NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17. U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copy ing of this document without permission of its author may be prohibited by law.

A BOUND ON THE MULTIPLICATION EFFICIENCY of ITERATION
by
H. T. Kung

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

March, 1972

This research was supported by the Office of Naval Research under contract N00014-67-A-0314-0010 and the National Science Foundation under contract GJ 32111.

ABSTRACT

For a convergent sequence $\left\{x_{i}\right\}$ generated by $x_{i+1}=\varphi\left(x_{i}, x_{i-1}, \ldots, x_{i-d+1}\right)$, define the multiplication efficiency measure E to be $\frac{\log _{2} p}{M}$, where p is the order of convergence, and M is the number of multiplications or divisions needed to compute φ. Then, if φ is any multivariate rational function, $E \leq 1$. Since $E=1$ for the sequence $\left\{x_{i}\right\}$ generated by $x_{i+1}=x_{i}{ }^{2}+x_{i}-\frac{1}{4}$ with the limit $-\frac{1}{2}$, the bound on E is sharp.

Let P_{M} denote the maximal order for a sequence generated by an iteration with M multiplications. Then $P_{M} \leq 2^{M}$ for all positive integer M. Moreover this bound is sharp.

I. INTRODUCTION

For a convergent sequence $\left\{x_{i}\right\}$ generated by $x_{i+1}=\varphi\left(x_{i}, x_{i-1}, \ldots, x_{i-d+1}\right)$, define the multiplication efficiency measure E to be $\frac{\log _{2} p}{M}$, where p is the order of convergence, and M is the number of multiplications or divisions needed to compute φ. In [1] Paterson showed that if
(i) φ is a rational function,
(ii) $d=1$,
(iii) $\lim _{i \rightarrow \infty} x_{i}$ is an algebraic number, and
(iv) φ has rational coefficients,
then $E \leq 1$. In this note we show $E \leq 1$ removing all these restrictions except (i). Since condition (i) is not a restriction for a computer algorithm, this is a very general result. In particular, we shall show that $E=1$ for the sequence $\left\{x_{i}\right\}$ defined by $x_{i+1}=x_{i}^{2}+x_{i}-\frac{1}{4}$ with the limit $-\frac{3}{2}$. Hence our bound on E is sharp.

Let P_{M} denote the maximal order for a sequence generated by an iteration with M multiplications. Since $E \leq 1$, it follows that $P_{M} \leq 2^{M}$ for all positive integer M. Moreover, we shall show that this bound is sharp.

Paterson used results from approximation by rational numbers to obtain his result, while we use a completely different approach here. With the technique we use here, the case $d=1$ would be very easy to prove. We show that a rational iteration function which generates a $p^{\text {th }}$ order convergent sequence must have degree (degree will be defined below) $\geq p$, and therefore must employ at least $\left\lceil\log _{2} p\right\rceil$ multiplications or divisions (except by constants). Hence, $E=\frac{\log _{2} p}{M} \leq 1$.

The result belongs to analytic computational complexity which deals with optimality theory of analytic processes [2].

-2-

II. NOTATION

We work over the field of real numbers or the field of complex numbers. Let $\left[x_{i}\right]$ be any convergent sequence with limit α, and $x_{i} \neq \alpha$ for ell i. Denote $e_{1}=\left|x_{1}-\alpha\right|$ for all 1.

Definition 1: (Order) The sequence $\left\{x_{i}\right\}$ has an order $p>1$ (or $\left\{x_{i}\right\}$ is a

From the above definition, it is easy to see that if $\left\{x_{1}\right\}$ has order p, then
(2.1) $p=\sup \left\{r \left\lvert\, \lim _{i \rightarrow \infty} \frac{e_{i+1}}{e_{i}^{r}}=0\right.\right\}$, and
(2.2) for any fixed positive integer $n,\left\{x_{i n}\right\}_{i=0}^{\infty}$ has order p^{n}.

