NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

RESPONSE TO DETECTED ERRORS

IN VELL- STRUCTURED PROGRAMS

D. L. Parnas

July, 1972

This research was supported by the National Science Foundation
under grant GJ 30127 to Carnegie-Mllon University.

mi WW

CARNESEEMEUgtt IMEB/TY

ABSTRACT

Thi s paper discusses an approach to handling run tine errors in well-

structured prograns. It is often assumed that in well-structured prograns
whi ch can be proven correct errors will not be a problem This paper is
predi cated on the assunption that run time errors will continue to be a
probl em

Thi s paper describes an organization for structured progranms which

attenpts to satisfy the following criteria:

(1) Error response routines are witten by each programer in terns
of the abstract nachi ne which he uses for his normal case code.
Errors are reported in those terns. He is never forced to use
i nformati on about the inplenentation of other levels in the

syst em

(2) Programs can be witten so that the code for error detection,
error correction, and normal case, are lexically separate and

can be nodified independently.

(3) The system can evolve from one which does little error recovery
to one which introduces quite sophisticated techniques without

a change in structure.

(4) Even with unsophisticated recovery procedures, the task of
| ocating the nodul e containing a bug discovered at run tinme

does not require know edge of many nodul es.

1. 1 NTRODUCTI ON

Per haps because structured programmng is advanced as a nmeans of
elimnating errors in programs, prograns witten to denonstrate struc-
tured programming (e.g., [3,5]) are witten assum ng that each subpro-
gramw || always performcorrectly. Mdyreover, each programis witten
on the assunption that it itself will never behave incorrectly.

This paper is witten on the assunption that, although structured
progranmming will help, run tine errors will be with us for a while.

Three justifications for this assunption are:

(1) even the best of "structured progranmers” occasionally err;

(2) the apparatus on which we run occasionally fails and may
cause a programto fail (either directly or by causing a

change in code or data);

(3) in practice prograns are changed and errors appear which had

not appeared before.

G@ven this assunption, a systemintended to be reliable nust be
designed with error handling as a fundanental consideration

This paper suggests a design approach which we believe can increase
reliability. It is not particularly concerned with detecting errors;
it is concerned with the response to the detection of an error. W are
not primarily concerned with debugging (the progranmmer's response to a

detected error); we are concerned with the programis response to a detected

error. Such responses include attenpts at self diagnosis, saving of par-

tial results, printing of diagnostic information, etc.

This paper does not present an algorithm for error recovery. The
paper does present a schene for program organi zation which facilitates
the introduction of recovery and diagnostic al gorithns. It also presents
a list of guidelines to help the designer in anticipating the types of

errors which m ght occur.

2. DI FFICULTI ES | NTRODUCED BY A "LEVELED STRUCTURE"

To understand the proposal of this paper one nust understand the
concept of a hierarchically structured system[3]. One nust recall that
the lower levels must function without the presence of the upper |evels,
and they can be used by a variety of upper |evel prograns. It follows
that the lower |evels cannot use any know edge of the higher |evels.
However, error recovery usually requires the conbined action of severa
levels. An error will be detected by a lower level but information
avail able only at a higher level deternmines the appropriate action

This is a special case of the observation that structured progranmm ng
introduces a conpartnentalization of know edge and may make nore difficult

any action which requires know edge from several conpartnents.*

3. THE EFFECT OF ERRCRS ON CODE COVPLEXI TY

A straightforward machi ne | anguage programto wite on a file
is usually naive. Error probabilities are relatively high in
peri pherals; the code needed for error detection and correction nmakes
the prograns quite conplex. As a result even a change in the nornal

case procedure is difficult.

*Appendi x 2 should be read at this point by readers who do not accept
t he above paragraphs.

Such conplications can occur at all levels in a structured program
They are most apparent at the i/o level because of the probability of
error being higher there, but the problems are not essentially different
at other |evels.

To keep the code for the normal case separate from the code concerned
with errors, we propose that nodules in a structured systemnmake use of
a software analog of a "trap". Most conputer hardware is designed to
detect common errors and transfer control to a specified |ocation upon
detecting such an error. Typical trap conditions are "divide by zero"
and "menmory bounds violation". Traps allow sinpler code because
one need not include checks for those errors in the program Traps al so
decrease the probability of such errors going undetected.*

In the exanples given in [1] the modules are specified to call wuser
provi ded subroutines under conditions which we interpret as errors. I'n
fact, this is the only way that module restrictions are specified!

