems personnel regularly review the GRIPE files and an answer

will be sent to you by campus mail if appropriate.

PRINT is another useful CUSP. PRINT can be used to print files on

the line printer. Unlike printing with PIP, PRINT supplies the filename

on the file header page, and enables the user to print several copies of

the file if desired. To run the CUSP, type

.R PRINT

When PRINT prompts you with a *, type the names of the files to be printed

separated by commas. If you want the file to be deleted after being

printed, type /D after the filename; if you want several copies, type /n

after the filename where n is a number from 2 through 9 indicating the

number of copies wanted. An example follows:

.R PRINT

*F00.LST/D * MAC/2,F00.F4

Now FOO.LST will print on the line printer and then that disk file will be

deleted. Two copies of all files with MAC extensions will be printed and

F00.F4 will be printed. If the files to be printed are on a device other

thflti DSICy you. Hixxst procede Gflch f 1.1 engine with tztie device H3me on wtiicti it is

loedtfid* i ft
R PRINT
*DTA2:FILE1,DTA2:FILE2,FILE3

Now files FILE1 and FILE2 from DTA2 and FILE3 from DSK will print.

Another useful CUSP is SAVE. SAVE will save on magtape, or restore

from magtape, all or selected disk files for a single user. For instructions

on how to run SAVE, type

*/H
The instructions will print on the TTY; or type

.R SAVE
*/2L
*>H

LEARNING TO TYPE

You will probably be spending many hours at the teletype. It will

greatly increase your efficiency if you learn to type properly at the

beginning. Following are a few brief instructions to get you started.

Study the keyboard chart below. Find the left-hand home keys on it;

the left-hand home keys are " a - s - d - f N o w find them on your teletype

keyboard. Place your finders on them. Study the chart again. Find the

right-hand home keys on it. Find them on your teletype keyboard. Place

your finders on them. Take your fingers off the k e y s . Replace them.

Repeat two or three times. Get the feel of these home k e y s . Curve your

fingers. Hold them lightly just above the home k e y s . Drop your wrists

slightly, but do not let them rest on the frame of the teletype. Strike

the space bar with a quick inward motion of your right thumb.

Type the line of home keys shown below. Say each letter as you strike

it. Repeat several times.

ff dd ss aa jj kk 11 ff dd ss aa jj kk 11 fj

TELETYPE KEYBOARD

S P A C E B A R

SHrfbEb KEYS rttfE HOME hChYS

Carriage return is operated with the little finger of your right hand.

Type each line twice. Double space after the second line,

ff jj dd kk ss 11 aa fj dk si a; fdsa jkl; fjsl

a lad; a fall; a lad; a fall; a lad; a fall; a lad

all lads; all lads fall; a lad falls; a lad falls;

Regardless of what key you are typing, the other fingers should

always remain just above their home keys. Operate h with the j finger;

g with the f finger.

jhj fgf jhj fgf jhj fgf jhj fgf jhj fgf jhj fgf fj gf

Study the chart again. The a finger also operates the q and z keys.

Similarly, each finger operates the keys in a line with its home key.

Practice the exercises below.

aqaz aqaz swsx swsx dedc dedc frfv frfv gtgb gtgb

hyhn hyhn jujm jujm kik, kik, lol. lol. ;p;/ ;p;/

The six sets of exercises below will give you more practice in

learning where the keys are. Do not go on to the next set until you are

fairly sure of the current one.

fdsa jkl; fdsa jkl; gf hj gf hj fall hall glad had

juj juj uj uj full jug dull dud lugs hug hugs gulf

ded ded ed ed led fled he held she shed fell shell

lol lol ol ol old sold fold do so gold log loss go

keg jug she shall fog half log; he had a dull duel

fdsa jkl; uj ed uj ed full fled dull fell jug held

frf kik rf ik rf ik fur fir furl fire ride hire or

lol ded ol cd ol cd so sod sold cod code ice slice

jnj jnj nj nj fin fund and lend land gain sun sung

a large jug; and hold; did shake; and can fill all

- 1 5 -

sws sws ws ws will will with loss low how show who

jmj jmj mj mj mad made mar make am same me come me

ftf ftf tf tf to told the then them their lot late

karl saw the gold mine shaft, lou called, jouran

fvf fvf vf vf five live strive move love have give

k,k k,k ,k ,k work, rack, trick, to give, for all,

jyj jyj yj yj yet yell year sly they lay flay gray

ws nj ws nj win wing wink drink won now know knows

they just like to drive down fog street in my car.

;p; ;p; p; p; pled pledge help plain gulp tip trip

fbf fbf bf bf bug but bluff bring rub rib rob bold

aza aza za za zone size maze zones zeal doze dozed

yj vf yj vf live five yet they sly move love stray

jess dent gave buz a small pay check for his work.

aqa aqa qa qa quit quip square squid squash squint

sxs sxs xs xs xs six fix hoax mix flax box tax box

p; bf p; bf pled bring trip blot gulp bold rip rub

gay quick foxes run and jump with bold vim or zip.

USING DATEL TERMINALS ON THE PDP-10

There are currently four dial-in lines for Datels on the PDP-10/a:

683-8330 to 683-8333. The procedure for getting onto the system on a Datel

is:

1. Dial.

2. Place receiver on coupler, making sure the ON switch is lit.

3. Switch to remote.

The PDP-10 monitor has been modified to handle Datel terminals with the

ASCII type head. Almost every character on the Datel keyboard has a direct

ASCII equivalent in the PDP-10. However, some characters do need explanation.

See the table below.

The ATTENTION key has two different functions depending on whether the

keyboard is locked. If it is locked, ATTENTION unlocks the keyboard but does

not result in any character being input. If the keyboard is unlocked,

ATTENTION may be used to send an end-of-message; i.e., to release the key­

board control without inputting a carriage return.

The PDP-10 monitor can handle both lower and upper case characters from

a Datel, and these terminals are initialized to have both cases. TTY commands

can enable or disable this feature; that is, lower case characters will be

mapped into upper case if the proper command is used. These commands are:

TTY LC (tells the monitor that the keyboard has a lower case

keyboard so lower case letters are not mapped into

upper case)

TTY NO LC (no lower case keyboard, therefore, mapping is necessary)

Remember that TTY LC is the initial state of the Datel when logging in.

- 1 7 -

Typing a CONTROL Q on the Datel puts the terminal into the non-standard

APL mode, in which no characters can be input to the Datel. Exit from APL

mode is by hitting four successive ATTENTIONS.

Monitor assumes that tabs are set to 8 print positions. If tabs are

set to more than 8, early printing may occur.

CHARACTER TABLE

PDP-10 INPUT

CONTROL C**
LINE FEED
ALTMODE
t

]
[

' (grave)

TYPE ON DATEL

|c
INDEX

$ (also -)

II

I)

I c

1/

1$
_ (underline)

4

PDP-10
OUTPUT ON DATEL

>C
NONE

$

I

)
(
/
$

4

** similarly for all control characters

PDP-10 MONITOR

H. Wactlar

Commonly used monitor commands:

ASSIGN <physical device> <logical name>

allocates an I/O device (dectape, magtape) to the user% job and

optionally assigns a logical name designated by the user to that

device

e.g., .ASS DTA3 IN
DTA3 ASSIGNED

ATTACH <job no.>[project programmer No.]<password>

detaches the current job, if any, and connects the

console to a detached job. Exclude <password> if

attaching to a job detached during logout.

COMPIL <list of source file names separated by commas>

produces relocatable binary files for the specified program(s)

by calling the appropriate compiler as determined by the source

file name extension (ALG for ALGOL, MAC for MACRO, F4 for FORTRAN

BLI for BLISS, SAI for SAIL)

e.g., .COMP TEST.MAC

CONT starts the program at the saved program counter address stored

by a Tc (halt) command

CREATE <filename>

calls the line editor to create a new file

e.g., .CREATE TEST.MAC

DDT saves the program counter and starts the program at the dynamic

debugging module optionally loaded with the compiled program

DEASSIGN <logical or physical device name>

returns the I/O device to the system* available pool

- 1 9 -

DEBUG <list of file names separated by commas>

performs the compile and loading functions and in addition

loads DDT which it enters on completion of loading

e.g., .DEBUG TEST.MAC, TEST2.F4

DELETE <list of file names or groups separated by commas>

automatically runs PIP to delete the specified files

e.g., .DELETE TEST.MAC,*.REL
DETACH Disconnects the console from the users job without

affecting its status. Console is now free to control

another job.

DIRECT <logical or physical device naraeO:

runs PIP to list the names and space occupied by files on that

device (DSK is assumed if no device name given)

e.g., .DI DTA3:

EDIT <f ile name>

calls the live editor to edit an already existing file

e.g., .EDIT TEST.MAC

EXECUTE <list of file names separated by commas>

performs the compiling and loading functions and initiates

program execution

e.g., .EXEC TEST.MAC

KJOB initiates log-off sequence

e. g.

CONFIRM: H

IN RESPONSE TO CONFIRM:,TYPE ONE OF: DFHIKLPQSU
D TO DELETE ALL FILES
(ASKS ARE YOU SURE?, TYPE Y OR CR)
F TO TRY TO LOGOUT FAST BY LEAVING ALL FILES ON DSK
H TO TYPE THIS TEXT
I TO INDIVIDUALLY DETERMINE WHAT TO DO WITH ALL EXCEPT TEMP FILES
WHERE TEMP IS .LST, .CRF, .TMP, .TEM, .RPG
AFTER EACH FILE NAME IS TYPED OUT, TYPE ONE OF: EKPQS
E TO SKIP TO NEXT FILE STRUCTURE AND SAVE THIS FILE IF
BELOW LOGGED OUT QUOTA ON THIS FILE STRUCTURE

K TO DELETE THE FILE
P TO PRESERVE THE FILE
Q TO REPORT IF STILL OVER LOGGED OUT QUOTA, THEN REPEAT FILE
S TO SAVE THE FILE WITH PRESENT PROTECTION

K TO DELETE ALL UNPRESERVED FILES
L TO LIST ALL FILES
P TO PRESERVE ALL EXCEPT TEMP FILES
Q TO REPORT IF OVER LOGGED OUT QUOTA
S TO SAVE ALL EXCEPT TEMP FILES
U SAME AS I BUT AUTOMATICALLY PRESERVE FILES ALREADY PRESERVED

IF A LETTER IS FOLLOWED BY A SPACE AND A LIST OF FILE STRUCTURES
ONLY THOSE SPECIFIED WILL BE AFFECTED BY THE COMMAND. ALSO
CONFIRM WILL BE TYPED AGAIN.

A FILE IS PRESERVED IF ITS ACCESS CODE IS GE l#f

CONFIRM:

LOAD <list of file names separated by commas>

perform the compiling and loading functions to execute core image

of runnable program

LOG initiates log-in sequence; prompts for password

Passwords may be modified during login by typing altmode (ESC)

after the password instead of a carriage-return. Prompting

for the new password will follow.

PJOB types job number and project programmer number of job running

on terminal on which this command is typed

R <CUSP name>

executes the named commonly used system program

e.g., .R PIP

RENAME <new file name> = <old file name>

RUN

SAVE

runs PIP to change a file name

e.g., RENAME TESTl .MAC = TEST.MAC
FILES RENAMED:
TEST.MAC

<file name>

runs the core image previously loaded and SAVE'd with that

file name

e.g., RUN DSK:TEST.SAV

<file name>

Copies the core image currently loaded in core onto the specified

file so that it can be RUN at a later time

e.g., .LOAD TEST.MAC
.SAVE TEST

SYS runs a CUSP to provide system status information

e.g.

.SYS H
SYSTAT INSTRUCTIONS:
TYPE f ISYS<C.RET.> l f TO LIST THE ENTIRE STATUS, OR
TYPE "SYS 11 FOLLOWED BY ONE OR MORE LETTERS AS FOLLOWS —
f l<STRING> f

<STRING> IS AN ACCOUNT NO. ,MAN NO.,STRUCTURE,DEVICE,CUSP
THIS OUTPUTS THE SYSTEM STATUS OF <STRING>

B BUSY DEVICE STATUS
D DORMANT SEGMENT STATUE
F FILE STRUCTURE STATUS
H THIS MESSAGE

J JOB STATUS
L OUTPUT TO LPT
N NON-JOB STATUS
P DISK PERFORMANCE
Q PRINT QUEUE
S SHORT JOB STATUS

TYPE "SYS " FOLLOWED BY A JOB NUMBER FOR THAT JOB'S STATUS

TIME <job no>

causes typeout of total runtime since last TIME

command, total runtime since login, and integrated

product of runtime and core size

TYPE <file name>

runs PIP to type on the terminal the specified file

e.g., TYPE TEST.MAC

Note:

PIP and the two editing systems TECO and SOS are discussed separately

as language systems in this m a n u a l .

Extended Command Forms

The commands previously explained are adequate for the compilation and

execution of a single program or a small group of programs at one time.

However, the assembly of large groups of programs, such as the FORTRAN li¬

brary or the Timesharing Monitor, is more easily accomplished by one or

more of the extended command forms.

Indirect Commands(@ Construction) - When there are many program names

and switches, they can be put into a file; therefore, they do not have to

be typed in for each compilation. This is accomplished by the use of the

@ file construction, which may be combined with any COMPIL-class commands.

The & file may appear at any point after the first word in the command.

In this construction, the word file must be a filename, which may have an

extension and project-programmer numbers. If the extension is omitted, a

search is made for the command file with a null extension and then for a

command file with the extension .CMD. The information in the command file

specified is then put into the command string to replace the characters

® file.

MONITOR

For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED

then the command

.COMPILE FILEA,FILEB,FILEC/LIST,FILED,FILEZ

could be replaced by

.COMPILE FILEA,@FLIST,FILEZ

Command files may contain the @ file construction to a depth of nine levels.

If this indirection process results in files pointing in a loop, the maximum

depth is rapidly exceeded and an error message is produced.

The following rules apply in the handling of format characters in a command .

file.

a. Spaces are used to delimit words but are otherwise ignored.
Similarly, the characters TAB,VTAB, and FORM are treated like spaces.

b. To allow long command strings, command terminators (CARRIAGE RE­
TURN, LINE FEED, ALTMODE) are ignored if the first nonblank char­
acter after a Sequence of command terminators is a comma. Otherwise,
they are treated either as commas by the COMPILE, LOAD, EXECUTE,
and DEBUG commands or as command terminators by all other COMPIL-class
commands.

c. Blank lines are completely ignored because strings of returns
and line-feeds are considered together,

d. Comments may be included in command files by preceding the com­
ment with a semicolon. All text from the semicolon to the line­
feed is ignored.

e. If command files are sequenced, the sequence numbers are ignored.

The + Construction1" - A single relocatable binary file may be produced

from a collection of input source files by the "+" construction. For example:

a user may wish to compile* the parameter file, S.MAC, the switch file,

FT50S.MAC, and the file that is the body of the program, COMCON.MAC.

This is specified by the following command:

.COMPILE S+FT5/SS+C0MCCN

The name of the last input file in the string is given to any output (.REL,

VCRF, and/or .LST) files. The source files in the **+" construction may each

contain device and extension information and project-programmer numbers.

The = Construetion+ - Usually the filename of the relocatable binary

file is the same as that of the source file, with the extension specifying

the difference. This can be changed by the "=>" construction, which allows

a filename other than the source filename to be given to the associated

output files. For example: if a binary file is desired with the name

BINARY.REL from a source program with the name SOURCE.MAC, the following

command is used.

.COMPILE BINARY=SOURCE

This technique may be used to specify an output name to a file produced

by use of the construction. To give the name WHOLE.REL to the binary

file produced by PARTI.MAC and PART2.MAC, the following is typed.

.COMPILE WH0LE=PART1+PART 2

Although the most common use of the "=" construction is to change the filename

of the output files, this technique may be used to change any of the other

default conditions. The default condition for processor output is DSK:

source.REL[self]. For example: if the output is desired on DTA3 with the

filename FILEX, the following command may be used:

EXECUTE DTA3:FILEX-FILEl.F4

The < > Construction"1" - The < > construction causes the programs within

the angle brackets to be assembled with the same parameter file. If a + is

used, it must appear before the < > construction. For example: to assemble

the files LPTSER.MAC, PTPSER.MAC, and PTRSER.MAC, each with the parameter

file S.MAC, the user may type

.COMPILE S+LPTSER, S+PTPSER, S+PTRSER

With the angle brackets, however, the command becomes

.COMPILE S4<LPTSER,PTPSER,PTRSER>

The user cannot type

.COMPILE <LPTSER,PTPSER,PTRSER>+S

Compile Switches^

The COMPILE, LOAD, EXECUTE, and DEBUG oommands may be modified by a

variety of switches. Each switch is preceded by a slash and is terminated

by any non-alphanumeric.character, usually a space or a comma. An abbreviation

may be used if it uniquely identifies a particular switch.

These switches may be either temporary or permanent. A temporary switch

is appended to the end of the filename, without an intervening space, and

applies only to that file.

Example:

.COMPILE A,B/MACRO,C (The MACRO assembler applies only

to file B.)

A permanent switch is set off from filenames by spaces, commas or any com­

bination of the two. It applies to all the following files unless modified

by a subsequent switch.

Example:

.COMPILE /MACRO A,B,C

.COMPILE A /MACRO B,C

.COMPILE A,/MACRO,B,C

.COMPILE A,/MACRO B,C

Compilation Listings1" - Listing files may be generated by switches.

The listings may be of the ordinary or the cross-reference type. The op­

eration of the switch produces a disk file with the extension.LST ,queues

it, prints it, and then deletes it.

The compile-switches LIST and NOLIST cause listing and nonlisting of programs

and may be used as temporary or permanent switches.

Listings of all three programs are generated by

.COMPILE /LIST A,B,C

A listing only of program A is generated by

.COMPILE A/LIST,B,C

Listings of programs A and C are generated by

.COMPILE /LIST A,B/NOLIST,C

The compile-switch CREF is like LIST, except that a cross-reference listing

is generated (FILE.CRF), processed later by the CREF CUSP which generates

the .LST file, queues, prints and deletes it. Unless the /LIST or /CREF

is specified, no listing file is generated.

Since the LIST, NO LIST, and CREF switches are commonly used, the switches

L,N, and C are defined with the corresponding meanings, although there are

(for instance) other switches beginning with the letter L. Thus, the

command

.COMPILE /L A

produces a listing file A.LST (and A.REL).

Standard Processor - The standard processor is used to compile or

assemble programs that do not have the extensions .MAC, .CBL, .F4, or .REL.

A variety of switches set the standard processor. If all source files are

kept with the appropriate extensions, this subject can be disregarded.

If the command

.COMPILE A

is executed and there is a file named A. (that is, with a blank extension),

then A. will be translated to A.REL by the standard processor. Similarly,

if the command

. COMPILE FILE.J.NEW

is executed, the extension .NEW, although meaningful to the user, does not

specify a language; therefore, the standard processor is used. The user must

be able to control the setting of the standard processor which is FORTRAN IV

at the beginning of each command string.

Forced Compilation - Compilation (or assembly) occurs if the source

file is at least as recent as the relocatable binary file. The creation time

for files is kept to the nearest minute. Therefore, it is possible for an

unnecessary compilation to occur. If the binary is newer than the source,

the translation does not usually have to be performed.

There are cases, however, where such extra translation may be desirable

(e.g., when a listing of the assembly is desired). To force such an assembly,

the switch COMPILE is provided, in temporary and permanent form. For example:

.COMPILE /CREF/COMPILE A,B,C

will create cross-reference listing files A.CRF, B.CRF, and C.CRF, although

current .REL files may exist. The binary files will also be recreated.

ALGOL

T. Teitelbaum, L. Snyder, J. Dills
(Revised Jan. 1973)

Algol 60 is an algebraic programming language developed by an

international committee in 1960. Algol was designed at a time when many

computer installations had their own ad hoc algebraic programming languages.

Algol was intended to be a machine independent standard for the communication

(and execution) of algorithms. Most of the arbitrary restrictions found

in languages such as FORTRAN were eliminated. Algol was the first language

for which a complete and precise syntactic and semantic definition was

attempted. The terminology used in this definition (in the Algol Report)

has come into wide use in computer science. Algol is characterized by

dynamic array allocation, recursive procedures, block structure, and a

generalized parameter passing mechanism.

REFERENCES

Manual
[1] Digital Equipment Corp. PDP-10 Algol Manual.

[5] Knuth, D. E., Merner, J. N. ALGOL 60 Confidential. CACM, Vol. 4, 1961.

Philosophy

Definition
[2] Naur, P. (ed.) Revised Report on the Algorithmic Language

ALGOL 60. Comm.ACM 6 (Jan 63).
[3] Knuth, D. E. The remaining trouble spots in ALGOL 60.

Comm.ACM 10 (Oct 67).
[4] Abrahams, P. W. A final solution to the dangling else of

ALGOL 60 and related languages. Comm.ACM 9
(Sept 66).

[6] Perils, A. J. The synthesis of algorithmic systems.
J.ACM 14 (Jan 1967).

-29-

History-Bibliography

[7] Bemer, R. W. A politico-social history of ALGOL.
Annual Review In Automatic Programming, 5
Pergamon Press, 1969.

[8] Sammet, Jean Programming Languages: History and Funda­
mentals, Prentice-Hall, 1969.

Introductory

[9] Bottenbruch, H. Structure and use of ALGOL 60. J.ACM 9
(Apr 62).

[10] Higman, B. What everybody should know about ALGOL.
Computer Journal 6 (1963) p. 50.

[11] Ekman, T. and
Froberg, C.

Introduction to ALGOL programming.
Oxford University Press, (1967).

[12] Dijkstra, E. W. A Primer of ALGOL 60 Programming, Academic
Press, London, 1962.

Implementation
[13] Evans, A. An ALGOL 60 Compiler.

Annual Review in Automatic Programming, 4.
Pergamon Press (1964).

[14] Randell, B. and
Russell, L. J.

ALGOL 60 Implementation.
Academic Press, (1964), 418 pp.

[15] Dijkstra, E. W. "Making a Translator for ALGOL 60," Annual
Review of Automatic Programming, Vol. 3.,
MacMillan, 1963, pp. 347-356.

Extensions
[16] Wirth, N. A Generalization of ALGOL. Comm.ACM 6 (Sept 63).

[17] Perlis, A. J. and
Iturriaga, R.

An extension to ALGOL for manipulating
formulae. Comm.ACM 7 (Feb 64).

[18] Wirth, N. and
Weber, H.

EULER: A generalization of ALGOL and its
formal definition. Comm.ACM 9 (Jan, Feb 66).

[19] Wirth, N. and
Hoare, C. A. R.

A contribution to the development of ALGOL.
Comm.ACM 9 (June 66).

[20] Dahl, 0. J. and
Nygaard, K.

SIMULA - An ALGOL-based simulation language.
ComnwACM 9 (Sept 66).

[21] Hoare, C. A. R. Record Handling, in F. Genays (Ed.) Programming
Languages, Academic Press, 1968, pp. 291-347.

SAMPLE PROBLEMS

1 . Continued Fractions

i i
L e t Q i r r r • Q 1 + 1

etc .
2 i + i

1 + 1 1 + 1
1 + 1

As i -* «, Qi -> Q = 0.61803. . .

Write an ALGOL 60 function procedure Phi (n) that will return the

value Q n« For example, Phi (2) = 0 . 6666 . Write two versions of

Phi, one recursive and the other iterative.

2^ Palindromes

A palindrome is a vector V of values such that V = XY where

. X = reversal of Y. E.g., 110011.

Write a Boolean function that determines if a vector is a

palindrome.

Write another which determines if a vector consists of a list of

palindromes; e.g., 110110.

3# Tower of Hanoi

Write an ALGOL program to print the solution sequence to the towers

of Hanoi puzzle. Given,

Move the stack of disks on pin 1 to pin 2 (possibly using pin 3 as

intermediate storage) so that (1) the disks finally end up in the

same order as they started (as s h o w n) ; (2) at no time is a large

disk on top of a smaller disk; and (3) only one disk at a time is

moved. Your program should allow an arbitrary number of d i s k s .

A
f

1 2 3

4, Partitions

Write an ALGOL procedure PART(X) which prints the partitions of the

integer X. A partition is defined as a sequence of positive integers

which sum to X. If that's too easy, find the unique partitions of X.

5 . Pascal fs Triangle

Recall that Pascal's triangle begins:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Write an ALGOL procedure, PASCAL(N) , which prints the Nth row of

Pascal's triangle. It should be possible to compute the result

without a factorial routine and with only a single vector for a

data structure.

6• Pattern of Primes

Write a program which fills an N x N array A with the integers

2

1 through N arranged in a spiral.

E.g., when N = 3, then A =

7 8 9

6 1 2

5 4 3

The pattern of primes in this arrangement (for large N) has been

of some interest (to some people) . Try a printout where primes are

and non-primes b l a n k .

Can you think of a more efficient storage arrangement for the pattern

of primes when N is large?

-32-

7. How well do you understand call-by-name and call-by-value?

BEGIN REAL A , B ;
REAL PROCEDURE INCV(X);VALUE X;REAL X;

BEGIN X<-X+l; INCV<-X END;
R E A L P R C ^ E D U R E I N C N (X) ; R E A £ xl

B E G I N X^+l; I N C N ^ C E N D ;

R E A L PROCEDURE A D D V (Y) ; V A L U E Y ; R E A L

R E A L P R O C E D U R E ' A D D N (Y) ; R E A L Y ;

A D D N - Y + Y ;

Y ;

A IS NOW

IS NOW

A<-1; B^DDN(INCN(A));
COMMENT A IS NOW

END;

B IS NOW

B IS NOW

B IS NOW

B IS NOW

8. Exchange

Write a procedure EXCH(A,B) that exchanges A and B. This is not as easy

as it seems. Consider the problems exchanging I and A[I],

Answers for odd number problems follow the Algol Script.

MGOL S C R I P T

S O S ,

D e l e t e a . a a a a

s e . 5os

M T " 1 1 •>•> Y T .
s i 11 im n

• CKEA1E F IB*ALG
0 0 1 0 0 BEGIN
0 0 2 0 0
0 0 3 0 0
0 0 4 0 0
0 0 5 0 0
0 0 6 0 0
0 0 7 0 0
0 0 6 0 0
0 0 9 0 0
0 1 0 0 0
*E

INTEGER PROCEDURE FIBONACCI(N)JVALUE NI INTEGER Nl
BEGIN IF N<=1 THEN F I B O N A C C I : = 1

ELSE F I B O N A C C I : = F I B O N A C C I (N - 1 > + F I B O N A C C I C N - 2) ;
ENDI

READ(K);
J:=FIBONACCICK>;
PRINK J,6)i
END

EAlf

A A
d e c

•R ALGOLY

DECS ICS I EM 10 ALGOL-60> V. 2B<146>:
1 b-JAN- 7 3 1 4:2 4:0 7

00100 BEGIN . '
00200 INTEGER PROCEDURE F IBONACCI <N > iVALUE N J.INTEGER N*
00300 BEGIN IF N<=1 THEN FIBONACCI: = 1
00400 ELSE FIBONACCI:=FIBONACCI(N-1) + FIBONACCI(N-2);
00i>00 E N D ;
00600 KEAD(K)/
* 4c 4c 4t 4c 4c * t
600 UNDECLARED IDENTIFIER)— '
R E L F I L E D E L E T E D > T f , c t , u iv4S»V lii+td on Try -H\tn
0 0700 J: =F I BONACC I (K) * ,

700 UNDECLARED IDENTIFIER)a
0 0 8 0 0 P R I N K J # 6 > J
0 0 9 0 0 END

?2 ERRORS

Con+sol C

INTEGER J-K;

- t > C C L

. E D I T
* I 1 513
0 0 1 5 0
* E

E X I T

A L G O L : F I B
L O A D I N G

L O A D E K I K C O R E
E X E C U l I O N
1 id V

8 9

vote-/ +c

t n + f a i t

• f t - t u r n {

- 2 K C O R E E N D O F E X E C U T I O N

E A E C O I I O N T I M E : 0 * 1 7 S E C S .

