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ABSTRACT

For a convergent sequence {xi] generated by xi+11:g¢;xi,xi-1""’xi-d+1)’
2

define the multiplication efficiency measure E to be , where p 1is
the order of convergence, and M is the number of multiplications or divi-
sions neede&“to compute ¢. Then, if © is any multivariate rational func-
tion, E = 1, Since E = 1 for the sequence [xi] generated by xi+1 = xi2 + X, - %
with the 1limit -%, the bound on E is sharp,
Let PM denote the maximal order for a sequence generated by an iteratiomn

with M multiplications. Then PM < ZM for all positive integer M. Moreover

this bound is sharp. -



I. INTRODUCTION

),

= m(x
log p

M

For a convergent sequence {xi] generated by x i’xi-l""’ xi-d+1

, where p is

i+1
define the multiplication efficiency measure E to be

the order of convergence, and M 1is the number of multiplications or divi-

sions needed to compute . In [1] Paterson showed that if

- (1) o is a rational function, .
(i1) d =1,

(ii1) 1lim x, is an algebraic number, and

j_—om

(iv) o has rational coefficients,

then E < 1, In this note we show E = 1 removing all these restrictions
except (1), Since condition (1) is not a restriction for a computer al-
gorithm, this is a very general result. In particular, we shall show that
2

X, +x, - 1 with the limit

E = 1 for the sequence {xi} defined by x _, = x, ar

~-%, Hence our bound on E is sharp,

Let PM denote the maximal order for a sequence generated by an iteration
with M multiplications., Since E = 1, it follows that PM < 2M for all positive
integer M. Moreover, we shall show that this bound 1is sharp.

Paterson used results from approximation by rational numbers to obtain
his result, while we use 2 completely different approach here. With the
technique we use here, the case d = 1 would be very easy to prove. We
show that a rational iteration function which generates a pth order con-
vergent sequence must have degree (degree will be defined below) = p, and

therefore must employ at least rlogzpj multiplications or divisions
16g.p
2

(except by constants). Hence, E = = 1.
The result belongs to analytic computational complexity which deals

with optimality theory of analytic processes [2].
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I1. NOTATION
We work over the field of real numberg or the field of complex num-
bers. Let {xi] be any convergent sequence with limft o, and Xy ¥ o for

¢11 1, Denote e, = |x -a[ for all 1.

Definition 1: (Order) The sequence {xi} has an order p > 1 (or {xi} is a

pth order sequence) 1ff lim €1+l . and lim 141
1o pog {~ “pte
4 %

4 u_for any ¢ =~ 0,

From the above definition, it {3 easy to see that if {xi] has order p,
then

[
(2.1) p = supir | 1im .%- 0}, and

R ey

(2.2) for any fixed positive integer n, {“1n}:-o has order p".

It should be noted that in our proofs the only properties of order'
needed are (2.1) and (2,2), although (2.1) has been used as a definfition
of order by many people. Definition 1 is the weakest definitliom on order
we have found which enjoya both properties (2.1) and (2.2).

For each number o, we define a class Fi{o) of convergent sequences with

the same limit o as follows: {xi} € F(o) iff

{1) x, ¥ g for all but finitely many £

(11) {xi} has an order p > 1

- 1ti-
(111) LR d(xifxi-l""’xi-d+1} for all i, for some mu

variate rational expression u(yl,yz,...,yd) of 4 variables,




3.

q’l(}'l’yz’“ . :yd)
B '-'?2(3'1:}'2 Yo :}'d)

say, m(?ls---,}’d) , where QJI(YPYT-“:Y&)

and ¢E(y1,y2,...,yd) are two relatively prime multivariate
polynomiala of d varisbles ¥ys¥oaeeas¥ye We say that {xi}
is generated by the rationmal iteration . For examples of

these m's, see [3].

Consider a sequence in ¥(y) generated by ¢. For the purpose of this
note, we assume the cost in generating the sequence to be the number of
multiplications or divisions needed to compute ¢ at each stage. Then it

is natural to give the following definition about the measure of efficiency.