The subroutine nanes correspond to the hardware trap | ocations. The

user of those mpdules may write his code without checks for violations

of module restrictions. The code concerned with error recovery is con-
fined to the trap routines. This organization achieves |exical separation
of normal use, detection, and correction procedures, thereby easing changes.

We state our first suggestion: Pl ace responsibility for the detection

of attenpts to violate its specifications in the "abstract machine"; it

calls a trap routine upon detection of such an error. Ot her errorsfail -

ures of the virtual machine, will also be reported by traps. The remai nder

of this paper assumes such an organization.

* |t has been suggested that traps provide a convenient mechanism for re-
porting infrequent events to programs which would otherwi ze need to nake

frequent checks. Errors, the subject of this paper, are only special cases
of that class of situations [7]

It is intended that the trap handling routines be witten by the user
of a virtual machine and have access to the data used by that user's '"Virtua
progranf. It is desirable that the programs witten for a "virtual machine”

can alter the routine associated with the trap routine nane.

4. NON- MAI NTAI NABLE ABSTRACTI ONS

In this paper we are assuming that systenms are structured according to
the recommendations of [2] and [3]. Each programis witten in terns of
an abstraction of the remaining portions of the system its correctness
depends upon a small subset of the properties of the code that it calls
upon. This section illustrates that the need to nmake appropriate responses
to errors often severely limts the abstractions we may use.

The structure of a programw Il be less clear if the user of a nodule
cannot wite all of his code In terns of the abstract nodel he is given [4].
Consequently we cannot abstract from facts which should be used to recover
from (or diagnose) an error.

As an exanple consider a virtual machine which provides instructions
whi ch perform "sinultaneous” string substitutions on every line of a file
The substitutions can be irreversible (one cannot tell where the change
was made by looking at the file afterwards). Let us further assunme that
the specification given to the users of this machi ne conpletely hides
the processing sequence (giving the appearance that all lines are pro-
cessed si mul taneously).

Real difficulties in inplenmenting such a virtual machine arise

because execution of the nmachine "instruction" will extend over a neasurable

period of tine and mi ght be interrupted by an error. If the file is
partially processed, recovery will depend upon the user's ability to know
which parts of his file have been operated upon. Wen this depends upon
the sequence of processing, he nust know "hi dden" infornation

One solution would be to keep, within the "virtual machine", in-
formation sufficient to restore the file to its original state. This
solution usually has a very high cost. I f one nade a nodul e with such
a specification, there would be many situations in which one could not
afford to use it.

O'ten a practical solution is to make the nodul e sonewhat |ess
abstract. The specification nust admt to the possibility of error and
provide information to assist in error recovery. The set of "degraded"
designs includes designs which specify the sequencing and designs

that mark unchanged and erroneous parts of the file. Unless we
abandon the idea of abstraction conpletely, none of these designs always
presents the infornmation necessary for recovery. W can, however, handle
the nost frequent errors by nbdeling the errors as a set of abstract errors
rather than ignoring then

The above brings out the second suggestion of this paper: Do not

specify a nodule or level to be an abstraction which errors will frequently

deny.

5. ERROR TYPES AND DI RECTI ON OF PROPOGATI ON

An error detected at any given level in a systemmay be either
propogating dowmward (violating the specified restrictions on the virtua

machi ne) or propogating upward. The upward propogating errors nmay represent

either failures of a nechani smwhich has been used correctly, or they
represent "reflections" of an error which had previously propogated down-
ward. W shall deal with these cases in turn.

VWhen detected, a downward propogating error should be returned to
the level above. Responsibility for diagnosis and possible recovery nust
lie at the higher levels because the |ower |evel programdoes not have
sufficient know edge to determ ne what was desired. (See Appendix 2 for
exanples.) Wth the "trap" nechanismthis results in a call to a sub-
routine witten by the last caller. Thus, when a downward propogating
error is detected, it is reflected to higher |evels.

A level is informed of an upward propogating error when a "trap"
handling routine is called. |If the routine handles a reflected error of

usage, it should first determ ne whether or not the error originated at

its own level. If it determines that the error of usage occurred at a
hi gher level, it nust adjust its external state*, and call a trap routine
above. If it is determined that the error has returned to Its origina

| evel, the programmay either attenpt recovery, or informthe next higher
I evel of an error of mechanism (by calling a trap routine).
VWhen a level is informed of an error by the machine below it, It
may either attenpt recovery (by means of retry,or an alternative pro-
granm) or adjust its external state and report the error still higher
Any of these routines nay al so produce diagnostics for progranmers.
Normally, the lower levels of a systemdo not abort the job in the
event of a failure of nmechanism At sone higher level recovery or |oss

m ni m zation procedures may be available. Job abortion occurs only at the

hi ghest level (or when the call nechanismfails).