E L A P S E D T I M E : 1 W 8 8 S E C S .

. C R E A T E

0 0 1 0 0
0 0 2 0 0
0 0 3 0 0
0 0 4 0 0
0 0 5 0 0
0 0 6 0 0
0 0 7 0 0
0 0 8 0 0
0 0 9 0 0
0 1 0 0 0
0 1 1 0 0
0 1 8 0 0
0 1 3 0 0
0 1 4 0 0
0 1 5 0 0
0 1 6 0 0
0 1 7 0 0
* E

• C R E A T E

0 0 1 0 0
0 0 2 0 0
0 0 3 0 0
0 0 4 0 0
0 0 5 0 0
0 0 6 0 0
0 0 7 0 0
0 0 8 0 0
0 0 9 0 0
0 1 0 0 0
0 1 1 0 0
0 1 2 0 0
0 1 3 0 0
* E

K A N D . A L G $ t - m t m ^ i c l * I j 0 , - j 4 i , w j , T(,t

I N T E G E R P R O C E D U R E R A N D C L E S S) J I N T E G E R L E S S ;
C O M M E N T T H I S PROCEDURE" R E T U R N S A N I N T E G E R B E T W E E N 0 A N D

L E S S - l ;
B E G I N OWN I N T E G E R S E E D » M U L * M O D ;
I F S E E D = 0 T H E N — —

B E G I N
C O M M E N T S E E D , M U L 4 M 0 D M U S T
TO P R E V E N T O V E R F L O W . T H E
N U M B E R S A R E 7 t 6 , 5 t 7 , 2 M 7
S E E D * * 1 1 7 6 4 9 ;
M U L - 7 8 1 2 5 ;
M O D - 1 3 1 0 7 2 ;
E N D ;

S E E D * - (S E E D * M U L) REM MOD J
R A N D * - (L E S S + S E E D) D I V M O D ;
E N D
£

< * r t i * ' , T i « t f i t J + 0 0 . r h ^ i -f*,is b i t * . *

B E L E S S T H A N
F O L L O W I N G

R E S P E C T I V E L Y ;

O n ly f*x

1 8 5 3 6 4

it r t m i k y

T E S T R . A L G
BEGIN INTEGER I , R J
EXTERNAL INTEGER P R O C E D U R E
R E A D (I > i
WHILE I # 0 DO

BEGIN
R : = R A N D C I) ;
P R I N T (R , 3) i
n e w l i n e ;)

T V u

rand;

will

r * i > J o / n n u m b e r s .

breakoutput;]
r e a d c I) ;
E N D ;

|i*»t -fte^ trt> {,< •'*» o u t p u t b v f - f f

E N D
S

0,v<fh-*n*PMT c«-MSes o u t p u t U*Y<- i-c

cace the r r ^

. EX T E S T R * RAND
L O A D I N G

LOADER I K COKE
E X E C U T I O N
1 Ufc)

2 6
i 00

4
1 00

9 3
1 0id

2
0

END OF E X E C U T I O N - 2K CORE

E X E C U T I O N T I M E : 0 . U 3 S E C S .

ELAPSED T I M E : 4 2 . 7 8 SECS«

• E D I T T E S T R . A L a ^ r ^ yo« J o * + u « ^ s + w + U , A C A ,

0 0 1 0 0 B E G I N INTEGER L # I , j , R j
* I 2 5 0
0 0 2 5 0 W R I T E C " K A N G E : - ") l B R E A K O U T P U T J

0 0 3 2 5 * ^ WRITE (" N U M B E R : ") J B R E A K O U T P U T J -
0 0 3 5 3 READ C L) J

0*K4^0 £

FOR j : = l U N T I L L DO 0 0400
w 0 42 b $
* u S 0 0 }
* D 1 0 0 0 6ft /e,

Ea IT

. E X 1ESTR* RAND
A L G O L : TESTR
L O A D I N G

LOADER I K CORE
E X E C U T I O N
R A N G E ^ W
NUMBEK S (5 0 /

2 6 4 93
7 9 0 8 9 12 6 6

8 4 7 4 9 3 9 9

8 4 2 7
1 3
3 5

5 5 3 0 8 6 9 2 2 7 7 5 6 0 2 1 9 6

6 1 3 5 1

END OF EXECUTION - 2K CORE

E X E C U T I O N T I M E : 0 . 3 5 S E C S .

ELAPSED I I M E : 3 2 . 1 0 S E C S •

6 2 9 6 6 4 1 7 5 0 8 1 5 6
6 0 1 6 3 5 2 5 1 9 8 9 2

9 4 7 5
ATI

87
75
to

• E D I T T E S T R . A L G
* 1 3 6 0 , 1 0
0 0 3 6 0 0 U T P U T < 4 , " D S K » > j Y
0 0 3 7 0 S E L E C T 0 U T P U T (4 > J
0 0 3 8 0 O P E N F I L E < 4 * " R A N D . D A T ") I
0 0 3 9 0 £
* E

E X I T

• E X T E S T R , R A N D
A L G O L : T E S T R
L O A D I N G

L O A D E R I K C O R E
E X E C U T I O N
R A N G E 1 1 0 0
N U M B E R : 5 0

•i-^i output- wiM ye n, , j f s k $,tt <«ilu

E N D O F E X E C U T I O N - 2 K C O R E

E X E C U T I O N T I M E : 0 . 2 2 S E C S *

E L A P S E D T I M E : 1 1 . 6 0 S E C S .

. T Y P E R A N D . D A T
2 6 4 9 3 2

7 9 0 8 9 1 2 6 6
8 4 7 4 9 3 9 9 6 1

. E D I T T E S T R . A L G
* D 2 5 0
• D 3 2 5
• 1 2 2 5 . 2 5

8 4 2 7 5 5 3 0 3 8 6 9 2 2 7 7 5 6 0 2 1 9 6 4 0 7 5
1 3 6 2 9 6 6 4 1 7 5 0 8 1 5
3 5 1 6 0 1 6 3 5 2 5 1 9 8 9

6
2

9 4 7 5 8 7 3 2

0 0 2 2 5
0 0 2 5 0
0 0 2 7 5
* E

E X I T

I N P U T < 3 , " D S K " > *
S E L E C T I N P U T C 3) i
O P E N F I L E < 3 , " R A N G E . N U M ") t

• C R E A T E R A N G E . N U M
0 0 1 0 0 1 0 0
0 0 2 0 0 5 0
0 0 3 0 0 £
* E

E X I T

. R P I P

* R A N G E . N U M / N - R A N G E . N U M

* t C
. E X T E S T R * R A N D

A L G O L : 1 E S T R
L O A D I N G
L O A D E R I K C O R E

- 3 7 -
E X E C U T I O N

F A T A L R U N - T I M E E R R O R A T A D D R E S S 0 0 0 1 6 7

M O R E H E A P S P A C E R E Q U I R E D F O R 1 - 0 B U F F E R S

7 A C T I O N (H F O R H E L P) ? F

E N D O F E X E C U T I O N - 2 K C O R E

E X E C U T I O N T I M E : 0 . 0 5 S E C S .

E L A P S E D T I M E :

. R A L G O L

* T E S T R . « - T £ S T R / 1 0 0 0 D
* t C
• E X T E S T R * R A N D
L O A D I N G

L O A D E R I K C O R E
E X E C U T I O N

1 7 . 3 3 S E C S .

T*>is W4s c « H f e J b t e a m t

* l o e * < U r t a r e f „ r ^

A t o p W -t-Wf e t t C ^ H S/ie fs t o o

S«*,// J o to-M, o « + p u i -

Cautft + *\t H t o f l S U t i«fOt<*< '/*W** W o r d s .

E N D O F E X E C U T I O N - 2 K . C O R E

E X E C U T I O N T I M E : 0 . 1 3 S E C S .

E L A P S E D T I M E : 3 . 1 3 S E C S .

• T Y P E R A N D . D A T
2 6 4 9 3 2 8 4 2 7 5 5 3 0 3 8 6 9 2 2 7 7 5 6 0 2 1 9 6 4 0 7 5

7 9 0 8 9 1 2 6 6 1 3 6 2 9 6 6 4 1 7 5 0 8 1 5 6 9 4 7 5 8 7 3 2
8 4 7 4 9 3 9 9 6 1 3 5 1 6 0 1 6 3 5 2 5 1 9 8 9 2

E N J > O F A L & O L S C R I P T

NOTE: There is useful information on the file SYS:ALGOL,DOC.

- 3 8 -

Solutions to Sample Problems

1. REAL PROCEDURE P H I R (N) ; VALUE N;INTEGER N;
PHIR-IF N = 0 THEN 1.0 ELSE I•0/(1.0+PHIR(N-1>);

REAL PROCEDURE PHI I(N)* VALUE N;INTEGER N;
BEGIN REAL P i P - 0 . 0 ;
WHILE (N-N-l) > 0 DO P*1.0/(1.0+P);
PHII-P;END;

3 .

5.

P R O C E D U R E H A N O I (N , S T A R T * 0 T H E R * F I N I S H) *
V A L U E N * S T A R T * O T H E R * F I N I S H * I N T E G E R N * S T A R T * O T H E R * F I N I S H l

B E G I N I F N = l T H E N B E G I N
W R I T E C M O V E D I S C 1 F R O M ") " P R I N T (S T A R T * 3) *
W R I T E C T O ") - P R I N T C F I N I S H * 3) i N E W L I N E J E N D WR

ELSE BEGIN
HANOI(N-l,START*FINISH*OTHER);
WRITE<"MOVE DISC");PR1NT(N*3);WRITEC F R O M ") ;
PRINT (START* 3) ; WRI T E C TO") ; PR I NT(F INI SH» 3 > ;NEWLINE;
HANOI(N-l,OTHER*START,FINISH);END;

BREAKOUTPUT;END;

PROCEDURE PASCAL(N);VALUE N;INTEGER N;
BEGIN INTEGER ARRAY PC 1:N J;INTEGER I * J;
P t J J : = l ;
FOR l:=2 UNTIL N DO

BEGIN PCIJ:*=0;
FOR J i ' i STEP -1 UNTIL 2 DO P[JJ:=PCJJ+PCJ-11;
END;

FOR 1: = 1 UNTIL N DO PR INT< P C I J * 4) ;
END i

" 7 . 1.0 4.0
2.0 4.0
1.0 4.0
3.0 5.0

A reprint from C O I Y i p U T t Q P S November, 1969

" a n d a u t o m a t i o n v o l 1 8 , N o . 1 2

A P L : A P E R S P I C U O U S L A N G U A G E

G a r t h H. F o s t e r

D e p a r t m e n t of E l e c t r i c a l E n g i n e e r i n g

S y r a c u s e U n i v e r s i t y

S y r a c u s e , N. Y. 1 3 2 1 0

"In A P L , a g r e a t m a n y h i g h l y u s e f u l f u n c t i o n s w h i c h a r e r e q u i r e d i n

c o m p u t i n g h a v e b e e n d e f i n e d a n d g i v e n a n o t a t i o n c o n s i s t i n g of a

s i n g l e c h a r a c t e r . "

The news and promotion copy now beginning to appear
in many computer-related publications proclaiming APL (A
Programming language) to be everything from a successor
to PL/I (Programming Language One) to the most powerful
interactive terminal system available, has no doubt been
widely noticed. Such copy has led many to wonder what
APL is, and after seeing its notation, many wonder about
its clarity.

This article is not intended to a tutorial on APL, for that
would take more space than is warranted here. However, let
us discuss some of the aspects of APL which have excited
the academic communities at a number of colleges and
universities and at least one high school system, and which
have triggered a number of implementation efforts in
Canada, France, and the United States. The interested
reader may then investigate further the many features of
APL which cannot all be covered here. To assist in this
direction, a rather complete bibliography of APL source
material is appended to this article.

Definition
The initials APL' derive from the title of the book "A

Programming Language" by K.E. Iverson, published by
John Wiley and Sons in '962; and it was that publication
which served as the primary vehicle for the publication of
the initial definition of APL. Subsequent development of
the language by Iverson has been done in collaboration with
A.D. Falkoff at IBM's Thomas J. Watson Research Center,
Yorktown Heights, New York.

The present form of APL is the APL\360 Terminal
System, the implementation of APL on the system 360.
Although there are implementations for the IBM ''30 and

'APL should not be confused with "ABL — A Language for Associative
Data Handling in PL/I/' by George G. Dodd, General Motors Research,
1966 Fall Joint Computer Conference.

'500 computers, when we speak of APL we shall mean
APL\360.

The terminal system was designed by Falkoff and Iver-
son with additional collaboration from L.M. Breed, who,,
with R.D. Moore (LP. Sharp Associates, Toronto) devel¬
oped the implementation. Programming was by Breed,
Moore, and R.H. Lathwell, with continuing contributions
by L.J. Woodrum (IBM, Poughkeepsie), and C.H. Brenner,
H.A. Driscoll, and S.E. Krueger (SRA, Chicago). Experience
had been gained from an earlier version which was created
for the IBM 7090 by Breed and P.S. Abrams (Stanford U.,
Stanford, California).

A computer language which is classified as algebraic is
generally, but not exclusively, used to program problems
requiring reasonably large amounts of arithmetic. Generally
such languages have available, as formalized arithmetic
operators with a notation, the operations of addition,
subtraction, multiplication, division, and exponentiation;
and there the list ends. To achieve other arithmetic opera¬
tions either calls to pre-written subroutines must be made
or the user must supply his own.

This is not true of APL; a great many highly useful
functions which are required in computing have been
defined and given a single character notation (some of these
require 3 keystrokes, striking a key, backspacing and then
striking another key; but usually only a single keystroke is
required.)

The APL Keyboard
Figure ' shows the APL keyboard. The letters and

numbers all appear in their usual places on a typewriter,
except that the capital letters are in the lower case positions
(the lower case letters do hot appear). The up-shift posi¬
tions on the keyboard are occupied by symbols used to
represent the powerful set of APL operators.

SET

LOCK a r
s

L V

SHIFT c

D I F I G I H I J I K
A

X
n
c

u L T
N

Figure 1

1

MAR
REL

• •

i 2
<
3

<
4 „ 5

2 .

„ 6

>
7

V A
0 +

•
"•T
X

CLR
TAB

o
(X)

w
€ P

R T

t
U

I
J

O
0

7V

BACK
SPACE

RETURN

SHIFT

ATTN

ON

OFF

R e p r i n t e d w i t h p e r m i s s i o n f r o m " " C o m p u t e r s a n d A u t o m a t i o n " , N o v e m b e r , 1 9 6 9 , c o p y r i g h t 1 9 6 9 b y

a n d p u b l i s h e d b y B e r k e l e y E n t e r p r i s e s , I n c . , 8 1 5 W a s h i n g t o n S t . , N e w t o n v i l l e , M a s s . 0 2 1 6 0

Besides + , - , x, +, (the familiar symbols for addition,
subtraction, multiplication, and division located on the two
right-most keys on the top row) and the symbol * assigned
to represent exponentiation (the star over the P as ih raising
to a power), there are distinct single character notations for
the operations of: negation; signum; reciprocal; logarithms
(to both natural and arbitrary base), combinations and
factorials; base e raised to a power; the residue of a number
modulo any divisor. There are characters which represent
taking: PI times a number; sines; cosines; tangents; hyper­
bolic sines, cosines, and tangents; and the inverse functions
for the six preceding functions. Available too are; floor
(truncating a number to the largest integer less than or
equal to the number); ceiling (rounding up to the smallest
integer greater than or equal to the number); and maximum
or minimum of a pair of numbers.

APL also provides the relations which test whether two
numbers are: less than; less than or equal to; greater than or
equal to; greater than; equal; or not equal. The last two
relations are also applicable to characters. These relations
check to see, for example, if a relation is true and produce
1 (representing TRUE) or 0 (FALSE); these binary quanti­
ties may be operated upon by the logical functions of: OR;
AND; NOT; NOR; and NAND. All these are also available
as standard functions in APL, and are designated by a single
character graphic. These operations are all summarized in
Figure 2.

Kenidtc form tS

tMflnltion
or nuiplc

•» ll-DI-IMll

s I ib

•e »- ii.iidi..i>i
9»Jt ** w

or :« " G«IK!1»IP.1 I
•0 jtandon choice

from >»

-0 " 1 NOt

plue

Megetlye

Signum

Reciprocal

Celling

Floor

Exponential

Natural
logarithm

Magnitude

rectorial

m i l

Pi t i m e

<-A)o.1 A A OP
(5

Arciin X
Arcco* f
Arctan ft

Arcitnh H
ArCCoah f*
Arct*nh 8

0
1

i it
*
T

(I »• *• 2) « . i
Sin* 9
Coatne K
Tangent *

Sifih P
Co*h It

Table of Dyadic Function.

Dyadic (on. 4ft

Name

H u e

Hinui

Timei

Divide

Maximum

Minimum

power

Logarithm

Seaidue

itinaiil
coefficient

Hand
Nor

Hot greater
Equal
Mot leee
Greater
not Equal

Definition
or eaeapla

!•>.} -•• i.!

7-3,7 -- "1.7

1 13. i 0.121

U 7 ** 7

Log g bale
(eB)ie4

Cele I A IB

A • B * *

A ! P
7 ! <,

J-f l«>-18>l«
a
Domain error

10 Si S 10

A Mixed Function

See Table at left

B A* ft A*B A+8
0 0 0 1 1
1 0 1 1 Q
ft 0 1 1 0
1 1 1 0 0

Relatione
e.eult is i if the
relation holda. 0
i t at dor- not,

iS7 *-« 1
Ti S ** 0

Figure 2

Order of Operations
Of course when such a host of generalized and powerful

operations are at the disposal of the programmer, there is
immediate concern as to the order or precedence
operations in an arithmetic expression written ^
parentheses.

Traditionally in algebraic languages, exponentiations
were performed before multiplications and divisions, and

of
without

these were done before additions and subtractions. One of
the reasons for this choice (of hierarchy of operations) was
that normal conventions in algebraic notation provided that
the expression

5.6y 3 + 8 y 2 + 2.84 y+9 .06

could be written as

5.6 • y • * 3 + 8 • y * * 2 + 2.84 # y + 9.06

without the use of parentheses.
If one wanted to make the compiler work more effi­

ciently when programming in the higher order language,
then parens (parentheses) w e r e used and the polynomial
was "nested", so that in the above example one coded:

((5.6 * y + 8) * y + 2.84) * y + 9.06

That is to say, one discarded the built-in precedence order.
Clearly, in APL having all the functions shown in Figure

2, the establishment of any hierarchy of operators would be
arbitrary and open to question at best; and more than likely
it would border on the impossible to justify the hierarchy
in any reasonable way.

Thus in APL there is only o n e rule for evaluating all
unparenthesized expressions (or within a pair of parens),
and that rule is:

Every operator takes as its right-hand argument the
value of everything to the right of it (up to the
closing parenthesis).

Now such a rule may seem strange and unfamiliar to
someone who is now programming, but it has advantages:

(1) Uniformity-it is applied in the same way for all
standard or primitive functions provided by the
APL system as well as all functions (programs)
written in APL by the user;

(2) Utility-this approach, for example, allows the
nested polynomial to be written without paren­
theses as: 1

9.06 + Y x 2.84 + Y x 8 + Y x 5.6

It is also possible to write continued fractions without
parentheses and the rule given provides other interesting
and useful results as a by product.

Sum Reduction
Another area in which looping (of computer instruc­

tions) is explicitly required in most programming languages
but not in APL is that of summing the components of a
vector, which we will call for the sake of example, X. The
usual approach is to initialize the sum to zero and then use
a running index variable of a DO or FOR loop, and then
take the summation by an expression like

SUM = SUM + Z (I) .

In APL we use what is called s u m r e d u c t i o n . This is the
name for c o n c e p t u a l l y taking the vector X. inserting plus
signs between each of its components, and then evaluating
the resulting expression; its notation is simply +/X. If we
had wanted to take the product of the elements of a vector
Q, then in APL we write x/Q and this provides the t i m e s

r e d u c t i o n .

'There are even more powerful way. to evaluate « polynomial ex­
pression in APL, but the availability of such method* does not reduce
the affectlvenett of the right to left rule juil described.

Hants

0

Deal

Circular OP

-l -

The Value of Powerful Operators

Thus the first area in which APL provides clarity in
programming is by providing a large set of powerful
functions. Now one may ask whether writing A l~ B in APL
is only marginally more compact than say writing
MAX(A.B). However, in APL we are allowed to use AIB to
denote the combinations of taking B things A at a time.
Such an operation in languages other than APL generally
require the user to write his own program, perhaps calling
upon routines to provide the factorials and if they in turn
are not available, writing that routine also. The claim is that
the presence of the APL operator ! in a program provides
much more clarity than the presence of the equivalent
routine in another programming language.

Of course one may argue that factorials and combina­
tions are not needed all that much anyway. In many cases
such a point of view may be correct; however, the fact still
remains that the need for, say, the FORTRAN Library of
subroutines indicates a need for arithmetic computations
which are more complex than the operations included in
the language as primitives. What APL has done therefore is
to move in the direction of a library increasing the sophisti­
cation of the language, and at the same time simplifying the
notation for using a much more powerful set of operators.

Extending the Scope of Functions

The next step forward which APL has taken is to extend
the scope of those functions shown in Figure 2, in the
following way. In most languages extant today, if one
writes A + B, then one commands the computer to add the
number A to the number B. In APL the command still
produces the addition of the single numbers, called scalars,
if that is the nature of the variables A and B. If on the other
hand, A and B are each names for a collection or string of
numbers called a vector then the addition takes D l a c e on
an element by element basis, with the first element of A
being added to the first element of B the second to the
second, and so forth. The requirement is that either A or B
may be a scalar while the other is a vector but if th©y are
both vectors then they must have the s a m e number of ele­
ments that is they must be of the same size.

If A and B are matrices of the same size (having the same
number of rows and columns), then A + B in APL adds, on
an element by element basis, matrix A to matrix B. To
perform equivalent operations in most computer languages
requires a DO or a FOR loop when adding vectors, or
nested loops when adding matrices.

Two comments are relevant here. First, the explicit-
loops embodied in the DO or FOR loops are required by
the language, but they are ancillary to communicating the
process to be performed, say adding two matrices. Second,
the utility of providing an extension of this nature, where
the system assumes additional responsibility, is borne out,
for example, in the MAT commands of BASIC. APL
extends such ideas and applies them uniformly to all data
structures treated in the language. In fact, from the pro­
grammer's point of view, one does not care in what
sequence the operations in the loops implied in such an
APL command take place. They could just as well be done
all in parallel; the fact that the computer does not process
the matrix elements in parallel does not matter. The
extension of scope of the notation allows the algorithm to
be thought of as acting on the data in parallel. Thinking
about the computing process in this way gives new insight
into the way the programs manipulate or transform the
data.

Allocating Space for Arrays

The philosophy is that the system should perform the
tasks which are required by the computer but not essential
to the algorithm, A useful extension is to have the compu­
ter assume the burden of allocation of space for arrays on a
dynamic basis. This is done in the APL terminal system; for
example, if one creates the vector X having components 2,
5, and 10, then X «- 2 5 10 is the specification or assign­
ment of those constants to be the value of the variable X.
No dimensioning is required. Later if we wish to respecify

H i m Sign 1 Definition sr example*

Si I*
Reshape

Rival

aa

VtA

.a

V. V

-- s ff •• 1 it oS *» 10

Reshape A to dimension v 1 »oil2 —• *
lllE -- I I? 0ur7 -» iO
.A {-/aaioa ,C ••ill »,S — 1

f.il • • 1 3 1 1 1 1 • r ' . , » « " " 'MIS'

H d l l U
f i t)

MIA :A }

A l t ; . .
• . ;A]

PI 11 --3 Pt 1 3 2 I] *-7 i 3 3

til !|! 1 11 •• 3 3 1
11 10 4

C[l;) - - 1 3 1 1 AtCD
r u n i t i 'ttcocrcHiJiU'lci tFctt

UAL

Index
generator!

Index o f

i.S

r\a

rirlt '•• integer* i« 1 I 1 «
iO • • a n empty vector

Least indax of a Pi 1 " 3 S 1 2 S
in V, or l*tV fif • • J S •* S

Take

Drop

r ta

VIA

Take or drop |i(r) first 2 ill -- ttC
(K.']!0> or last (rU)>0l I K
elements or coordinate I 'HP — 5 '

Grade u p V

Grade dcwnV

la

fa

The permutation which | 3 S 3 3 - - * 1 3 7
• would order A legend­
ing or descending) 11 1 1 1 M 1 I

Compress 1

Expand*

VIA

f\J

1 3
1 0 1 0/P •• 3 5 1 0 1 o/e -- S 7

a 11
t o i/tnr *• i 3 3 i •- i o ice

9 10 11 13
A SCO

i o i\i3 -• i o 2 i o i i i\i •- t ran
I JKL

Reverse*

Rotate 1

*A

A* A

BOA IJtt

IKJ1 »P - • 1 i 1 2 AlCB
IC0A

it)P * • T 3 3 S • * 'lap 1 0 "l*I • • EFGH
LUk

Transpose

V*A

U

*er
Coordinate I of A 2 •• IFJ
be cornea coordinate CGX
rill of result i i»E -- i 6 n DHL

Tranapoae last two coordinates »F — 1 itr

Membership Alt
0 1 1 0

•- i> t , p — i o i o
P<|ti •- 1 1 0 0 0 0 0 0

Decode

Encode

VL V

VTS

1011 7 1 6 •• 1776 2« 60 S O U 1 J •- 3131

:» *0 (0TJ7JJ • • 1 3] tO 60*3723 • • 2 3
Deal* S?S V.'r •- Random deal of " elements from if

notes:

1 Restrictions on argument ranks are indicated byi 5 for
scalar, V for vector, M for matrix, A tor Any. Except ae
the flret argument of S\A or ita], e scalar may be used
Inetaad of a vector. A one-element array may replace any
scalar.