Definition 2: (Multiplication Efficiency) The multiplication efficiency
log.p

M

the order of the sequence and ¥ is the number of multiplications or divi-

E of a sequence in F{x) generated by ¢ is defined to be where p is

sions needed to compute ¢, after doing any preconditioning of coefficients

{i.e., preconditioning is not counted).

Definition 3: (Optimality) A sequence in Fiy) is called optimal if it

has the largest multiplication efficiency among all sequences in Fig).

From (2.2) we can check that a very desirable property holds, namely,
for any fixed positive integer n, Exi} and {xin}:;ﬂ have the same multi-
plication efficiency. 1In fact, this invariance under composition property
implies that any efficiency measure must be a strictly momotonic function
of E [4]. Therefore, as far as optimality is concerned, it makes no dif-
ference if E or any other possib}e gfficiency measure is used. TFor in-
stance, the efficiency measure pﬁrwill give the same answer in optimality

problems as E will, since it is a strictly monotonic function of E.




tPl(Ylsyz 2eee ’yd)
Py (yl 2¥gsee- :Yd)

be a

Definition 4: (Degree) Let ¢(y1,y2,...,ya) =

multivariate rational expression, where ¢1(y1,y2,;..,yd) and

¢2(&1,y2,...,yd) are two relatively prime multivariate polynomials,

1f D(mi) is the degree of ¢E(Y1'Y2""’yd) for 1 = 1,2, then the degree D(p)

of m(yl,yz,...,yd) is defined to be mnx(D(qi), D(¢2)).




III. PRELIMINARY LEMMA

For each positive integer d, we define an order (>) on the set
Id = i(jl,jz,...,jd)lji is a non-negative integer for i = 1,2,...,d} as
follows: for (jlsjzp---:jd): (31’22"")2(1) € Id’ (jl:jzsc-osjd) > (El,ﬂz,..-,ﬂd)

iff there exists k € {1,2,...,d1} such that 3 > lk and i = £i for i < k.

Lemma 1l: For any number o, let {xi} be any pth order sequence in F{g) gen-
erated by ¢, and let e, = |z:.l - ¢| for all i. Suppose that o has d variables.

Then we have the following:

d
(1) 1f (Jsdpseeendy) €I, with T j, <bp,
i=1
eP€
then lim e = 0, for ¢ .~ 0 and
j; 3 b
ime J1 2 d

®i Ci-1°""%i-d+l

sufficiently small, and
(11) if (jl’jZ""’jd)’ (f'l:zz"-"!‘d) E Id
with (jl'jZ""’jd) > (21,22,...,£d)

d

and ¥ £, < p, then
. i
i=1

3 3; ejd
i ®1-1°"""%i~d41 _

1im .
jo 41 B L

®i ®1-1°°"%i-a+41

e

Proof:

d
(i) Choose € such that 0 < e < p - ©§ ji

i=1

and 0 < ¢ < p - 1. Then




p-e-1

1lim — — lim - +— . 0, and then
e, , 'i-1
lim & lim = 0.
i‘ao'i-2 *i-2
e.
In general, lim —— - 0 for any positive integer k. Hence,
i-»i-k
£ 1
e?- ef'’ Je.xi, Je. X j
¢ * lim 3 * lim lim{ YN oM M- 0,
i-k0 "1 ‘d i-K» ‘1 d i-»«\1 vi-d+l/
e"yd+1l 1omri-d+i R
‘12 ‘d
a e. e..... €. ,::
(ii) Choose € such that 0 < e<p- S 2Z.. Let Q. - —~ *f____
i=i - ‘ h h \