It should be noted that in our proofs the only properties of order needed are (2.1) and (2.2), although (2.1) has been used as a definftion of order by many people. Definition 1 is the weakest definition on order we have found which enjoys bath properties (2.1) and (2.2).

For each number α, we define a class $F(\alpha)$ of convergent sequences with the same limit α as follows: $\left\{x_{i}\right\} \in F(\alpha)$ iff
(i) $x_{i} \neq \alpha$ for all but finitely many f
(ii) $\left[x_{1}\right\}$ has an order $p>1$
(11i) $x_{i+1}=\alpha\left(x_{1}, x_{i-1}, \ldots, x_{1-\alpha+1}\right)$ for all i, for some multivariate rational expression $\alpha\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ of a variables,

$$
\begin{aligned}
& \text { say, } \varphi\left(y_{1}, \ldots, y_{d}\right)=\frac{\varphi_{1}\left(y_{1}, y_{2}, \ldots, y_{d}\right)}{\varphi_{2}\left(y_{1}, y_{2}, \ldots, y_{d}\right)} \text {, where } \varphi_{1}\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
& \text { and } \varphi_{2}\left(y_{1}, y_{2}, \ldots, y_{d}\right) \text { are two relatively prime multivariate } \\
& \text { polynomials of } d \text { variables } y_{1}, y_{2}, \ldots, y_{d} \text {. We say that }\left\{x_{i}\right\} \\
& \text { is generated by the rational iteration } \varphi \text {. For examples of } \\
& \text { these } \emptyset^{\prime} s, \text { see }[3] \text {. }
\end{aligned}
$$

Consider a sequence in $F(\alpha)$ generated by φ. For the purpose of this note, we assume the cost in generating the sequence to be the number of multiplications or divisions needed to compute to at each stage. Then it is natural to give the following definition about the measure of efficiency.

Definition 2: (Multiplication Efficiency) The multiplication efficiency E of a sequence in $F(\alpha)$ generated by φ is defined to be $\frac{\log _{2} P}{M}$ where p is the order of the sequence and Mis the number of multiplications or divisions needed to compute 0 , after doing any preconditioning of coefficients (i.e., preconditioning is not counted).

Definition 3: (Optimality) A sequence in $F(\alpha)$ is called optimal if it has the largest multiplication efficiency among all sequences in $F(\alpha)$.

Fron (2.2) we can check that a very desirable property holds, namely, for any fixed positive integer $n,\left\{x_{i}\right\}$ and $\left\{x_{i n}\right\}_{i=0}^{\infty}$ have the same multiplication efficiency. In fact, this invariance under composition property implies that any efficiency measure must be a strictly monotonic function of E [4]. Therefore, as far as optimality is concerned, it makes no difference if E or any other possibfe efficiency measure is used. For instance, the efficiency measure $p^{\frac{1}{M}}$ will give the same answer in optimality problems as E will, since it is a strictly monotonic function of E.

Definition 4: (Degree) Let $\varphi\left(y_{1}, y_{2}, \ldots, y_{d}\right)=\frac{\varphi_{1}\left(y_{1}, y_{2}, \ldots, y_{d}\right)}{\varphi_{2}\left(y_{1}, y_{2}, \ldots, y_{d}\right)}$ be a
multivariate rational expression, where $\varphi_{1}\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ and
$\varphi_{2}\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ are two relatively prime multivariate polynomials.
If $D\left(\varphi_{i}\right)$ is the degree of $\varphi_{i}\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ for $i=1,2$, then the degree $D(\varphi)$
of $\varphi\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ is defined to be $\max \left(D\left(\varphi_{1}\right), D\left(\varphi_{2}\right)\right)$.

III. PRELIMINARY LEMMA

For each positive integer d, we define an order ($>$) on the set $I_{d}=\left\{\left(j_{1}, j_{2}, \ldots, j_{d}\right) \mid j_{i}\right.$ is a non-negative integer for $\left.i=1,2, \ldots, d\right\}$ as
follows: for $\left(j_{1}, j_{2}, \ldots, j_{d}\right),\left(\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right) \in I_{d},\left(j_{1}, j_{2}, \ldots, j_{d}\right)>\left(\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right)$ iff there exists $k \in\{1,2, \ldots, d\}$ such that $j_{k}>\ell_{k}$ and $j_{i}=\ell_{i}$ for $i<k$.