1 Arrays used i 7 3 » aucd
in examples. F - - 7 J 5 I r -- i 6 7 « r » » CFCH

1 10 11 12 JVKL
3 Function depends on index origin.

4 Elision of any index selects all along that coordinate.

5 The function Is applied along the last coordinate) the
symbola f, S, and e are equivalent to /, \, and • ,
respectively, except that the function is applied alone the
first coordinate* If [5] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

Figure 3

v R~AVERAGF V

[1] ff»(*/V)loV

Figure 4

V liXD-.VARiMEA*

(il n-nrAn.vAS,SDt-iVAR*i t/(x-iyEAt*Avr:i>Act: ,r)«3>«~i»oJf >*
a. s v

Figure 5

X to b e all of t h o s e e l e m e n t s currently c o m p r i s i n g X
f o l l o w e d b y the n u m b e r s 1.5 a n d 20.7, t h e n X « - X , 1.5
20.7 catenates the c o n s t a n t v e c t o r 1.5 20.7 to X a n d
respecifies X. T h e variable X is n o w a data o b j e c t w i t h 5
e l e m e n t s w h e r e X [1 J is 2 X [4] is 1.5 a n d X [5] is 20.7. W e
m a y q u e r y the s y s t e m a s to the size (n u m b e r of c o m p o ¬
n e n t s) of X b y u s e of the f u n c t i o n d e n o t e d b y the G r e e k
letter R h o . T h u s , p X p r o d u c e s 5. T h e f u n c t i o n s of size a n d
catenate are s u m m a r i z e d together w i t h the rest of the
m i x e d A P L d y a d i c f u n c t i o n s in F i g u r e 3.

W e will not here treat further the p o w e r f u l f u n c t i o n s of
data m a n i p u l a t i o n illustrated there. H o w e v e r , w e h a v e n o w
e x p o s e d the reader to a sufficient a m o u n t of detail in A P L
to u n d e r s t a n d F i g u r e 4. T h i s s h o w s the listing of a user-
written f u n c t i o n , the n a m e of w h i c h is A V E R A G E . T h e
first or headerline of A V E R A G E d e c l a r e s the s y n t a x for
that f u n c t i o n , that is, it indicates that the explicit result
will b e called R a n d the v e c t o r of data to b e a v e r a g e d will
b e d e n o t e d b y V . T h e line n u m b e r e d [1] is the a l g o r i t h m ;
a n d it is self e x p l a n a t o r y , e v e n at this point.

F i g u r e 5 s h o w s h o w A V E R A G E is called w i t h i n the
f u n c t i o n S T A T to calculate t h e m e a n , v a r i a n c e , a n d stan¬
d a r d d e v i a t i o n of a set of v a l u e s . H e r e the variable n a m e s of
M E A N , V A R , a n d S D refer to t h e result of the A V E R A G E
p r o g r a m a n d the calculated v a r i a n c e a n d s t a n d a r d d e v i a t i o n .

W e d o not illustrate the c o m p a r a b l e p r o g r a m s in o t h e r
l a n g u a g e s ; w e leave to the reader the task of noting the
c o d i n g c o m p r e s s i o n a c h i e v e d b y A P L . T h e A P L array
o p e r a t i o n s o b v i o u s l y p r o v i d e b o t h brevity a n d clarity in

A n APL
1. Abrams, P. $., A n Int9rpr9t%r for "Iverson Notation". Stanford,

Calif.: Computer Science Department, Stanford University, Tech.
Report C S 4 7 , August 17, 1966.

2. Anscombe, F. J. , Use of Ivorson's Language A P L for Statistical
Computing. N e w Haven: Department of Statistics, Yale Univer­
sity, July, 1968. TR-4 (AD 672-557).

3. Berges, G. A. and F. W . Rust, A P L / M S U Refer*** Manual. Boze-
man, Montana: Department of Electrical Engineering, Montana
State Univ., September 26, 1968.

4. Berry, P. C, A P I / 1 1 3 0 Primer. IBM Corporation, 1968. (C20-
1697-0).

5. Berry, P. C, A P L X 3 6 0 Primer Student Text. IBM Corporation,
1969. (C20-1702-0).

6. Breed, L. M. and R. H. lathwell, "The Implementation of A P I A
360", Interactive Systems for Applied Mathematics. N e w York
and London: Academic Press, 1968, pp. 390-399.

7. Calingaert, P., Introduction to A Programming Language. Chica­
go: Science Research Associates, field test edition, October, t967.

8. Creveling, Cyrus J. (Ed.), Experimental Use of A Programming
Language (APL) at the Goddard Space Flight Center. Greenbelt,
Maryland: Goddard Space Flight Center, Report No. x-560-68-420,
November, 1968.

9. Charmonman, S., S. Cabay and M. I. Louie-Byne, Use of A P L X 3 6 0
in Numerical Analysis. Edmonton, Alberta, Canada: Department
of Computing Science, University of Alberta, December, 1967.

10. FalkofT, A. D. and K. E. Iverson, A P L X 3 6 0 User's Manual. York-
town Heights, N.Y.: T. J. W a t s o n Research Center, IBM Corpora­
tion, 1968.

11. FalkofT, A. D. and K. E. Iverson, "The A P L 360 Terminal System",
Interactive Systems for Applied Mathematics. N e w York and
London: Academic Press, 1968, pp. 22-37. (Also Research Note
R C 1922, October 16, 1967, T. J. Watson Research Center.)

12. FalkofT, A. D., K. E. Iverson and E. H. Sussenguth, "A Formal
Description of System/360". IBM Systems Journal, III, No. 3
(1964), pp. 193-262.

13. Gilman, L. I. and A. J. Rjse, A P L X 3 6 0 A n Interactive Approach.
IBM Corporation, 1969.

14. Hellerman, H., Digital Computer System Principles. N e w York:
McGraw-Hill, 1967.

15. Iverson, I. E., "A C o m m o n Language for Hardware, Software and
Applications". Eastern Joint Computer Conference, December,
1*62, pp. 121-129 (R C 749).

e x p r e s s i o n , a n d in that s e n s e the p r o g r a m s m a y b e t h o u g h t
of a s s o m e w h a t self d o c u m e n t i n g .

T h e s y m b o l i c n a t u r e of A P L m a k e s it multilingual.

E v a l u a t i o n o f A P L

In these p a g e s w e h a v e o n l y s c r a t c h e d the s u r f a c e of
A P L . T h e availability of a p o w e r f u l set of f u n c t i o n s h a v i n g
a generality a n d a s e n s e of u n i f o r m i t y in definition is
i m p o r t a n t in p r o v i d i n g capability to p r o g r a m c o m p l e x
a l g o r i t h m s . T h e e x t e n s i o n of o p e r a t i o n s u n i f o r m l y to
strings of quantities or tables of n u m b e r s is a step f o r w a r d
in p r o g r a m m i n g , b e c a u s e a great deal of c o m p u t i n g in
s c i e n c e , g o v e r n m e n t , a n d b u s i n e s s m a y b e cast in t e r m s of
t h o s e data structures. A l s o it is i m p o r t a n t to relieve t h e
c o m p u t e r user of t h e b u r d e n of b o o k k e e p i n g a n d h o u s e ¬
k e e p i n g o p e r a t i o n s in c o m p u t e r p r o g r a m m i n g in higher
level l a n g u a g e s , particularly in a n interactive e n v i r o n m e n t .

E n t h u s i a s t i c s u p p o r t e r s of A P L h a v e c l a i m e d that rather
t h a n s t a n d i n g for either A P r o g r a m m i n g L a n g u a g e or
A n o t h e r P r o g r a m m i n g L a n g u a g e , the initials A P L s t a n d s for
A P e r m a n e n t L a n g u a g e . A P L w a s first c o n c e i v e d of a s a
m e a n s of c o m m u n i c a t i o n ; a n d it will h a v e i m p o r t a n c e in
that regard i n d e p e n d e n t of t h e availability of A P L o n a
terminal s y s t e m . T h e heart of c o m m u n i c a t i n g , d e s c r i b i n g ,
or p r o g r a m m i n g a p r o c e s s is to m a k e clear w h a t is to b e
d o n e . In fact I m i g h t s u g g e s t that K e n I v e r s o n a n d his
c o l l e a g u e s m e a n t A P L to b e a tool s o that w e all c o u l d
p r o g r a m lucidly. •

Bibliography

16. Iverson, K. E., "The Description of Finite Sequential Processes",
Information Theory, 4th London S y m p o s i u m , Colin Cherry (Ed.).
London: Butterworth's 1961.

17. Iverson, K. E., Elementary Functions: A n Algorithmic Treatment.
Chicago: Science Research Associates, 1966.

18. Iverson, K. E., Formalism in Programming Language. Yorktown
Heights, N.Y.: T. J. Watson Research Center, IBM Corporation,
July 2, 1963. (RC-992).

19. Iverson, K. E., A Programming Language. N e w York: John Wiley
and Sons, Inc., 1962.

20. Iverson, K. E., "A Programming Language". Spring Joint C o m ­
puter Conference, May, 1962, pp. 245-351.

21. Iverson, K. E., "Recent Applications of a Universal Programming
Language". N e w York: IFIP Congress, M a y 24, 1965. (Also Re­
search Note NC-511, T. J. Watson Research Center.)

22. Iverson, K. E., The Role of Computers in Teaching. Kingston,
Ont., Canada: Queen's University, Queen's Papers on Pure and
Applied Mathematics, No. 13, 1968. Also issued as The U s e of
A P L in Teaching, IBM Corporation, 1969. (320-0996-0).

23. Kolsky, H. G., "Problem Formulation Using A P L " . I B M Systems
Journal, 8, 3(1969), pp. 204-217.

24. Krueger, S. E. and T. P. McMurchie, A Programming Language.
Chicago: Science Research Associates, 1968.

25. Lathwell, R. H., A P L X 3 6 0 : Operations Manual. IBM Corporation,
1968.

26. Lathwell, R.H., A P L X 3 6 0 : System Generation and Library Main­
tenance. IBM Corporation, 1968.

27. MacAuley, Thomas, C A L / A P L : Computer Aided Learning IA Pro­
g r a m m i n g Language, Author's Manual. Costa Mesa, Calif.: In­
formation Services and Computer Facility, O r a n g e Coast Junior
College.

28. Pakin, Sandra, A P L X 3 6 0 Reference Manual. Chicago: Science Re­
search Associates, 1968. (No. 17-1).

29. Rose, A. J. , Teaching the A P L X 3 6 0 Terminal System. Yorktown
Heights, N.Y.: T. J. Watson Research Center, IBM Corporation,
August 28, 1968. (R C 2184.)

30. Rose, A. J. , Videotaped A P L Course. IBM Corporation, 1967.
31. Simillie, K. W., S T A T P A C K II: A n A P L Statistical Package. Edmon­

ton, Alberta, Canada: Department of Computer Science, University
of Alberta, Publication No. 17, February 1969.

32. W o o d r u m , L. J. , "Internal Sorting with Minimal Comparing".
I B M Systems Journal, 8, 3(1969) pp. 189-203.

-43-

Selected Bibl iography for APL

£.0 Berry, P .C. , APL/560 Primer Student Text. IBM Corporat ion, 1969.
(C20-1702-0) .

An excel lent introduct ion to the fundamentals of APL.

O l Fa lko f f , A.D. and K.F.. Iverson, APL/560 User's Manual .
Yorktown Heights, N.Y.: T . J . Watson Research Center, ISM
Corporat ion, 1968.

£1} ntlman, L . I . and A .J . Rose, APL/360 An Interact ive Approach.
IBM Corporat ion, 1969.

A textbook on APL (used in advanced undergraduate
programming course at C-MU). Discusses some extensions to
basic APL/36(1.

t > 0 Iverson, K.F. , A Programming Language. New York: John Wiley and
Sons, I nc . , 1962.

The o r i g i n a l def in111on.of the notational scheme.
Excellent in I ts own r i g h t , but not d i r e c t l y useful in
learning one of the APL Implementations.

C O Pakin, Sandra, APL/360 Reference Manual. Chicago: Science
Research Associates, 1968.

The d e f i n i t i v e work on APL (as of 1968): explains each
operator (with many examples). Note: th is book is a
reference manual, not a primer.

* Documentation for APL/10 system at C-MU can be *
* found on the f i l e APL.DOC. This f i l e explains *
* the di f ferences between APL/10 and APL/360 and *
* discusses the extensions implemented in APL/10, *
* as well as how to get onto the APL/10 system at *
* C-MU. *

-44-

APL

Simple Examples and Problems

Write APL expressions to perform the following:

1. Remove all duplicate elements from a vector V, and call the
resulting compressed vector RES.

2. Determine which vowels ('AEIOU") and how many of each appear
in a given character string C.

3. Given a vector V, whose components are decimal integers,
determine how many decimal places each component has.

Write APL functions to perform the following:

U. Write a function PRI to list the prime numbers that lie
between the integers R and S, Inclusive.

5 . Let X be a vector whose components are arranged in ascending
order. Define a function MERGE which will insert the
components of a vector V so that the resulting vector R is
still in ascending order.

6 . Write a one - 1ine function to determine if a square matrix M
is symmetric or not and have it print out either 1 THE MATRIX
IS SYMMETRIC or 'THE MATRIX IS NOT S Y M M E T R I C .

7 . Without using the array catenation extension of the ravel
operator, write a function to:

a. catenate a vector R rowwise to a given matrix M.
b. catenate a vector C columnwise to a given matrix M.

Do not assume that the lengths of R or C are proper.

- 4 5 -

APL

ANSWERS TO SIMPLE EXAMPLES AND PROBLEMS

1 . RES+({\V)=V\V)/V

2. +/'AEIOU'o.=c

3. i + n o » | y

VZ+R PRI S\T
Z+(R*T)/2M2 = + / C l] 0 = (\5)o. | iS)/\S
7

V X MFflffZ? 7

V

7 SYM M
'THE MATRIX IS • ; (OeM=*)M) / •iVOS? ' ; 'SYMMETRIC t '
V

V W PL USROW R
(1 0+p//)p(,iV),i7.((pW)C2]pO)
fl NOTE--NUMERIC INPUT IS ASSUMED SINCE R IS
<• EXTENDED BY O'S IF TOO SHORT.
7

4 .
Cl]

5 .
Cl]

6 .
Cl]

7 .
Cl]
C2]
m

7 M PLUSCOL C
Cl] $(1 0 + p M) p (,$«),C , ((p t f)[l]pO)
C2] n NOTE--NUMERIC INPUT IS ASSUMED SINCE C IS
C3] n EXTENDED BY O'S JF TCO SHORT.

7

APLSS\APL

TELETYPE SYSTEM MNEMONICS

TTY APL ALTERNATE TTY APL
TTY

.AL a @A .CB \

.DE 1 @B .CR ©

.DU n @C .CS /

.FL L @D .DQ gj

.EP € @E .GD t

.US _ <?F -GU 4

.DL V <?G .IB I

.LD A @H .IQ @

.10 l @I .LG •

.SO • @J .NN *
' » @K .NR v

,BX • (?L .OQ B
.AB I @M .OU B>
.EN T @N .PD *?
.LO O @0 . QD El

. QQ Q
nil rt\

* * @P
? ? @Q .RV <t>

.RO p @R .TR $
,CE f @S .XQ *
.NT - @T .ZA 4
.DA + @U .ZB B

.OM w @W etc . etc.
,LU = @X
t t @Y

.RU c @Z

.DD

.GE

.GO

.LE

. NE

. NG

.OR

&

%
t
$
/
(
)

etc .

A
A
X

$
I
(
)

etc .

. R A P L
C H A R A C T E R S E T * •
T T Y
A P L - O L S
T T Y 1 0 0) . 9 . 1 1 . 1 6 8 / 1 9 / 7 1 C 6 5 . 1 0 3
C L E A R WS

3 # 4

1 2

1 2

Gets you Into APL

X - 3 # 4
X

Y — 5
X + Y

7

1 . 4 4
1 4 4 E . N G 2

P-l 2 3 4
P # P

1 4 9 1 6
P # Y

- 5 - 1 0 " 1 5 - 2 0
0 - ' C A T S '
Q

C A T S
3 + 4 # 5 + 2

3 1
X * - 3
Y - 4
C X # Y > + 4

1 6
X # Y + 4

2 4
X Y

V A L U E E R R O R
X Y

4

t

x - e i s
x

2 3 4 5
« I 0

Y - 5 - X
Y

3 2 1 0

at teletyDe type t ty I f you are a
or APL I f at date l

You are now In APL

entry i s automatical ly Indented
response is not
X i s assigned the value of 3 times H

value of x typed out
y assigned -5
the sum of x ulus y

exponential form, .ng Is soecial minus
fo r constants. I t i s not an operator
assign the vector 1 2 3 to p
mu l t ip l y p by i t s e l f

scalar i s a p l l i e d to a l l elements

assign q a 4 element character vector

evaluat ion i s from r i g h t to l e f t
with no operator precedence

the var iab le xy has not been def ined

Index generator funct ion

the vector of 0 elements

a l l scalar functions extend to vectors

1

X<Y
1 1 0 0 0

§0 1
3 . 1 4 1 5 9 2

3X2
1.5

• 0 X 1 2
3 * 1 4 1 5 9 2 1 . 5 7 0 7 9 6

l fO 1
0 . 8 4 1 4 7 0 9

2 §01 2
0 . 5 4 0 3 0 2 2 - 0 . 4 16 1 4 6 8

result of relational operator is 0 or 1

Pi times 1

3 divided 2

pi divided by 1 2

sin 1

cos 1 2

C13
C23

S

10

20

C13
C2D

1

-1

-1

C13
C23

-1

• DL Z-X F Y
Z - C < X * 2) + Y * 2 > * . 5
.DL
3 F 4

P - 7
Q-CP+15F P - l
0

4 # 3 F 4

•6 B-G A
B - < A > 0) - A < 0
86
G 4

G . N 6 6

6 X — 6

• DL H A
P*-<A>0>-A<0
§G
H .NG6
P

Y-H «NG6
VALUE ERROR

Y-H - 6
t

.DL Z-FAC N J I
c n Z - l
C23 1-0
C33 L l . I - I + 1
C43 • GO 0# t l I>N
C53 Z - Z # I
C63 • GO LI
C73 • G

FAC 3

Function Definition
function h e a d e r , result plus 2 parameters
function body
close of function
executing function
result

function call with expressions
value assigned to q

g is signum f u n c t i o n . IA and B are
l o c a l s , function is m o n a d i c .

monadic function call

assignments may be anywhere in statement

same as G but no result

value error since function call returns
no explicit result

PAC is factorial function

L I becomes 3 at entrance into function
11 is l o c a l .

FAC 5

-49-

T 8 H F A C - 3 5
X - F A C 3

FACE 3 3 1
F A C E 5 3 1
F A C E 3 3 2
F A C C 5 3 2
F A C C 3 3 3
F A C C 5 3 6
FACE 3 3 4

X
6

T U H F A C - 0

« G G - M GCD N
E 1 3 G - N
£ 2 3 M - M # M N
E 3 3 - G O 4 # M * N £ 0
E 4 3 E 1 3 G - M
E 2 3 E 4 3 N - G
E 5 3 E L B X 3
E 1 3 G - M
E 13 E • BX 3

• D L G - M GCD N
E 1 3 G - M
£ 2 3 M - M . A B N
E 3 3 . G O 4 # M . N E 0
£ 4 3 N - G

. D L
E 5 3 . G O 1
E 6 3 9 G

3 6 GCD 4 4
4

. D L GCD
£ 6 3 E 4 . 1 3 M , N
E 4 . 2 3 E . B X 3

. D L G - M GCD N
C 1 3 6 - M
£ 2 3 M - M . A B N
£ 3 3 . G O 4 # M . N E 0
£ 4 3 N - G
£ 4 . 1 3 M , N
£ 5 3 . G O 1

. D L
£ 6 3 . D L

3 6 GCD 4 4
8 3 6
4 8
4

set to trace lines 3 and 5 of PAC

Trace of PAC

set trace off

Greatest common divisor

correction of line 1
resume with line H-
display line 1

display entire function

enter new line
close of function. @g and .dl are the same

reopen definition
insert new line
display function

close function.

C I 3 G-M
£83 M-M.AB N
[33 .GO 4#M.NE 0
C43 N-G
[53 M#N
C63 .GO 1

GCDt •BX3tG
GCD N

• DL.

C73
£53

C13
£23
c n

C13
£23

120

•DL GCD
CtH53
• G
•DL Z-ABC X
Z-(33#9+<R#5>-6
£I.BX 83
Z-<33#0+<R#5)-6

/ 1 / l
Z-C3#0)+<T#5>-6
• DL
FAC 5

)ERASE FAC

FAC 5
SYNTAX ERROR

t

ABC

4

FAC 5

>FNS
F

P-2 3 S 7
•RP

T-'OH MY'
•R T

G

5

2
P#P
5 7 £
T*T

OH MYOH MY
P#T

DOMAIN ERROR
P.T

GCD

reopen,display, and close function
notice that when function Is closed,
the lines are automatically renumbered.

delete line 5 of function

to demonstrate line editing

edit line 1, print line and space in 8

/ for'delete; number'for "leave space',
enter) and t in proper place

PAC still defined

Erase it

PAC no longer defined

List defined function in this workspace
H

2 3 5 7 assign p the vector
dimension of p

character vector
dimension of t

catenation of two numeric vectors

catenation of two character vectors

catenation of numbers with characters
not permitted

'•NOTE* . I O ' l N J ' IS ' J . I O N Mixed output
NOTE, .105 I s 1 2 3 4 5

M - 2 3tR 2 3 5 7 11 13
M

2
7

OH M
YOH

2

2

5

2

2

13

3

2

3

3

5

3

BCE
GKM

EC
EC

15
7

2

3

3 5
11 13
2 4tR T

69RM
5 7 11 13
• BX«-P-#M
5 7 11 13
PC 33

PC 1 3 53
11
PC0I33
5

PC§RP3

MC 1123

MCU 3

5
MCI U 3 23

3
3

reshape t into 2 4 mat r i x

reshape matrix into vector

ravel in row major order

indexing

indexing by a vector

first 3 elements of p

last element of P

element in row 1 column 2 of m

row 1 of M

rows 1 and 1, columns 3 2

A«- • ABCDEFGHIJKLMNOPQRSTUVWXYZ •

5

5

5

WAS 1

7

ACM 3

ACMC 1 193 233

MC1M-15 3 12
M

3 12
11 13
Q«-3 1 5 2 4 6
PCQ3
11 3 7 13
0CQ3
4 1 2 6
PC33

) OR I GIN 0

PC33

PC 0 1 23

A m a t r i x index produces a m a t r i x result

respecifying the first row of M

set origin to 0

fourth element of P

first 3 elements of P
2 3 5

©15
0 1 2 3 4

)ORIGIN 1
WAS 0

create m a t r i x of dimension 2 3

- 5 2 -

6 8

V » * ? 3 « R 9
M - 7 3 3 § R 9
N * 3 \ 3 \ ? 3 3 t R 9
V
1
M

get random 3 element vector whose elements
are less than 10. and 2 random matrices

8 1 5
8 4 8
6 6 6

N

4 7 2
9 6 4
4 6 4

M + N

1 2 8 7
1 7 1 0 1 2
1 0 1 2 1 0

M § D N

4 1 2
8 4 4
4 6 4

M < N

0 1 0
1 1 0
0 0 0

+ / V
1 5

4 8

2 2

+ / C 1 3 M
1 1 1 9

1 4 2 0 1 8
+ / M

1 4 2 0 1 8
• S > M

8 8 6

sum element by element

Minimum

comparison(result 0 % 1)

sum reduction of v

product reduction

sum over first co-ordinate of m

sum over 2nd co-ordinate of M

sum over last co-ordinate of m

max over last co-ordinate of M

-53-

61 92 40
100 128 64
102 114 60

M + , < N

1 2 1
1 1 0
1 1 0

61 88 90
V

6 8 1

6 12 18 24 30
8 16 24 32 40
1 2 3 4 5

v e j . < § i s

0 0 0 0 0
0 0 0 0 0
0 1 1 1 1

3 3 3
Q-?10*RS
0

4 3 2 2 5 2 5 5 1 4
+ / c i 3 Q e j . * e i 5

1 3 1 2 3
2 l.TR M

t
8 *B* 6
1 4 6
5 8 6

• T R M
8 8 6
1 4 6
5 8 6

ordinary matrix Inner product

Inner product

+.# inner product with vector right
argument

Outer product (times)

Outer product with 1 2 3 4 5(less than)

Outer product of rank 3

random 10 element vector (1 -5)

Ith element of result is number of
occurences of the value I in Q
ordinary transpose

same as monadic transpose

-54-

9
S 5 2 5 5 1 4

rotate q to left by 3

Rotate Q to right by 3

4 3 2 2 5 2 5 5 1 4
3 *RV Q

2 5 2 5 5 1 4 4 3 2
.NG3.RV 0

5 1 4 4 3 2 2 5 2 5
- 3 .RV Q

- 2 4\m 5 - 2 - 5 - 5 - 1 - 4
negative of rotate Q to left bv 3
-4 - 3 - r - 4 - 3 - 2

0 1 2.RVI13M Rotate columns by different amounts

4

8 4 6
8 6 5
6 1 8

.NGS.RVCS3M rotation of all rows

1 5 8
4 8 8
6 6 6

1 2 3-RV H Rotation of rows

1 5 8
8 8 4
6 6 6

• RV 0 Reversal of Q
1 5 5 2 5 2 2 3 4

•RVC13M Reversal of M along :

2 to right

6 6 6
8 4 8
8 1 5

.RVM Reversal along last co-ordinate of M

5 1 8
8 4 8
6 6 6

U-9>4
U

0 0 0 0 1 0 1 1 0 0
U/9 Compression of Q by logical vector U

5 5 5
<9T U) /0 compression by not U

4 3 2 2 2 1 4
• / U / G

- 5 5 -

1 0 U 1 3 M
S Y N T A X E R R O R

1 0 U U M
t

C 1 * B X 9 1
1 0 1 C 1 3 M

I
1 0 1 / C 1 J M

8
6

8 8

0

1 5
6 6

(* M > 5 > / * M
8 6 6 6
V * - l 0 1 0 1
V \ S I 3
3 0 3

8 0 1 0 5

8 0 4 0 8
6 0 6 0 6

V \ * A B C '
A B C

1 0 9 B 1 7 7 6
1 7 7 6

8 P B 1 7 7 6
S Y N T A X E R R O R

8 P B 1 7 7 6
t

1 0 2 2

1 7

7 6

3 8 0 5

1 3

2 2

C L B X 7 3
8 P B 1 7 7 6

/ l
8 § B 1 7 7 6

1 0 1 0 1 0 1 0 § N 1 7 7 6
7 6

1 0 1 0 . N 1 7 7 6

2 4 6 0 6 0 & B 1 3 2 5
2 4 6 0 6 0 § N 3 8 0 5
2 5
2 9 B 1 0 1 1 0

type-In error

editing of immediate line

insert V '

compression along first co-ordinate of M

all elements of M which exceed 5

expansion of iota 3

expansion along last co-ordinate of M

expansion of character inserts blanks

base 10 value of 1 7 7 6

typing error

P should be §

base 8 value of 1 7 7 6

4 digit base 10 representation of 1776

2 dglt base 10 representation of 1776
mixed base value

base 2 value

5 7 U 13
P .10 7

P .10 6

P .10 4 5 6 7
3 7 4

Q-5 1 3 2 4
R-Q.IO >iOtRQ

2 4 3 5 1
OCR!