Suppose that j.. >

1 i-1ewi-dsl

and j = for i < k. Then when i is so

large that e* < 1, we have

WL a
Tk m\ ti-k esei-d+l

i v vk 1 * VI i

i-k '-"i-del

‘k+1 'd

‘i-k Ci-d+l
‘i-k+1 ¥ vl \

"i-k o "Tti-d+l

'k+2 Jd

e.
p-e i-k A *d
i-k i-k-1-"i-d+1



Case 1, p - ¢ + Y

procedure, we get

iy

- £k+i =1 for ki = k+1,...,d. Repeating the above

- ejk+2 34
g s Skl 1-k-1""" €1.d+1
1 - - L]
el > i-k - A4, b4
i-k a R
f-k-1"""%1_d+1
®lk+l  Tiuk (p-e+j, ,-h )
= . < elPeti b
&P ¢ oP ¢ i-k-1
ik 1-k-1
ejk+3 ejd
O ®ike2tt % dad
hyy Y
Byk-2"*"%i-d+l
a a B
s * B 5 ::t+1 . :;:t L & A b - ;::+2
€k ®f k-1 & d+l

Case 2, p-e+jk+n-2k+n < 1 and p-e+jk+i-ﬂk+i 21l for k+ i=ktl,...,kin-1

for some n with k + n - 1 < d. Since p-e-4 0, j < p-eti <4 <L
p ‘

" Hence we must have jk+n = 0, Consequently, 1 = p-a~£k+n = 131 li - £k+n'
This implies that Li = 0 for all 1 except i = k+n. Then
< iskil D Cick-mi2 JPetietn- 4 Ejk-l-n+1 ) ejd
U = pee e i-kem+l " Cikem C Ut T ®ied4l
i~k f-lk-ntl

Note that p-e+j, - 4 . > 0. Therefore, in both cases, lim Q= 0,

{-sem a
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IV, MAIN RESULT

Theorem 1l: For any number o, let {xi} be any pth order sequence generated

by @. Then D(qp) = p.

Proof: Write

4.1) tol(YleZ,---,Yd) - Wz(ylayst'O!yd)

k|
1
= z C(j ,-o.,j )(y "Cl’) 'OO(Y -Q’)'
(jl"..":d)eId 1 d 1 d

Jq

for constants C(jl,...,jd).' Suppose that D(p) < p. Then Cijl,...,jﬁr = 0 for
d o

all (jl,...,jd) € Id with ¥ ji 2 p: Moreover, we shall use induction to

i=1
d
show that C(jl,...,jd) = 0 for all (jl,...,jd) with zlji < p., Note that
i=
for ¢ > 0,
|%;,1 - ol i
0= lim ——i—'li——P—eﬂ lim Icp(xi'ii.-l"“'xi-d-i-l) al
i=rco Ixi - o{l {=m |xi ] Qvlp-e
Then, by (4.1), we have
. 3y Ja
| T G0 i) T (g gge) |
(4.2) 1lim e =0,
iwee ei.

Since lim e = 0 for k®i,...,i-d+1, from (4.2) it follows that C(0,...,0) = 0,

h -

Suppose that C(jl,...,jd; = 0 whenever (jl"”’jd) < (21,...,£d) for some

(£1,...,£a) € Id with I £i < p. (4.2) may be written as

i=1




j }
1 d
| 5 oy . )("i ) Teen (X 447
112=0dg ) )
(jl,...,jd) p- (zl,...,ﬂa) R 1 . d
lim i """ i-d+l
1-w= EPun
- 1,
e'ﬂl Elzd
i 77T i-d+l

Using Lemma 1 for sufficiently small &, we must have C(Ll,...,za) = 0, This

completes the induction p

roof.

Hence C(jl,...,jd) = ) for all (jl,...,jd) €I,

From (4.1), @1(¥ seees¥g) = a0y (Fyseee,¥y) = 0.

Hence w(yl,...,yd) = o

Hence, D(p) # p. [ |

This is a contradiction.

Theorem 2: If m(yl,...,yd) iz a multivariate ratiomal expression and M is

the number of multiplications or divisions (except by constants) needed to

compute w(yl,...,yd), then M = 1032D(w).