*We el aborate on this later.

To sunmmarize, upon detecting an error in a hierarchically structured
pi ece of software the error is first reflected and control passed to the
| evel where the error originated. At this point it is either corrected
or reflected still higher as an error in nechanism At every level,either
recovery is attenpted or the error is reported still higher. At each
| evel ,the error handling routines have the responsibility of restoring
the state of the virtual nachine used by the |level above to one which is
consistent with the specifications. All possible efforts are made to assure
that no programis given control with its virtual machine in an "inpossible" state
The above is only a skeleton into which various error recovery and
di agnostic policies may be fit. The neta-structure proposed has three

advant ages:

(1) It allows each error handling procedure to be witten at the
| evel where the necessary know edge exists and in terns of the

virtual machine. This preserves the nodular structure [4],

(2) It provides for the evolution of a system towards increased

reliability without major revisions. Usually when the system

is first assenbled the error "trap" routines are primtive.

They may do no nore than print their nane. As the devel op-

ment progresses, increased experience and understandi ng all ows
these routines to be replaced with nore sophisticated diagnostic,

recovery, or loss mnimzation routines.

(3) The use of even the trivial versions of the trap routines

*Wth a precisely defined machine (real or virtual) certain relations be-
tween the functions nmay be "proven" by taking the specification as a set
of axionms. A state in which those relations do not hold is terned "inpossible".

greatly sinplifies debugging once the system has been "inte-
grated". When a system has been produced by the cooperation
of many progranmers, nooeknows the conplete system wel |

VWhen a bug appears, it is a difficult job to determ ne which
programmer should study the problem In our experience in
testing systens whose error policies approxi mate those sug-
gested in this paper, error routines which do no nore than
print out their own nane usually indicate which nodule (and
whi ch progranmer) is at fault. W nmake great efforts to avoid
havi ng bugs whi ch show up after the nodul es are conbined, but

when we fail, the above becones useful.

6. SPECI FYI NG THE ERRCOR | NDI CATI ONS

VWhen a nodul e Is designed and specified we specify all the linmta-
tions of the programand all the error calls which will be made in the
event that those conditions are violated. W also specify routines to
be called in the event of certain other failures. The following is a
list of considerations which nust enter into the construction of the

list. It may be viewed as an aid to error anticipation.

6.1 Limtations on the values of paraneters. Since any piece of

software has a limted range of parameters which it can handle, a trap
should occur if these are violated. These should be omtted only if it
woul d be inpossible to violate them (e.g., if "conmpile time" checks are

feasible).

6.2 Capacity limtations. Since any nodul e which stores inform-

tion will have a finite storage capacity, traps should occur when that

capacity |Is exceeded. The specification nust enable users to predict

when such a trap will occur (i.e., to determne the capacity).

6.3 Requests for undefined information. Any nmodul e which provides

a menory function nust be designed in the light of the possibility that
information will be requested before It has been inserted or after it

has been deleted. Traps should be specified for all such conditions

6.4 Restrictions on the order of operations. Efficiency, ease of

i mpl enentation, or a desire to detect probable programmng errors, may
dictate a restriction on the order of calls on a nodule's functions.
For exanple, nost file systens require "opening” a file before one may
access it. Traps should be specified for violation of these restric-
tions. It is sonetinmes necessary to add functions to a nodule in order
to specify the conditions under which such traps occur. In the file

exanpl e a predicate "OPENED' woul d be appropriate. (See also Appendix 2.)

6.5 Detection of actions which are likely to be unintentioned

Experi ence has shown us a comon class of programming errors which result
in certain "strange" actions. For exanple, the opening of a file which

is already open is often indicative of an error. Many pieces of soft-

ware use the unlikely action as a way of encoding sone other operation
(e.g., the closing of the file). W prefer to specify traps for such
occurrences and provide alternative neans of performing the other operation
Then a user has the option of specifying the alternative operation as the
body of his trap routine. This particular recommendation is a question

of taste. Modules designed in this way often have restrictions that sone

find annoyi ng.

-10-

6.6 Sufficiency. The above list of downward propogating error
checks could be summarized as follows: The set of error trap conditions

specified should be sufficient to guarantee that,if none of them applies,

the change specified as the effect of calling the routine could be carried
out without violating any nmodule limtations. Further, the fact that no

trap occurs, should guarantee that the value of the function (if any)

will not be "undefined".