1 2 3 4 5
A«**ABCDEFGHIJKLMN *
A«-A# •OPGRSTUVWXYZ'
A

ABCDEFGHIJKLMNOPORSTUV WXYZ

least Index of 7 In p

6 not In p, result is l+,ro P

least index of 4 5 6 J i n p

AGI * CAT *
3 1 20

J« -A#I*CAT*
ACJ3

CAT
3?5

2 4 1
673

RANGE ERROR
6?3

Vs78

rank of c a t in alphabet

random choice of 3 out of 5 with no repeat

7 1 3 2 8 6 5 4
• GUX

1 2 4 3 8
XCGU

7
X3

6 1 5

1 2 3 4
XC -GD

5
X3

6 7 8

8 7 6 5 4 3 2 1

a random permutation vector

the grade up of X

X in ascending order

X in descending order

Membership U-A 0E *N0W IS THE TIME *
<.BX*U)/A
0 0 1 0 0 1 1 0 0 0 1 1 1 0
0 0

EHIMNOSTW

0 0 0 0 1 1 0 0 1 0

(9I9>0E3
0 1 1 0 0 1 0

6 2 9
0 1

• D L Z - B I N N

c n z-i
C 2 3 L A » Z * - < Z # 0 > + 0 * Z
C 3 3 • G O L A # N . 6 E . R O Z

• DL

> F N S
A B C B I N
M U L T D R I L L

) V A R S
A D
T U

A«" *) F N S
) V A R S *

A
> F N S
) V A R S

B < - t E A
A B C B I N
M U L T D R I L L

E N T E R T E X T

LA
X

E N T E R T E X T

B
A
T

D
U

A - ' B I N 3 *
B ~ # E A

B
1 3 3 1

B*-8N ' B I N *
B

• D L Z - B I N N
t+l
L A l Z * - < Z # 0) + 0 * Z
• G O L A # N . G E . R O Z
• D L

) E R A S E B I N

B I N 3
S Y N T A X E R R O R

B I N 3

LA
X

List of functions in w o r k s p a c e
F 6 6 C D H

List of variables in w o r k s p a c e
M N P 0 R

Y
string containing two APL statements

E x e c u t i o n of s t r i n g , value of first printed
F G G C D H

Second assigned to B

M
Y

N 0

E x e c u t e string value returned in b
print value of function call

get lines of function BIN

erase function

1 3

0 E B

B I N 3
3 1

I N V - . D Q M
M + .#INV

execute will redefine function

try it o u t

get inverse of m a t r i x
result should be identity m a t r i x

1 » 0 0 0 0 0 0 E 0
0 . 0
0 * 0

> O F F . H O L D
T T Y 1 0 0) 2 0 : 5 2 J 0 5 _ 8 / 1 9 / 7 1
C O N N E C T E D 1 : 4 0 : 4 8 C P U T I M E

2 . 9 8 0 2 3 2 E - 8 0 . 0
1 * 0 0 0 0 0 0 E 0 0 . 0
2 . 9 8 0 2 3 2 E - 8 1 « 0 0 0 0 0 0 E 0

sign off APL

0 : 0 0 : 1 7

t

BLISS

C. Geschke (Revised, b/29/n, C. Weinstock)

INTRODUCTION

BLISS-10 is a language specifically designed for writing software

systems such as compilers and operating systems for the PDP-10. While much

of the language is relatively '•machine independent" and could be implemented

on another machine, the PDP-10 was always present in our minds during the

designj and as a result, BLISS-10 can be implemented very efficiently on

the 10. This is probably not true for other machines.

We refer to BLISS-10 as an "implementation language." This phrase

has become quite popular lately, but apparently does not have a uniform

meaning. Hence, it is worthwhile to explain what we mean by the phrase

and consequently what our objectives were in the language's design. To us

the phrase "implementation language" connotes a higher level language

suitable for writing production software; a truly successful implementation

language would completely remove the need and/or desire to write in assembly

language. Furthermore, to us, an implementation language need not be machine

independent—in fact, for reasons of efficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language

for implementing software. One of the most often mentioned is that of

speeding up its production. This will undoubtedly occur, but it is one of

the less important benefits, except insofar as it permits fewer, and better

programmers to be used. Far more important, we believe, are the benefits of

documentation, clarity, correctness, and modifiability. These were the most

important goals in the design of BLISS-10.

Some people, when discussion the subject of implementation languages,

have suggested that one of the existing languages, such as PL/I, or at most

a derivative of one, should be used; they argue that there is already a

proliferation of languages, so why add another. The only rational excuse for

the creation of yet another new language is that existing languages are

unsuitable for the specific applications in mind. In the sense that all

languages are sufficient to model a Turing machine, any_ of the existing

languages, LISP for example, would be adequate as an implementation language.

However, this does not imply that each of these languages would be equally

convenient. For example, FORTRAN £an be used to write list processing

programs, but the lack of recursion coupled with the requirement that the

programmer code his own primitive list manipulations and storage control

makes FORTRAN vastly inferior to, say, LISP for this type of programming.

What, then, are the characteristics of systems programming which should

be reflected in a language especially suited for the purpose? Ignoring

machine dependent features (such as a specific interrupt structure) and

recognizing that all differences in such programming characteristics are

only one of degerr, three features of systems programming stand out:

1. Data structures. In no other type of programming does the

variety of data structures nor the diversity of optimal

representations occur.

2 . Control structures. Parallelism and time are intrinsic parts

of the programming system problem.*

3. Frequently, systems programs cannot presume the existence of

large support routines (for dynamic storage allocation, for

example).

* Of course, parallelism and time are intrinsic to real time programming

as well.

These are the p r i n c i p a l c h a r a c t e r i s t i c s which the d e s i g n of BLISS-10

a t t e m p t s to a d d r e s s . For example , t a k i n g p o i n t (3) , t he language was

des igned in such a way t h a t no system suppor t is presumed or needed ,

even though , for example , dynamic s t o r a g e a l l o c a t i o n is p r o v i d e d . Thus,

code g e n e r a t e d by the compi l e r can be execu ted d i r e c t l y on a " b a r e 1 1

mach ine . Ano the r example , t a k i n g p o i n t (1) , is the d a t a s t r u c t u r e de f in i¬

t i o n f a c i l i t y . BLISS c o n t a i n s no imp l i c i t da ta s t r u c t u r e s (and hence no

presumed r e p r e s e n t a t i o n s for s t r u c t u r e s) , bu t r a t h e r p r o v i d e s a method for

d e f i n i n g a r e p r e s e n t a t i o n by g i v i n g the e x p l i c i t a c c e s s i n g a l g o r i t h m .

CMU 1,0, and P e r i p h e r a l s

There are s e v e r a l p e r i p h e r a l packages b u i l t around the BLISS-* 10

l a n g u a g e . Here is a l i s t of the packages and t h e i r i m p l e m e n t a t i o n s , which

can p r o v i d e more d e t a i l e d i n f o r m a t i o n :

lO/DYIO:

The BLISS-10 language has no I/O f a c i l i t i e s . This package

p r o v i d e s a l i b r a r y of r o u t i n e s which can be used to b u i l d I/O h a n d l i n g

c a p a b i l i t i e s w i t h i n BLISS-10 p r o g r a m s .

This is a set of r o u t i n e s use fu l in augmenting the DDT debugging

f a c i l i t y which u n f o r t u n a t e l y is no t geared to s t a c k s , b l o c k - s t r u c t u r e d

symbol t a b l e s , e t c .

Documenta t ion :

Implementor :

10.DOC Also in B l i s s
Reference Manual

J. Newcomer

HELP:

Documenta t ion : HELP.DOC

Imp lementor : W. Wulf

TIMER:

A package which can be loaded with your BLISS-10 to provide

statistics on the run-time of routines in your BLISS-10 program.

Extremely useful in the design-implementation cycle of an efficient

programming system.

Documentation: TIM.DOC

Implementor: J. Newcomer

POOMAS:

"Poor-Mans-Simulation-Package." An adjoint to BLISS-10 of the

same flavor as the union of SIMULA and ALGOL.

Documentation: P00MAS.DOC

Implementor: A. Lunde

SIX12:

A high level debugging package. Since it knows about the Bliss-10

run time environment it is useful in interactive Bliss deburring.

Documentation: SIX12.DOC

Imp1ernentors: C. Weinstock
W. Wulf

REFERENCES

[1] Wulf, Russell, Habermann, Geschke, Apperson, Wile, Brender, "BLISS
Reference Manual," Computer Science Department Report, CMU, 1970.

[2] Wulf, Russell, Habermann, "BLISS: A Language for Systems Programming,"
DECUS Proceedings, Spring, 1970.

[3] Wile, Geschke, "Efficient Data Accessing in the Programming Language
BLISS," SIGPLAN Conf. on Data Structures in Programming Languages,
SIGPLAN Notices, February, 1971.

[4] Wulf, Geschke, Wile, Apperson, "Reflections on a Systems Programming
Language," SIGPLAN Conf. on Implementation Languages, SIGPLAN
Notices, October, 1971.

[5] Wulf, Russell, Habermann, "BLISS: A Language for Systems Programming,"
C.A.C.M. (to be published).

-62-

Some fairly extensive examples have been prepared as an appendex to

the BLISS-10 Reference Manual. Anyone interested in these can see the

BLISS-10 implementors for a copy.

SIMPLE EXAMPLES

1) I find index of first space in a line

J image of 80 characters (one per word)

1 index = -1 implies none found

index «- incr j from 0| to 79 do

if . line [. j] eqj. #4() then

exitloop .j;

2) i find last item of simple list

link <- . beginning of linked list;

while .. link neg $ do link «- ..link;

I link contains address of last item

3) add the first N numbers

sum *- (|;

incr j from 1 to .n do sum t- .sum+.j;

4) J routine to compute factorial

routine factorial (n) =

if .n e£l

then 1

else .n* factorial (.n-1);

THE FOLLOWING IS AN EXAMPLE OF A TERMINAL SESSION USING
BLISS10. COMMENTS ARE DISTINGUISHED FROM ACTUAL MACHINE INTERACTION
BY BEING ENCLOSED IN * ED LINES. SINCE BLISS 10 HAS NO BUILT-IN
I/O FACILITIES* YOU WILL FIND THE USE OF A FILE IOPRE.BLI WHICH
WAS CREATED USING TECO. ITS CONTENTS ARE I

.TYPE IOPRE.BLI

MODULE TTIOC STACK) =

BEGIN

MACHOP TTCALL=#5l;

MACRO INC= (REGISTER Qi TTCALLC 4* Q)j .Q)S,
OUTC(Z>= (REGISTER Qi TTCALLC1,Q>>S,
OUTSA(Z)= TTCALL(3j.Z)S»
OUTSCZ>= OUTSA(PLIT ASCIZ Z)S,
OUTM(C,N)= DECR I FROM (N)-l TO 0 DO OUTC(C>$*
CR= 0UTCC#15)$, LF= 0UTC(#12)S* NULL= OUTC(0)S*
CRLF= OUTS(•?M?J?0?0'>$,
TAB= O U T C (# U) S ;

ROUTINE OUTN(NUM*BASE* REQD) =
BEGIN OWN N#B*RD*T;

ROUTINE XN=
BEGIN LOCAL R>

IF «N EQL 0 THEN RETURN OUTM("0" »•RD-• T) ;
R-.N MOD .B; N-.N/.B; T-.T+ 1 J X N O ;
OUTC(.R+"0")

END;

IF .NUM LSS 0 THEN OUTC(•'-">;
B-.BASE; RD-.REQD; T-0J N-ABS(.NUM); X N O

END;

MACRO OUTD(Z>= OUTN(Z>10*1>S,
OUTO(Z)= 0UTN(Z*8*1>$,
0UTDR(Z,N>= OUTNCZ*10>N>$*
OUTOR(Z*N>= 0UTN(Z*8*N>$;

TY
NOW WE WILL BUILD A PROGRAM TO PRINT THE FACTORIALS FROM 0 TO

12 AT THE TTY. WE HAVE ALREADY CREATED THE FILE FACT.BLI USING TECO.
ITS CONTENTS ARE:

•TYPE FACT.BLI

ROUTINE FACTORIALCN)=
IF .N EQL 0 THEN 1 ELSE *N*FACTORIAL<*N-1) ;

CRLFJ TAB; O U T S C N M ; TAB; OUTSC'N!*); CRLFJ CRLF;
INCH I FROM 0 TO 12 DO

BEGIN
TAB;
OUTDC . D ;
TAB;
OUTDC FACTORIAL*; . D > ;
CRLF1

END;

END ELUDOM

NOTICE THAT THE FILES IOPRE.BLI AND FACT.BLI WHEN CONCATEN­
ATED WILL FORM A SYNTACTICALLY VALID BLISS10 MODULE. NOW WE ARE
READY TO COMPILE THE PROGRAM. BLISS10 ACCEPTS THE STANDARD DEC
COMMAND STRING ALONG WITH A LARGE NUMBER OF OPTIONAL (AND DEFAULTED)
SWITCHES WHICH ARE DESCRIBED IN THE MANUAL* IN THIS EXAMPLE WE
ARE NOT GOING TO USE ANY OF THE CCL COMMANDS ALTHOUGH THE CMU MONITOR
DOES RECOGNIZE THE .BLI EXTENSION AND WILL HANDLE BLISS 10 FILES.

THE COMMAND STRING WILL PRODUCE A .REL FILE NAMED FACT.REL-

• R BLISS
*FACT> - 1 0PRE,FACT

MODULE LENGTH =91+16

COMPILATION COMPLETE

NOW WE ARE READY TO LOAD THE PROGRAM.

.LOAD FACT
LOADING

LOADER 2+IK CORE

EXIT

.START

N N!

0

2
3
4
5
6
7
8
9
10
1 1
12

2
6
24
120
720
5040
40320
362880
3628800
39916800
479001600

EXIT

LISP

D. Waterman

The following quote from the introduction to the LISP 1.5 Primer

by Clark Weissman will serve to introduce the language:

"LISP is an unusual language in that it is both a
formal mathematical language, and (with extensions) a
convenient programming language. As a formal mathematical
language, it is founded upon a particular part of mathemat­
ical logic known as recursive function theory. As a
programming language, LISP is concerned primarily with the
computer processing of symbolic data rather than numeric data.

From childhood we are exposed to numbers and to ways of
processing numerical data, such as basic arithmetic and solu­
tions to algebraic equations. This exposure is based upon
a well-established and rigorously formalized science of
dealing with numbers. We are also exposed to symbolic d a t a -
such as names, labels, and words—and to ways of processing
such data when we sort, alphabetize, file, or give and take
directions. Yet the processing of symbolic data is not a
well-established science. In learning al algebraic program­
ming language, such as FORTRAN or ALGOL, we call upon our
experience with numbers to help us understand the structure
and meaning (syntax and semantics) of the language.

In learning a symbolic programming language such as LISP,
however, we cannot call upon our experience, because the
formalism of symbolic data processing is not part of this
experience. Thus, we have the added task of learning a basic
set of formal skills for representing and manipulating symbolic
data before we can study the syntax and semantics of the LISP
1.5 programming language.

LISP is designed to allow symbolic expressions of arbitrary
complexity to be evaluated by a computer. To achieve a thorough
understanding of the meaning, structure, construction, and

evaluation of symbolic expressions, is to learn how to program
in LISP."

-67-

REFERENCES

[1] Quam, Lynn, Stanford LISP 1.6 Manual, Stanford AI Project, September,
1969.

[2] McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer's Manual, Cambridge,
Massachusetts, The MIT Press, 1962.

[3] Hart, Timothy P., and Thomas G. Evans, "Notes on Implementing LISP
for the M-460 Computer," in Edmund C. Berkeley and Daniel G.
Bobrow (eds.), The Profiramminfi Lanfiuafie LISP: Its Operation
and Applications. 2nd ed., Cambridge, Massachusetts, The MIT
Press, 1966, p. 191.

[4] Weissman, Clark, LISP 1.5 Primer, Dickenson Publishing Co., 1967.

The first reference, the Stanford LISP 1.6 Manual, contains most of

the special features of the CMU LISP and outlines the differences between

CMU LISP and the LISP described in the last three references. Reference 3

contains an excellent set of LISP exercises with solutions, pp. 73-92.

68

RECURSIVE EXAMPLE

A simple example of a recursive LISP program to sum the digits in

a list is shown below.

(DEFPROP SUM (LAMBDA (L) (COND

((NULL L) 0)

(T (PLUS (CAR L) (SUM (CDR L))))

)) EXPR)

Executing (SUM (QUOTE (1 9 7 1))) produces 18.

SAMPLE PROBLEMS

Write LISP functions for the following purposes:

1. to determine whether an atom is a member of a list.

e.g. member [B;(A B C)] = T
member [XJca B C)1 = F
member [k:(B (A B) C) «= member [A;(B (A B) C) «= F

2. to produce a tale (list of dotted pairs) given two lists,

one of the references, and other of values.

e.g. pair [(ONE TWO THREE);(1 2 e)] = ((ONE . 1)(TWO . 2)(THREE . 3))

pair [(PLANE SUB);(B47 THRESHER)] = ((PLANE . B47)(SUB . THRESHER))

3. to append one list onto another.

e.g. append [(A B C);(D E F)] = (A B C D E F)

append [(A B) C (D E)));((A))] = ((A B) C (D (E)) (A))

4. to delete an element from a list,

e.g. delete [Y;(X Y Z)] = (X Z)

5. to reverse a list. (Hint: use append.)

reverse [(A (B C) D)] = (D (B C) A)

6. to produce a list of all the atoms which are in either of two lists.

e.g. union[(UVW);(W X Y)] = (U V W X Y)
union[(ABC);(BCD)] = (A B C D)
union[(ABC); (A B C)] = (A B C)

7. to produce a list of all the atoms in common to two lists.

[(A B C);(B C D)] = (B C)
[(A B C) ; (A B C)] = (A B C)
T/A U r>\ . fT, V U M _ MTT

e.g. intersection [(A B
intersection

intersection [(A B C);(D E F)] = NIL

8. to find the last element on a list.

e.g. last[(A B C)] = C
last[((A B)(C))] = (C)

-70-

9. to reverse all levels of a list.

e.g. superreverse[(A B (C D))] = ((D C) B A)

superreverse[((U V) ((X Z) Y))] = ((Y (Z X))(V U))

10. to determine whether a given atomic symbol is some part of an

S-expression.

e.g. part[A;A] = T
part[A;(X . (Y . A))] = T
part[A;(U V (W . X) Z)] = F

- 9

<

Tlogi n 1

JOB 1 CMU10A 6.N /DEC 5S02.C TTY33
#a330dw28
PASSWORD: B S B f l H

©35 20-Aug-71
WELCOME BACK.
READ SYS:NOTICE FOR INFORMATION ABOUT YOUR DISK FILES.
FOUR DIAL UP TTY LINES (68 7-3U11) AND FOUR
DAT EL LINES (683-833 0) NOV/ IN SYSTEM.
NEW BLISS IN SYSTEM. OLD VERSION CALLED OLDBLI BA03

7'

. tty no 1c
c r e a t e f i l e l <r

4K« S s s f > m n . L » c r

001CO
0020C
00300
001*00
00500
00600
$
**e

(defprop factorial
(lambda (xHcond
((zerop n) 1)
(t (t irres n (factor la 1 (subl n)>))

S O S

KIT

.r lisp 15

A1L0C7 € T AOCILIARY FILES?
CECIIUL?y«
STANFORD Al LISP 1.6 AT CMU 9-SEP-70
SEE LISP.DOC FOR HELPFUL (SIC) HINTS

Ksetq *nopofnt t)

T
Hgrindef factorial)

nil

*(i nc (i nput dsk: fI lei))

•: il o

FACTORIAL

0 l r <* S P * " , * * * * * * (for HU or < M « \)

4h« U s «X LISP funcT/on^ l'« -U* f w t h V

ao« ^ u i M I L ,

DasK f i U ^ O^TedL

*<grindef factorial)

(EFPROP FACTORIAL
(LANBDA(X)
(COND ((ZERCP N) 1)

EX PR)
(T (TIMES N (FACTORIAL (SUB1 N)>)>)>

M L
*(ed)

*g factorial <-

r(x)^(n)^ f -

4 U e d W +<» t w r t -VU error

— r t f W CTN/ w'lfk > Tirs-l OCCU^hica

NIL
*(grlndef factorial)

(DEFPROP FACTORIAL
(LAMBDA(N)
(COND ((ZERCP N) 1)

EXPR)

NIL

(T (TIKES N (FACTORIAL (SUB1 N))))))

€ \ ^ 4k* L isP <j. 4 C 4 W * 1^

—i

• (f a c t o r i a l 3)

6

• (f a c t o r i a l k)

Ik
* (d e f p r o p p r i n t s (l a m b d a (x M c o n d

* ((n u 1 1 x H t e r p r i))
* (t (a n d (p r i n c (c a r x)) (p r i n c (q u o t e " "))
• (p r i n t s (c d r x)))))) e x p r)

(RINTS
* (g r i n d e f p r i n t s) I

f lDEFPROP PRINTS
(L A M B D A (X)

(COND ((N U L L X) (T E R P R I))
(T

(AND (P R I N C (CAR X))
(P R I N C (Q U O T E " ") >
(P R I N T S (CDR X))))))

EXPR)

m l PHliN)TS pvt*ts O- fat UidUu-t p*W**«*
• (p r i n t s (q u o t e (t h i s is a p r i n t t e s t))) A

T H I S IS A PRINT T E S T

*(print (quote (this is a print test))) ffct^T > * t * « ^ j $± f***^***"

(THIS IS A PRINT TEST)
(THIS IS A PRIfJT TEST) , . u r _>f « J L ; t 0r .(ed) i . baxK To * * * ***

*f (factorial prints) dsk: filel , — _ o j L P̂ JWTS o» OlSK u»rHi

•lc Sit*-*. FILE!
>c

„ type filel _ _ _ _ _ _ _ _ _ _ _ _ _ K s l FILE 1

(DEFPROP FACTORIAL
(LAMBDA <N) (COND ((ZERCP N) 1) CT (TIMES N (FACTORIAL (SUB1 «>)))))
IXPR)

(DEFPROP PRINTS k » „ n u

(LAMDDA (X) (COND ((NULL X) (TERPRI)) (T (AND (PRINC (CAR X)) (PRIMC (QUOTE " ")) (PRINTS (CCR X))))))
IXPR)

i

i

L*

G. Robertson and D. McCracken

L* is a system on the PDP-10 for constructing software systems, which

is under development at CMU by A. Newell, D. McCracken, G. Robertson, and

P. Freeman. The current version, L* (G), is the seventh to be designed for

the PDP-10 and the fourth to become a running system. There are also three

running systems on the PDP-11, the most current version being L*ll (C). A

running system on 360 TSS also exists, L*360.

The design rationale for L* is discussed in the article, "The Kernel

Approach to Building Software Systems," which appears in the 1970 Computer

Science Research Review. This guide makes brief references to the principles

set forth in that article.

L* is intended to be a complete system for running and constructing

software systems. Completeness implies that one should be able to perform,

and to construct systems for performing, the following:

a) Processing of arbitrary data types, e.g., symbolic structures,

lists, numbers, arrays, bit strings, tables, text

b) Editing

c) Compiling and assembling

d) Language interpreting

e) Debugging

f) Operating systems, e.g., resource allocation, space and time

accounting, exotic control (parallel and supervisory control)

g) Communication between user and system, e.g., external languages,

dynamic syntax, displays, etc.

L* is a kernel system. It starts with a small kernel of code and

data and is grown from within the system. Thus, L* does not perform all

the functions above when it exists only as a kernel. It does have means to

construct systems for them a l l .

L* is designed for the professional programmer. It assumes someone

sophisticated in systems programming who wants to build up his own system

and who will modify any presented system to his own requirements and

prejudices. Thus, L* is intended to be transparent. All mechanisms in

the total system are open for understanding and modification. No mechanisms

are under the floor.

One of the design goals of the L*(G) system was that it should be entirely

self-documenting on-line to the maching, but this goal was not fully realized.

The listings of the system which are available on the [AllJBLGjdjif] disk area

may be used as documentation. There is available an interactive script which

teaches L*L, the simple list processing language at the heart of the L*(G)

system.

Getting into L*(G) is very simple. All that is neccessary i s :

R LSGA

HELP

The response of the HELP command will be sufficient to get you started in

the system.

There is also a file SYS: LSG.DOC which contains a few helpful hints

on using L*(G)

There is a new (and hopefully final) version of L*, called L*(H)

which should be completed during the fall of 1972 . Along with L*(H) there

will also be a new PDP-11 version of L*.

-78-

L*(H) will have complete facilities for assembly, translation, filing

and documentation, and will be written up in final form for publication.

As soon as L*(H) becomes available for use, documentation on getting

into the system will appear on file SYS: LSH.DOC

MACRO 10

D. Bajzek

MACRO 10 is the symbolic assembly language for the PDP-10 machine

language. It is characteristic of most machine languages in that is is

most useful in fully utilizing the facilities of a PDP-10.

The PDP-10 Reference Handbook is a complete reference guide for

the MACRO 10 assembler since no special CMU features have been added to

this processor. Chapters 1 and 2 contain a complete description of the

PDP-10 instruction set and the MACRO 10 assembler.

Chapter 3 contains detailed information on communication with the

TOPS-10 monitor. Section 4.10 of this chapter is very important since

it describes all the input/output operators. In particular, this section

describes the use of the directory devices, disk and DECtape, which are

most commonly used since they provide random access data storage. Also

included are diagrams and explanations of data structures and programming

examples on

1) how to create data files and transfer data in buffered

mode (pp. 3-197),

2) how to transfer data in unbuffered mode (pp. 3-199),

3) a general subroutine to input one character (pp. 3-200),

4) and a general subroutine to output one character (pp. 3-201).

In general, to create or update a data file on disk or DECtape, it

is necessary to understand the following operators:

/OPEN

viNIT (pp. 3-189) The OPEN and INIT programmed operators initialize

a file by specifying a device (or data channel), logical device name,

initial file status, and the location of the input and output buffer headers.

80

/INBUF
VOUTBUF (PP. 3-193)

LOOKUP (PP- 3-194)

ENTER (PP. 3-195)

RENAME (PP- 3-196)

a. alter the filename, filename extension, and the
protection, or

b. delete a file associated with a specified channel
on a directory device.

|INPUT

IN (pp• 3-198) transmits data from the file selected on the specified

channel to the user's core area.