Proof: Observe that we compute m(yl,...,yd) through & sequence of arithmetic

operations, Let Ri(yl,...,yd) be the result immediately following the it

multiplication or division (except by constants) for i=1,2,...,M. Let

RD(yl,...,yd) be one of YyseersVy-

n

(4.3 Rn+1¢1,...,yd) = (L M

n

¥ (LN R
=1 i,nt+l

(4.4} Rn+16&""’yd

i=0

1

n
y=(Z¢
1=0

M

Observe that we have either

R-(yls---:yd) + A

L) n+1’

-(Yl;n-,}'d) + BIH'].),DT

i,n+1“1(yl""'yd) + An+1)

h
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n

B (151 N iRy (Fpreeeayy) + B o)

where M N Bn+1 are many numbers, for n=0,1,...,M-1.

i,n+l? i, n+l? An+1’

We claim that, for nFl,Z,...,ﬁ, the following is true, For any numbers

kogouogkn, C, we have

n Pn(yl""’yd; ko"":kns C)

(4-5) 2 kR(y ...,y)+C“'
1=0 e QOyoeeesyy)

where Pn(yl,...,yd; ko,...,kn,c) is a multivariate polynomial depending on
kO’kl""’kn' C and Qn(yl,yz,...,yd) is 2 multivariate polynomial independent
of ko,kl,...,kn, C; moreover, both polynomials have degrees = 2% we prove

it by induction. It is clear that (4.5) is true for n = 1. Suppose that (4.5)

is true for all n < N for some N < M. Suppose that (4.3) is true for n = N.

Then by (4.5) for n = N, we have

M1 N .
. 5\
izo k R. (yl,...,yd) + C = N““l le\yl,nnc,yd) + iEO kiRi(y:LSO.-:yd/ + C

N N

(2 My gy Ri(paeeesyy) ¥ AR Px (T

= N, R, eossy.) + B )
KN+l oo L.l =1 bs g O1oees¥y N+l

i, N+l

ko,...,kN, c)

Quyy preee9g)

N (Yisevesyas

P11 d

+ £ kR (¥, ces¥y) +C =
i=0

where Pn+1(y1,...,yd; kos-.-,kN: C) = kN+1 N(yl’.."yd’ 0,N+1’."’MN,N+1’ AN+1)

C BT yaeeeaYgs Mo paree Ny perr B) F EgO1ee oYl Koreee sk Quleeedy)s

and Qn+1(y1""’yd) = QN(yl""’yd) . Then by the induction hypothesis, we
Rt N+1

have that T k (yl,...,yd) + C has degree = 2 .
i=0
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M1
Similarly, from (4.4) we also have that T kiRi(yl"°°’yd) + C has the
i=0

PN+1(y1,...,yd; kO""’kN’C)

form with degree = 2N+l for some

QN+1(Y1,...,Yd)

Pml(y'l!."syd; ko:"',kNac) and QN+1(Y13---;Yd)-

Hence, both cases imply that (4.5) is true for n = NM+l. This completes
the induction. Therefore, for any numbers ko""’kn’C* the degree of
n

T k

R, + C will not reach D(p) until n 2 logzD(w). This implies that
i=0

i1
M2 logzD(cp). This completes the proof. [ ]
Note that M 2 ﬁ, since preconditioning is only performed on constant co-
efficients, Thus, by Theorém 1, M2 M = log,D(0) = log,p. Therefore,
we have the following

log,p

MAIN RESULT: E = M <1,

Now consider the sequence generated by y(x) = xz + x - 1 with the limit

4
-1/2. Since ¥'(-/2= 0 and ¢"(-Vh)# 0, we can easily show that this sequence
log,. 2
has order 2, Obviously M=1 for this sequence. Thus E = 12 = 1. Similarly,

E=1 for the second order sequence generated by 1'(x) = = + x - 1 with the limit

Wl

1, Either example shows tha; our bound on E is sharp, Moreover, we have the
following interesting result.
Let PM denote the maximal order for a sequence generated by an iteration

with M multiplications. From our main result, we have the following

Corollary: PM = 2M for all positive integer M. Moreover this bound is sharp.

2
Proof: Let *M be the composition of § with itself M times where §(x) = x~ + x -

M
as before. Then the sequence generated by ¢M has order 2 and *M employs M

1
4
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"multiplications. Hence for cach M the maximal order is achleved by the

sequence generated by *M' ' B
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