6.7 Priority of traps. A single erroneous call may violate several
of the trap conditions mentioned above. It is not usually useful to call
several trap routines. Instead we assign a priority to each trap and

specify that only the highest priority "enabled” trap to be call ed. (I'n
[1] the priority was indicated by the sequence of the calls in the text.)
Priority assignnment becomes essential when the value of some functions
in the trap definitions m ght be undefined in an erroneous call. Then
the priority of the traps nust guarantee that there will be an enabl ed
trap with a higher priority than any error condition which mentions un-

defined functions (see Appendix 1) .

6.8 Size of the"trap vector". The structure and efficiency of the

individual trap routines is inproved as the class of errors they handle is
restricted. The analysis done by the routine to determ ne the exact

error often conputes information which was known to the calling
modul e. However, one must also avoid specifying a very |arge number of

di stinct error routines. One can conbine several simlar conditions to
reduce the number of distinct routines. The optimal "trade-off" is a

function of: (1) the sophistication of the error diagnhosis being attenpted

-11-

(which determ nes the nunber of routines which would actually be dif-
ferent) and (2) a conplex space-tinme tradeoff. A practical conpronmise is
to conbine simlar conditions and pass a paranmeter indicating the actua

error.

6.9 State after the trap. Programming is sinplest when the nodul e

had no external changes after an error call. Wen it is not practica

to adhere to such a rule, the trap should not occur until sufficient
information to determine the state change is nade available to the cal -
lers. The trap routine has the option of executing "return" after at-
tenpting correction of the error; the nodule should then continue after
ascertaining that the call is now correct. If continuation is |npossible,
the trap specification should nake that clear. A return in such cases
can be handled by calling a trap routine used only for such an illega

"return".

6.10 FErrors of Mechanism Reporting a failure by the nodule is

inherently nore difficult than reporting the downward passing errors we
have been discussing. The actual error can only be accurately described
in terns of information which has been hidden fromthe user. He could not
use an accurate report. W want to give him abstract infornation which
may help himin recovering; we are again faced with a trade-off between
the sinplicity of the design and the accuracy or detail of the abstract
report. At one extrene we use a single trap «ame to report "failure"

and require that the user of the nodule run diagnostic prograns on his
virtual nmachine to determine the extent of the damage. Experience with

har dwar e di agnostic prograns teaches us that this is quite a difficult

-12-

task. In the case of a "virtual machine" there are many types of fail-
ures in which the modul e has the capability of delivering quite a de-
tailed analysis of the damage to the virtual machine. For example, a
file systemis usually capable of giving its users a list of damaged
records and even a list of "conmmands" which no |onger work correctly.
However, some failures are so catastrophic that the information is not
avai | abl e. In the exanple given in Appendix 1 we have chosen a design
inwhich the "failure" error call routines pass a paranmeter which cl as-
sifies the type of failure. These classifications allow the user to

answer such questions as;

(1) D d the command which failed change any function val ues?

(2) Is it possible that a retry woul d work?

(3) Were functions other than the one called affected?

(4 Was the npdule able to restore functions to a state
consistent with the specifications or is the nachine

in an "inpossible" state?

We considered an alternative which was further towards the fully
detail ed extrene. In this alternative we woul d have added a predicate
associ ated with each function; the predicate would be true if the failure
had affected proper functioning of its associated function. There would
al so have been a predicate which would be true if the nodul e had been un-
able to set the value of the previously nmentioned predicates properly.
This predi cate woul d have been true in catastrophic failures. (There
woul d always be the possibility of a catastrophe so great that even the

| ast predicate could not be properly set.) In an extrenme alternative,

-13-

the predicates had as many paraneters as their associated functions and
woul d provide true or false indications for each possible call

W rejected these alternatives because:

(1) It seened unlikely that one would want to nake an inple-
ment ati on which was sufficiently redundant that it would be

able to provide such detailed information

(2) It seened unlikely that a user programwould be witten to

use such infornmation.