Lemma 1: For any number α, let $\left\{x_{i}\right\}$ be any $p^{\text {th }}$ order sequence in $F(\alpha)$ generated by φ, and let $e_{i}=\left|z_{i}-\alpha\right|$ for all i. Suppose that φ has d variables. Tinen we have the following:
(i) if $\left(j_{1}, j_{2}, \ldots, j_{d}\right) \in I_{d}$ with $\sum_{i=1}^{d} j_{i}<p$,
then $\lim _{i \rightarrow \infty} \frac{e_{i}^{p-\epsilon}}{e_{i} 1 e_{i-1}^{j_{2}} \ldots e_{i-d+1}}=0$, for $\epsilon ; 0$ and
sufficiently small, and
(ii) if $\left(j_{1}, j_{2}, \ldots, j_{d}\right),\left(\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right) \in I_{d}$
with $\left(j_{1}, j_{2}, \ldots, j_{d}\right)>\left(\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right)$
d
and $\sum_{i=1} \ell_{i}<p$, then
$\underset{i \rightarrow \infty}{\lim _{i}{ }_{i}{ }_{i}^{j_{1}} e_{i-1}^{e_{i-1}} \ldots e_{i-d+1}^{j_{2}} \ldots e_{i-d+1}^{l_{d}}}=0$.

Proof:

(i) Choose ε such that $0<\varepsilon<p-\sum_{i=1} j_{i}$ and $0<\varepsilon<p-1$. Then

$$
\lim e_{\text {e. - }} \quad \lim - \pm-\quad \begin{gathered}
\text { p-e-1 } \\
\text { i-1 }
\end{gathered} 0 \text {, and then }
$$

In general, \lim e. - 0 for any positive integer k. Hence, i-..> $i-k$

Suppose that $j_{c}>$ and $j=$ for $i<k$. Then when i is so
large that $e^{\wedge}<1$, we have

$$
\begin{aligned}
& \text {-W1 d }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "i-k '-^i-d+1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { e. } \\
& \begin{array}{ccc}
p-e & i-k & \backslash \\
i-k & i-k-1-1 * i-d+1
\end{array}
\end{aligned}
$$

Case 1, $p-\varepsilon+j_{k+i}=h_{k+i} \geq 1$ for $k+i=k+1, \ldots, d$. Repeating the above procedure, we get

$$
\begin{aligned}
& Q_{i} \leq \frac{e_{i-k+1}}{e_{i-k}^{p-\epsilon}} \cdot e_{i-k} \cdot \frac{e_{i-k-1}^{j_{k+2}} \cdots e_{i-d+1}^{j}}{e_{i-k-1}^{l_{k+2}} \cdots e_{i-d+1}^{l}} \\
& =\frac{e_{i-k+1}}{e_{i-k}^{p-\varepsilon}} \cdot \frac{e_{i-k}}{e_{i-k-1}^{p-\epsilon}} \cdot e_{i-k-1}^{\left(p-\varepsilon+j_{k+2}-\ell_{k+2}\right)} \\
& \cdots \frac{e_{i-k-2}^{j_{k+3}} \ldots e_{i-d+1}^{j_{d}}}{e_{i-k-2}^{\ell_{k+3}} \ldots e_{i-d+1}^{\ell_{d}}} \\
& \leq \ldots \leq \frac{e_{i-k+1}}{e_{i-k}^{p-\xi}} \cdot \frac{e_{i-k}}{e_{i-k-1}^{p-\epsilon}} \ldots \ldots \cdot \frac{e_{i-d+2}}{e_{i-d+1}^{p-\xi}} .
\end{aligned}
$$