{OUTPUT OUT (pp. 3-198) transmits data from the user's core area to the

file selected on the specified channel.

CLOSE (pp. 3-203) terminates data transmission on the specified channel.

RELEASE(pp. 3-205) releases the channel.

The following is an example of a MACRO 10 program which merely reads

a string on one-digit octal numbers, ignoring all other characters, from

an ASCII text file called DATA.FIL. It then sums these digits and prints

out their octal sum on the TTY.

TITLE ADDER
I GIVE ACCUMULATORS SYMBOLIC NAMES

A H
Aif2
OISlTfS
SUMi4
COUNTiS
PNT»6

, DEFINE I/O CHANNEL
INCHNit

JNOW BEGIN
START} INtT INCHN,t

SJXBIT /DSK/

JRST NOTAVL
iNBur INCHN.1
LOOKUP tNCHN.tNNAME
JRST NQtFND

PREPARE TO START SUMMING
SETZM SUM

LOOP1I JSR
CAjG
CAIGE
JRST
SUB I

AOOM
JRST

GETCHR
DIGIT,67
DIGIT,60
LOOPi
DIGIT,60

DIGIT,SUM
LOOPl

I INITIALISE INPUT CHANNEL lN
1A8CII LINE MODE
(LOGICAL DEVICE NAME IS DSK
I NEED tO GIVE NAME OF INPUT
fSUFFER HEADER ONLY, SINCE WE
lONLY WISH TO fNPUT FROM THIS
IOEVICE.
I GO TO ERROR ROUTINE IF DEVICE
IIS NOT AVAILABLE,
j SMALL AMOUNT OF DATA, WE ONLY
INEED 1 BUFFER IN RING*
ILOOK UP FILE WHICH IS DESCRIBED
!eRRORNIFEFILE NOT FOUND
I INITIALIZE SUM TO ZERO

CHAR IGETCHR RETURNS WITH ASCII
I IN DIGIT
(MAKE SURE ASCII CHAR IS REALLY
I AN OCTAL DIGIT
(IF IT'S NOT, IGNORE IT AND GO
1GET ANOTHER CHAR
(GET ACTUAL VALUE OF
•DIGIT?
1 ADD DIGIT TO SUM
ICO GET NEXT DIGIT

ASCII OCTAL

I WHEN THE END OF FILE IS REACHED ON THE INPUT FILE
I THE GETCHR SUBROUTINE WILL TRANSFER CONTROL TO HERE.

INOW THE VALUE IN SUM MUST BE CONVERTED TO AN ASCII STRING
10P OCTAL DIGITS TO BE OUTPUT TO THE TTY,

MOVE PNTiOUTPNT (LOAD PNT WITH A BYTE POINTER
I P

MOVSI COUNT,;i4

MOVE Al.SUM

10QP2I SETiM
LSHC
CAMN

A

PNT.OUtPNT

i into the area the result is to
tBE STORED INTO.
•MAXIMUM OF 12 DIGIT RESULT
I(ASSUMING NO OVERFLOW)
J THE OCTAL DIGITS CAN BE
iOBTAINED BY SIMPLY SHIFTING THE
ISUM 3 BITS AT A TIME INTO
•REGISTER A,
I INITIALIZE A
IMOVE LEFT 3 BITS OF Al INTO A
IIP POINTER HAS CHANGED, SKIP

JUMPE

A D O I
I D P B
AOBJN

MOVEI
I D P B

OUTSTR
OUTSTR

E X I T T I C A L L

A i L E N D 2

A ,6®
A i PNT

C O U N T , L 0 0 P 2

A | 0

A , P N T

OUTMSG
OUtWRO
C S I X B I T / E X I T / 3

I OVER T E S T FOR L E A D I N G ZERO
I i r L E A D I N G HERO J U S T I N C R E M E N T
(C O U N T E R BUT D O N ' T O U T P U T ,
I MAKE INTO A S C t I CHAR
(P U T CHAR I N T O TTV O U T P U T B U F F E R
J IF T H E R E ARE MORE D I G I T S L E F T ,
IGO GET THEM TOO

I S T O R E A N A S C I I N U L L AT END OF
• S T R I N G
(T H I S S P E C I A L PROGRAMMED
I O P E R A T O R O U T P U T S AN A S C I I
(S T R I N G TO A T T Y t S T R I N G IS
(T E R M I N A T E D BY A N U L L)
(S P E C I A L F U N C T I O N TO G R A C E *
(F U L L Y T E R M I N A T E THE E X E C U T I O N
(O F A P R O G R A M ,

1TME F O L L O W I N G S U B R O U T I N E IS USED TO INPUT ONE A S C I I CHAR

G E T C H R I 3
G E T N X T l S O S L E

J R S T

IN
J R S T
S T A T Z

J R S T

J R S T

I B U F * 2
GETOK

I N C H M ,
GETOK
I N C H N , 7 4 0 0 0 0

I N E R R

I N E O F

(R E T U R N A D D R E S S IS S T O R E D HERE
(O E C R E M E N T THE B Y T E COUNT
(N O N - Z E R O R E S U L T MEANS MORE
(C H A R S L E F T IN B U F F E R
(G E T NEXT B U F F E R PROM MONITOR
(R E T U R N WHEN B U F F E R IS F U L L
J I N OOFS A S K I P R E T U R N IF T H E R E
(WAS AN ERROR ON I N P U T . THE
(S T A T U S B I T S MUST BE T E S T E D TO
J D E T E R M I N E WHAT KJMO OF E R R O R ,
(NOT E N D " O F " F I L E , GO P R O C E S S THE
I ERROR
(END OF F I L E R E T U R N TO NEXT
I P H A S E OF P R O G R A M ,

G E T O K I ILDB
J U M P N

J R S T

D I G I T , ! B U P * 1
D I G I T , » G E T C H R

G E T N X T

(GET CHAR FROM B U F F E R
(I F NOT NULL C H A P , R E T U R N TO
(C A L L I N G P L A C E WHOSE A D D R E S S IS
(S T O R E D IN G E T C H R ,
(I G N O R E NULL AND GET NEXT C H A R ,

(N E X T COME SOME ERROR R O U T I N E S WHICH T Y P E OUT ERROR MESSAGES
j TO E X P L A I N E R R O R S R E C E I V E D BY THE P R O G R A M ,

I N E R R ! OUTSTR
J R S T

I N P M S G
E X I T T

(O U T P U T MESSAGE AND
(E X I T FROM PROGRAM

I N P M S G I A S C I Z / E R R O R WHILE R E A D I N G INPUT F I L E /

N O T A V L I OUTSTR AVLMSG
J R S T E X I T T

AVLMSGI A S C I H / D E V I C E NOT A V A I L A B L E /

N O T F N D I OUTSTR F I L A S G
J R S T E X I T T

F I L M S G t A S C I * / F I L E WAS NOT F O U N D /

-83-

INOW TO DEFINE SOME CONSTANTS AND DATA
BLOCK
SJXBIT SIXBIT
0

/DATA/
/ F i t /

.THIS IS THE INPUT.BUFFER HEADER
I NAME OF DATA P R E
{EXTENSION OF OATA FILE

0 t IF THlS IS LEFT "0" THE OWNER
I0F THE FILE IS ASSUMED TO BE
ITHE USER RUNNING THIS PROGRAM,
j THIS NUMBER CAN BE OBTAINED BY
iRUNNING THE "PPN" CUSP,

OUTPNTI POINT 7,0UTWR0 (POINTER TO OUTWRD WHERE THE l A S C M REPRESENTATION OF THE SUM
lOF THE DIGITS IS TO BE STORED,

OUTMSGi ASCII /•••THE SUM OF THE OIGlTS IS /
OUTWROt BLOCK 4

END START

The following is an example of a terminal session in which a data

file for the ADDER.MAC example program is created, and the example program

(assumed to exist on dsk) is assembled, loaded, and executed.

«LQG
JOB 17 CMUIOA 6.U1Q/DEC 5S02.C/D TTY40
#£799IDQ0

2141 17-JUL-72
7-17...ALL ifAUCTJuES

;Your usage number goes here.
;Type your password here. It will not be echoed.
;The system.wlil respond with a greet message.

IN SrSTErt.».dYS.NE*iS (7-7)

;To run the ADDER program which we assume is on disk
;£rom a previous secession, the data file must fir
;first be created.

.CflSATfc DATE.flL.

cozen %
*e

£j(\ f ;Now that the data file has been created, we can
;execute the ADDER program.

" ;We can assemble,load,and execute ADDER in
;three seperate steps, or we can simply use the
;EXECUTE command to do all three.

^ L X C C O T E A D D E R . t * V C
WACRQt A P P E f t

LQfiOCK IK CQRC

Ftt-e WflS Net «)(JNS>

;This statement indicates that the MACRO 10
;assembler is now assembling.
;The loader is now loading the relocatable file
;produced by the assembler.

;Begln execution.
;This message is coming from the ADDER program.
;It says there is no file called DATA.FIL. If
;we look back we see a spelling error in the
;CREATE.

;We can correct this error by using the RENAME
;command to change the name of the data file.

j.tftrA/AMe OATA.FUL-DrtT-E.FIL

L O A D E R I K COCLe
ITXEC U T I CM
* * * T l « e 3VH OP T « E O I G i r s | S 3 *
E X I T

;Try executing ADDER again.
;Since the relocatable file already exists, the
{assembly step has been skipped.

;lf we look back to the data file, the sum of the
joctal digits should be 34<we Ignore the 8,9,and E),
;But notice, there is an octal non-zero digit in
;the line number*the line number was Included as
;part of the data string.

P I P

«C>SK: 1 * T A . F I L/Wi-DSK i o * r i L

;We can use "PIP" to remove the line numbers
;from the file.

;This command simply causes the file to be
rewritten without the line numbers.

LOADER IK CORg

* i + T H E S.UM Of THfc O t 6 | T S I S 3 f

;Again execute the program.

;The sum is now correct.

;To get off the system it's necessary to execute
;the "KJOB" command which returns all i/o devices
;to the system device pool. In addition, if there
;are any files on out disk area, the monitor
;responds with "CONFIRM:" to which we have
;several options, described on page 2-17 of the
{Timesharing Handbook.

;"U" says list all unprotected files so they
;can either be protected or deleted.

DSK A t
OSKQ:
W W 'Fit- <Oi!S> 6- &UCS : P ;Here we've said protect the data file ,

rtOQEg -Ret <0$S> $• &LKS t K ;but delete the relocatable ADDER file.

;The monitor responds with some file statistics
;and accounting information.

JOB 2, USEtiJ.-jyilDOO LOGGED OFF TTrl 1420 aO-AUG-71
TBJLETED 1 FIL.ES C5» DISK BLOCKS >
SAVED 7 FILES (85. DISK BLOCKS)"
jiU^tiME 0 Mltfj. 03.75 SEC PTlLOCOrtE SEC: 23
CUM.vECT TIME O HR» 4 tilH* 37 SEC TOTAL CHANGE: SO.33

http://tt.Lls.TKD
http://FIL.ES

MLISP

M. Rychener

The following is from the MLISP Manual by D.C. Smith (Stanford AIM-135,
October, 197 0) .

Most p r o g r a m m i n g l a n g u a g e s are d e s i g n e d w|th the Idea that the syntax
should be s t r u c t u r e d to p r o d u c e e f f i c i e n t code for the c o m p u t e r .
F o r t r a n and Algol are o u t s t a n d i n g e x a m p l e s , Y e t , It Is a p p a r e n t that
H U M A N S spend more t|me with any g i v e n p r o g r a m than the C O M P U T E R .
T h e r e f o r e , It has been our I n t e n t i o n to c o n s t r u c t a language w h i c h Is
as t r a n s p a r e n t l y c|ear and u n d e r s t a n d a b l e to a H U M A N B E I N G as
p o s s i b l e , C o n s i d e r a b l e e f f o r t has been spent to make the s y n t a x
c o n c i s e and u n c l u t t e r e d . It r e d u c e s the number of p a r e n t h e s e s
r e q u i r e d by L I S P , I n t r o d u c e s a more m n e m o n i c and natural n o t a t i o n ,
c l a r i f i e s the flow of control and p e r m i t s c o m m e n t s . Some
" m e t a - e x p r e s s I o n s " are added to Improve the I I s t - p r o c e s s I n g power of
L I S P . S t r i n g s and string m a n i p u l a t i o n f e a t u r e s , p a r t i c u l a r l y useful
for I n p u t / o u t p u t , are I n c l u d e d , In a d d i t i o n , a s u b s t a n t i a l a m o u n t of
r e d u n d a n c y has been built Into the l a n g u a g e , p e r m i t t i n g the
p r o g r a m m e r to c h o o s e the most natural way of w r i t i n g r o u t i n e s from a
v a r l e t y of p o s s | b | I I t i e s .

L ISP Is a I I s t - p r o c e s s I n g and s y m b o | - m a n IpuI at I on language c r e a t e d at
MIT by John M c C a r t h y and h|s s t u d e n t s (McCarthy, 1 9 6 5) , The
o u t s t a n d i n g f e a t u r e s of LISP a r e : (l) the s i m p l e s t and most e l e g a n t
s y n t a x of any language In e x i s t e n c e , (2) h i g h - l e v e l symbol
m a n i p u l a t i o n c a p a b i l i t i e s , (3) an e f f i c i e n t set of l i s t - p r o c e s s i n g
p r i m i t i v e s * and (4) an e a s i l y - u s a b l e power of r e c u r s i o n .
F u r t h e r m o r e , L I S P a u t o m a t i c a l l y h a n d l e s all Internal s t o r a g e
m a n a g e m e n t , f r e e i n g the user to c o n c e n t r a t e on p r o b l e m s o l v i n g , This
Is the s i n g l e most I m p o r t a n t I m p r o v e m e n t over the other major
l i s t - p r o c e s s i n g l a n g u a g e , IPL-V, LISP has found a p p l i c a t i o n s In many
I m p o r t a n t a r t i f i c i a l InteI I I g e n e e I nvest i g a t | o n s , IncIudIng symboI Ic
m a t h r r a t l c s , n a t u r a I - I a n g u a g e h a n d l i n g , t h e o r e m p r o v i n g and l o g i c .

U n f o r t u n a t e l y , there are several Important w e a k n e s s e s In L I S P .
A n y o n e who has a t t e m p t e d to u n d e r s t a n d a LISP p r o g r a m w r i t t e n by
a n o t h e r p r o g r a m m e r (or even by himself a m o n t h e a r l i e r) q u i c k l y
b e c o m e s a w a r e of several d i f f i c u l t i e s :

At The flow of control Is very d i f f i c u l t to f o l l o w . In f a c t , It
is about as d i f f i c u l t to follow as m a c h i n e language or F o r t r a n , This
m a k e s u n d e r s t a n d i n g the p u r p o s e of r o u t i n e s (J .e, what do they do?)
d i f f i c u l t . Since c o m m e n t s are not u s u a l l y P e r m i t t e d , the p r o g r a m m e r
Is u n a b l e to p r o v i d e w r i t t e n a s s i s t a n c e .

B , An I n o r d i n a t e a m o u n t of time must be spent b a l a n c i n g
p a r e n t h e s e s , w h e t h e r In w r i t i n g a LISP p r o g r a m or trying to
u n d e r s t a n d o n e , It Is f r e q u e n t l y d i f f i c u l t to d e t e r m i n e w h e r e one
e x p r e s s i o n ends and a n o t h e r b e g i n s , F o r m a t t i n g u t i l i t y r o u t i n e s

p r e t t y - p r |nt M) h e | p ; but every LISP p r o g r a m m e r k n o w s the d u b i o u s
p l e a s u r e of l a b o r i o u s l y m a t c h i n g left and right p a r e n t h e s e s In a
f u n c t i o n , when all he knows Is that one is m i s s i n g s o m e w h e r e ! !

C f The n o t a t i o n of LISP (prefix n o t a t i o n for f u n c t i o n s ,
p a r e n t h e s e s a r o u n d all f u n c t i o n s and a r g u m e n t s , e t c .) , while u n i f o r m

MLISP INTRODUCTION - SECTION 1 4

frorr a logician's point of view. Is far from the most natural or
mnerr.onlc for a language, This clumsy notation also makes It
difficult to understand LISP programs, Since MLISP programs are
translated Into LISp s-express Ions, all of the elegance of LISP Is
preserved at the translated |eve|t but the unpleasant aspects at the
surface level are eliminated,

0, There are Important omissions in the list-processing
capabilities of LISP, These are somewhat remedied by the MLISP
"meta-expresslons", expressions which have no direct LISP
correspondence but Instead are translated Into sequences of LISP
Instructions. The MLISP meta-expresslons are the FOR expression,
WHILE expression* UNTIL expression! Index expression, assignment
expression, and vector operations. The particular deficiency each of
these attempts to overcome Is discussed in the subsection of SECTION
3 describing the meta-express|on |n detail,

MLISP was written at Stanford University by Horace Enea for the IBM
360/67 (Enea, 1968), The present author has implemented MLISP on the
PDP-10 time-shared computer. He has rewritten the translator,
expanded and simplified the syntax, and Improved the run-time
routines, All of the changes and additions are Intended either to
make the language m 0re readable and understandable or to make It more
powerful,

MLISP programs are first translated into LISP programs, and then
these are passed to the LISP Interpreter or compiler, As Its name
Implies, MLISP Is a "meta-LISP" language; MLISP programs may be
viewed as a superstructure over the underlying LISP processor, A M
of the underlying LISP functions are available to MLISP programs, In
addition to several powerful MLISP run-time routines, The purpose of
having such a superstructure Is to improve the readability and
wrlteablllty of LISP, long (In)famous for its obscurity, Since LISP
ts one of the most elegant and powerful symbo |-man IpuI at I on languages
(but not one of the most readable), It seems appropriate to try to
facl l itate the use of It,

MLISP has been running for several years on the Stanford PDP-10
time-shared computer, It has been distributed to the DEC User
Services Group (DECUS), The MLISP translator and run-time routines
are themselves compiled LISP programs, The Stanford version runs
under the Stanford LISP 1,6 system (Guam, 1969), Some effort has
been m ade to keep the translator as machine Independent as possible;
In theory MLISP could be Implemented on any machine with a working
LISP system by making only minor changes, The one probable exceotlon
to this Is the MLISP scanner! to enable scanning (where most of the
time Is spent) t 0 be as efficient as possible, the translator uses
machine language scanning routines. While these routines have
greatly Increased translation speed (MLISP now translates at a rata
of 3200-5000 lines per minute,), their use means that someone wishing

-88-

MLISP INTRODUCTION - SECTION 1 5

to Implement MLJSP on a system without LISP 1,6 will have to use an
equivalent scanner package, Tor this reason, a whole section of this
manual (SECTION 7) |s devoted to presenting an equivalent scanner,

While LISP was created with the goal of being machine Independent, It
has turned out that most LISP systems have unique features, The
situation Is so difficult that Anthony Hoarn has attempted to define
"a uniform subset of LISP 1,5 capable of assembly under a wide range
of existing compilers and Interpreters," called STANDARD LISP {Hearn.
1969). MLISP helps to alleviate this situation by Introducing
another level of machine Independence: to Implement ML ISP on a given
LISP system, one changes the underlying translator rather than the
surface syntax, Dr, Hearn has also constructed an ML ISP-1 ike
language called REDUCE (HEARN, 1970),

For sample exercises, see the Lisp section of this document. There also is

a program available on SYS:, written in MLisp, called MEXPR. In that program,

the function convert takes a lisp source-filename, reads the file, and writes

an MLisp equivalent of the file. A slightly augmented version of MEXPR is a-

vailable from M. Rychener, SCH4211.

; MLISP SCRIPT

.TY ICSCR.MLI
00100 BEGIN
00200. EXPR MLISTNC); % READ - EVAL MLISP EXPRS %

S S S - ^ S ^ J I r . * , u
00500 PRINT EVAL MTRANSO;
00600 end;

00700 END.

. R MLISP

*(MLISP (ICSCR.MLI))

MLISTN

0. SECONDS TRANSLATION TIME
0. ERRORS WERE DETECTED
0. FUNCTIONS HERE REDEFINED

-END-OF-RUN-
*(MLISTN)

• t * . % NOrf rtE'RE TALKING TO MTRANS, WHICH TRANSLATES AN MLISP EXPRESSEION
* INTO LISP. THIS LISP IS TAKEN BY THE ROUTINE MLISTN ABOVE AND
* EVAL'D, THEN PRINT'D, MUCH LIKE THE TOP LEVEL OF LIST\T\P %
*EXPR FACT(N); IF ZEROP N THEN 1. ELSE N*A\A\FACT(N-U ;
FACT
NIL
* ^ F" .\ Ci (3) •

•;FACT(7);

5040.
:* % COMPARE THAT DEFINITION OF FACT TO THE FOLLOWING LISP EQUIVALENTS
* EVAL '(GRINDEF FACT) ;

(DEFPROP FACT
(LAMBDA (1M) (COND ((ZEROP N) 1.) (T (TIMES N (FACT (SUB1 N))))))

EXPR)
NIL
•i* % NOW TRY AN ITERATIVE VERSION %
*EXPR FACT2(N) ; BEGIN NEW Mi M_l. I DO BEGIN M_M*N;

FACT2 * N_N-i; END UNTIL ZEROP N; RETURN M END;

NIL

:*FACT2(3); '

6 .

:*FACT2(7);

3 040.

:*FACT2 4;

24 .
:* %PARENTH ER\ R\ S E S ARE NOT NECESSARY AROUND UNARY FUNCTIONS %
*EVL\L\AL '(GRINDEF FACT2)
(DEFPROP FACT2
(LAMBOA(N)
(PROG (M)

(SETQ Ml.)
(ADO (QUOTE PROG2)

(QUOTE
(PROG NIL (SETQ M (TIMES M N)) (SETQ N (SUB1 N))))

(QUOTE (ZEROP N)>)
(RETURN M))) '

EXPR)

nIL
»* % ADO IS AN MLISP FUNCTION TO PERFORM THE INDE\E\ICATED^ ACTION.
* WITHIN THE MLISP INTERPRETER %
* % THE ABOVE CALLS TO GRINDEF ILLUSTA\A\RATE HOW TO SPEAK IN LISP
* TO THE FUNCTION MTRAN'S, IN CASE IT DOESN'T. LIKE WHAT YOU'VE TRIED
* TO TYPE IN MLISP. FOR INSTANCE * \ * \ s %
•GRINDEF(FACT);

*** ERROR IN TOP-LEVEL
*** ILLEGAL SYMBOL BEGINNING A SIMPLE EXPRESSION
*** CURRENT SYMBOL IS) .
*** SKIPPING TO NEXT SEMICOLON

*** ERROR IN TOP-LEVEL
*** ILLEGAL ARGUMENT
*** CURRENT SYMBOL I S *
*** SKIPPING TO NEXT SEMICOLON

(DEFPROP (FACT NIL)
(NIL)

VALUE)

NIL
** % SOMEHOW MTRANS D()S\S\ESN'T LIKE TO SEE GRINOEF %
*CDR '(G\G(\GRINDEF ;

(FSUBR #6164 PNAME (#50763 #50764))
:* % PERHAPS BECAUSE IT'S 'AN FSUBR % EVAL '(GRINDEF FACT) ; %DOES WORK,
HOWEVER %

(DEFPROP FACT
(LAMBDA (N) (COND ((ZEROPN) I.) CT (TIMES N (FACT (SUBI N))))))

EXPR)
NIL
:* % MLISP DOESN'T REQUIRE PARENTHESE FOR BINARY FUNCTIONS EITHER i %
<'X MEMBER ' (A B C D X Y Z) ; *'X MEMBER ' (A B C D X Y Z)

T
:*'(A B C) CONS '(' D E F) ?.
((A B C) D E F)
:*'(A B C) •§ '(D E F) ;

(A H C D E F)
i * % @ IS USED FOR APPEND % <A,,B\B„A<\ . <A,B,C> ^ <D,E,F>;

A
UNBOUND VARIABLE - EVAL
BACKTRACE
MAPLIST-? LIST-*EVAL PRINT-EVALARGS PROG-*EVAL &rtHILE-*EVAL ?-*EVAL
*(MLISTN)

-92-

t * %LISP ERRORS TAKE US BACK TO LISP READ-EVAL LLOOP
* THE ERROR ''JAS OMMITTING QUOTES ABOVE % <'A,'B> % <'C,'U>?

(A B C D)
:* %ANGE\E\LE BRACKETS DENOTE. THE LIST FUNCTION IN "LISK %
* MTRANSO;
* <'A,'B>;

(LIST (QUOTE A) (OUOTc B))
s*EXPR HAVE(X); X;

HAVE
ii IL
:*EXPR NII\I\TH(X tY); A U
FcXPR rt'ITH(X,Y)l PEUMJYfURN 'OKI! ;

una
NIL
:*HAVE FUw HITH MLISP;

J^FEXPR WIH\H\TH(X,Y)» 'OK *

fJlTH *** NARNING, FUNCTION REDEFINED

NIL •
s*HAVh FUN NITH MLISP! ;

OK

:*FEXPR WIH\H\TH(X,Y)» 'OK!! ;

.,1 fH *** EARNING, FUNCTION REDEFINED

NIL
:*HAVE UN\NU\"U
rtU
HAVE FUN .NITH MLISP! ! ;

OK !!

-93-

PIP - Peripheral Interface Program

B. Anderson

PIP is a basic systems program of the PDP-10 which provides the user

with the necessary facilities for handling existing data files. Actions

possible, among others, are transferring files from one standard I/O device

to another standard I/O device, listing and deleting directories, simple

editing, changing protection codes, and controlling magnetic tape functions.

The following script shows the typical uses and efficient methods for

handling such uses.

REFERENCES

[1] PDP-10 Reference Handbook, pp. 585-596.