Qur deci sion we made was based upon a certain expected set of applica-
tions and would be wong for some. W present it only as an exanpl e of

one solution to this class of problem
8. REDUNDANCY AND EFFI Cl ENCY

Modul es desi gned as descri bed above can be thought of as highly
insul ated external prograns; the traps can be viewed as a wall protecting
the modul e from danage. In a system constructed with such a view,
much of the systemresources are applied to maintaining the
walls. For exanple, as a particular value is passed through several nodul es
it will be repeatedly checked against the sane lints. Such redundancy is ex-
trenely valuable in the early testing stages', but when the systemis reliable

the inefficiency introduced by the redundant checking beconmes significant.
When errors are quite rare, we can elimnate some of the redundant

checks.
Here one can discern two distinct approaches. (1) Retain the upper

| evel checks, elimnate the Iower |evel checks, assunming that no error

mi 1J12M
CAffIEHMHUIN IWWEXSTY

-14-

will be introduced in the variable on its way down. (2) Retain the |ower
| evel checks, use the trap routines at the internediate levels to pass
the error back up to the point where it occurred. The second is usually
preferable, but there are exceptions. Wen there are difficulties in
the "backing up" which is sonetinmes needed in the second approach, the

first approach can detect errors before changes are made.

9. EXAMPLES

Appendi x 1 gives an exanple of a nodule specified in accordance with
this paper. The notes annotating the exanple indicate which sections of
the paper gave rise to particular decisions in the specification. Appendix 2
is a narrative of an error traversing several |evels.

Space does not permt us to discuss a whole systemin great detail.
The reader might wish to look at [2] where all the nodul es of a snal
system are presented. In that exanple we were forced to ignore errors of
nmechani sm because the lowest |evel was a commercial Fortran inplenenta-

tion which did not permt the fielding of errors by user provided software.

10. CONCLUSI ONS

W find it unfortunate that our conclusions are based on a snall set
of experiences on snall scale systens with inexperienced programers.

This limted experience supports the followi ng concl usions:

1. Proper handling of errors requires that a systematic approach to
error handling be taken in every part of the system Most of our dif-
ficulties with errors occurred because our "lowest" |evel, the comercia

system that we were using, did not follow our approach

-15-

2. The trap approach appears to be enornously hel pful, but the use
of FORTRAN subroutine calls introduces three inportant difficulties.
The caller's identity is unavailable to the FORTRAN routine; reassigning
the contents of the trap locations dynamically was unnecessarily conplicated
and transfer of control between error routine and main programis uneces-
sarily restricted. These difficulties could and should be corrected in a

prof essi onal attenpt to apply our techniques.

3. Qur ability to abstract did not appear excessively restricted by

the necessity of considering errors in designing the abstraction

4, Reflection of downward traveling errors and the passing of failures
upward appears, on the basis of very limted trials, to be workable and
useful. Reflection provides a basis for elimnating redundant error checks

except in the (hopefully) rare case of actual occurrence of an error

5. The consideration of error possibilities will require half and
sonetines nore than half of a designer's effort in witing specifications
for his mbdules in our present efforts. In our own evaluation this is a

reasonabl e price for the potentially increased reliability of the system

6. CQur proposal is one which, at first glance, violates a fundanenta

rule of hierarchically structured systens. |n previous exanples of such

systens it has been presuned that a programat level i calls only prograns
at level i-1 and lower. W now have a schene in which prograns call error
routines written at higher |evels. In the previous situation there was a

sinple formal test which one could nake to test whether or not the system

was hierarchically structured. It is inportant that we now find a basis

-16-

for nmechani cal checking of hierarchical structuring. Merely labeling a
routine "error routine" does not have any significance

W propose that the necessary information is contained in the speci-

fication of the nodules. The correctness of a given nodule's inplenenta-
tion is dependent upon the |ower level routines which it chooses to call

If those lower level routines (which are not named in the specification)

fail, causing the nodule to fail, the nodule will not be considered to
neet its specifications. In contrast, the nodule is specified only to
call the trap routine. Its responsibility ends with the call. The nodul e

wi |l be considered correct even if the trap routine is absent. This is
anal ogous to the hardware which is considered correct whether or not trap
routines are provided.

We propose then that the test for hierarchical structure (which re-
quires that a program conplete all specified actions w thout calling upon

hi gher level routines) specifically nmake an exception of the calling of

routines named in its specification. Under
this definition, the systens we discussed have a hierarchical structure
and the concept of "virtual machine" is still valid.

7. Sone readers have suggested that instead of trap routines the
upper levels |eave encoded instructions for use by the lower levels in
the event of error. Such a solution only replaces a nmachine interpreted

trap routine by a software interpreted one.

8. W feel that an organization sinilar to the one proposed is an

essential step towards the production of highly reliable systens.

-17-

Acknow edgenent: | amgrateful to P.J. Courtois, H D. Wctlar, Dr. James

S Mller, A Newell, A Jones for hel pful comrents on versions of this paper.
Many of the ideas in this paper were suggested by the work of systens
programers who informally organized parts of this programthis way. The

assi stance of their exanples in suggesting the guidelines offered here is

acknow edged.

