NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



SL238 - A SCFTWARE LABCRATCRY

INTERMEDIATE REPORT

U. Corwin U. Thulf

May 1972
Carnegie-Mel Ion Universgi ty

Pi ttsburgh. Pennsylvania

This work was supported by the Advanced Research Projects Agency of
the 0Office of the Secretary of Defense (F44G20-70-C-0107) and is
monitored Ly the Alr Force Office of Scientific Regearch.



SL238 - A SOFTWARE LABORATORY: 2

ABSTRACY

This report describes the resources and data structures of SL238

{(Softuware Laboratory 238) and the designing of SL238 modules and

systems. ©SL238 is a simple, multiprocess, operating system used to
create an environment suitable for the construction of experimental

programming systems for educational and research uses.



SL238 - A SOFTWARE LABDRATORY 3

INTRODUCTION

The similarity between many of the components of various systems
programs has often been noted but seldom exploited. lLexical
analyzers and syntax analyzers, for example, occur in all compilers
and to some extent in assemblers, editors, command interpreters, etc.
Yet they are generally re-uritten for each such system
{(translator-uriting systems, or compiler-compilers, have been the one
exception to this practice)l. This situation is especially annoying
to two groups of pepple to whom the present report is primarily
aimed: (1) the researcher who wuwould like to quickly fabricate a
system in order to experiment uith a single aspect of it in depth and
(2) the instructor who would |ike to assign programming problems on
some aspect of systems programming but which only make sense in the
context of a complete system. To iilustrate this point, consider the
researcher {or student) uwho would iike to {(is assigned to)
"investigate various compiler optimization strategies on the
tree-representation of a program. To do this, lexical analysis,
symbo! table and space management, parser, tree-generation, and 1/0
functions must first be uritten. None of these is essential to the
project at hand, and collectively they may be sufficiently

effort-consuming to make the project impractical.

This report describes the intermediate results of a project to

design a software laboratory (SL238) suitable for the study of

softuare systems.




SL238 - A SOFTWARE LABORATORY 4

The Physical Model

M 1\ Aw\ m/a/a/alalala
: lf /4/2444444

!

FIGURE 1




3238 - A SOFTWARE LABORATORY S
THE PHILOSOPHY

The objective of SL238 is to create an environment within which
researchers and students may experiment Hith the eonutructinn of
softuare systems. The system accomplishes this by providing a large
number of functional “modules" together with a mechanism for flexibly
Interconnecting them in various ways. The philosophy of the system
is a software analog of the harduare “macrn-mndulaq" of Clark [1]) and
"register-transfer-modules" of Bell {2), Much of the phiicsophy for
the approach described below is due to Krutar [3]1: key ideas uere
borrousd from Habermann and Jomes [4) and from many discusaions uWith

Per Brinch Hansen.,

The ophilosophy of the SL238 environment results from
consequences of a particular physical medei. The concepts implied by
that mode! are essential for the user to understand that environment.

That model is:

A (user) system is constructed from a number of
component modules, The module is a functional wunit
receiving saignals (data) from one of a number of uWires,
cables or ports, performing some operations and (possibily)
generating output signals on other cables {(or ports). The
cables connected to a module are fitted with standard
male/female connectors so that the output of any module may
be directed to the input of any other moduie by an
appropriate interconnection af their cables. Rather than

direct interconnection, a special "patch panei", similar to




51238 - A SOFTWARE LABORATORY 6

an old-fashioned telephone switchboard, is provided to
facilitate the interconnections. Figure I illustrates this

mode| .,

In this model modules do not Know to whom or to what they are
connected. Internal namee are used to reference ports for receiving
and sending information and the actuwal supplier or recelver is
specified externally by the particular cabling pattern estab) ished by
the user. This fact, coupled wuith the "standard connector"
assumption, permits the substitution of a module for a functionally

eguivalent one (or network of ones) at any time.

The use of the eystem is best illustrated by a simple axample.
Suppose one wWished to construct a program to read text from a
paper-tape reader and print it on the teletype. Modules axiat for
reading (characters) from the paper tape reader (PTREAD) and writing
(characters) on the teletype (TTYOUT) ~- they can be interconnected

as fol lous:

7?{]%/ ' 7 -

Suppresasing the patch panel helps to clarify the diagram In more

compiex examples, this confiéuration may be draun simpiy as:

PTREAD TTYOUT

¥

Now suppoase one would |ike to add pagination of the output.. Further,




SL238 ~ A SOFTWARE LABORATORY 7

suppose there is a module (PAGER) uhich accepts input and passes it
along to its output, but also looks at each data item for a special
end-of-line (EOL)} character and, after the nth occurance, inserts a
special upspace-the-paper (form-feed) character, If the original
connection is broken and reconnected as shown beion, the desired

pagination will result.

PTREAD |————| PAGER |————| TTYOUY

Suppose further that it is desired to get a character frequency
distribution in the text while the printing is going on. [f a module
(CHRFOR) to do this exists, the foliowing configuration might be

created:

CHRFRQ

P
k 4

PTREAD |—>»——] SPLIT |—>——| PAGER |——>—— TTYOUT

In this configuration, 'SPLIT’ is a simple module uhich, uwhen it
receives input, replicates that same input on each of tuwo output
ports. [Much more complicated configurations could be built in this
manner but thies example has served to illustrate the general

phi losophy.

0f course, software moduies are not physical objects: they do
not have tangible cables dangling out of them. The patchboard does

not have a physical existence either. The acts of connection and




SL238 - A SOFTWARE LABORATORY 8

reconnection are not accompliished by physical acts but rather by

commands typed on a terminal. The precise syntax of these commands

is defined in thes command fanguage interpreter module (CLI) and may
change as more attention is paid to the human enginesring aspscth of
the system (which is considered to be a crucial aspsct of the uwhole

project). Houwever, the structure of these commands ls intendsd to

reinforce the conceptual model| presented above; thue the commands
mimic the things one wouid expect to do to modules physically wired

together -- for exampis: connections may be made or broken at any

time, the compliete "wiring list" may be displayed or Iindividual wires

traced, the signals flowing along a particular cable may be

moni tored, etc,



5L238 - A SOFTWARE LABORATORY 9
IMPLEMENTATION AND RESOURCES

The system model presented in the previous section might be
implemented in any one af a number of ways -- sach module couid have
a subroutine or co-routine structure, for sxample. It was decided to
construct each module as an aeynchronous {sequential}l process. The
cabiing and patchbcard are implementsd as a "mailbox" message
buffering system. The system is impiemented in two pieces: (1} a
small "kernel" which includes space management, process management,

and message handling primitives, and (2} the moduies.

The command language (CL) for using 5L23@ is implemsnted as a
set of modules using the mechanisms provided by the Kernel. It is in
no Way different from, or more privileged than wmodules aaaeublgd by
the user. This construction philosophy permite the CL to be easiiy
modified, permits different versions of the CL for different users,
and permits the CL to be easily adapted to various configuratione and
needs. Finally, the CL, being constructed from modules itself, forms
an advanced example of the use of the system and ie discussed in a

later section on current systems and modules.

THE KERNEL

The kerne! consists of a small number of data structures,
accessors, and routines for manipulating the structures. The data
‘structures used in the Kernsl are instances of a smailer number of
"classee" of structures f(ocbjects, lista of objects, semaphores, and

vectorsl).




SLZ38 - A SOFTWARE LABORATORY IB

The routines in the kernel are constructed such that each

performs an operation appropriate to a class of structures on any

instances of & member of that c¢lassg. This operaticon 18 never
performed by any other routine. This is a working definition of the
term "clean" used earlier. Tt should be noted that this definition

of c¢lean conflicts with similar ones proposed elsewhere [71 in that
it implies a sgtrong functional interdependence). Tt wag chosen in
favor of a data semantic inter dependency because of the clarity and

modifiability it affords.

The kernel has been purposely kept small {the entire kernel
conglsts of lees than 280 PDP-11 instructicnsg) alleowing (1) the
design and implementation to be iterated. (2) the kernel itself to be

an object of study in a systems programming course, and (3) a usable
gubget of the total system to be ugsed on a minimal (4K) FPDP-11

canfiguration.