Case 2, $p-\varepsilon+j_{k+n}-l_{k+n}<1$ and $p-\varepsilon+j_{k+i}-l_{k+i} \geq 1$ for $k+i=k+1, \ldots, k+n-1$
for some n with $k+n-1<d$. Since $p-\epsilon-h_{k+n} \because 0, j_{k+n}<p_{d}-\epsilon+j_{k+n}=h_{k+n}<1$.
Hence we must have $j_{k+n}=0$. Consequently, $1>p-\varepsilon-\ell_{k+n}>\sum_{i=1} \ell_{j}-\ell_{k+n}$.
This implies that $\ell_{i}=0$ for all i except $i=k+n$. Then

$$
Q_{i} \leq \frac{e_{i-k+1}}{e_{i-k}^{p-\varepsilon}} \cdot \ldots \cdot \frac{e_{i-k-n+2}}{e_{i-k-n+1}^{p-\varepsilon}} \cdot e_{i-k-n+1}^{p-\varepsilon+j_{k+n}-l_{k+n}} \cdot e_{i-k-n}^{j_{k+n+1}} \cdot \ldots \cdot e_{i-d+1}^{j_{d}}
$$

Note that $p-\varepsilon+j_{k+n}-\ell_{k+n}>0$. Therefore, in both cases, $\lim _{i \rightarrow \infty} Q_{i}=0$.

IV. MAIN RESULT

Theorem 1: For any number α, let $\left\{x_{i}\right\}$ be any $p^{\text {th }}$ order sequence generated by φ. Then $D(\varphi) \geq p$.

Proof: Write

$$
\text { (4.1) } \begin{aligned}
& \varphi_{1}\left(y_{1}, y_{2}, \ldots, y_{d}\right)-\alpha \varphi_{2}\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
& =\sum_{\left(j_{1}, \ldots, j_{d}\right) \in I_{d}} c\left(j_{1}, \ldots, j_{d}\right)\left(y_{1}-\alpha\right)^{j_{1}} \ldots\left(y_{d}-\alpha\right)^{j_{d}}
\end{aligned}
$$

for constants $C\left(j_{1}, \ldots, j_{d}\right)$. Suppose that $D(\varphi)<p$. Then $\left.C_{i} j_{1}, \ldots, j_{G}\right)=0$ for all $\left(j_{1}, \ldots, j_{d}\right) \in I_{d}$ with $\sum_{i=1} j_{i} \geq p$: Moreover, we shall use induction to show that $c\left(j_{1}, \ldots, j_{d}\right)=0$ for all $\left(j_{1}, \ldots, j_{d}\right)$ with $\sum_{i=1}^{d} j_{i}<p$. Note that for $\varepsilon>0$,

$$
0=\lim _{i \rightarrow \infty} \frac{\left|x_{i+1}-\alpha\right|}{\left|x_{i}-\alpha\right|^{p-\varepsilon}}=\lim _{i \rightarrow \infty} \frac{\left|\varphi\left(x_{i}, x_{i-1}, \cdots, x_{i-d+1}\right)-\alpha\right|}{\left|x_{i}-\alpha\right|^{p-\varepsilon}}
$$

Then, by (4.1), we have

Since $\lim _{i \rightarrow \infty} e_{k}=0$ for $k=i, \ldots, i-d+1$, from (4.2) it follows that $c(0, \ldots, 0)=0$. Suppose that $C\left(j_{1}, \ldots, j_{d}\right)=0$ whenever $\left(j_{1}, \ldots, j_{d}\right)<\left(\ell_{1}, \ldots, l_{d}\right)$ for some $\left(\ell_{1}, \ldots, l_{d}\right) \in I_{d}$ with $\sum_{i=1} \ell_{i}<p$. (4.2) may be written as

Using Lerma 1 for sufficiently small s, we must have $c\left(\ell_{1}, \ldots, \ell_{d}\right)=0$. This completes the induction proof.