-18-

Ref erences

(1

[2]

[3]

[4]

[5]

[6]

[7

Parnas, D. L., A Technique for Software Modul es Specification with
Exampl es, Carnegie-Mellon University Technical Report, 1971, Com
muni cations of the ACM, May 1972.

Parnas, D. L., On the Criteria for Decomposing Systems into Modul es,
Carnegi e-Mellon University Technical Report, 1971, to be published,
Communi cations of the ACM, 1972.

Dijkstra, E. W, Notes on Structured Programm ng, T.H. E., Eindhoven,
The Netherl ands.

Parnas, D. L., "I nformation Distribution Aspects of Design Methodol ogy",
Proceedi ngs of |IFIP Congress 71, 1971.

Wrth, N., "Programm ng by Stepwi se Refinement", Communications of the

ACM.

Parnas, D. L., Some Conclusions from an Experiment in Software Engineer-
ing Techniques, Technical Report, Computer Science Department, Carnegie-

Mel l on University, to be published in Proceedings 1972 FJCC.

A Jones, Private Communication,

Al.1

APPENDI X 1

ANNOTATED EXAMPLE OF MODULE DESIGN IN THE LI GHT OF ERRCRS

I NTRODUCTI ON

Figure 1 is a nodule specification using the technique described in
[1]» The nodule specified is a nodification of an exanple from that paper
Wth one m nor exception all changes fromthe earlier version are a conse-
guence of the considerations in this paper. The notes below refer to

markings in Figure 1.

1. This function has no paraneters and may al ways be called. The
only trap provided is for the case that the nodule fails. The function
represents the nunber of nodes which may yet be added to the tree and is
included so that the user of the nodul e may predict when the trap rou-

tine EC41 or EC46 will be called. See also (8) bel ow

2. The only limtation on this function call is the size of the
paraneter (i.e., the maxi muminteger which may be a node identifier) as

di scussed in section 6.1 of the paper

3. Here we have an illustration of the ordering suggested by the
priority considerations in section 6.7. |If EC4 is not called, the value
of EC5 should be defined. It would only make sense to call E® if ECA or

EC5 need not be call ed.

4., The function VALDEFD (Value defined) is included in order to

specify a trap if sonmeone attenpts to read a value stored at a node in

A-1.2

the tree (by calling VAL) before setting that value (by calling SVAL).

This is according to the considerations in section 6.3

5. Functions ELS and ERS (Exists Left Son and Exists Right Son) are
included so that the user can predict the conditions under which EC20 and

EC24 woul d occur.

6. The inclusion of the separate functions SVAL and CVAL (Set VAL
and Change VAL) is an exanple of the attenpt to trap probably user errors
as discussed in section 6.5. The design makes the assunption that setting
a value for a node which already has a value is, in nmany applications, an
error and requires a distinct function CVAL for that case (alternatively
we could require deletion of the node, but that would introduce great in-
efficiency) . |In nost prograns this would cause no inconvenience. If it
did, the body of EC28 could be a call on CVAL. This of course is an ex-
ternal change of design which is less efficient than the correspondi ng

i nternal change woul d have been

7. He have specified a nodule in which deletion of a node which stil
has descendants is illegal. This is certainly a debatable design decision
It mght trap some errors, but it can force ineficiency when it is desired
to delete a whole subtree. Were this to becone a problem we would add

yet another function to delete a whole subtree.

8. The three points marked "(8)" illustrate a difficulty in trying
to make the calls on error routines conpletely predictable yet not revea

the Inplenmentation. Qur manipul ati ons on SPSLFT make the assunption that

A-1.3

space for storing VAL is allocated when the node is created. In sone

i mpl ementations that woul d not be so. For those inplenentations the
specifications will require a call to EC41 or EC46 in sone cases when

space is actually still available. [If, however, we took the obvious
alternative and nmade separate changes to SPSLFT for creating a node and
SVAL, we would be restricting our Inplenmentation to one which made separate
al l ocations. Such inplenentations would use nmore space and woul d be un-
desirable if SLS or SRS were always followed directly by SVAL. Note that

the elimnation of space limtations would violate sections 6,2 and 6.6.

9. Note that the specification does not specify the value of LS(i);
only some properties of it. Further note that this specification is
acceptable only on the very reasonabl e assunption that pi (the nmaxi mum
nunmber of node nanes) is not less than p2 (the maxi mum nunber of nodes).

If that assunption were violated, we would have to introduce error calls
for the situation where there does not exist a value of k with the properties

speci fi ed.