The following 1s an English description of the data gtructures

and their associated manipulative routine supplied by the kernel.

(1) objects

An "object"™ 1is a date structure which is composed of 2tN (1 £ N
£ IB) words, two of which contain a link field (chjects are
frequently chained together on lists), and a priority field (when on

a ligt, objects are always in pricority order).



SL238 - A SOFTWARE LABORATORY 11

LINK

PRIORITY

T
l?SIZE WORDS

R |

All system objects have system defined names associated uwith the

offsets from the base address of the object. These names are always

used when accessing the areas of an object and are given beside the

locations

in the diagrams of the objects {(sach block in a diagram

represants one uword).

The routines for

a)

b)

c)

d)

e)

f)

a)

get (n)

ralease (a,n)

manipulating objects are:

allocate memory for an object of size 2%"n"
and return its address.

deallocate the space for an object wuhose
address is "a" and size is n. The value of
"release" is undefined.

copyold (a,n,b) copy the contents of an object whose base

copy (a,n)

link {(a,h)

delink -(h}

suap (hl,h2)

address is "a" and size is 21"n" wWwords into
an object whose base address is "b"; exactly
2*"n" wWords Will be copied. Return the base
address of "b".

create an object of size 2%*"n" and make its
contents identical to those of "a"; return
the address of the new copy.

link the object uhose base address is "a" on
to the |ist whose header addrees is "h". The
object wiil be linked into the proper
priority position on the list. Return the

address of "a".

remove the first object, that is the highest
priority one, from the |ist whose header
address is "h" and return the address of this
object,

delink the first object of the "hl" chain and
iink it onto the "h2" chain: return the




SL238 - A SOFTWARE LABORATORY 12

address of tha suappsd abject.
(2) The "feasibla" |ist, semaphores, and synchronization

A particular class of objects are called "DIB’e", Dynamic
Information Blocks. DIB is the name given te what has been called a
"process description' in other systems, and contains relevent state
information for a process. The "feasibla" list is a chain of all the
DIB's fnr.procuuuuu Hhich are ready to run. All other processss are |
"pending on a semaphore" and these DIB's are chained on a list
asgociated with that particular semaphore. The reader is assumed to
be familiar with Dijkstra’s P and V primitives and their use for

process synchronization [B].

SEMAPHORE - FEASIBLE HEADER
SEMHDR HEADER — HEADER —
SEMCNT COUNT L
b L]
LINK we L INK e
PRIORITY PRIORITY
- v ¥




SL238 - A SOFTWARE LABORATORY 13

DIBNME

pIBSiB POINTER TO MODULE

DIBULK |LINK FOR USER DBIB LIST
DIBDLK |LINK FOR MODULE DIBLIST
DIBPRT

Di8
DIBLNK LINK
CIBPRC PRIORITY
— NAME —
DIasp STACK REGISTER

— PORT INFORMATION —

o

The routines uhich manipulate semaphores and the feasibie |ist are:

savstart

P (sem)

Y (sem)

saves the context of the current process on its
stack, saves the stack pointer of the current
process in its DIB, and initiates the process whose
DIB is at the top of the feasible list by
retrieving its stack pointer and restoring its
context from the stack.

Di jkstra’s synchronization primitives.

(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called

"messages".

Modules do not send messages directly to other modules

but rather to "ports". A port is a local (to the module) name for

one of the cables in the model -- thus modules are not aware of which

other modules they receive messages from nor send messages to; they

are aware only of their own local port names.




SL230 - A SOFTWARE LABORATCORY 14

The patchboard is implemented as numbered a set of "mailboxes"

-- data structure

8 which contain {among other things) a (possibly

empty) set of messages. Patchboard connections are accompiished by

making the "port information" portion of a process’'s DIB reference a

particuiar mailbox

by its number.

A MESSAGE MAILBOX
MSGLNK LINK MBXHOR HEADER
MSGPRI PRIGRITY
MSGTYP | TYPE | SIZE | MSGSIZ MBXUSE MUTUAL
— EXCLUSION —
MSGDAT SEMAPHORE
— USER DATA —
V—\/ MBXACC
— ACTIVITY  —
/\_/| SEMAPHORE

The message handli

send (m,p)

receive (p)

Al though the

necessary for the

MBXLIM
_ LIMIT —_—
SEMAPHORE

ng primitives are:

A copy of the message whose base address is "m"
Wwill be sent to the mailbox connected to port “p".
If the mailbox is currently full the sending
process is suspended until space for the message
becomes available,

Return the address of a message in the maiibox
connected to port "p". The message ie removed from
the mailbox. If no messages are currently in the

mai ibox the process is suspended until a message is
sent to it,

SYSTEM FUNCTIONS

kKernel suppiies all of the support facilities

running process, there is a set of functions that




SL238 ~ A SOFTWARE LABORATDRY 15

is useful to have in a common area where it may be shared by all the
modules. Thase functions are those which are either performed by
many modules (but too simple to be an independent module) or are best

performed with more access to system data structures.

The system functions are neither necessary for the operation of
the Kernel nor do they form a permanently defined set. They exist

solely as a convenience for the user.
(1) Process creation functions

The karnel supplies routines to support processes but it does
not provide any means to create them or interconnect them. A module
could perform these activities but this might endanger the

reliabiiity of the system. The process countrol functions are:

create (a,b,c) create an incarnation of the module whose base
address is "a"; give it the name located in the 2
Hord area whose address is "b" and use tha first 7
words of the area whose address s "c" as the DIB's
priority and its context values (if c=B, the
priority becomes the wmodules priority and the
context values are undefined). Link tha DIB on the
feasible list and on the system DIB |ist. Return
value is the address of the new DIB.

connect (a,b,c) disconnact the Ath port of the DIB uhose base
address is "b" from any connection and reconnect it
to the mailbox number "c". 1f "c" is @, allocate a

nerw mailbox. HRHeturn values are the mailbox address
and number.

(2) Arithmetic functions

The PDP-11 is a mini-computer and does not supply all the
harduare arithmetic functions that are normaliy used by processas.

Rather than every moduie having its own routines, the most useful are




SL238 - A SOFTWARE LABORATORY 16

provided In the system functions (it the functions bacome avallable

as hardware, ths wmodules can be changad to take advantage of It

and/or the system functions can be changesd to be more efficient),

The arithmetic functions currently provided are:

mul tpy (a,b)

mul t5@ (a)

divide {a,b)

divbd (a)

logd (&)

powarZ (a}l

ungigned integer multiply "a" times "b" and return
the double precision rasult.

has the result of "mul!tpylz, A#SB}" {("#" denoctes
octall

uneigned integer divisicn of "a" by "b", returning
a quotlent and a8 remainder.

has the result of "divide (a,#58}".

calculate the log, base 2, of "a" and round it to
the next higher integer. Return value is the log
angd the difference between "a" and Z2%{first return
valua),

calculats 2*"a" and return it.

{3} Conversion functions

The names in the DOIB's and in the modules are in RADIX 58

(allowing 3 characterse/word). The conversion functions from RADIX 58

and ASCII are:

convbl@ (a)

conasc (a)

returns the RADIX 58 value of “a".

returns the ASCII value of "a".




SL238 - A SOFTWARE LABORATORY 17

MODULES

The modules are the basic building blocks of all SL238 systems.
As such there are several restrictions placed on the code and several
conventions that should be foliowed when modules are coded. A SL23@
module (source file)l is composed of 3 parte, (1) documentation {(for
programmer use), (2) Static Information Biock (SIB) and (3)the
executable code. A detaited description of the parts follows and an

example of a module is given in appendix A.