•AS D T A

D T A 2 A S S I G N E D

iA S DTA

D T A 4 A S S I G N E D

A J t t : w \ \ c w y V 4 e . M x c e S

* * 0 * \ \><-

• P L E A S E M O U N T B A 0 3 B C O N D T A 2 E N A B L E D A N D B A 0 3 D F O N D T A 4 E N A B L E D

O P E R A T O R H A S B E E N N O T I F I E D

B A 0 3 B C I S O N D T A 2 A N D B A 0 3 J D F I S O N D T A 4 B O T H E N A B L E D
T H A N K Y O U

tC

• R P I P

ft V

J COPYING FILES

; U N D E R L I N I N G D E N O T E S S Y S T E M T Y P E O U T

; S E M I C O L O N S D E N O T E C O M M E N T S

* D S K : A . E X T - D S K : B . E X T

*DTA2:A.EXT-DSK:B.EXTCQ5 02BA0 3 3

* L P T ; - D S K : B . E X T

* D T A 2 : A . E X T - D S K : B . E X T , C E X T

* D T A 2 : A . E X T « - D T A 4 : * . M A C

* D T A 2 : A . E X T * - D T A 4 : F I L E . *

jDTA2: A. EXT«-DTA4: .*

; A C O P Y O F B . E X T C A L L E D A . E X T

; I S M A D E O N D I S K . A N Y F O R M E R

; C O N T E N T S O F A * E X T A R E L O S T

J B . E X T F R O M O 5 0 2 B A 0 3 F S D I S K

J A R E A I S C O P I E D O N T O T H E U S E R ' S

; D I S K A R E A W I T H T H E N A M E A . E X T ,

; P R O V I D E D B . E X T I S N O T R E A D

; P R O T E C T E D

; L P T I S A N O N - D I R E C T O R Y D E V I C E

; A N D S O A F I L E N A M E I S N O T

; R E Q U I R E D , I F O N E I S G I V E N , I T

; i S I G N O R E D

; B . E X T A N D C E X T F R O M D I S K A P E

; C O P I E D O N T O D T A 2 I N T H E O R D E R

> S P E C I F I E D A N D C O M B I N E D I N T H E

J F I L E A . E X T

; A L L F I L E S W I T H M A C E X T E N S I O N S

; O N D T A 4 A R E C O M B I N E D I N A . E X T

; O N D T A 2

, A L L F I L E S W I T H T H E F I L E N A M E

; F I L E , R E G A R D L E S S O F E X T E N S I O N ,

; A R E C O M B I N E D I N A . E X T O N D T A 2

;ALL FILES ON DTA4 APE COPIED
;iMTO A.EXT ON DTA2

*DSK: FILE1-DTA2: A.EXT, DTA4: FILE.MAC ;A.EXT FROM DTA2 AND
;FILE.MAC FROM DTA4 ARE COPIED
; INTO f i l e 1 ON DI SK

-95-

;END OF FILE ON TTY IS DENOTED BY TZ CCONTROL Z)

* D S K J A . E X T - T T Y :

T H E T E X T O F T H E F I L E G O E S H E R E

A N D H E R E
tZ

JTHE TEXT OF THE TTY FILE IS
; COPIED INTO A. EXT ON DISK

iCOPYING SPECIFIED FILES WITHOUT COMBINING THEM.
;ORDINARILY ONLY ONE DESTINATION FILE IS PERMITTED BY
;PIP. THE X SWITCH ALLOWS FILES TO BE COPIED AS THEY
JAREV KEEPING THEIR NAMES AND INDIVIDUAL FILE STATUS

*DSK:/X-DTA2:A.EXT ;A.EXT IS COPIED TO DISK WITH
;THE SAME NAME

*DSK:/X-DTA2 s A.EXT*DTA4:FILE.MAC ;A.EXT AND FILE.MAC ARE EACH
; COPIED TO DISK WITH THE SAME
;NAMES

_*DTA2: <DX)-DSK:A.EXT, B.EXT ;(DX) DENOTES TO COPY ALL FILES
1 EXCEPT THOSE SPECIFIED. ALL
J FILES EXCEPT A. EXT AND B.EXT
;ARE COPIED TO DTA2

i

> DELETING FILES

*.DSK:/D-DSK: FILE. MAC ; FILE.MAC IS DELETED FROM THE
FILES DELETED; ^DISKV PIP TELLS YOU SO
FILE.MAC 05

*DTA21/X-DSK:FILE . MAC
? NO FILE NAMED FILE.MAC

; FILE. MAC HAS BEEN DELETED. PIP
;TELLS YOU IT IS NOT THERE

-96-

% RENAMING FILES

*pSK:FILE2/R.*DSKt B.EXT
FILES REN AM ED t
B.EXT 05

;R.EXT IS RENAMED AS FILE?.
;IF /P WERE LEFT OUT, ANOTHER
;COPY OF B.EXT WOULD BE MADE
sCALLED FILES

*DSK: A.EXT/R-DSK:B.EXT
? NO FILE NAMED R.EXT

JB.EXT WAS RENAMED ABOVE AND SO
;NO LONGER EXISTS UNDER THAT
;NAME

* D S K : B . * / R ~ D S K : A . *
T I L E S R E N A M E D :
A.EXT 05

;ALL FILES WITH THE FILENAME A
* ARE RENAMED WITH FILENAME B
iAND THE SAME EXTENSIONS

% CHANGING FILE PROTECTIONS

*DSK:/F.<1 55>-DSK: B.EXT
FILES RENAMED:
B.EXT 05

;B.EXT*S PROTECTION IS MADE 155.
J DEFAULT PROTECTION IS 055

*DSK: A.EXT<155>-DSK:B.EXT ;B.EXT IS COPIED INTO A.EXT
;WITH THE PROTECTION 155. B.EXT
5KEEPS ITS.OLD PROTECTION

DSK:.*<!55>/R-DSK:*.*
FILES RENAMED:
FILE2 05
C. EXT 05
B.EXT PI 5
FI LEI
A. EXT 05

JALL FILES APE RENAMED TO THEIR
i SAME NAMES* BUT THEIR
J PROTECTIONS ARE CHANGED TO 155

j*DSK:*.*<155>/R-DSK:*.EXT
FILES R E N A M E D :
C.EXT 05
B.EXT 05
A.EXT 05

>*ALL FILES WITH EXT EXTENSIONS
% GET THE PROTECTION CODE 155

;ZEROING A DECTAPE DIRECTORY

_*DTA2:/Z«- $ DTA2 • S DIRECTORY IS ZEROED OUT

*DTA2tA.EXT/Z~DSK:B.EXT ;FIRST THE DI RECTORY I S ZEROED
;AND THEN B.EXT IS COPIED INTO
JA.EXT

; GETTING A DIRECTORY LISTING

TTY:/L-DSKt.* .. JA DIRECTORY OF YOUR ,DI SK
DIRECTORY Q502BA03 14t36 25-AUG-71 } AREA PRINTS ON THE TTY.

JTHIS IS EQUIVALENT TO "
DSKBt > THE NEXT EXAMPLE
FILE2 05 <JL55> 25-AUG-7.1
C EXT 05 < 1 55> P « ; - A I T R-7 I
B EXT 05 <155> 25-AUG-71
FILE I 05 < 155> JJ5-AWG- 7t
A EXT 05 <155> 25-AUG-71

TOTAL B L O C K S 25
DSK A:

TTY: /L-
DIRECTORY O502BA03 14i 37 25-AUG-71
DSKB:
FILES 05 <1 55> 25-AUG- 71
C EXT 05 <.155> 25-AUG-71
B EXT 05 <155> 25-AUG-71
FILE1 05 < 1 55> ' 2 5 - A U G - 7 1
A EXT 05 < 155> 2 5 - A U G - 7 1

TOTAL BLOCKS 25
DSK At

LPT:/L~DTA2:.* ;A DIRECTORY OF ALL FILES ON
JDTA2 PRINTS ON THE LINE PRINTER

*TTY:/L/F~ JA SHORT DIRECTORY, LISTING ONLY
; FILENAMES, PRINTS ON THE TTY

DSKB:
FILE2
C EXT
B " EXT
FI LEI
A EXT
DSK A:

- 9 8 -

; I N S E R T I N G OR E L I M I N A T I N G S E Q U E N C E N U M B E R S

* D S K : / X / S - D S K : A . E X T > RESEQUENCES OR ADDS SEQUENCE
J NUMBERS, INCREMENTED BY IPS,
;TO A.EXT

*DSK: /X/N«-DSK: A. EXT ;ANY SEQUENCE NUMBERS IN A.EXT
;ARE DELETED

* L P T : / N - D S K ; A . E X T iCOPY T H E FILE ON THE
JLPT WITHOUT SEQUENCE N U M B E R S

;LESS FREQUENTLY U S E D S W I T C H E S , I N C L U D I N G M A G T A P E
j CONTROL S W I T C H E S , CAN BE F O U N D IN T H E R E F E R E N C E
H A N D B O O K , P A G E S 6-9 TO 6-23.
i A F T E R F I N I S H I N G WITH Y O U R D E C T A P E , ALWAYS H A V E T H E
; O P E R A T O R DISMOUNT T H E T A P E . THEN DEASSIGN THE UNIT

^ P L E A S E DISMOUNT BA03BC AND B A 0 3 D F FROM DTA'S 2 AND 4
OPERATOR H A S BEEN N O T I F I E D
TAPES D I S M O U N T E D
tC

^J)EAS D T A 2

DEAS D T A 4

;WAIT UNTIL THE TAPES ARE
DISMOUNTED DEFORE DEASSIGNING
;THE UNITS

PPL

S. Gerhart

PPL (Polymorphic Programming Language) was developed by Tim Standish,

formerly of CMU and now at Harvard. PPL is a conversational, extensible

language, in many respects like APL. Conversational features include line

and character editing of functions, trace and suspension, and I/O to tele¬

types. Also, functions may be written onto files and edited by TECO or

SOS.

PPL is a typeless language with extensibility for operator and data

definitions. Built-in types includes integer, real, double precision,

Booleau, and string, with the usual operators for atomic data. Data

definitions for structures, variadic sequences, fixed sequences, and alternates

may be given, each having association construction, predicate, and selection

operations. New operators are defined by associating user-defined functions

with strings. Other features are Iversonian precedence, structure sharing,

and both call by reference and call by value.

PPL is not supported here but is fairly stable. A good users1 manual

is available in the Computer Science Department Library. PPL is recommended

for programs which require variability of data structures, structured data

representation, and conversation.

3 OY \ V* 1 - 1 0 0 -

. R P P L
P P L • 2 6 3 1 - J A N - 7 1

DC f\Y\f MOD R E A D C " P R O T O " >

W R I T E C)

B I N A R Y C C A T A N D)
U N A R Y (" 9 " * R E T U R N)

5 L I S T = C I : 3 G E N E R A L

$ C A T A N D C A j B)
C 1 3 A N D C < A = = L I S T) , B = = L I S T) - - > C A T . O P
[2 3 > @ C A T A N D - A N D (A , B)
[3 3 C A T . O P : C A T A N D - C O N C A T C A , B)

S

$ R E T U R N C:
R E T U R M - 0

SA)
C 1 3 R E T U R N - 0

$

S A P P E N D C A , L)
[1] N O T C L = = L I S T) - - > £ R R O R . . . = = I S T H E " I N S T A N C E O F " O P E R A T O R
C 2 3 - - > @ A P P E N D - L & L I S T C A)
m VPRflB • PBTMTf "fiPPEMn [33
[43 ?

E R R O R : P R I N T C " A P P E N D T R I E D O N N O N L I S T ")

S E X P L A N A T I O N
C 1 3 . . . § I S A D E F I N E D O P E R A T O R W H I C H C O M P U T E S A N D E X P R E S S I O N
[2 3 . . . T H E N R E T U R N S F R O M A F U N C T I O N C B R A N C H T O 0 I S A N E X I T) .
[3 3
[4 3
[5 3
[6 3 . . . I T S O P E R A N D S A R E B O T H L
[7 3
[8 3
[9 3

$

I S T H E B U I L T - I N S Y M B O L F O R T H E " A N D " O P E R A T O R
• H E R E , & I S R E D E F I N E D T O H A V E T H E M E A N I N G C A T E N A T I O N W H E N

S A R E B O T H L I S T S .

• * • A L I S T I S D E F I N E D A S A V A R I A D I C S E Q U E N C E W I T H E L E M E N T S OF
. A N Y T Y P E I N T H E S Y S T E M •

X - L I S T C 1 , 2 , 3)
Y - L I S T C 6 , 5)
X & Y

[1 , 2 , 3 , 6 , 5 3
A P P E N O (X , Y >

[6 , 5 , [1 , 2 , 3 3 3
A P P E N D (X , L I S T C))

[[1 , 2 , 3 3 3
X C S 3 < - Y
X

C I , [6 , 5 3 , 3 3
X = = L I S T

T R U E
X C 1 3 = = L I S T

F A L S E

SAIL

J* Nugent

INTRODUCTION

SAXL I S 3 hi§h ^eveX prograintni^6 steto. £or the PDP 10 coinputer^

d eve 1 op ed at the S t anf o r d A.X Pro j ec t to he t he BIS jo r X 3, ngu ® for the ha nd

eye robot project* It includes an extended Algol conipiXer and a companion

set ot execution-time routines. A non-standard A! 8ol 60 compiler Is extended

to provide facilities for describing manipulations of an associative data

structure. This structure contains information about items, stored as

unordered collections o£ I t — (sets) or as ordered triples of items

(associations)• The algebraic capabilities of the language are linked to

the associative c 3 p 3 h i X i t i.es by menas of the datum operatorj which can

LEAP language j which was designed by J» Feldman and P • Rovner*, 3nd imp lamented

5̂ 1** 1 xxc 1 x̂ . 3-1̂ TL t TL^^ ̂ s 'i'̂t ̂ m 2 * Th 1 s 1 £Xx̂.̂ û cî ^ e~ 1 s d- ŝ * tc i "b e d i TX SO'DQ̂^ d e t 3L 1X 1 xi

an article entitled "An AXgol-Based Associative Language" in the August*. 1 9 6 9 9

i ssue of the ACM C ommunic at ions (Feldman and Rovner) • The itnp lementation

v/as mod 1 fled to tolerate the non—paging enviromitent of the PDP — 10 *

Ŝ T̂ 1 L\ sl S e-î s e~ l̂ x̂ s ŝ îi&,e t Ĵ i 1̂^̂ f ^̂ \̂ e r ̂^̂ n̂e * IF o ic t Xi s T̂]̂ O t]̂.i xil£ 1 xx

A 1 go 1 y 3A.IL has AI go I * For those who want the most from the PDP—10 and the

t ixne — shari ng s ys t em*/ S.AIL all ows f 1 exi b 1 e 11 nki ng to h and ~ c 0 de d machi ne

1 anguage p r og r am. s ̂ 3 s we 1 1 as 1 nc lu s 1 on o f mac hi n e 1 anguag e i ns t rue t i on s 1 n

SAIL source programs * For thos e who have complex input/output requirement s 9

the language provides comp1ete access to the I / 0 faciIities of the PDP — 10

system.* For those who aspire to speedy SAIL generates fairly good code*

http://c3p3hiXiti.es

The user should, however, be warned that SAIL falls several man-decades

short of the extensive testing and optimization efforts contained in the

histories of most commercial compilers.

COMPILER OPERATION

SAIL accep t s cotnniand.s in the sanie format as other DEC processors, i • e* ,

<Binary>, <listing> <- <source 1>, <source 2 > , , , *

where <Binary>, <listing>, <source 1>, e t c , are of the form

evxce^s <C£x le narnê -5'* "Cextensiori^ QCPPN^Q*

If <Device> is omitted, the last device specified will be used. If none has

been given, DSK will be used.

If <device> is not a disectory device, it is the only specification necessary.

If <extension> is omitted, the following will be assumed:

.REL for binary

.LST for listing

.CRF for CREF listing

.SAI for source file

(See DEC reference manual for explanations of CREF.)

If [<PPN>] is omitted, the user's PPN will be used.

Switches, if given, should follow the listing file name. See section 14 of

the SAIL manual for a description of valid switches.

For example,

.R SAIL
* MYPROG <- MYPROG

would compile the program MYPROG.SAI and place the output file MYPROG.REL

on the user's disk space.

The following:

* MYPROG, MYPROG «- MYPROG.NEW [A7^HU(|(|]

would compile the program MYPROG.NEW on H U ^ ' s disk area, again generating

output MYPROG.REL, but also creating a listing of the program in MYPROG.LST.

Also:

*DTA2 ; MYPROG, MTA$: /C <- PTR:

would compile a program read in from paper tape, place output file MYPROG.REL

on DTA2 (dectape), a CREF listing on MTAO) (magtape).

The SAIL compiler can be invoked in the same ways as FORTRAN or MACRO.

The Default extension for SAIL SOURCE PROGRAMS is .SAI.

The COMPILE, EXECUTE, LOAD, or DEBUG commands may be used. For example:

.EX PRGRAM.SAI

.DEB PRGRAM (where the extension is the default for SAIL)

•EX PROG1, SUB1, SUB2 (where SUBl and SUB2 are separately compiled

procedures)

For details on these commands, see the PDP-10 Reference Manual.

If a CREF listing is to be generated, AICREF must be used instead of

CREF, i.e.,

,R AICREF
* (commands are the same as for DEC's CREF.)

To load a SAIL program, use AILOAD, as above. The correct DDT to use is

(what else?) AIDDT.

If you use DEBUG, EXECUTE, LOAD, etc., they will do the above things

correctly automatically upon seeing the .SAI extension.

-104-

NOTE:

Since SAIL is a very f a s t (one p a s s) c o m p i l e r , it is g e n e r a l l y a

good i dea to d e l e t e .REL f i l e s a f t e r u s i n g them. This w i l l save space and

avoid p o s s i b l e confus ion in the e f f e c t s of the load , debug and e x e c u t e

commands*

REFERENCES

[1] Swineha r t , D. and R. S p r o u l l , SAIL Manual , CMU v e r s i o n of May, 1970,
a v a i l a b l e from Computer Sc ience Depar tment .

[2] Most r e c e n t GVLJ manual u p d a t e , a v a i l a b l e from Computer Sc ience Depar tment .

[3] Erman, L . , SAIL Pocke t Guide (S a i l i n g C h a r t) , a v a i l a b l e from Computer
Sc ience Depar tment .

[4] Feldman, J. and F. Rovnar , "An A lgo l -Based A s s o c i a t i v e L a n g u a g e , " CACM,
12 (8) , Augus t , 1969, p p . 4 3 9 - 4 4 9 .

- 1 0 5 -

EXERCISES

1. Write a SAIL program to merge two SOS files, according to

sequence numbers.

2. You are given an M x N matrix of numbers where M and N can be very

large. The values of the entries are 0 - 15. In order to conserve DISK

space, it is desirable to pack the data (each number can be represented in

4 bits) nine entries to a PDP-10 word before writing the matrix onto a

DISK file. Write a SAIL program which does this packing, writes out the

file, reads it in, and "unpacks" it.

- 1 0 6 -

01

SOME SIMPLE PROGRAMING EXAMPLES

BEGIN "FACTrRUL'*
COMMENT THIS PROGRAh READS NUMBERS FROM TNr. TELETYPE ANQ

TYPES RA3K ThLJR FACTORIALS;
0EF1\E t »"COMf!ENT,'! I ! C O G E N T IS TOO LONG)
DEFINE C«* ,"i5",LFs"12 H) J ASCII FCH CR AM" LFI
INTEGER PROCE;URF•FACT(INTEGER N)l

BEGIN "FaCT"

! Initial, value fn- the loop»
for n*n step -1 unt i l 1 dc

! note that fcr k*2$ i >•• i l l be i t
?f;IURNic!iT„,
t-NO r A C T J

o r r . i 2 t . . r t I T T T I «non
? Sunw r i v J'c n t??u T u r p b ^ D A M T v o r r * r o e r * k n i . T t
I 2 " 2 « ? H FF MIS „ ' D l T ,
0UTSTR(CR4L^.,'NUM8ER, PLEASE!") I

? K H 2 ! i r i f f 5 t i n n p n i R E A l - L V E L S E C V S (F A C T (X))) »

- 1 0 7 -

£ 0 BEGIN "FIXER"
COMMENT THIS PROGRAM RKAOS A FILE AND REPLACES ALL OCCURRENCES

OP OLDCHR WITH NEWCHRV TMJ3 I F ESPECIALLY USEFUL FOR
F I « N B UP FILES ORIGINALLY DESTINED FOR THE LPT,
WHICH CONTAIN SPECIAL PRiNfER CONTROL CHARACTERS
INSTEAC OF REGULAR LINE F E E D CHARACTER*(SUCH
CHARACTERS CAUSE SPECIAL PRINTER ACTION. BUT ARE IGNORED
BY A TELETYPE! MAKING IT IMPOSSIBLE TO PRINT THEM ON
A TELETYPE!

§ E F J N E O L D C H R . " ' f 3 " , N E W C H R * " ' 1 2 " '
DEFINE J f " C O M M E N T " i N O T E f " C O M M E N T " !
LABEL Stl
STRING S i S 2 , J 3 , S 4 J ^

INTEGER E E O F , B R K » D S K I N * D S K O U T i E E E O F |
O U T S T R (" I N P U T F R E " > | !
S4«!N0HWLl I
DSKtN*CETCHAN| I
8 P E N (D S K I N . " D S K « I 0 , 4 , 4 , 4 0 0 , B R K ; E E O F) j I
L O O K U P < D S K I N ; S 4 , E E O F) I ! I F E e o F THEN USERERRIB»Bi"FILE NOT FOUND"»I I
flUTSTR("OUTPUT F|LE">!
S«*INCHWLI
6SK0UT*6ETCHANI
O P E N (O S K O U T . " D S K » # 0 . « , 4 , 4 B 0 , B R K . E E E O F) I
E N T E R < 0 t * 0 U T ; S 4 , E E E 0 P) l
I F EEEOF THEN U 8 E P E * * < 0 | S i " C A N N O T ENTER P I L E M ") !
8 R E A K 8 E T (1 , 0 L D C H R , " I S ") | . t INPUT B R E A K ON

O L O C H R I

W H I L E NOT EEOF 00
BEGIN "READ FILE"
NOTE • T H I S LOOP WILL CONTINUE UNTIL END OF FILE IS REACHED*
S M N p U T l D S K i N . m
0UT(0SK0UT,9« !
(IF BRK«0LDCHR THEN NEWCHR
END "READ FILE"!

RELEASE(0 8 K 0 U T H RELEASE (OSKlN)i
END "FIXER"!

TYPE PROMPT MESSAGE!
READ INPUT FILE NAME!
CHANNEL FOR INPUTI
OPEN DSK ON CHANNEL!
LOOK UP THE FILE!
IF EEOF IT FAILED!

! DITTO FOR OUTPUT I

ELSE BRKWJ
INPUT
OLDCHR ENDED ON EITHER! OR 4 0 0 CHARS!
RELEASE I/O DEVICES!
AND CLOSE FILES!

SN0B0L4

Script: S. Schlesinger

SNOBOL4 is a computer language, developed at Bell Telephone Laboratories,

which contains many features not commonly found in other programming

languages. The basic data element is the string. The language has opera¬

tions for joining and separating strings, testing their contents, and

making replacements within them. Strings can be broken down and reassembled

differently. Also, examination of a string for a desired structure of

characters, an operation called pattern matching, is possible and most

powerful. Because SNOBOL4 is mainly character oriented, the numerical

capabilities with both integers and reals exist, but are limited. Array

variables also exist.

Execution of SN0B0L4 is interpretive. This allows easy tracing of

variable values, and the ability to redefine functions during execution.

The language can be extended by using data type definition facilities and

defining operations on these through function definition (i.e., lists,

complex numbers) .

REFERENCES

[1] Griswold, R. E., J. F. Poage, and I. P. Polonsky, The SNOBOL4 Programming
Language, Prentice Hall, 1968.

[2] Modified Chapter 8 of above, for local PDP-10, I.O. conventions, available
from Computer Science Department.

[3] SNOBOL.DOC, a printable text file on the PDP-10.

CMU PDP-10 I/O Notes - SNOBOL

SNOBOL4 I/O is similar to FORTRAN i/O as described in Griswold, et al.[1]

The following list is the current device assignments as used for input and

output.

The SNOBOL 10 list of device numbers:

UNIT DEVICE
1 DSK
2 TTY
3 PTR
4 PTP

S S 5 ? : S f ' f l l e -
7 CDP
8 CDR
9 LPT
\ $ DTA0

11
12
13
14
15
16
17 DTA7

18 PLT
19 FORTR

DTA1
DTA2
DTA3
DTA4
DTA5
DTA6
1VPA "7

DSK2
DSK3
DSK4

2 0 DSK0

21 DSK1
22
23
24
25 DSK5
26 DSK6
27 DSK7
28 DSK8
29 DSK9
3 0 MTAj*
31 « ™
32
33
34
35
36
37 MTA7
99 TTCALL

MTA1
MTA2
MTA3
MTA4
MTA5
MTA6
MT A 7

- n o ­

lo perform input and output from within a SN0B0L4 program, variables are

associated with devices or file names. If a variable is associated in an out­

put relation with a device or file then each time the variable is assigned a

value, a copy of the value is written to the device or file. Similarly each

time an input variable is used, a new value is read from the associated de­

vice or file to become the value of the variable.

The function

OUTPUT (variable name, unit number, format)

[e.g. OUTPUT ('DONE', 23, '(1X,20 A5)')]

associates the variable DONE with unit 23 which is a disk device. Output

data will be written in the indicated FORTRAN IV format. Unit 23 may be

associated with a particular file by coding the function.

OFILE (unit number, file name)

Input associations are similarly accomplished using

INPUT (variable name, unit number, length)

IFILE (unit number, file name)

where length is the number of characters to be read into the input variable

each time it is referenced. Files may be closed using ENDFILE (unit number).

Other I/O functions and an extended discussion of those named here ap­

pears in reference [2]. Examples of these functions appear in the following

script.

There does exist a SN0B0L4 system which permits saving of SNOBOL programs

and variables during execution in order to restart them at a later date.

Documentation on this version of SNOBOL may be obtained from the system file

SN0BLX.DOC.

- 1 1 1 -

SAMPLE PROBLEMS

Write SNOBOL programs to do the following:

1. Read and print cards, removing all blanks before printing.

2. Read cards and print those beginning with •/'•

3. Read cards and print those not containing •*'.

4. Reverse the order of characters in a string.

5. Count all the vowels in the input text.

6. Read left-justified text; print it centered on the line.

7. Alphabetize the characters of a string.

8. Count the occurrences of pronouns in English text.

9. Read a deck. For each card, if a vowel appears in the first five

columns, print the card as it was read. If not, and if »$• or

appears between columns 60 and 70, reverse the card, prefix two

slashes, and print the result.

10. Read numbers in free form (e.g., separated by commas). Every

time you have read ten numbers, print them in columnar format.

Assume that no number is more than ten characters long.

11. Devise a simple cipher (e.g., letter substitution). Write programs

to encode and decode messages using this cipher. Generalize to

accept a description of the cipher as an input. How complex can you

make the cipher?

MAKE HEV.SNO Cw.\V^» T ~ £ C O v t o - K ^ £ \ > V

t <REVEND)
I F< RETURN)
l<REVERSE)

• I DEFINEC*REVERSE<X)A*)
REVERSE X LEN(1) . A -

REVERSE - SSREVERSE A
RE VEND

DATA - TRIM<INPUT) |((F(END)
OUTPUT - DATA * REVERSED IS * REVERSE(DATA)

•(REVEND)
END
SHTSS

DEFINE<*REVERSE(X)A*) l(REVEND)
REVERSE X LENC1) . A • IF(RETURN)

REVERSE - REVERSE A t(REVERSE)
REVEND

DATA - TRIM< INPUT) IF(END)
OUTPUT - DATA • REVERSED IS * REVERSE(DATA)

t<REVEND)

* s V o A ^ Hvl

END
•IABCDKFO
1834567890
S E X S S

EXIT

*R SNOBOL 41
•REV

3
< ? A <

• TTYl-REV 3 .