10. Note that it would be quite reasonable to reduce the size of the

trap vector by conbining EC41 and EC46. See section 6. 8.

11. The error calls EC, EC3, EC6, ECI..... report failures of mech-
anismrather than an incorrect call. W have chosen to have each of these
pass a paraneter k which will indicate the class of failure which has oc-

curred. The values of k are defined as part of the specifications
The inportant thing to note is that the neaning of each particul ar
possible value of k is defined In terns of external properties of the

nmodul e. If the user had kept redundant records he would be able to

A-1.4

det erm ne which value of k applied by diagnostic testing. W pass the
value of k so that he will not need to keep such records and on the
assunption that reasonable inplenentations will be able to determine the
proper value under all but the nost catastrophic of failures. The |ast
value is an escape for such cases.

As nentioned in section 6.10, this particular design is but one
point on a scal e which includes many possibilities. W give it as a reason-

abl e but not necessarily optimal design.

A-2.1

APPENDI X 2

EXAMPLES | N WHI CH ERROR MESSAGES MUST BE PASSED BETWEEN LEVELS

It may not be obvious to sonme readers that errors in a hierarchically
structured systemnust be handled at |evels other than that at which they
are detected. W present two exanples as a neans of showi ng why the de-
tecting level may not have the informati on necessary to perform the proper

action.

Exanple 1. Bad Tape Bl ock

An unreadable tape block will be detected at the |owest |evel because
the hardware will signal its presence. The low |level programwhich has
been ordered to read a given tape bl ock, has no know edge of the intended
use of the information and can take no corrective action. Sone |evels
hi gher we have a programproviding a sinple sequential access nethod.
This program knows that the block was part of a given file but no nore.
Still higher we nmight find a programnmanaging a |large data base. This
programm ght know that the block in question was part of a sumary file
whi ch had just been conputed froma nmaster file and the record could be
reconputed. Alternatively, the systemm ght not be that sophisticated,
but the error could be passed higher to the user who is able to give in-

structions for recovery.

Exanple 2. Qut of Date Directory
Due to a software error a file is changed while a copy of its directory
still exists. A programusing that old directory attenpts to read the file

and ultimately receives an error due to sone hardware violation. If the

A-2.2

error is passed up to the level which used the incorrect directory, it
can check its copy against the naster copy and try again. Recovery at
the intermediate levels was inpossible. |If this sophistication were not
present, the error could be passed upward to sone higher Ievel which would
attenpt a retry. If the retry involves getting a new copy of the directory,
we may wel | have success.

In these two exanples we have tried to show both errors of usage and
errors of mechanism W have also shown that the considerations are
i mportant for both hardware and software errors. In all the situations
outlined an attenpt to handle the error at the incorrect |evel would
have failed due to |ack of proper know edge, the systemwould have a
poorer reliability than necessary. The alternate solution is to intro-
duce the necessary know edge to the lower level. This clearly would

reduce the advantage we have gained from the hierarchical structure.

Function SRS
possible values: none
parameters: integer i
initial values: not applicable

effect:

(10)
(11)

(9)

(8)

call EC43 if i < 0 or i > pi
call EC44 if 'Exists'(i) - false
call EC45 if 'ERS'(i) * true
call EC46 if SPSLFT'- 0
call EC47(k) if failure
there exists k such that [

0 < k < pi
'Exists'(k) - false
Exists(k) * true
RS(i) - k

VALDEFD(k) - false
ELS(k)=ERS(k) = false

ERS(i) =true
FA(k) - i]

SPSLFT -'SPSLFT'-1

Val ues of k
EC37, EC42, EC4A7

k =0
k =1
k =2
k =3
k = 4
k -5
k =6
k =7
Not es

=

k
k

in calls of EC,EC3, EC6, EC9, EC13, EC15, EC17, EC21, EC25, EQR29, EC33,

val ue of SPSLFT, Exi sts, FA, VALDEED, VAL, ELS ERS, LS, RS unchanged,
successful retry possible! '

val ue of SPSLFT. Exi sts, FA VALDEFD VAL, ELS, ERS, LS, RS unchanged,
successful retry inpossible.

value of function called lost or changed, no other changes.
"possible state", successful retry possible.

val ue of function called lost or changed, no other changes.
"impossible state", continuation inpossible.

val ue of function called lost or changed, no other changes.
"possible state", successful retry inpossible

val ue of functions other than that called changed

"possible state", successful retry possible

val ue of functions other than that called have been changed
"impossible state", successful retry inpossible.

val ue of functions other than that called have been changed.
"impossible state", continuation inpossible.