DOCUMENTATION

The documentation is a description of what the module does and
how to sucessfully interface the module to other modules. 'lt gives
all the information that is externally visible (message formats, uhat
the module does,...} but it doesn’t give the algorithms used or the
ihtarnallg defined data structures. The format has the purpose of
insuring that all information necessary for the proper use of the
module is available to the user. This forces the moduies to be clean
(as defined earlier), the internal data is unavailable and it can not
be used in assumed connections. The format consists of keyuwords and
descriptions (see +the example in appendix A). The follouwing

describes what the keywords signify:
MODULE module name as given in the SIB

FUNCTION: English description of the function of the
moduie, exciusive of port information, message
formate and algorithms

PARAMETERS: the parameters of the module as given in the
SIB, wuwhich are: priority, stack size, dib size,
number of ports, and module size (approximate)




SL238 - A SOFTWARE LABORATORY 18

EXTERNAL: external variables referenced by the module.
These are given in the format:
<English name> (<system name>)
example:
TELETYPE INPUT STATUS REGISTER (T8KBS)

PORTS: description of the message format that is sent or
received through each port, inciuding what the
moduie uses the port for. The format is:

<por-t number> <port name> <port function>

CONNECTIONS: modules that the module is "normally"
connected to. The format is:

"CONNECTIDONS:
PORT MCDULE
<PORT NUMBER> <MODULE NAME>:<PORT NUMBER CONNECTED TO»>
ASSEMBLY: all the files with which the module must be
assembled, wusually the fites which define

interface languages (explained in a later
section) and assembly time options

Si8

The SIB is the name given to the object that contains the system
module data constants for a particular module. All SIB’s are |inked
on the system SIB list (SIBHED} and are available to al! users. The

SIB is located at the head of a module’s code and its format iss



SL230 - A SOFTWARE LABORATCRY 18

SIB
SIBLNK LINK
SIBPRI PRIORITY
SIBNME
— NAME

SIBDSZ DIB SIZE |STACK SIZE SIBSSZ

SIBNPT U CF PORTS| ENTRY PT SIBEPC

SIBMSZ MODULE SIZE
SIBDLK MCDULE DIB LIST
SIBPRT PCRTS

PORT FORMAT

MATL BOX

PORT N&ME

The contents of each field (at load time) must be:
SIBLNK - module size (in bytes). This wvalue is used by the loader to
a I locate space.
SIBPRI - module pricrity

SIBNME - RADIX 58 value of the module name. (1)

(1) If PALX1l is used, this wvalue must be calculated. If MACX1l is
used then the .RADS8 directive may be used.



SLZ238 - A SOFTWARE LABORATORY 28

SIBSSZ -

SIBDSZ -

SIBEPD -

one byte value indicating the aiza-of the stack necessary to
run an incarnation of the module. The value is the log
base 2 of the number of words in the stack. The minimum
value of the field is "5" resulting in a stack of 215 (=32
Wwords) of which 28 words are required for system overhead
(hold the context when the procees isn't running, interrupt
stacking, etc.) leaving 12 words free for the user
(subroutine calls, leocal storage, etc).
the Ipg, base 2, of the number of Worde in a DIB of this
module. The minimum value of the fieid is "3" giving a DIB
of 293 (=8 words) but not allouing any ports, or at least
"4" (214 =16 words), allowing & ports.
module entry point (offset from ths SIBLNK field to the

firat axecutahie lnstruction).

SIBNPT - number of ports in the module.

SIBOLK -

SIBM5Z -

SIBPRT

one word DIB list header, initial value B. When the module
has incarnations, this field is the header for a list of
the DIB's, |

one word size fieid, initial value, undefined. UWhen the
module is loaded this field is given the value of the
number of Words that the module actually has allocated to
it (not necessarily an integer power of 2).

SIBNPT port entries, mailbox number is B, the port name Is

the RADIX 5@ valus of a 3 character name and may be B.




SL238 - A SOFTWARE LABORATORY 21

CoDE

The actual coding practices used in the moduies are not
important as long as they do not violate certain restrictions and
conventions. These restrictions are imposad to insure that the
modules function properly in ths softuare |laboratory environment and

do not harm the systenm.

The most important set of restrictions centers on the
pasaibility of muttiple incarnations of a module. Thie property of
SL238 modules forces alil code tc be pure and re-entrant. A pure
module, in this sense, has tuwo implications: {1} the code wmust not
contain any instructions that alter other instructions in the module

and {2)the module must not contain any local storage.

Since ioccal storage can not be located in the module, it must be
aliocated from core wuwhen an incarnation of the medute is first
started. There are tuo ways storage may be allocated:

1} from the stack
2} using a ned section of core
Both of these methods work quite uell and require about the same

amount of uork,.

Te allocate from the stack, it is first necessary to start out
with a large enough stack. The first instructions (outside of any
and all loops} subtract the proper amount from the stack pointer (SP)
and save the SP in a register. Throughout the rest of the module the

jocal storage is referenced as indexed on the register.




SL238 - A SOFTWARE LABORATORY 22

To allocate local storage from core, a call on GET is done for
the required core and the address of the core is saved in a register.

It is accessed in the same manner as space on the stack.

Allocating from the stack is the preferable {(poesibly may become
required) method of aliocating storage. Since the stack asaigned to
a process is completely is defined, the system can easily control it.
This may bécoma important when It is desired to implement a functicon
to deletes an incarnation of a module. The major reason why the
delete function does not exiat in the current version is the virtual
impossibility of deallocating all the space {(such as messages, local
storage, et&.) an incarnation has. This problem has been given some
attention but no suitable (neat and easy) solution had been found
that did not involve a considerable overhead in the allocation and

deal location process. (1)

Another raestriction on the code is that it must be entirely
ralpcatable. Thie restriction results from the lack of hardware
relocation facilities on the PDP-11. The problems of writing

relocatable code are dicussed in the later secton on cading hints.

l1f the code in a module comforms to these restricticns, then
there will be no problems in ruming it under SL238 (once 1t is
debugged) .

1., A feasible solution appears toc be one having the module deciding
when and if an incarnation can be deleted. This could be done with a
system function and a delete bit in each DIB.




SL238 - A SOFTWARE LABORATORY 23

Conventions

In the process of coding many modules there are certain coding
conventions that have been found to be useful. These conventions do
not actually affect the module code ({other than in the conceptual
manner in which the modules are coded) and apply mostiy to coding
done in PDP-11 assembly code (PAL11}. They are not required but it

is édviseable to use them since they do make coding easier.

To facilitate the use of local storage it is desirable to use
direct assignments rather than numeric offsets., This allouws tuo
things to be done, the format of the local storage may be changed
easily and the format is well described for later referencing. At
the start of a module, values are assigned to names and a description

given of the data. An example of this would be:

PreveveseievevedeSedeTevevtvedetere

NAME =0 + 1 RADIX 58 NAME ¢
3 Meevelrievetevevedeioeveeveien et
NUMBER =2 : %+ FILE NUMBER )
3 MR ReTevevedeveveseve
REFCNT =4 ; % NUMBER OF REFS *

Pievereieiclededtieieteteieiedeinte

The data would be acessed by an instruction |iKe:

TST REFCNT (R5) ; ANY REFERENCES?

It is also desirable to use direct assignments of variables for

port assignments. This allows the assignments to be easily changed

and provides more information for anyone reading the code.

The Kernel routines and system function, defined earlier in this




SL238 - A SOFTWARE LABORATORY 24

report, are accessed, on the PDP-11, by means of the TRAP and EMT

instructions (TRAP for Kernel routines and EMT for system functions).

These instructions allow an argument which is used by the TRAP- and

EMT routines to determine which routine ie being called. Thus, If

the SEND routine is number 2 the calling instruction would look |lke:
TRAP 2

allowing position independent accessing of the routines,

The system data that a user might need has been defined In the
file SYMHED. In addition to defining the hardware registers (R -
RS, SP, PC, PS, 1/0 registers), SYMHED defines all the names of the
seystam data structures (5IB, 0IB, messages, semaphores) wWith the
identifiers given in this report, SYMHED also defines a mnemonic and
gives the relavent information about the parameters and return values.
for each argument of the TRAP and EMT functions. This allows the
kernal routines to be called‘bg their name. By auaambllhg SYMHED
Hith a module all that is necessary to access the send routine is to

code the Iinstructon:
TRAP SENO
after setting up the parameters.