Hence $C\left(j_{1}, \ldots, j_{d}\right)=0$ for all $\left(j_{1}, \ldots, j_{d}\right) \in I_{d}$.
From (4.1), $\varphi_{1}\left(y_{1}, \ldots, y_{d}\right)-\alpha \varphi_{2}\left(y_{1}, \ldots, y_{d}\right) \equiv 0$.
Hence $\varphi\left(y_{1}, \ldots, y_{d}\right) \equiv \alpha$. This is a contradiction.
Hence, $D(\varphi) \geq p$.

Theorem 2: If $\varphi\left(y_{1}, \ldots, y_{d}\right)$ is a multivariate rational expression and \bar{M} is the number of multiplications or divisions (except by constants) needed to compute $\varphi\left(y_{1}, \ldots, y_{d}\right)$, then $\overline{\mathrm{M}} \geq \log _{2} D(\varphi)$.

Proof: Observe that we compute $\varphi\left(y_{1}, \ldots, y_{d}\right)$ through a sequence of arithmetic operations. Let $R_{i}\left(y_{1}, \ldots, y_{d}\right)$ be the result immediately following the $i{ }^{\text {th }}$ multiplication or division (except by constants) for $i=1,2, \ldots, \bar{M}$. Let $R_{0}\left(y_{1}, \ldots, y_{d}\right)$ be one of y_{1}, \ldots, y_{d}. observe that we have either

$$
\begin{array}{ll}
\text { (4.3) } & R_{n+1}\left(y_{1}, \ldots, y_{d}\right)=\left(\sum_{i=0}^{n} M_{i, n+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+A_{n+1}\right) \\
& \times\left(\sum_{i=1}^{n} N_{i, n+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+B_{n+1}\right), o r \\
(4.4) & R_{n+1}\left(y_{1}, \ldots, y_{d}\right)=\left(\sum_{i=0}^{n} M_{i, n+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+A_{n+1}\right)
\end{array}
$$

$$
\div\left(\sum_{i=1}^{n} N_{i, n+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+B_{n+1}\right)
$$

where $M_{i, n+1}, N_{i, n+1}, A_{n+1}, B_{n+1}$ are many numbers, for $n=0,1, \ldots, \bar{M}-1$.
We claim that, for $n=1,2, \ldots, \bar{M}$, the following is true. For any numbers k_{0}, \ldots, k_{n}, c, we have

$$
\text { (4.5) } \sum_{i=0}^{n} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+c=\frac{P_{n}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{n}, C\right)}{Q_{n}\left(y_{1}, \ldots, y_{d}\right)}
$$

where $P_{n}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{n}, C\right)$ is a multivariate polynomial depending on $k_{0}, k_{1}, \ldots, k_{n}, C$ and $Q_{n}\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ is a multivariate polynomial independent of $k_{0}, k_{1}, \ldots, k_{n}, c$; moreover, both polynomials have degrees $\leq 2^{n}$. We prove it by induction. It is clear that (4.5) is true for $n=1$. Suppose that (4.5) is true for all $\mathrm{n} \leq \mathrm{N}$ for some $\mathrm{N}<\overline{\mathrm{M}}$. Suppose that (4.3) is true for $\mathrm{n}=\mathrm{N}$. Then by (4.5) for $n=N$, we have

$$
\begin{aligned}
& \sum_{i=0}^{N+1} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+c=k_{N+1} R_{N+1}\left(y_{1}, \ldots, y_{d}\right)+\sum_{i=0}^{N} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+c \\
& =k_{N+1}\left(\sum_{i=0}^{N} M_{i, N+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+A_{N+1}\right) \times\left(\sum_{i=1}^{N} N_{i, N+1} R_{i}\left(y_{1}, \ldots, y_{d}\right)+B_{N+1}\right) \\
& +\sum_{i=0}^{N} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+c=\frac{P_{N+1}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{N}, C\right)}{Q_{N+1}\left(y_{1}, \ldots, y_{d}\right)}
\end{aligned}
$$

where $P_{N+1}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{N}, C\right)=k_{N+1} P_{N}\left(y_{1}, \ldots, y_{d} ; M_{0, N+1}, \ldots, M_{N, N+1}, A_{N+1}\right)$