5N0B0L4 (VERSION 3.4.3, JAN* 16* 1971)

DIGITAL EQUIPMENT CORP.. PDP-10

1 DEFINE!*REVERSE(X)A*) •(REVEND)
9 REVERSE X LEN(l) • A - t F(RETURN)
3 REVERSE • REVERSE A I(REVERSE)
4 REVEND
5 DATA - TRIM(INPUT) t F(END)
6 OUTPUT m DATA • REVERSED IS • REVERSE!DATA)
7 tCHEVEND)
8 END

NO E R F Q R S D E T E C T E D I N S O U R C E P R O G R A M

A B C D E F Q R E V E R S E D I S A B C D E F O O A T _ , - n a vn A n

1 2 3 4 5 6 7 8 9 0 R E V E R S E D I S 1 2 3 4 5 6 7 8 2 0 U U - r ° V ?

N O R M A L T E R M I N A T I O N A T L E V E L 0
L A S T S T A T E M E N T E X E C U T E D V A S 5

T V . >f«"sC A v 1 .

S N 0 B 0 L 4 S T A T I S T I C S S U M M A R Y -

7 0 0 M S * C O M P I L A T I O N T I M E

4 1 7 M S . E X E C U T I O N T I M E

4 4 S T A T E M E N T S E X E C U T E D *

0 A R I T H M E T I C O P E R A T t O

* t C

• T E C O R E V . S N O

• 9 L S - S I A S S A S - 8 D 0 T T S S
R E V E R S E - A R E V E R S E

• O L S t S R I S O L - T T S S
R U V E R S E X L E N (l) • A -

R E V E R S E - A R E V E R S E
• S H - 8 D 0 L - T T S S
R E V E R S E X LEtf<l> • A •

R E V E R S E • A R E V E R S E
• S C S R I t S O T T S S

R E V E R S E - A R E V E R S E
* T S S
(R E V E R S E)
• R - D O L - T T S S
R E V E R S E X L E N (1 > • A •

R E V E R S E - A R E V E R S E
* E X S S
E X I T

3 F A I L E D

t (R E V E R S E)

« F (R E T U R N)
t (R E V E R S E)

• F (R E T U R N)
(R E V E R S E)

t (R E V E R S E)

t F (R E T U R N)
• (R E V E R S E)

• R SNOBOL 41 \ _ l v v c X o.^ <\>0\l<L
•REV — C v e A t C o \ \ Y ^ V * W > >

*TTVf "-REV/U

NO ERRORS DETECTED IN SOURCE PROGRAM

ABCDEFO REVERSED 15 OFKDCBA
1£34567890 REVERSED IS 0907654381

R E V . L " V T

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED VAS 5

•MAKE REV.DAT G v ^ « - ^ A^<v C s W

*I ABCDSFGHJKLMN

5N0B0L4 (VERSION 3.4.3, JAN* 16» 1971)

DIGITAL EQUIPMENT CORP., PDP-IO

1
8

3
4
5
6

7
8

9
10

DEFINEC *REVERSE<X)A*>
REVERSE X LEN(l) - A -

REVERSE - A REVERSE
REVEND

i 11 / INPUT<*FILE«»80>78>
V-1FILE< 80* *REV*DAT*)

D A T A • T R I M C F T C e :
O U T P U T - D A T A • R E V E R S E D I S •

t C R E V E N D)

I F <R E T U R N) v -J\
• < R E V E R S E)

t Ft E N D)

R E V E R S E < D A T A)

t C R E V E N D)

E N D

NO ERRORS DETECTED IN SOURCE PROGRAM

ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN
ABCDEFGHJKLMN

REVERSED
REVERSED
REVERSED
REVERSED
REVERSED
REVERSED
REVERSED
REVERSED
REVERSED
REVERSED

IS NMLKJHGFEDCBA
IS NMLKJHGFEDCBA
IS NMLKJHGFEDCBA
IS NMLKJHGFEDCBA
IS NMLKJHG FEDCBA
IS NMLKJHG FEDCBA
IS NMLKJHGFEDCBA
IS NMLKJHGFEDCBA
IS NMLKJHGFEDCBA
IS NMtO *3

tC
tC

- 1 1 6 -

INPUTC * FILE* .80.78)
X FILE<80* * REV*DAT* >

REVERSE
DEFINE! *R£VERSf£<X>A*>
X LENC1) . A -
REVERSE - A .1EVERSE

IF! RETURN)
•<REVERSE)

REVEND
DATA - TRIM!FILE)
AllTOMT . r t A T A • ft

• F!END)
OUTPUT - DATA * REVERSED IS * REVERSE!DATA)

END
•EXSS

EXIT

•RE\E\ SNOBOL 41
•TTYl-REV/U

NO ERRORS DETECTED IN SOURCE PROGRAM

t ! RE VEND)

I OUTPUT! <<OUTFTLE*>>ei>> »<1X#&7A5)»)
8 O F l L E f g U » R E V . O U T * > "

3 INPUT!*FILE*#80*78>
4 I P I L E < 8 0 # * R E V * D A T *)
5 DEFINE! •R£VERSE!X)A' > t!REVEND)
6 REVERSE X LENC1) . A - IFCRETURN)
7 REVERSE - A REVERSE t < REVERSE)
8 REVEND
9 D A T A - TRIM!FILE) lF<END)
10 (OUTFILE^)" DATA * REVERSED IS • REVERSE! DATA)
II I < REVEND)
12 END

NO ERRORS DETECTED IN SOURCE PROGRAM

NORMAL TERMINATION AT LEVEL 0
LQST STATEMENT EXECUTED VAS 9

tO
*tC

p»TY REV.OUT
A.TECO REV*SI

• SF< END)S4R3DEFILESOTTSS
DATA - TRIMCFILE)

*0L8S<S1EFISOTTSS
DATA - TRIMCFILE)

• 3 L I E F I L E E N D F I L E C 2 1)
SEXSS
7N0 FILE FOR OUTPUT
•» in

A A v <

•FCLE)

•F<EFILE)

< x 9 \ * *
A A A .

- 1 1 8 -

O U T P U K *OUTFILE*#81*'(IX*87A5) •)
OFILF.CCI#*REV.0OT T»

ifxLK< no,•nsv. dat•>
DEFINE! ,REVERSE<X>A»)

REVERSE X L E N < I) • A -
R E V E R S E A REVERSE

REVCT1D

E F I L E

JT'ID
• E 3 S S *

E X I T

DATA - TRIM!FILE)
OUTFILE - DATA • REVERSED

ENDFILE!81)

•(REVEND)
• F(n s T U f t t t)

•(REVERSE)

• F(EFILE)
IS • REVERSE!DATA)

I < RE VEND)

VjJ
\

% o v) T

• R S t J O B O L 37
•REV/U

_

• T Y R E V * L S T \ v < \ * ?

TY RSV.OUT \ — & \ \
A D C D E F G H J K L t l W REVERSED IS NI1LKJHGFEDCBA ft~V0^\

0 9 8 7 6 5 4 3 2 1 REVERSED IS 1834567990 J V \ c \ * > ^ V o t t V * ^ 4 \

MO ERRORS DETECTED IN SOURCE PROGRAM

vi - ?>v ft va 0 vA. \ v

-119-

REVEND

ElfD
•EXSt

OUTPUK•TTYOUT• # 2# * <IX*14AS)
INPUTC"TTYM a«&»72>
D:?F2»ZC fnSV2nSE<X)A #)
X LKJCU • A m
REVSBSS - A REVERSE

TTYOUT
DATA -
TTYOUT

m •ETJTER DATAl
TRIM<TTYIM)

DATA * REVERSED IS

I< REVEND)
lF< RETURN)
%< REVERSE)

tF(END)
REVERSE < DATA)

i(REVEND)

EXIT

)

R SNOBOL 37
*HEV1
ENTER DATA!
ASDFO HJKL
A S D r a HJKL REVERSED IS LKJH 6FDSA
UNTER D A T A !

/.,MN TiVC DE3 678
liVC DE3 678 REVERSED IS 876 3ED CVB NM#«/

ENTER r'.TAt V \ A -V\

iC V

.TY REV1.LST I ^
7 NO FILE NAMED REV I • LST T * V r- f ^ X

- 120-

SOS Primer

Joseph M. Newcomer

Introduction

This document is merely intended as an introduction to the SOS
editor. For further explanations and a more complete set of commands,
consult the SOS manual.

SOS is a teletype-oriented text editor written by Bill Weiher and
Stephen Savitzky of the Stanford Artificial Intelligence Laboratory.
In addition to the common editing capabilities of inserting, deleting,
and shifting of lines of text, SOS includes string search and
substitute commands, an intra-line edit capability, text-justifying
features, and a few other assorted bells and whistles.

SOS does not edit a file "in place", as some editors do. Changes
are made on a temporary copy of the file, and ordinarily are made
permanent only upon completion of the edit. However, you may request
at any time that all changes up to that point be made permanent. This
is an especially recommended practice for beginners, as it insures all
changes made in the file since the EDIT command or the last save
request against loss due to system failure or user inexperience.

SOS is oriented towards full-duplex devices, such as the
teletype, the ARDS display, the Infoton display, and other such
devices. Before attempting to use it from a half-duplex device such
as an IBM 2741 terminal or a Datel terminal, you should become
thoroughly familiar with using it from the teletype or similar
full-duplex device. You must then familiarize yourself with the
conventions for using half-duplex devices on the PDP-10 as implemented
here at C-MU. In general, it is not worthwhile for the novice to
learn how to use SOS from half-duplex devices, since the effort
involved in using them does not really make up for the 507. faster
typeout.

Basic commands

The basic operation in a file-oriented system is the creation of
a file. To invoke the editor and request it to create a file, give
the C R E A T E command when the console is in monitor mode i.e., the
computer has typed a period.

In all examples, the computer output is underscored.

Example _ Creating a file:

.CREATE BLAT.DOC
0 0 1 0 0 THIS IS AN EXAMPLE OF H O W TO CREETE
0 0 2 0 0 A FILE USING THE EDITOR.
0 0 3 0 0 IN O R D E R TO GET OUT OF NUMBERING MODE, TYPE
0 0 4 0 0 AN A L T M O D E (ESCAPE(CHARACTER, WHICH ECHOES
0 0 5 0 0 A S A DOLLAR SIGN.
0 0 6 0 0 «

W h e n the asterisk is typed, you may enter any editor commands you
want. The E command (End) terminates the edit, saves the file, and
returns to the monitor.

Example 2 Terminating an edit:

*E
EXIT

The file now exists and you may access it in any of the normal
modes in which files are accessed. For example, you may type it:

Example 3 Typing a file:

.TYPE BLAT.DOC
0 0 1 0 0 THIS IS AN EXAMPLE OF H O W TO CREETE
0 0 2 0 0 A FILE USING THE EDITOR.
0 0 3 0 0 IN O R D E R TO GET O U T OF NUMBERING MODE, TYPE
0 0 4 0 0 AN A L T M O D E (ESCAPEt CHARACTER. WHICH ECHOES
0 0 5 0 0 A S A DOLLAR SIGN.

122

If upon examining the typeout, you find there are some errors <as
in the typeout above) you may invoke the editor with the EDIT command
to make the corrections. The set of commands for simple editing is:

I - Insert

D - Delete

R - Replace

P - Print

L - List

The Replace command is used to replace lines of the file. In its
simplest form it is the single letter R followed by the line number to
be replaced. The editor then types the line number out and new text
may be typed in. This new line replaces the previous contents of the
line.

The Delete command is used to delete lines from the file. In its
simplest form it is the single letter D followed by the line number of
the line to be deleted. The editor deletes the line and returns
control with the asterisk. There is normally no other typeout. To
delete a group of contiguous lines, a range may be specified; see
"Specifying Ranges", below.

The Insert command is used to insert new lines in a file. Its
basic format is the letter I followed by the line number of the line
to be inserted.

Example 4 Simple editing

.EDIT BLAT.DOC
*R100
00100 THIS IS AN EXAMPLE OF HOW TO CREATE
*D400
*I400
00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
*

Note that the Replace command has the same effect as a Delete
command followed by an Insert command. In order to use Insert to
replace a line, the line must first be deleted. The Insert command by
itself does not replace the tine specified if it already exists, as in
some editing systems, but instead creates a new line whose number is
equal to the line given plus the line increment (normally 100). The
Insert command will always insert a new line in a file, never replace
an old one. If the line following the specified line has a line
number less than or equal to the computed insertion line number, then
the insertion is given a number which is halfway between the line
specified and the next line.

Example 5 Interpolated insertion

£1200
00250 SINCE THE INCREMENT IS 100, THIS LINE IS HALFWAY
£1250
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.

In order to see what your file now looks like, you can use the
Print command to print it on the teletype. The Print command is the
letter P followed by the line number of the line to be printed. The
letter P by itself will print the current line and 15 following lines.
To specify a range of lines, a colon may be used to indicate a
beginning and ending line number specification; see "Specifying
Ranges", below, for more details on this.

Example 6 Printing part of a file

*P 100:500
00100 THIS IS AN EXAMPLE OF HOW TO CREATE
00200 A FILE USING THE EDITOR.
00250 SINCE THE INCREMENT IS 100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES. AS THIS LINE ALSO IS.
00300 IN ORDER TO GET OUT OF NUMBERING MODE. TYPE
00400 AN ALTMODE (ESCAPE) CHARACTER. WHICH ECHOES
00500 AS A DOLLAR SIGN.

In addition to the P command, two keys on the teletype will also
cause printing. A linefeed (in this text, 4), will print the next
line, and an altmode (escape, shown as a T) wilt print the previous
line.

Example 7 Linefeed and Altmode commands

*P300
00300 IN ORDER TO GET OUT OF NUMBERING MODE. TYPE

"00400 AN ALTMODE (ESCAPE) CHARACTER. WHICH ECHOES
*S00300 IN ORDER TO GET OUT OF NUMBERING MODE. TYPE

If there is too much information to conveniently type on the
teletype, the L (List) command may be used to output the lines on the
printer. Its format is precisely the same as the P command, except
that if just "L" is specified the entire file is listed. Note that
the file may not come out immediately on the printer, as print files
are queued waiting for the printer to become available. Consequently,
your file may not be printed for some time after the L command
completes. You may continue editing the file, however, since the
information is copied into a temporary buffer and held until printed.
The file name on the listing printed will be of the form "nnnXPT",

124

where "nnn" is a number assigned by the monitor, and "LPT" indicates a
print buffer file. You should not then be looking for a listing with
the file name printed on the front.

Example 8 Listing a file

*L

This has printed the entire file on the line printer.

Specifying Ranees

Whenever you wish to specify more than a single line, you may
specify a range. This is done by using a colon to separate the two
line numbers (where the second must be higher than the first). Thus
100:600 specifies lines 100 to 600. Most commands accept a range of
lines to be operated upon, and this is one way of giving that range.
However, in some cases it is easier or more appropriate to specify a
quantity of lines (5 lines, 17 lines, etc.) regardless of the line
number of the last tine. This is indicated by using an exclamation
point (!) to specify the range: 10013 is line 100 and the following
two lines (so "100I1" is the same as "100").

Example 9 The exclamation point

*P100!4
00100 THIS IS AN EXAMPLE OF HOW TO CREATE
00200 A FILE USING THE EDITOR.
00250 SINCE THE INCREMENT IS 100. THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS.
*D250!2-
*P100!4
00100 THIS IS AN EXAMPLE OF HOW TO CREATE
00200 A FILE USING THE EDITOR.
00300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES

Intermediate commands

The intermediate editing commands are:

C - Copy

T - Transfer

N - Number

W - save World

M - Mark page

G - Go

The Copy command copies lines from one place in the file to
another. The first location specified is the "destination" line
number. The second location {which may be a range) is the "source"
location. The editor will choose an increment which will allow all
the specified lines to be copied to the destination without
overflowing; this increment is printed out in the message
"INCl-nnnnn". If the editor cannot compute an increment such that ait
lines will fit, then an error message will be typed and appropriate
action will be taken by the editor (see the SOS manual, page 28).

The Copy command can also copy from another file, so that
portions of program files can be extracted to form a new file. Again
for details, consult the SOS manual (page 28).

The Transfer command is much the same as the Copy command, except
that the lines which are copied into the specified destination in the
file are then deleted from the source location.

Note: In the SOS manual it states that Copy and Transfer behave
as Insert, i.e., "CZOO^OO" would copy line 500 to somewhere after
line 200 (the exact number depending on the line number following line
200). This is not true! The Copy (or Transfer) command will copy line
500 and put it after line 200, but will also number it 200, giving two
line 200's. To get out of this problem, use the N command to renumber
the file. The extra line 200 will be numbered correctly.

Example JO. Copy & Transfer commands

.CREATE COPY.DOC
00100 THIS IS
00200 A SHORT
00300 FILE
00400 S
*C 150,300
JNC1-00050

*P100:300
00100 THIS IS
00150 FILE
00200 A~SH0RT
00300 Fill
ET350400 -

*P100:400
00150 FILE
00200 A SHORT
00300 FILE
00350 THIS IS
*

ThVNumber command is used to renumber files. This is usually
done after a number of insertions have been made and no more room
exists between line numbers for further insertions. The simplest form
of the Number command is simply the letter N, which renumbers the
entire file with an increment of 100. For more information on the
Number command, see the SOS manual, page 13.

Example 11 The Number command
*P100:40~6~
00150 FILE
00200 A~SHQRT
00300 FILE
00350 THIS IS
*N
*P100:99999
00100 FILE
00200 A SHORT
00300 FILE
00400 THIS IS

The W command is particularly useful to the beginner. The W
command makes permanent all changes made in the file up to the time it
is given. Changes made in a file are temporary until either a W or an
E command is given. There are two reasons you should do a W command
often: 1) The system could crash, and all editing done would be lost
when it came back up, or 2) you might attempt using some new command
(say, "substitute", a somewhat tricky one), and confuse your file to
the point where you cannot recover the text you started with. In
either case, the loss will be back to the last "EDIT" command to the
monitor, or the last W command to the editor. By giving permanence to
those changes whose accuracy you are certain of, you will avoid losing
time in re-creation of those changes, or perhaps the entire file.

Pages

Files can be divided into logical subunits termed "pages''. A
page in the SOS editor is merely a collection of lines. It may be
less than one physical printer page, or it may be several physical
printer pages. When we need to make a distinction, we will call the
SOS pages "logical pages" and the printer pages "physical pages". W e

will use the term "page" ordinarily to mean a logical page. To
indicate the separation into logical pages, a "page mark" is inserted
into the file by the Mark page command. The Mark page command places
a page mark immediately before the line number specified. Each page
is numbered separately, and hence you may have several line 100*s in a
file. In order to specify what page you are on, use the slash (/) in
the line number specification, with the page number following the
slash. Line 100 on page 1 is then designated as "100/1". To minimize
the amount of typing required, the editor remembers what the current
page is, and subsequent commands need only specify the line number on
the current page.

Example 12 Multipage file

*P 100:400
00100 FILE
00200 A SHORT
00300 FILE
00400 THIS IS
*M300
*P 100/1:400
00100 FILE
00200 A SHORT
*P100/2:400
00300 FILE
00400 THIS IS
*N
*P 100/1:400/2
00100 FILE
00200 A SHORT

PAGE 2

00100 FILE
00200 THIS IS

When listed on the line printer with an L command, each page has
the page number printed in the upper left. The form of this page
number is the logical page number followed by a hyphen followed by the
physical page number (recall that logical pages can be longer than
physical pages). The physical page number is reset for each logical
page, so that the numbers proceed as "1-1, 1-2, ... , 1-n, 2-1, 2-2,

When using a listing as a guide to editing, remember that the
first number is the page number that SOS uses, e.g. when correcting
page 4-15 specify "/4" for the page number.

There are two other special characters which you can use to
designate lines in the file. The period (.) is used to designate
either the current line or the current page, depending on where it is
used. If it is used in the line position, it is the current line; if
in the page position it is the current page. If page 2 is the current

page, and line 1 0 0 is the current line, then " . / 2 " is " 1 0 0 / 2 " , "./l"
is " 1 0 0 / 1 " , " 2 0 0 / . " is " 2 0 0 / 2 " and of course "./." is the current
line, 1 0 0 / 2 . The asterisk is always the last line on the page
indicated. If the current line is 1 0 0 / 2 in the file of example 1 2 ,
then "*" is " 2 0 0 / 2 " and "*/l" is " 2 0 0 / 1 " . If the line number is
omitted but a page number is given, it means the entire page, e.g.,
"P/ 2 " is the same as " P 0 / 2 : * / 2 " . For more details on specifying
ranges, see the SOS manual, page 7.

Example K3 Period and asterisk designators

*P 1 0 0 / 1 : *

0 0 1 0 0 FILE
0 0 2 0 0 aThort
l/2
00300 NEW LINE
00400 S
*P/2
00100 FILE
00200 THIS IS
00300 NEW LINE

00200 A SHORT

PAGE 2

0 0 1 0 0 FILE
00200 THIS IS
00300 NEW LINE
*P/l:/2
00100 FILE
00200 A~SHQRT

PAGE 2

00100 FILE
00200 THIS IS
00300 NEW LINE
:l:P.
00300 NEW LINE
ipToo/i
00100 FILE
*l.
00150 INSERTION
*l.
00175 ANOTHER
P.:
00175 ANOTHER
00200 A SHORT
*P / 1
o o i o o O L E
00150 INSERTION
00175 ANOTHER
00200 A SHORT

129

The Go command is equivalent to the End command in that it terminates
the edit; however, it also causes the last COMPILE, EXECUTE, LOAD, or
DEBUG monitor command to be re-executed. This is a great convenience
when debugging programs.

Example 14 The Go command

.CREATE TEST.ALG

EXIT

.COM TEST
ALGOL: TEST
2 0 0 INCORRECT STATEMENT
REL FILE DELETED
3 0 0 ""Undeclared identctc
.ED
* P 2 0 0
0 0 2 0 0 INTEGRE I, i Kj
jfcR
0 0 2 0 0 INTEGER I, J, K;

*G

ALGOL: TEST

EXIT

130

Advanced commands

The advanced editing commands are:

A - Alter

J - Join

S - Substitute

F - Find

B - Beginning

The Alter command is one of the most useful features of the SOS
editor. It allows editing individual lines much as the normal edit
commands are used to edit files. You can alter a single letter in a
line, i.e., change it, delete it, or even insert it. The full
capabilities of the Alter command are explained in the SOS manual,
page 14 ff; some examples will be given here.

Edit commands in intraline edit mode are not echoed by the
teletype. We will indicate this in examples by showing the edit
commands in lower case. One exception to this will be the altmode
character, which will still be a dollar sign. Remember that in
intraline edit mode it will not echo. The following notation will be
used: "J" will be a space, "•" will be a rubout, T will be a
carriage return, and TU will be control-U (the control key and U key
simultaneously).

The set of intraline edit commands is:

~ - Accept the character under the pointer

n - Backspaces the pointer

C - Change the character under the pointer

D - Delete the character pointed to

I - Insert new characters (terminated by altmode)

i - Terminate intraline edit

Q - Quit intraline edit without making changes

TU - Start over

S - Skip

131

K - Kill

R - Replace

L - Print remaining line and continue edit

P - Print remaining line and resume edit

For explanations of the commands, see the S O S manual, pp 15-17.
With this as a guide, you may follow the examples below. In these
examples, a J is a non-echoed carriage return; a • is a non-echoed
rubout, and a u is a non-echoed space.

Example 15 Intraline skip and insert

*P/1
OOIOO FILE
00150 INSERTION
00775 ANOTHER
00200 A SHORT
*A150
00150 selNSi***SJERTION
*P.
00150 INS***ERTION

Example 16 intraline delete and kill

#P150
00150 INS***ERTION
*A.
00150 sslNd\\S)***ERTION
*P.
00150 IN***ERTION
*A.
00150 s*INkr**EJ\\RTION
*P.
00150 INRTION
*

You may precede a command with a number which causes it to be
repeated, e.g. "2sa" is equivalent to "sa" followed by another "sa".

Example 17 Intraline skip and change

£1150
00175 THIS IS A (SMAPLE(LINE
*A.
00175 2s(THIS IS A (SMAPLEc)J LINE
*P.
00175 THIS IS A (SMAPLE) LINE

Example 18 Intraline accept and rubout
*P175
00175 THIS IS A (SMAPLE) LINE
#A.

00175 3ssTHIS IS A (2 ASMffll \W12c\\AMiPLE) LINE

00175 THIS IS A (SAMPLE) LINE

One of the most common errors made in using the Alter command is
failure to type the altmode terminating an Insert within the line.
This has the effect of terminating the line being edited and beginning
a new line. Although a sometimes desired effect, such as in indenting
Algol program files, it is more often just an error. Should you type
a >} after an insertion, and get a new line number instead of the rest
of the line, just type the altmode and i again. You now have two
lines where you had one before, and the Join command can undo this.
To use the Join command, type J followed by the original line number.

Example 19 The Join command

*P175
00175 THIS IS A (SAMPLE) LINE
*A.
00175 s)THIS IS A (SAMPLE A) i OF A)
00187 8J LINE
*P175!2
00175 THIS IS A (SAMPLE) OF A
00187 LINE
*J175
*P175
00175 THIS IS A (SAMPLE) OF A LINE

The Find command may be used to locate known strings in a file
when their line numbers are not known, or to check a file for
occurrences of strings. The basic format of the Find command is the
letter F, followed by a string to be searched for, followed by a

altmode, followed by a range specification. Again, more details may
be found in the SOS manual, pp 23-25. When a string is located, the
line containing it is typed out and search is suspended. To resume
the search with the same string, only an F followed by an altmode is
required.

Example 20 The Find command

.EDIT SOME.BLI
FL0CAL/1

(There were no occurrences of "LOCAL" on page 1)

*F$/2
00150
F
00300
F.+l:/99

LOCAL Aj Bi Qi

LOCAL AARGH BLATfSli

PAGE 6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*F$

If you give further Find commands without specifying a range, no
more strings will be found, since the current line position is the end
of the file. To reset the file position, you could either specify the
first line of the file as the lower bound of search, e.g.,
"Fstring$100/l:/999", which is clumsy, or, more simply, you could use
the Beginning command to reposition the file.

If you are not interested in stopping at each line where the
string is found, you can give a parameter to the Find command which
tells how many occurrences to print and bypass before stopping. To
find all occurrences in a file, use some large number such as 999 or
99999.

Example 2J_ The Begin and Find commands

Assume the file is in the state it was left in at the end of
example 20.

*F8,
*B
;fcF$,999

PAGE 2

00150 LOCAL Aj Bj Cj
00300 LOCAL AARGH BLATIBI:

PAGE 6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS

The Substitute command is similar to the Find command, in the
sense that a string is searched for; in addition, a second string is
substituted for the one found. The format of the Substitute command
is the letter S followed by the string to be searched for, followed by
an altmode, followed by a string to replace it, followed by another
altmode, followed by a range. For more details, see the SOS manual,
pp 25-27.

Example 22 The Substitute command

Assume the file is in the state it was left in at the end of
example 21.