SYMHED defines the "interface" l|anguage between the module and
the Kernel, An interface language is a defination of the
assumptions, etructures, commande and conventions that exist betueen
tuoc objects that interact With each other (such as kernel and modulg,
moduie and module}). [f a module is written that has a non-trivial

massage format, a large set of possible commands, or uses a common




S5L238 - A SOFTWARE LABORATORY 25

data format, it is best to create an interface file (ike SYMHED.
Befining interface languages in a file Ilike SYMHED has a great
advantage over putting the assignments at the start of every module.
It is easier to access parts of a data structure using mnemonics and
it allous the format of the structure to be changed uith-nnlg the
cost of a reassembly instead of a change and reasssmbly of every
mocuie that accesses that structure. Another advantage is having the

intarface.complatelg defined so other programmers can use it.

Hints

The follouwing paragraphs describe several PAL1l oriented tricks

that can be used to ease the job of writing a module.

As someone who closely studied the 518 format may have noticed,
some of the information required would be non-triviat for the
programmer to calculate. Specifically this is the module size in the
location SIBLNK and the module entry point offset in the locatian
SIBEPO. An easy way to get these values is to have the assembier
calculate them. The module size is calculated by having a label at
the start of the SIB and one at the end of the module (after the last
instruction}. The start of the moduie would have an assignment of

the formt
MODLNK =<LASTLABEL »-<F IRSTI.ABEL >

and the first uWword of the SIB would have the value of "MODSIZ™.

Al ternatealy, if the labels were "SIB" and "LAST" the start of the SIB

could look lika:




SL230 - A SOFTWARE LABORATORY 26

SIB: .WORD LAST-SIB tMODULE SIZE

The same technique can be used for SIBEPO. (see the example in

appendix B)

It is sometimes ueeful to assemble several modules together, sc,
instead of putting a ".END" at the end of each medule, it is usualiy
better to put the ".EOT" directive theras. All currently existing
files follow this practice and for this reason the fite "TAIL"
exista. It contains only one line, a ".END" statement.

Example: to assemblie the module "DTACON' we find from the
documentation that it requires the files "“SYMHED" and "“DSKCOM"

assembled with it. The assembler command string would look |ike:
DTACON, /CDTACON«SYMHED , DSKCOM, DTACON, TAIL

NOTE: SYMHED must be the first file in the string since it deflines

the hardware registers.

The lack of relocation harduare forces all moduies to be
location independent. When a module is loaded, it can aﬁd Wwill be
placed almost anywhere in core. On most machines thies requirement
would piace a great burden on the programmer and/or the programming
language. On the PDP-11 relocatable code is sasy to write, the only
probiems requiring care are accessing fixed addresses (the PS word,
I1/0 registers, etc) and accessing module information (such as command
vectors}. On the PDP-11 this requirement is easy to fulfill due to

the ability to do indexing relative to the program counter (PC). The




S5L238 - A SOFTWARE LABORATORY 27

only problems occur when it is desired to access a vector of data
nwithin the module (such as a command vector) or when trying to acceas

a fixed location in core {such as the PS5 or 1/0 ragistar),

A fixed address can be referenced position iﬁdependuntlg anly bg
the "deferred autoincrement on the PC" mode., This mode forces
absolute inatead of relative addressing. The correct and incorrect
methode of referencing the PS would be:

Moy *#PS, - (5P) tRIGHT (ABSOLUTE}
MOV PS, - (SP) s WRONG (RELATIVE)
(NOTE: timing is identical)

Accessing module information {indexed by a register) involves
using the PC to find where the module is located and calculating
relative displacements. If it is desired to use a vector as a
command break (a vector indexed by a register the correct and

incorrect methods of coding are:

VECTOR: COMMD1,COMMDZ,......

JMP aVECTOR (R@) tWRONG METHOD
ADD PC,R@ s CALCULATE POSITION

HERE: MOV VECTOR-HERE (R@) ,RB ;GET RELATIVE OFFSET TO LABEL
ADD PC,R8 ;MAKE 1T ABSOLUTE

HEREZ: JMP -HEREZ (R@}

Explanation: RB has a valua (even} that is to bs usmed to indﬁx into
YECTOR. Since the module may be located anywhere in core using the
label “YECTOR" as an absolute value will pick up a word from core

that corresponds to uwhere the assembler put tha module (usually B8).




SL238 - & SOFTUARE LABORATORY 28

Instead, the PC is added to R8 gso that R8 points to the label "HERE"

offset by the amount that it formerly contained. The degired word ig

picked up by indexing with the displacement from "HERE" to "VECTOR".

This 1is now the wvalue of a label, as ths assembler saw it. So the

initial process is repeated with the final instruction a "JMP" 1f the

process 1is for a command break or possibly a ‘MOV® or "CMPB" if the

vector contained data.



SL23@ -~ A SOFTWARE LABORATORY 29

DESIGN

Thus far, the discussion hae centered on hou to write a moduie
rather than what should go into it. From what has been said, it is
evident that SL238 will actualiy support almest any piece of
refocatable code that has a SIB on the front of it. This is due to
the impossiblity of checking or protection on the PDP-11. Designing
a module as if it was a stand-alone program is ignoring the resources
of the software laboratory. The entire concept of S5L238 reste on the
general availability of smal! functional modules. Proper design of a

module is of the utmost importance so as to maximize its ussfulnese,

Yhe guiding philosophy shouid be to design modules that are
globally useful. This means we uant to design the modules small and
functionally simple. Complex functions are generated by connecting
many of these simpie modules together. Unfortunately, there is a
jower iimit upon the size of a module. At some point the overhead
invoived in the system structures (BIB and stack, minimum = 48 uords)
ie bigger than the module. In moat instances this is undesirable.
If modules this small are implemented, core is quickly lost through
fragmentation and cluttering. A wmoduie in this range should be
re-examined to see if it is really useful. If there are few usses for
it, then it possibly should be tncluded as a subroutine in the module
that uses it. If there are many users the possibility of including
the module as a system function should be considered. An example of
a small module that can not reasonably do either of the alternatives

is the TTYIN module. This module is 32 words in length (18 of which




SL23@ - A SOFTWARE LABORATORY 38

are the SIB) and ie an independent module solely because 1t does [/0.

By having it do the 1/0, other modules become more generally useful.

Modules should have a size on the order of 75 to 488 words.
(The figure 488 results from writing many moduies ana evaiuating what
is contained in each. It is not an upper pound hut rather a guide to
be used when designing modules.) If a moouie is larger than 488 words
it probably incorporates several functions that independent modu | es
should do. [t should be examined to ses whether it can be broken
dounn into smaller modules. An example of a "iarge" module is the
Command Language Interpreter (CLI). It has a size of 512 werds and
cansists mostiy of special cases (the various commands). [t would be
difficult to divide the CLI into separate modules due toc the common
data base that the commands require and the fact that each individuél

command is too small to be an independent moduise.

The normal condition for the existence of large modules is the
grouping together of several small sections of related code that are
all accessed in the same -manner. A poseibie way to eliminate this
type of modufe is to provide a module that consists almost entirely
of ports and the code merely sends the incoming massages out the
various ports according to some well defined rule. [f the resutting
small modules are nrot generally useful it is not evident it is worth

the effort (and overhead!}) to do this.

Most modules occur in the context of a larger system or project
and are originally designed as a part of that system. Dividing a
system into modules can be done in many wWays, not all of which are

desirable. An exemple of modularizing a project is given in [3] In




SL238 - A SOFTWARE LABORATORY 31

What ue consider to be cne of the batter ways to divide a system. A
system should be divided along functional boundaries instead of the
uaual data fiow houndaries. Functionally interdependent modules are
easier to change then data interdependent ones. Since we wWish to
have the facility of easy changahlity in the system, we must have the
modules functionaily interdependent, keeping data interdependency

restricted to the messages that pass between tuo modules.