$$
\text { - } P_{N}\left(y_{1}, \ldots, y_{d} ; N_{0, N+1}, \ldots, N_{N, N+1}, B_{N+1}\right)+P_{N}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{N}, C\right) Q_{N}\left(y_{1}, \ldots, y_{d}\right) \text {, }
$$

and $Q_{N+1}\left(y_{1}, \ldots, y_{d}\right)=Q_{N}\left(y_{1}, \ldots, y_{d}\right)^{2}$. Then by the induction hypothesis, we
have that $\sum_{i=0}^{N+1} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+C$ has degree $\leq 2^{N+1}$.

Similarly, from (4.4) we also have that $\sum_{i=0}^{N+1} k_{i} R_{i}\left(y_{1}, \ldots, y_{d}\right)+C$ has the form $\frac{P_{N+1}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{N}, C\right)}{Q_{N+1}\left(y_{1}, \ldots, y_{d}\right)}$ with degree $\leq 2^{N+1}$ for some $P_{N+1}\left(y_{1}, \ldots, y_{d} ; k_{0}, \ldots, k_{N}, C\right)$ and $Q_{N+1}\left(y_{1}, \ldots, y_{d}\right)$.

Hence, both cases imply that (4.5) is true for $\mathrm{n}=\mathrm{N}+1$. This completes the induction. Therefore, for any numbers k_{0}, \ldots, k_{n}, C, the degree of n $\sum_{i=0} k_{i} R_{i}+C$ will not reach $D(\varphi)$ until $n \geq \log _{2} D(\varphi)$. This implies that $\overline{\mathrm{M}} \geq \log _{2} \mathrm{D}(\varphi)$. This completes the proof.

Note that $M \geq \bar{M}$, since preconditioning is only performed on constant coefficients. Thus, by Theorem $1, M \geq \bar{M} \geq \log _{2} D(\omega) \geq \log _{2} p$. Therefore, we have the following

MAIN RESULT: $\quad E=\frac{\log _{2} P}{M} \leq 1$.
Now consider the sequence generated by $\psi(x)=x^{2}+x-\frac{1}{4}$ with the limit $-1 / 2$. Since $\phi^{\prime}(-1 / 2)=0$ and $\psi^{\prime \prime}(-1 / 2) \neq 0$, we can easily show that this sequence has order 2. Obviously $M=1$ for this sequence. Thus $E=\frac{\log _{2} 2}{1}=1$. Similarly, $E=1$ for the second order sequence generated by $\Gamma(x)=\frac{1}{x}+x-1$ with the limit 1. Either example shows that our bound on E is sharp. Moreover, we have the following interesting result.

Let P_{M} denote the maximal order for a sequence generated by an iteration with M multiplications. From our main result, we have the following

Corollary: $\quad P_{M} \leq 2^{M}$ for all positive integer M. Moreover this bound is sharp.
Proof: Let ψ_{M} be the composition of ψ with itself M times where $\psi(x)=x^{2}+x-\frac{1}{4}$ as before. Then the sequence generated by ψ_{M} has order 2^{M} and ψ_{M} employs M

```
multiplications. Hence for each M the maximal order is achieved by the
sequence generated by *M*
```


ACKNOWLEDGMENTS

This problem arose at a seminar conducted by Professor J. Traub in the Computer Science Department at Carengie-Mellon University, and the author wishes to thank his advisor, Professor Traub, for his encouragement and assistance during the formulation of these results.

References

[1] Paterson, M. S., Efficient Iterations for Algebraic kumbers, Proceedings of the Symposium on Complexity of Computer Computations, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 1972.
[2] Traub, J. F., Computational Complexity of Iterative Processes, Report, Department of Computer Science, Carnegie-Mellon University, 1971. To appear in STAM Journal on Computing, 1972.
[3] Traub, J. F., Iterative Methods for the Solution of Equations, PrenticeHall, Englewood Cliffs, New Jersey, 1964.
[4] Gentleman, W. M., Private Comunication, 1970.