2,3,4 only possible in ECI,EC3 ... EC25
0 or k = 1 suggest that information is not |ost but growth or

change of tree is restricted.
"possible state" and "inpossible state" are defined in the paper.

The design makes the assunption that if the nodule is unable to

restore its external appearance to a "possible state" it cannot
conti nue.

"successful retry possible" does not guarantee successful retry. It
only neans that successful retry is not known to be inpossible.
This value would be given if the nodul e experienced difficulties
whi ch m ght be resolved externally to the nodul e and suffered
no internal damage to its data structures.

Function DEL
possible values: none
parameters: integer i
initial values: not applicable
effect:
call EC34 if i<0 or i > pi
call EC35 if 'Exists'(i) - false
(7) call EC36 if '"ELS'(i) or 'ERS'(i) - true
(11) call EC37(k) if failure
FA(i) is undefined
VAL(i) is undefined
ERS(i) is undefined
ELS(i) is undefined
VALDEFD(i) is undefined
Exists (i) - false
if i -'LSTFA'(i))then [
LS('"FA'G)) is undefined
ELS('FA'(i)) - false]
if i -'R$TFA'(i))then [
RSCFA'(i)) is undefined
ERSCFA'(i)) - false]
(8) SPSLFT -'SPSLFT' + 1

Function SLS
possible values: none
parameters: integer i
initial values: not applicable
effect:
call EC38 if i < 0 or i > pi
call EC39 if 'Exists'(i) - false
call EC40 if 'ELS'(i) - true
(10) call EC41 if 'SPSLFT' -0
(11) call EC42(k) if failure
there exists K such that [
0 < k < pi
(9) 'Exists'(k) - false
Exists(k) ¢ true
LS(i) - k
ELS(i) -true
ELS(k)-ERS(k) - false
VALDEFD(k) - false
FA(K) - i]
(8) SPSLFT -'SPSLFT'-1

Function SPSLFT
possible values: integer
parameters:none

(1) initial values: p2
effect:

(11) call ECI(k) if failure

Function Exists
possible values: true, false
parameters: integer i
initial values: Exists(O) - true;Exists(l:pl Walse; all others undefined
effect:
(2) call EC2 if i <0 or i > pi
(11) call EC3(k) if failure

Function FA
possible values: integer
parameters: integer i
initial values: FA(O) - 0; all others undefined

effect:
call EC4 if i <0 or i > pi
(3) call EC5 if 'Exists'(i) - false
(11) call EC6(K) if failure

Function VALDEFD
possible values: true,false
parameters: integer |
(4) initial values: VALDEFD(0) -false; all others undefined
effect:
call EC7 if i<0 or i > pi
call EC8 if 'Exists'(i) - false
(11) call EC9(k) if failure

Function VAL
possible values: integer
parameters: integer i
initial values: undefined
call EC10 if i<0 or i > pi
call ECU if 'Exists'(i) - false
call EC12 if '"VALDEFD'(i) - false
(11) call EC13(k) if failure

Function ELS
possible values: true,false
parameters: integer i
initial values: ELS(O)- false; all others undefined
effect:
call EC48 if i <0 or i > pi
call EC 14 if 'Exists'(i) - false
(11) call EC15(k) if failure

Function ERS
possible values: true.false
parameters: integer i
initial values: ERS(0)= false; all others undefined

effect:
call EC49 if i <0 or i > pi
call EC 16 if 'Exists'(i) - false
(11) call EC17(k) if failure

Function LS
possible values: integer
parameters: integer i
initial values: undefined

effect:
call EC18 if i <0 or i > pi
call EC19 if 'Exists'(i) * false
call EC20 if 'ELS'(i) - false
(11) call EC21(k) if failure

Function RS
possible values: integer
parameters: integer i
initial values: undefined

effect:
call EC22 if i <0 or i > pi
call EC23 if 'Exists'(i) - false
call EC24 if 'ERS'(i) - false
(11) call EC25(k) if failure

Function SVAL
possible values: none
parameters:integer iv
initial values: not applicable

effect:
call EC26 if i<0 or i > pi
call EC27 if 'Exists'(i) - false
(6) call EC28 if '"VALDEFD'(i) - true
(11) call EC29(k) if failure
VAL(i) = v

VALDEFD(i) - true

Function CVAL
possible values: none
parameters:integer iv
initial values: not applicable
effect:
call EC30 if i<0 or i > pi
call EC31 if 'Exists'(i) » false
call EC32 if '"VALDEFD'(i) = false
(11) call EC33(k) if failure
VAL() = v