51230 lends itself to functional interdependency. It is easy to
gee this in terms of an I/0 module. 5L230 has tuo classes of 1/0
devices, single character devices (teletype, tink) and biock devices
(disk, DECtape). The [/0 messages from different devices are not
identical. if a module uwere designed requiring a block formatted
input, it couid not connect directly wuith a character oriented
device. By Kkeeping the Jj/0 functions independent ue seem to be
losing access to some of the devices from a particular module.
Obviously all that is neceseary is to insert a conversion moduile
betueen the two. [f 3 moduie requires a particular type of I/0 input
this is the type of soiution that shouid be considered. The link
dedicated system provides us With an exampie of {/0 type dapendant
modules. If it would be desirable to send an ASCII file from the
POP-18 to the POP-11 the character would come inte the 11 through the
link input module{LK1IN). This module is single character or"ren.ted
so0 that if we uwished to use PIP1l tc transfer the file to disk a
direct connection could not be made. Instead, a character-to-buffer
modute uould have to ke inserted bhetueen the tuwo. Schematically this

looks |ike:




SL238 - A SOFTWARE LABORATORY 32

[ S
PIP LINBUF | —s—] LK1IN
——
BLOCK 1/0 CHARACTER LINK INPUT
MODULE ACCUMULATOR MODULE

Doing input from the link this way ailows thz continued use of the
single character capabilities of tne link and also &ilcws us to
tranasfer files wWith a minimum of Work. Thnis solution would be
superior to uwriting a new LK1IN module for it aisc ganerates the
LINBUF modulie which shouiag be useful elsewhere. ins .inK system is

dascribed in the foliowing section on current sgsteasi

As in most problems, the dividing of & project irnto modules
involves the making of various trade-offs. in the software
laboratory the desired end result is to have as many useful modules
as possible. By checking on the Kinds of existying moaui&s it i8

{should be) possible to find moet of the programming work done.



SL23@ - A SOFTWARE LABDRATORY 33

CURRENT SYSTEMS AND MDOLLES

At the present time there are tuwo major systems that have besn
designed; a command |anguage system and a !ink oriented system f{see
schematics in appendix B}. The command language syatem is designed
to provide the rescurces necessary toc debug modules' and construct
systems. The human engineering aspect of the command language has
been given caonsiderable attention and the commands are deesigned to
allow efficient use of the human resources available. The commands
are given in the documentation of the Command Language Interpreter

{CLI} module {(see apendix D} and wiil not be given here.

The command language eystem can be easily extended if a user
wants it to be. If a new command or facility is desired, a new
module can be written to implement the command or an existing module
can be moedified., There ie nothing permanent about the current
varsion cof the command language module other than the Kinds of
commands that it provides. The current version is actually the- third
one and represents a year of experimentation and use of other

varsions.

The |ink dedicated eystem is used to communicate with another
computer by means of a link connecting the tuwo machines (currently
the !|ink goes to a POP-18). Since the POP-11 is a small machine, the
gecond machine is used to edit and assemble PDP-11 files and the
binary output is sent to the PDP-11 over the |ink. Resources ars

available in the link system tc transfer from the |link to any other




S.238 -~ A SOFTWARE LABORATORY 34

block 1/0 device. This system allows the rapid debugging of modules
(or systeme) since the power of a bigger computer is available to the
user, For a more exact description’ of the |ink system, see the

schematic in appendix B and the description in appendix C.

In addition to the modules composing these two systems, there
are several others that have been written. The documentation of all

cuurrently existing modulaes is given in appendix 0.



SL238 - A SOFTWARE LABORATORY 35

FUTURE PROJECTS AND SYSTEMS

There are only a fed major projects ieft involving changes to
existing systems. They are outlined in the following paragraphs to
give examples of the Kind of projects that could be considered. The
particular ones given are those for which a solution is thought to be

easily available.

There are some changes that should be done to SL238 itself (as
opposed to modules). One of these is the addition of a delete
function. As uas mentioned earlier in this report, this function is
not in the current version because of the difficulty in deallocating

the core assigned to a process.

Another major change to SL238 involves the manner in which a
system is initialiy loaded. In the current version, each system must
have its own system assembly since information about which modules
are loaded exists as a vector in the system. A better way to
initiatize the system is to have the capability of ueing a load file
that specifies the modules to be lcaded and the connections to be
made. This is easily implemented by using a subroutine, "OOEVER",
from the command |language interpreter module. By making this routine
part of the system, ali that is necessary toc perform the proper
connections {and loadingse) for a system is to give the routine the
correct data structure. The source of the data structure could be
anyuhere and thus could be a file on an 1/0 device. This would allowu
more efficient system loading and the system in core could be changed

more easily. It would also ease the implementation of a command




SL238 - A SOFTWARE LABORATORY 36

language with each system (the link system does not have command

language facilities).

Somatima; it might be desirabie to change SL23R into a multiuser
system. The PDP-11'e available for this projesct were not big enough
for more than one user 80 a multi-user system couid not be
implemented. Since SL230 is already designad &s & multi-process
system, it wouid be a simple matter to have each ussr have one
process for his use. This would be the eguivalent of the way most
current operating systems are implemented, but it would provent the
user from accessing most of the resources provided by 5L238. of
SL238 (multiple feasible lists, a recursive defination of the kernel,

etc.) but they will not be discussed in this report.

There are many systems that couid be designed for the softnare
laboratory. Most of the first systems built should have the purpose
of bullding up the library of modules in addition ¢ auilding a
useful system. Among these projects are a few that can be done With
very little work, the modules that should be written are rsadily
apparent.. One of these would be a text editor. The editor need not
be complex but should have a grsat deal of power. The actual design
of the modules Nfll depend upon the type of editor used {text mode,
line mode, etc.) and the desired features of that type. 1t ehould,
honwever, contain modules that are common to ali types of editors. A

possible design of an editor is:




SL230 - A SOFTWARE LABORATORY 37

TTYOUT
& L \ I/0
SI LED
BUFLIN I/0
TTYIN ACCUCL EDITOR LINER 4 MMM LINEUF

The only modules that are not written are the three editoring
modules, EDITOR, LINER, SILED. The first 1is the type dependent

editor controler, it 1g the one that scang the input and decides what

to do. Liner is a simple module that handles a list of strings (in
messageg) . SILED is a more sgophisticated part of the editor. It
implements an "alter™ command fa command which would allow the

internal editing of a line of text with a line mode text editor} and

would not be necegsary for an initial wversion of the editor. All the
ather modules exigt in some form. This design ig neither the only
possible design nor necessarily the best. It 1is one of the simpler

oneg and should be easy to Implement.

Other svstems that could be implemented include assgsemblers,
compilers and text Jjustification programs. Each of thege should also
have sgeveral modules implemented for each function, such as geveral
symbol table modules, ocptimizers etc. Uhen several projects sgsuch as
these are completed there will be a wuseful librarv o©f modulesg

available for users.



SL238 - A SOFTWARE LABORATORY 38

APPENDIX A

This appendix contains an example of a module.

- we W ue

; MODULE LINBUF
H
1
33 FUNCTION: RCCUMULATE SINGLE CHARACTERS INTO BUFFERS. THIS
5 NODULE LOCKS LIKE AN INPUT 1/0 RMODULE (BUFFER SIDE)
i AND MILL CONVERT R SINGLE CHARRCTER 1/0 MODULE INTO
13 A BUFFER ONE. TERMINRTOR ON THE INPUT IS THE
i CHARACTER CONTROL Z (826 ASCII DECMAL).
b
i3 PRARANETERS: PRIORITYs 2p889
53 STACK SIZE< 215
53 DIB SIZEs= 2t4
i3 NUMBER OF PORTS= 3
53 NODULE SIZE= 178 WORGS
i
53 PORTS: PORT  NAME  FUNCTION
33 ) 1/6 CGMMRND INPUT PORY. A 8LGCK
53 ORIENTED 1/0 COMMAND IS ACCEPT
i3 THROUGH THIS PORT. FOR FORMAYS SIf
3 DSKCOM.
i3 1 1/0 REPLY PORT
33 2 CHRRACTER INPUT PORT. CHARACTER i
33 THE FIRST BYTE IN THE DATR PARY OF
- THE NMESSAGE
i3
i3 ASSEMBLY: SYMHED, DSKCOM

i3
; ; PRGE




S5L238 - A SOFTUARE LABORATORY

Ed
H

3 Taonk st
BUFADR=B 5 T BUFFER RDDRESS T
1 T at
BUFLT=1 1 T BUFFER COUNT t
p b aat
i
RECIVS=R
REPYS=1
INPUTS=2
H
LODSIR:
]
LODHDS=LODLST-L00S1B
LODERPT=0START-1 O0SIA
]
«MORD 1L90HDS,2EBBE
WORD  4B166,7716 ; "LEINBLF "
+BYTE 5,4 ,LODENPT,3
+HORD  LODMOS, B
.HORD 8,8 1PORT B
.HORD B,8 jPORT 1
+MORD B,8 PORT 2

; PRGE

33



SL238 - A SOFTWARE LABORATORY 48

H
OSTART:

3
RSTART:

BDONE :
ADONE :

LoP2.