*B

*SLOCALSOWN«

PAGE 2
00150 OWN Aj Bj Cj
00300 OWN AARGH BLATf51;

PAGE 6

00400 MEASURES OWNIZED PHENOMENA SUCH AS

As you see, the string substitution also replaced the occurrence
of "LOCAL" in line 400/6. This is one of the most common errors made
with the Substitute command. In this example the Substitute command
or the Alter command may be used to correct the problem; in another
example it may be neither simple or even possible to undo a bad
substitution. For this reason, we recommend giving a W command before
doing a Substitute. If the Substitute command then destroys part of
the file, abort the edit without making the changes permanent by
typing TC (control-C), and typing EDIT again. Since you are editing
the same file, the file name need not be given.

Example 23 Aborting an edit

Assume the file is in the condition it was in at the end of
example 22.

*TC

.EDIT

TEMPORARY EDIT FILE ALREADY EXISTS! DELETE? {Y QR Ni

iP400/6

135

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*P150/2
00150 LOCAL Aj B> Cj

The message about the temporary edit file may not be typed if the
editor was left in a state where the temporary file did not exist.

Miscellany

In addition to the commands discussed here, there are several
others of marginal interest. One of the most useful of these is the

command, which types out information contained in the editor. Its
format is followed by the name of the internal parameter to be
displayed. The command is discussed more fully on pp 20-21 of the SOS
manual. The most useful parameters to display are the current line
(.), the number of pages in the file (BIG) and the current line
increment (INC).

Along with the "=" command there is the complementary "set"
command which is a left arrow (<-). This is used to change the values
of the internal parameters. This is discussed on pp 19-20 of the
manual. The most useful parameter to set is the line increment (INC).

Example 24 The - and *- commands

.EDIT HUGE.BLI
*=BIG
62
* P 1 0 0 / 4 1
00100 INCR I FROM 1 TO .N DO

100/41
*l.,25
00125 BEGIN A<-5; X<-.Y<3,2>;
00150 $
*=INC
00025
*<-INC=5
*l.
0 0 1 3 0 B L A T O ; T H U D (. Q) ;
00135 E N D ;
00140 $
* _

0 0 1 3 5 / 4 1

Removing line numbers

In some cases it is necessary to remove the line numbers which
S O S places in the file. To do this, you may use PIP with the M / N H

switch, as shown in the example below.

Example 25 Removing line numbers

.R PIP

*BLAT.DOC/N<-BLAT.DOC

*TC

137

Using terminals with both upper and tower case

Some terminals are available with both upper case and lower case
letters, notably the ARDS display and the Western Union 300 terminals.
The PDP-10 monitor, however, always translates lower case input into
upper case unless instructed otherwise. SOS also assumes the terminal
has only upper case letters unless instructed to the contrary (except
for the ARDS display, which SOS Knows has lower case). The example
below shows the commands necessary to use such terminals.

Example 26 Using a terminal with lower case

.TTY LC

.edit garble.doc
*-m37
*plOO
00100 This document describes the GARBLE system of
*

Note that when using the WU300 terminals, the "all caps" switch
must be turned off, or the terminal will convert lower case letters to
upper case letters before transmitting.

When in intraline edit mode, a "skip" or "kill" command will
interpret its argument in the exact case it was typed in. Thus in the
last example, a skip to "r" from the beginning of the line will stop
in "describes", while a skip to "R" will go (from the beginning of the
line) directly to the R in "GARBLE".

Using terminals with only upper case

Most terminals available are Teletype model 33 terminals, which
have only upper case letters. Occasionally it is necessary to create
or edit a file containing both upper case and lower case letters on
one of these terminals. SOS allows the case of the input character to
be shifted by preceding it with a question mark (?). In normal mode,
for example, "A" represents "A", and "?A" represents "a". By changing
the mode, "A" will represent "a" and "?A" will represent "A". This is
shown in the example below.

Example 27 Lower case from a teletype

.EDIT GARBLE.DOC
"*P100
00100 T?H?I?S ?D?0?C?U?M?E?N?T ?D?E?S?C?R?I?B?E?S ?T?H?E GARBLE
?S?Y?S?f?E?M~?0?F

*<-LOWER
iPlOO
00100 ?THIS DOCUMENT DESCRIBES THE ?G?A?R?B?L?E SYSTEM OF
*

138

LIST OF EXAMPLES
(See index for page numbers)

Example Description
1 Creating a file
2 Terminating an edit
3 Typing a file
4 Simple editing
5 Interpolated insertion
6 Printing part of a file
7 Linefeed and altmode commands
8 Listing a file
9 The exclamation point
10 Copy and Transfer commands
11 The Number command
12 Multipage file
13 Period and asterisk designators
14 The Go command
15 Intraline skip and insert
16 Intraline delete and kill
17 Intraline skip and change
18 Intraline accept and rubout
19 The Join command
20 The Find command
21 The Begin and Find commands
22 The Substitute command
23 Aborting an edit
24 The - and *- commands
25 Removing line numbers
26 Using a terminal with lower case
27 Lower case from a teletype

I N D E X

U>, command 123
U), example 123
(4-), line feed 123
(a) (backspace pointer), example 132
(B) (rubout, backspace pointer) 130
<~) (accept character), example 132
{„) (accept character), intraline 130
O) (carriage return), example 131, 132
Q) (carriage return), intraline 130
(!) 124
(!), example 124, 132
(8) Altmode 121, 123
($), command 123
($), example 121, 123,
<*) Last line on page 128
<*), example 128
(.), example 131
(.), Current line/page 127, 136
(.), example 128, 131,
(/) Page specifier 127
(/), example 127, 128,
(:) 124
(:), example 123, 126
<=>, command 136
(-), example 136
<<->, command 136
<<-), example 136, 137

A (Alter), command 130
A (Alter), example 131, 132
Aborting an edit 134
Advanced commands 130
Altmode 123
Altmode, example 121, 123,
Asterisk, example 128
Asterisk, line specifier 128

B (Beginning), command 130, 133
B (Beginning), example 133, 134
Basic commands 121

C (Change), example 132
C (Change), intraline 130
C (Copy), command 125
C (Copy), example 125
Colon 124
Colon, example 123, 126
Commands, advanced 130
Commands, basic 121
Commands, intermediate 125

136

H O

CREATE 121, 129

D (Delete character), example
D (Delete character), intraline
D (Delete), command
D (Delete), example

E (End), command
E (End), example
EDIT command
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

1
2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
14
26
27

Examples, list of
Exclamation point
Exclamation point, example

F (Find), command
F (Find), example

G (Go), command
G (Go), example

I (Insert character), example
I (Insert characters), intraline
I (Insert), command
I (Insert), example
Index
Intermediate commands
Interpolated insertion

131
130
122

122 124

121
121, 129
122, 129, 134
121
121
121
122
123
123
123
124
124
125
126
127
128
131
131
132
132
132
133
133
134
134
136
136
129
137
137
138
124
124 132

j 130. 132. 133
133

125
129

131
130
122
122, 123, 136
139
125
123

J (Join), command 130, 132
J (Join), example 132

K (Kill), example 131
K (Kill), intraline 131

L (List), command 122
L (List), example 124
L (print Line, continue), intraline 131
Line feed 123
Line feed, example 123
Line feed, command 123
Line numbers, removing 136
List of examples 138
Logical pages 126, 127
Lower case terminals 137
LOWER command 137

M (Mark page), command 125, 126
M (Mark page), example 127
M37 command 137
Miscellany 136

N (Number), command 125, 126
N (Number), example 126, 127

P (Print line, resume), intraline 131
P (Print), command 122
P (Print), example 123, 124,
Page marks 127
Pages 126, 127
Pages, logical 126, 127
Period, example 128
Period, line specifier 127
Period, page specifier 127
PIP 136

Q (Quit edit), intraline 130

R (Replace), command 122
R (Replace), example 122, 129
R (Replace), intraline 131
Ranges, specifying 124
Removing line numbers 136

S (Skip), example 131, 132
S (Skip), intraline 130
S (Substitute), command 130, 134
S (Substitute), example 134
Sat command 136
Space (accept character) 130
Specifying ranges 124

142

T (Transfer), command 125
T (Transfer), example 126
Terminals with lower case 137
Terminals with upper case 137
TTY LC command 137

Upper case terminals 137

W (save World), command 125, 126,

TU (Restart edit), intraline 130

- 1 4 3 -

TECO - Text Editor and Corrector

Script: T. Teitelbaum

TECO edits files recorded in ASCII characters on any standard device.

It can perform simple editing functions as well as sophisticated search,

match, and substitute operations, and operate upon arbitrary length character

strings under control of commands which are themselves character strings

(and can exploit this recursiveness).

The following script will show the uses and methods of TECO.

REFERENCES

[1] PDP-10 Reference Handbook, pp. 501-523.

TECO IS A TEXT EDITOR. T H E TEXT BEING EDITED
IS S T O R E D AS A S I N G L E CHARACTER STRING IN T H E
TECO B U F F E R . T H I S BUFFER IS ALWAYS JUST AS LONG
AS T H E STRING IT C O N T A I N S . T H E BOUNDARIES OF T H E
BUFFER CELLS ARE N U M B E R E D STARTING TO T H E LEFT OF

Z T H E FIRST CHARACTER W I T H 7.ERO. T H E INDEX OF THE
BO U N D A R Y TO T H E RIGHT OF THE LAST CHARACTER IS
KNOWN AS " 7 " . T H U S , T H E BUFFER CONTAINING T H E
STRING " A B C D " MAY BE P I C T U R E D AS

r M B | C | D |
0 1 9. 3 4 = 7. .

M,N A S U B F I E L D OF THE BUFFER IS D E S I G N A T E D BY THE
INTEGER PAIR " M , N " W H E R E M<N. T H U S , IN THE
EXAMPLE A B O V E , THE S U B F I E L D " 1 , 3 " C U R R E N T L Y

H C O N T A I N S T H E STRING " B C " . WE MAY REFER TO THE
W H O L E BUFFER BY " H " W H I C H IS R E A L L Y JUST AN
ABREVI AT ION FOR "0,7." .

} TEXT IN TECO HAS N O . L I N E N U M B E R S , U N L I K E SOS
OR E D I T O R . T H E RETURN KEY OF T H E T E L E T Y P E IS T R E A T E D
LIKE ANY OTHER SYMBOL, W I T H THE E X C E P T I O N THAT
IT IS INPUT TO T H E BUFFER AS T H E TWO CHARACTERS
" C A R R I A G E - R E T U R N " AND " L I N E - F E E D " . T H U S , T H E
LINE

A B C D .
J

W I L L APPEAR IN T H E BUFFER AS

1 A | B|C| D |c*l • I
0 1 2 3 4 5 6 = 7. .

A S S O C I A T E D W I T H T H E BUFFER IS A CURSOR W H I C H CAN
BE M O V E D TO POINT TO P L A C E S OF INSERTION,
DELETION, E T C . T H E CURRENT BOUNDARY
P O S I T I O N OF THE CURSOR IS KNOWN AS "." .

* TECO SIGNALS THAT IT IS WAITING FOR COMMANDS
BY TYPING A " * " . A R B I T R A R I L Y MANY COMMANDS

$$ MAY BE STRUNG TOGETHER IN A COMMAND STRING
W H I C H IS T E R M I N A T E D BY TWO ALTMODES (ESC ON
SOME T E L E T Y P E S > . NOTE THAT T H E A L T M O D E ECHOS
AS A " S " . ON R E C E I V I N G T H E " $ $ " TECO WILL
INTERPRET THE COMMAND STRING FROM LEFT TO
R I G H T , T H E N RETURN TO T H E USER FOR MORE W I T H
A " * " .

LET US NOW USE TECO IN ORDER TO C R E A T E
A NEW F I L E NAMED " S C R I P T . T E C " .
REMARKS A D D E D AFTER T H E SESSION WILL APPEAR
INTERMITTENTLY AND WI LI. BF INDENTED.

-145-

VF. E N T E R F P O M P D P - l f l

riOMZTDF- M O D E V I T H T H E

cr;i. coj'f'AND " ; :A K E " .
THIS IS '.'HEM A HEW
FILE IS HE If " j CONSTRUCTED.

.MAKE SCRIPT.TEC

+^ " T. \

+ . r..Vt
0
+ . -= 7. = 1*
<A
ti

V.
V,

* l (T l t

A U C D

+ I K H S I I
I.IKI.
Mil OP
.11.

4HT1.1,

AUCD
KK»;H
I. JKL
MM OP

0
+ C C ^ . T , 1 ,

P!
st.

M

+ . -1.T.
H

i.nu.

I . IK I .
+HK1.S;

WHAT IS THE VALUE OF " 2 " ?

VHERF. I.'J THE CURSOR?

WHERE IS THF. CURSOR AMD WHERE IS
THF. Etin OF THE BUFFER?

AM ALTMODE BETWEEN COMMANDS
IS OPTIONAL TO IMPROVE CLARITY.

TYPE THE ''HOLE BUFFER. IT *S EMPTY.
INSERT THE LIME "ABCD" AMD
TYPE WHOLE BUFFER. THE TEXT OF.THE
IMSEHTION STOPS AT THE FIRST ALTMODE "S".

WHERE IS CURSOR AND END OF BUFFER?
CURSOR IS AFTER LAST INSERTION.

BUFFER SIX LONG (REMEMBER 2 FOR RETURN.)
INSERT SOME MORE LINES. INSERTION
ALWAYS MADE AT POINT OF CURSOR *

T Y P E WHOLE BUFFER.

MOVE CURSOR TO BEGINNING OF BUFFER.

ADVANCE CURSOR TWO.

MOVE CURSOR TWO BACK.

DELETE 6 CHAR TO RIGHT OF CURSOR AND LEFT
ADJUST STRING IN BUFFER.

.JUMP CURSOR TO END, DELETE 6 CHAR TO LEFT, &
TYPE WHOLE BUFFER.

KILL SI I BF I ELD BETWEEN 0 AND 6.
NOTE THAT 0,6D WON'T WORK.

KILL THE. WHOLE BUFFER.

* I O N E

TWO

T H E E

SS

* - 2 T $ $

TWO

T H E E

* - L T $ $

THEE

* C C T $ $

EE

* I R $ $

* 0 L T S S

T H R E E

* L I F O R

F I V E

55$

* J S F 0 $ T $ $

R

* I U $ 0 L T S $

FOUR

* I S I X

S E V E N

E I G H T

$$
* H T $ $

ONE

TWO

T H R E E

S I X

S E V E N

E I G H T

FOUR

F I V E

* J S S I X $ 0 L .

17

* 3 L T $ $

FOUR

*1 7, * X A $ $

* Z J G A S S

* H T $ S

ONE

TWO

T H R E E

FOUR

F I V E

S I X

S E V E N

E I G H T

* 7 „ J - P T ? > $

F I V E

S I X

* E X $ $

EX I T

WE I N S E R T SOME L I N E S SO

WE CAN E X H I B I T THF L I N E

O R R I E N T E D C O M M A N D S -

T Y P E THE P R E V I O U S 2 L I N E S *

MOVE C U R S O R B A C K A L I N E

A N D T Y P E 1 L I N E *

MOVE C U R S O R FORWARD 2 C H A R A C T E R S

A N D T Y P E R E S T OF THE L I N E .

I N S E R T THE C O R R E C T I O N .

R E T U R N C U R S O R TO B E G I N N I N G OF L I N E

A N D T Y P E THE L t N E .

A D V A N C E C U R S O R A L I N E

A N D C O N T I N U E I N S E R T I N G .

JUMP TO 0 A N D S E A R C H U N T I L M F O M . M O T E

C U R S O R P L A C E D A F T E R P A T T E R N F O U N D .

I N S E R T C O R R E C T I O N A N D T Y P E L I N E .

C O N T I N U E I N S E R T I O N S .

T Y P E WHOLE B U F F E R .

WE F O R G O T TO M OVE THE C U R S Q R B E F O R E

T H I S I N S E R T I O N A N D SO IT WAS

M I S P L A C E D .

U S E S E A R C H TO P L A C E C U R S O R

A T L I N E " S I X . T Y P E C U R S O R P O S I T I O N .

P L A C E C U R S O R T H R E E L I N E S DOWN.

S A V E FROM 17 TO • IN R E G I S T E R A .

D E L E T E SAME S U B F I E L D IN B U F F E R .

JUMP C U R S O R TO END A N D GET (I N S E R T)

R E G I S T E R A . T Y P E WHOLE B U F F E R .

T H A T S B E T T E R .

D E L E T E THE P R E V I O U S TWO L I N E S .

A S S U R E C U R S O R A T END A N D T Y P E

P R E V I O U S TWO L I N E S .

E X I T . T H I S W I L L W R I T E O U T THE B U F F E R

TO THE O P E N E D F I L E " S C R I P T . T E C M

A N D R E T U R N US TO P O P - 1 0 M O N I T O R M O D E .

,TECO SCRIPT.TEC

* I 0 O P 1<A>£S
*HTS'£
ONE
TWO
THREE
FOUR
FIVE
SIX
*J5<S

' S-2DI $ > S S
*HTS$
ONE TWO THREE FOUR FIVE SIX
*J<S S;-DI

S>SS
*HTS$
ONE

TWO
THREE

FOUR
FIVE

SIX
*J5<S

S - D I
£>£$
*HTS$
ONE
TWO
THREE
FOUR
FIVE
SIX
*J<SOS;0LT$L>SS A FREQUENT USE OF ITERATION IS TO "PRINT ALL
ONE OCCURANCES".
TWO
FOUR
*HT$$
ONE
TWO
THREE
FOUR
F I V E INTERPRETATION OF THIS COMMAND STRING IS LEFT AS
S I X AN EXERCISE TO THE READER.
*0UASJ<S
S;-2CS.-QAUBSQC-QB"L«BUC'S.+2UASL>S0UASJSQC+1UC$<S
S;-2C.-QAUBSQA+QC+2UAS0L$QC-QB<I S>L>HT$$

ONE
TWO

THREE
FOUR
FIVE
SIX

*EX$S
EXIT

E A T I N G EXISTING FILES IS DONE WITH A TECO
COMMAND WHICH FETCHES THE FIRST FEW CHARS.
A BACKUP FILE CE.G. .SCRIPT. BAK> IS ALSO MADE.

THE REMAINDER OF THE BUFFER IS FILLED USING
THE APPEND COMMAND. VALUES GREATER THAN
1000 MAY BE NEEDED FOR LARGE FILES.

MAKE SURE YOUR BUFFER IS FULL BY TYPING IT OR
THE LAST FEW LINES OF IT.

- HERE ' S P E C I F I C ITERATION IS USED TO CHANGE
THE FIRST 5 OCCURANCES OF CARRAGE-RET/
LINE FEEDS TO BLANKS. THE COMMANDS IN THE
BRACKETS ARE REPEATED AS MANY TIMES AS" IS SPEC

•ARBITRARY* ITERATION <INDICATED BY THE
ABSENCE OF A NUMBER AND THE PRESENCE OF A J)
ITERATES UNTIL THERE -IS NO MATCH, THEN THE.
BRACKETS ARE EXITED.

XCRIBL—A Hardcopy Scan Line Graphics System for Document Generation*

R. Reddy, W. Broadley, L Erman, R. Johnsson, J. Newcomer, G. Robertson and
J. Wright

in certain areas of computer science research, conventional line printers and
graphics terminals have proven to be inadequate output devices. Typical problems
such as a display of digitized (speech or visual) data require either displaying a very
large number of (flicker-free) vectors or simulating gray scale output. The need for a
hardcopy computer output device capable of producing arbitrary type fonts, graphics,
and gray scale images has been obvious. The XCRIBL system, developed at Carnegie-
Mellon University (CMU), using a Xerox Graphic Printer (XGP) driven by a minicomputer
represents an inexpensive solution to the problem. Careful design of data structures
and interface permits the minicomputer to generate each scan line for the XGP as
needed without having to resort to brute force solutions. Although the XGP was
designed over ten years ago, it had not found wide acceptance as a computer output
device because of the excessive processing time and memory requirements of scan-
line generation.

The XGP is a facsimile copying machine originally designed for transmission of
documents over high bandwidth telephone lines. It has adjustable resolution; the one
described here is operated at 192 points per inch which is equivalent to an image of
approximately 3.5 million bits for an 8^11 page. Because of its high resolution each
page can contain information equivalent to two pages of conventional computer listing.
The XGP printer is a synchronous device, requiring a complete raster line every 5
milliseconds. In order to make the project economically reasonable, a decision was
made to use a low-cost minicomputer, a Digital Equipment Corporation PDP-11, with a
28k (16 bit) memory. The limited computing power of the machine influenced many
design decisions, such as the inclusion of "modes" of operation of the interface.

The usual Xerox process consists of reflecting light from a printed page onto a
selenium drum. The change in electrical charge on the drum caused by the light is
used to transfer the "toner" to paper, where a high temperature "fuser" makes the
image permanent. Instead of reflected light, the XGP uses the image generated on a
cathode-ray tube, one scan line at a time. The image on the CRT is produced by
facsimile transmission or, in this case, under computer control. The image is
transferred to unsensitized 8^*11 inch continuous roll paper at a speed of 1
inch/second; the paper may be cut to size automatically under computer control.

The PDP-11/XGP system operates as a peripheral device to the main computer, a
PDP-10. The character set descriptions for various type fonts may be stored on a

*This research was supported in part by Xerox Corporation and in part by the
Advanced Research Projects Agency of the Department of Defense under contract no.
F44620-70-C-0107 and monitored by the Air Force Office of Scientific Research. W e
would like to thank Bill Gunning, Dave Damouth, and Louis Mailloux of Xerox
Corporation for their help and assistance.

small head-per-track disk connected to the PDP-11, or kept on the PDP-10. Text and
graphic information are transmitted as needed from the PDP-10 across a high-speed
data link (160,000 bits/sec). In addition to textual and graphic information, the data
from the PDP-10 may also contain special purpose control information such as
changes of type fonts, variations in margins, and special formatting requests such as
line justification.

An interesting feature of the system is that every aspect of the output device now
becomes a variable when compared with conventional line printers. The character
sets, size, all margins, interline spacing, and page size are all variable, and can be
changed dynamically during the output of a document.

Representation of Information

Characters are represented internally as a rectangular bit matrix. Each row of the
matrix requires an integral multiple of 8 bits (the byte size of the PDP-11), although
not all the bits of the last byte may be used. Characters may be any width from 0 to
255 bits wide and (theoretically) up to 2,5-l bits high.

Vectors are represented in a conventional scan line format. This format is
necessarily different from the ordinary representation of vectors, since for most
graphics terminals the entire screen is randomly accessible. In video terminals and
hard-copy scan line devices the data must be presented in the order that the scan
lines are generated. A software solution to the problem of vector intersection with
scan lines was chosen in order to retain the capability for flexible formatting of the
output. Vectors are processed in real time, and the available computing power limits
the number of vectors which can cross any scan line.

Gray scale representation is achieved by dividing the page into 1/25 inch squares
(an area of .0016 square inches) in which an appropriate number of bits is set to
black to represent darkness. This is achieved at present by using a rectangular spiral
representation of increasing darkness. Generation of gray scale images thus turns
out to be a special case of textual output in which a special gray scale type font is
used.

The generation of a scan line which contains both textual and graphic information
is not a problem for the PDP-11 if the text and graphics is non-overlapping, if the
latter is not the case, then one has to resort to an off-line solution of generating the
bit image on the PDP-10 or restricting the character set to only fixed-width
characters. This is a restriction in the present system but may not be permanent.

IMPLEMENTATION

In this section we provide a description of the overall implementaion of the
system. More detailed descriptions of the various aspects of the system may be found
in [1].

The Interface

The purpose of the interface between the PDP-11 and the XGP is to accept a
coded scan line from the PDP-11 memory and decode it into a video signal, every 5
milliseconds. A scan line is a bit vector of about 1550 points, in which each point is
either on (black) or off (white). There is no gray scale available at this level. The
interface has facilities for handling three different modes of data and means for
switching between modes, as well as providing control and interrupt functions. The
modes available are "character mode", "vector mode", and "image mode".

In the character mode, the first byte sent to the interface represents the number
of valid bits (and consquently, the number of following bytes) which contain the data.
When the width count is given as zero, then the next byte represents a mode change
(to either vector mode or image mode) or a stop code, indicating completion of the
data.

In the vector mode, each pair of bytes represents a run-coding of (part of) the
data. The first byte of the pair represents the number of white points and the second
byte represents the number of black points. When two successive bytes are zero,
the interface reverts to character mode.

In image mode, every bit is treated as video information until an error condition
occurs, typically "overscan", at which point an interrupt is caused for restart of the
next scan line. Because of the high data rate required, this is the only mode which
cannot operate in real time from the PDP-10; for this mode, the scan line images are
first sent to the PDP-11, where they are accumulated on the disk before being
transferred to the XGP.

The support system

There are two components to the support system; one resides in the PDP-11; the
other operates as a user program in the time-shared PDP-10. The purpose of the
PDP-11 support system is to generate the scan line data needed by the XGP. The
support system also services interrupts from the PDP-10/PDP-11 link, examines the
incoming data for control information, and selects type fonts from the disk as needed.
All of this is done subject to the real-time constraints of the XGP.

The part of the support system which resides in the PDP-10 provides the users
with the facilities of sending text, vectors, and character sets across the link. It also
provides for conversion of vectors from conventional format to scan line format.

The Character Set Design System

BILOS is a system for the creation and modification of character sets and has many
facilities that are common to other interactive editing systems. Rather than
manipulating lines Of text, BILOS manipulates the rectangular bit matrices which define
characters. Any bit of a character matrix may be set or reset by moving a cursor to
the appropriate point on a grid and issuing a command.

- 1 5 1 -

In addition to these manipulations, the system has facilities for copying,
substituting, translating, rotating, stretching, shrinking and reflecting characters. The
system currently runs on a storage screen display terminal connected to the PDP-10.

Document Generation Languages

The XGP provides a powerful and flexible tool for the production of printed
documents. Since there is a very low cost associated with producing a copy of a
document, the user is free to experiment with type fonts, typographic style, physical
arrangement of the text and Illustrations, etc., until the desired document is produced.
The flexibility of type fonts allows mathematical or technical notation to be used
freely, without the necessity of typing or drawing the symbols on the final document.
Furthermore, the output is "camera-ready"—a distinct advantage in light of rising
publication costs.

Two languages for text preparation exist on the PDP-10 at CMU ~ XOFF and PUB.
Both have been modified to interface with the XGP and are documented in manuals
available from the Computer Science Department.

INTRODUCTION TO LOOK

LOOK is a PDP-10 program which transmits information from the 10 to the PDP-11
controlling the XGP. Complete documentation of look is available on file
LOOK.DOC[A730GR02]. Below is the sequence of commands used to print this
document on the XGP. User input is underlined, comments in lower case.

.R LOOK

*!OUTA NGR25.KST file name for the a partition character set

*!OUTB NGRU25.KST file name for the b partition

*<-NL=55 set the number of lines per page to 55

*XCRIBLXGO name of the file to be printed

*TC