H
REND:
REND2:

REND3:

H
HUNTH:

s PRGE

CLR
CLR
noy
CLR
BR

Hov
JS5R
JSR
CHPR
BNE
JSR
cheg
BNE

JER
Chrs
BEW
JER
BR

JSR
[y
BNE
nove
J3R
BR

CHPB
BEQ
CHPB
BEQ
TSY
BNE
BR

-(5P)

—{5P)

SP,R2 ;POINT INTO THE STACK
R3 s ZERD R3

ADONE S SYARRT

#-1,DEVCAD (R3) ;ERROR, AND TELL HIN 50
AL DL

Fo,iaTIL

R, HOPIN ;OPEN FOR INPUT

KEVRRY 52F WG, GIVE HIN A NEGATIVE NUNBER
¢, CAUNK 1 IF 50, DK

®B, MEADF tHAVE THE NEXT, IS IT A READ?
PN ;iF WOT, HE GOOFED!

&0, eEVaYT ;6ET ONE &YTZ

Re,#CTRE ;15 1T f CONTROL Z (THE END}
REARD

Fo, Pura¥T

LuPz

FC,SENDBF ;G0 SEND THE CURRENT QUFFER
R, AREROF +HAS REPLY A READ? IF 50 SEND EOF
HUNTH

Mdr ,0EVCAL(RI)

PC, COUNN

RENDZ

R8, #CLOSZ 1A CLOSE?

BDONE ; IF S0, STRART OVER

RE, MRELESE +A RELERSE?

BOOGNE ;IF S0 , START OVER

R@ sAN ASSIGN?

REKNDS

BOONE




SL238 - A SDFYWARE LABORATORY 4]

i
PUTRYT:

i

H
GCETBYT

sPRGE

THE FOLLOWING I8 THE GETBYTE ROUTINE

INC
BGT
HOVE
INC
RTS

nov
TRAP
HOvE
MOVE
TRAP
noy
BIC
RTS

2 (R2) ; INCCREMENT THECHARRCTER COUNT
GETRUF ;IF >B THEN NONE LEFT, GET MORE
RE, 4 (R2) JGET THIS BYTE

(R2) JINC THE POINTER

PC s RETLRN

FINPUTS, RE

RECIV sGEY THE BYTE

NSGOAT (RA?, - (3P} §SAVE THE DATA
NSGS[Z(RB),R1

RELERS sRELERS THE MESSALE

(5P3+,RB

#177669,R9

PC



SL230@ - A SOFTWARE LABDRATORY 42

GETBUF: MOV R8, - (SP) ;SAVE THE DATR BYTE
JSR PC, SENDBF ;SEND THE CURRENT BUFFERCIF ANY}
CHPB  RE, #READF jRERDF NEXT?
BNE BOMB ; IF NOT, BOMB
nov DEVLNK (R3) ,R®  ;GET THE BUFFER PROVIDED
BNE OKSPS ;MAYBE NO BUFFER?
nov R3,RE ;DITCH MESSAGE, IT MAY BE TOO SMALL
MOVB  MSGSIZIR3),Rl  ;HE NEED A SIZE 4 AND IT MAY BE SIZE 3
TRAP  RELERS ;FOUND OUY THE HARD WAY!
nov #4,RE
TRAP  GET ;NOW WE HAVE THE RIGHT SIZE
nov Re,R3 $SAVE IT
CLR (RB) + ;2ERD THIS MESS
CLR (RE) +
nov s, (RD ;S12E

nov #ig,Re

MOVB  Re,DEVSIZ(R3)  ;PUT IN THE SIZE

TRRP  GET sGET THE BUFFER

HOV R&,DEVLNK(R3)  ;PUT IT IN THE MESSAGE
OKSPS: MOV #-776,2(R2)

187 (RB) +
nov R, (R2)
Hov (5P)+,RE ;RESTORE DRTR
BR PUTRYT sPUT OUT THE CURRENT CHARACTER
}
BOMR:  NOV R2,5P sRESET THE STACK
BR HUNTH
H
SENDBF: TST (R2) sWE DD HRVE A BUFFER, DON'T WE?
BEQ NOSTUFF 3+ IF NOT, FORGET IT{
ADD #776,2(R2) $SET COUNTER TD RIGHT VALUE
BEQ NOSTUFF s1F B, THEN NOTHING T0 OUTPUT
MoV 2(R2) , @DEVLNK (R3) sMAKE THE COUNT IN THE BUFFER
CLR 2(R2) "$ZERD THE WORLD
CLR (R2)
B8R counn

H

NOSTUF: nov DEVLNK (R3),RE
BEQ SINK
CLR DEVLNK (R3)
HovB DEVSIZ(R3),R1
TRAP RELERS

SINK: CLR {R2) ;ZERD POINTER
CLR 2(R2) $ZERDO COUNT
HOV #RERDF,RE
RTS PC

;s PAGE




SL238 - A SOFTWARE [LLABORATORY 43

C w ws i we W e

UTFIL: nOV R3,RB $SEND THE MESSRAGE THAT WE HANVE
novp #F ILCHD, NSGTYP (RB) ;PUT IN R GOOD TYPE
noy #REPYS, aRO
TRAP SEND $SEND IT ON
RTS pPc

ounM: JSR PC,OUTFIL

e owr CY e e

INFIL: MoV R3,RE jNOW, RELERS THE NSG WE HAVE
BEQ OKNSG
MOVB  MSGSIZ(R®),Ri
TRAP  RELEAS
OKNSG: MOV #RECIVS,RE
TRAP  RECIV 3GET THE REPLY
nov R8,R3
nov DEVLNK(R®),R1  ;PUT THE LINK IN RL
MOVB  DEVCHD(RE),RE
/TS PC

ODLST:



SL238 - A SOFTWARE (LABORATORY 44

APPENDIX B
TTYOUT TTYIN
< ACCUM
A A
N/
MAXE L .MSGMOD ATOM I
) AN AN v
W
DISPLY ; CLT & LE XAM
——
<
FLOOR DIRMAN > LOADER
v A

1/0 MODULE(S)

Schematic for the command language system.




50238 - A SOFTLWARE LLABORATORY 45

TTYOUT TTYIN
N N/
< ACUM1Z
<
AN A Y

ACUMIZ MAXEL—)|ATOM t iud OLLT‘
dEIRZ S

Y &
S f\_j/_"’“ R
7 |
AN 71 BINACH LEXAM [‘FILHAN}
_>_ ” A \y
A _\\ VA YA

PIPiﬂ'_. DTA oomi

TR

on] b

£
et
=
N 4
-
prd
.y
=
n
\/)\

Y/

DSKHAN S _DTACON

Schematic for the link dedicated systen.




SLz230 - A SOFTWARE LABORATORY 46

APPENDIX C
LINK DEDICATED VERSION

The link dedicated gystem 18 designed to provide facilities to
make the PDP-11 appear like a TTY to the PDE-10. It also provides
the mechanism to transport files both ways across the link. Input is
from the TTY and is accumulated in an accumulation module (ACUMILL) .
This module does all the echoing and handles control U, control 0,
rubout and line overflew. For more information on exactly what
happens 1n each of thege c¢ases see the module itgelf (it should
gsuffice to say that the resuit 1is approximately the same thing as
would happen on the PDP-10). ACUM1 alsc providegs another sgervice,
it has several output ports for the string, one to the link and thus
the PDP-10 and one to the PDP-11's port interchange module (PIP11).
It also has a port connected up to the link input accumulaticn module
{(the link input isg accumulated intc lines to provide mere efficient
buffering) and will send an altmode to this port 1f required. The
purpose of this is te free any message that is stugk in the
accumulation module because it wasn't terminated by a break character
{ex. '"CONFIRM:* from a LOGOUT). The ports are changed by control
characters:

cA gset port out s¢ the string goes to the PDP-10
fB get port cut g0 the string goes to PIPI11
tD gend an aitmode to link accumulation module

The PIP module, when initially loaded has the following symbolic
port assignments (see PIP documentation for explaination) :

0 - system initial lead device. In SYSLDT «> DECtape,
SYSLDK »> disk

1 - altermnate device (one not used as system load. SYSLDT
«>» disk, SYSLDK == DECtape

2 - binary accumulation module. Input device for shipping
binary files over the link

3 - ASCII accumulaticn module. Input device for shipping
RZ8CITI files over the I ink

4 - 1link cutput module. output device for shipping any
file to the PDP-10

5 - unassigned

The current bkinacm module allows conly absolute binary files to
be shipped to the FDP-11. It should be noted that the commands for
each machine must be tvped individual ly.

EXAMPLES :
shipping a binary file to the PDP-11

(1 «» disk, <character> «> control <characters)

th "switch ACUM1l to send to the link
tC !stop anything running on the 10
.R FIPF Istart FIP

*tBl1;0:PIP11-BIN*2;0: Treturn to 11, give PIP11 command



SL238 - A SOFTWARE LABORATORY 47

MATTY: /1«DSK1PIP11.BIN !back to 18, tell PIP to output fiie

to TTY
o IPIP dane
. IPIP11 dene

shipping an ASCI! file to the PDP-11

ta

tc

.R PIF
w1MB81:0:PIP11-FPlle3;0:
TATTY: /1 DSK:PIP11.P11
%

%

shipping a file te the PDP-18

TA

1C

-R PIP
#DSK:PIP11.P11«TTY: /A
tB4;B:+1;0: PIP11-P11
o

*

If an error occurs during the transfer of a file, one of tuo
things will happen. If the binary accumutation module should sticp
too soon {caused by a premature start block} then the rest of the
file will be fumpad on the TTY, The best thing to do is type control
O on the TTY and uwhen the file ie realty finished try again. The
other thing that can happen is that the binary moduis won't see the
start block and thus continue waiting for more input. This is
characterized by the fact that even after a long wait nething
happens. Of course the problem may be that the PDPl8 has gone doun,
but for most purposes this is unlikely. In this case you either have
to reload the system or transfer ancther flle over the |ink an hope
the module becomesa unstuck.

Once a file ie on the PDP-11's disk it is very easy to transfer
it to a DECtape aoc that it may be joaded using 11LP,

EXAMPLES:
transfering flles fram disk to DECtape

(1=» disk, B => JECtapel
wH; B:PIP11-BIN«1;9:P]P11-BIN

W/ XeTTYIN-BIN, TTYOUT, ACUM11, ATGM




SLZ39 - A SOFTUARE LABCRATORY 48

TIYIN BIN
TTYOUT BIN
ACUM11 BIN
ATOM BIN

AVl the underscored parts are the print out of the POP-11. The
second command is an example of the advanced form of PIPll and makes
" use of the fact that nothing is lost betuwesn commands.



SL.23B - A SOFTWARE LABORATORY 439

APPENDIX D

~MODULE LORDER

FUNCTION: pdp-li abcolute binary loader. }oads modulas Into cora from
& block oriented i/0 input. for the format of an
absoluta binary tile ses the paper tape softuare
foader manuel.

PARANETERS: prioritys 788

stack sizes 215

dib size= 214
number of portss 4
module sizes 261 words

PORTS: port name function

B command input port. the second and third data
words ars assumed to contain the flle name
that the module is in.

1 reply port. uhen the module is loaded, the address
is returned in the first data word of the message.
ff a error occursd, the reply address Is in the
i/o page or elise B. valid errors are:

value returned srror

8 chacksum srror occursd

-1 no room irn cors for module

-2 module size trobie(too many blocks)
-2 module size trouble(too fen blocks)

&l other error are |70 errors and the /o
srror nusber |s returned. see dskcom for
these valuss.

2 i/0 output port. commands to the i/o woduls are
sent out this port.
3 i/0 reply port. for message format ses dekcom.
CONNECT]IONS:
port module
8 dirman: 2
1 dirman:3
2 {70 module :8
3 i/o wodule 11

ASSEHBLY: sywhed, dskcom




«

SL238 - A SOFTWARE LABORATORY 59

MQDULE PTPL1

FUNCTION: doesx charactsr, string and block mods /o ulth the paper
taps punch. mods is datermined by ths meszaga fype in accordenca
with atommy and dekcom. | block mode |/ then any output
ortented command are sccepied and 2 raply is gereratad. an srror
occurrs i1 a read or read orisntad comnand Iz glven (such as
read & block, read & directory) or i{ a diractory orlanied
command s glvan (deiete a file}.

PARANETERS: prieritys 77771
stack sizex 215
dib siza= 214
numbar of poriss 2
module nizes 74 words

EXTERNAL: paper tape punch data register (ppb)
paper taps punch status ragistar (pps)
papsr taps punch semaphers (hsp)

PORTS: port name function

a waszags input port. messagas are racelivad through
this port. if the type ix B, it iz assumed 1o he
& singls charactsr type messags (ths
data in the low byle of the message data arsa.
if the type is positive, & string (e ansumed With the
first byte of data belng the character {byte) count.
-1f the typs Is nagative, 2 block orlented i/o iE
assumad and & reply is sent out port 1

i reply cutpul port for block orisntad i/o

ASSEMBLY: sywhed, dskcom



SL238 -~ A SOFTWARE LABORATORY 51

MODULE PTREAD

FUNCTION: handle the input from the paper tape readar. initiates the
ptr for input and waits on tha ptr Input semaphors. output i=
single byte wode i/0. '

PARAMETERS: priority= 17788
stack sizes 215
dib sizex 214
number of portss 1
module size= 32 words

EXTERNAL: ptr status register (prs)
ptr buffer register {(prb)
ptr input semaphore f{hsr)

PORTS: port name function
8 inp character outpul port. character is in the lomM
byte of the mexzage

ASSEMBLY: sywhed



SL238 - A SOFTWARE LABORATORY 52

MODULE PTR11

FUNCTION: do block mode i/0 on the paper taps reader. will accept any
block mode command as given In "dskcom™ but will return an
srror i f an output iz tried, of sny sort
i.e. & write, opsn for output, delets, stc. or |f
4 directory is requested.

PARRNETERS: prioritys 77771
stack size=s 215
dib size= 24
nuwber of portss 2
module size= 84 words

EXTERNAL: paper taps status register (prs}
paper taps resader dats register (prb)

paper taps input semaphore (hsr}

PORTS: port name function

[} command input port. mwessages of the cowmand
format (as given in dskcom) are input through
this port

1 data and command reply output port.

ASSENBLY: sywhed, dskcom



SL238 -- A SOFTWARE LABORATORY 53

MODULE  SINK

FUNCTION: the message bit buctet. all mazzages recelved are deleted,
neaver to be sesw Agaln,

PARANETERS: priority= 777
stack sizes 215
dib wize= 214
numbar of portiss 1
module sizes 16 words

PORTS: port nama function
8 metsage inpul port. any format of message

iz aliowsd.

ASSEMBLY: symhad



SL239 - A SOFTWARE LABORATORY 54

HODULE FLOOR

FUNCTION: to sepsrats iwo groups of modules on the feasibie list. this
mothile doss & busy wait loop. it looks for & message on the
input port by repesied tazxis of septy. when & wessage Is recelvad
a 'p' is dona on the {locor samiphora. when relessed from
the samaphorse, the input message Is sant out and & walt for
4 ned mezsdge iz started.

PARPNETERS: prioritya &80

stack slze= 215
dib xizew 2tk
rumber of portss 2
moduls zize= 32 words

EXTERNAL: 1loor semaphors (floor}

PORTS: pert name function

B message input pori. the message &y be any
Tormat.
1 messdge output port. the output messags is 1he

same as the inputl message.

ASSEMBLY: sywhed



SL238 - A SOFTUARE LABORATORY 55

MODULE ULlIN

FUNCTIONS to do i/c with tht link, input only, this modulil is
uged feor a "fast response" link, ona that raguiras a
ragponsa Mi thin 288 to 808 micre-seconds, it ragquiras
a spacial interrupt routine that fetches tha data
byta into cora befere doing tha "v" on the semaphore,
tha sewmaphore Ie usad as tha data countar, (i.a. a "v"

is deona for avary data byta).

PARAMETERS: pricrity+ 18887
stack size* 2t5
dib silze« 2t4
number of ports¥ 1

module aize*

EXTERNAL: link 1 input status register {Inkacs)
link 1 input semaphore {(liiszem)
1link 1 temporary data buffer (Inkbko
link 1 tmp data buffer size (Inksz)

PORTSt port name function
1 inp data cutput port, CALA iz in tha low
byte of tha message

ASSEMBLY1 symhed



SL238 - A SOFTWARE LABORATORY 56

MODULE LKZIN

FUNCTION: to do i/o With the link, input oniy. single
character mode. this module gats tha data from the
link data register and thus requires only the
semaphore (zee iXlin for a different Kind of
link input,

PARRMETERS: prioritys  1BBE7
stack size= 275
dib sizes 214
nuwber of porizs 1
module sizes

EXTERNAL: link 2 input status register (inkbos)
tink 2 input data register (Inkbob)
link 2 input semaphore (I1Zisem)

PORTS: port name function
1 inp data output port. data is in the low
byte of ths message

ASSEMBLY: sywhed



SL238 - A SOFTWARE LABORATORY 57

MODILE LE1OUT

FUNCTIDM: wodule to do io with the Fink ~ owtput only.

PARAMETERS: priority=

stack sizes
dib sitzes

numbar of porigs

moduie wizea

1eaes

215
214

2
88 words

EXTERNAL1 |Ink 1 output command reglsier {Inkaos}
tink 1 outpul data regstsr (fnkach)
fink 1 output semaphors [lliosam}

PORTS: port niny
a

1

funetion

data Input port. if ths typs is zeroc then ihw

first and only the first byte of! dala is cuipuied

te the link. [f the iype Is positive then

the first byte of data is asaumed to be & count with
the data following. if the typs iz negative then it
the is sssumed that the messige iz & file type
command (see dekcow for what thess commands aral.

¥ tha command Involvas & directory or
a real {lie then an error condltion is returned, an

error condition ie returnod if the comsand has to do with
initiating & file. otherwize the only command anything is

done Mith is the writ! command which causes a buffer

to be outputed (the bufier address is the second datz sord

and the first! word of ths buifer Iz a byts count)
file command reply port

ASSEMBLY: mymhed, deskcom



5L238 ~ A SOFTWARE LABDRATORY 58

RODULE LK20UT

FUNCTION: wodule to do io with the 1ink = output only.

PRRANETERS: prioritys  lbude
stack sizew 215
dib zize: T4
number of portss 2
moduls mizaos 88 vords

EXTERNAL: link 2 cutput command regiszter {inkbos)
link 2 output data regeter (inkbob)
link 2 output semaphors [(|2omam}

PORTS: port nana function

-] dara input port. if the typs iz Zerc than the
firgt and only the firkt byte of data is outputed
to the tink. if the wype iz positive then
the first byte of data is assumed 10 be & count uith
the data following. if the typs ix negative then it
tha Ix axgumed that the mescage iz a file type
cobmand (ses dekcom for what these comkands are).

It the comsand inveives 4 directory or
a raal fiie then an error condition 18 returnad. an

error condition is returned if the command has to do with
initiating & fifa, othernise the only command anything is

aone With is the writf comkand which causes a buffer

1o be outputed (the buffer address is the second data word

and the first word of the butfer is & byte count)
i file command reply port

RSSERALY: mymhad, dxkcom



SL230 - A SOFTWARE LABORATORY 59

HGOULE MAXEL

FUNCTION: modula to convert internal forsat messagas into sxternal format

MeEEAGes. the tuo types of mexzsagas Affected are kRinary numeric and
radix 58 alphanumeric. [t converts thaza into ascti characters.
(numaric is converted into ootal) &il

other mestages ars unalfected. ths types are given in tha interface
language file “atommg®. leading 7eros (on numeric)

are deleted, as are trailing spaces on alphanumeric.

PARRMETERS: pricritys 1001

PORTS:

stack gizes 215
dib sizes 274
numbar of portss 2
module sizes 165 words

port name function
8 data input port. the input has the relavent
data in the first word for numeric and first tuo
words for alphénumeric.
1 data output port. the first data byte is a charactar
count followed immediately by tha characters

ASSEMBLY: symhed, atowmg



SL238 - A SOFTWARE LABDRATORY 68

MODALE CLI

FUNCTION: to impleamant & cowmand language for the softkare iab. tha
taistyps forwdt of the commancds is:

load commana

C<mib namexl{ '<' (<unit numbers *t] (<t i lnamesd *»"]

fila name defaulizs to %ib rame, unit defaults to 0
MIltlipla isads are sephrated by a '='
cCannact oA

€ [ «dibr namexi{ *,7 <6;b namex»] [ <’ <unirt nusbars>

Tot Jlctiin aamex 3 '3 ] (707 cport number |

port namg »] < *=F | f&' | or»

if the terminator is '=' than a naw mailbex (s gotten for the
cornection angd & command string of the same format Is
xpucted After the '=' {roter thim command could contain

A now ' or "+' zo that the command can go on indefinatelyl.
if tha terminator was & '+' the existing comnection ¢f the
laft side {if any} iz used. again the same format of string
iz gottan for the connaction.

tha connect command saves alwost Al data betuwean

commands. thic &l fows a very sirong default

structure (i.a. onliy the port need wusuajly

be¢ charnged). &isd, e interndt defovlts

are: .

all namoy cdufanit 1o the dib name, | Is 1yped

(sxcept the part nme)

tha tila name cafauita to the sip

name.

dd f« dib list>}

digply {tems akout the dibie) If no name

Is gitven, dizply the Iist cf peseible dibs
i.w. the names of al}! the dibs on the systew
dib ligt

de I«<mib Jisix]

disply characteristics of the sibs nawed. 11 no
name |6 given, the names of atl the wib
oh the system sib list are disptied.

r
causs the floor to [if1 and the cii to hdng itseif up.

thase commands witl have the described resutt only if all the

connections shoun are made.

axamp lex:

o laxamilepip,pip<lipipll>:B
c maxelife:l

thaca tuo commans connacl tha 8 th port of the pip
incarnation of tha pip moduin 10 tha lst pori of lexem
and the Llst port of pip 1¢ tha Bth port of maxel.

neie the use of the defaulis.




SL238 - A SOFTWARE {ABORATORY Bl

PARAMETERS: priority=

stack sizes
dib size=
number of ports= 6

module sizes

7880
216

216

512 words

EXTERNAL: system dik fist (udibhd)
floor semaphors (floor)

PORTS: port
2

CONNECTIONS:
port
]

NN WN -

name function

go command input port. texemss of tha commands
ars accapted in this port. types are given in
atommg. all messages are assumad to be in
internal tormat, i.e. binary numbers, radix 58
character names.

ptr message output port. & number corresponding
to a particular condition is outputed tthrough
this port.

ok directory managsr reguest port. regquests
for the directory manager are output through this
‘port.

dir dirsctory managsr reply pert.
floor output message port. when the
floor is to be lifted, a message iz sent out
this port.
floor responze port. whean itis desired to release
the cli & messaga is sent to this port. i.e. after
the cli sends a message o the floor out port 4§
it waits for a reply on this port.
disply communication port. a message for dispiying
is sent out this port. tha first data uord contains
the second letter (in radix 58) of the command
and the third word contains ths address of ths
dib or sib (if any}
digply reply port. after sending & messags out
port & a4 reply is waited for on port 7

module

lexam:1l, lexam:B=atom-1, atom:B=accumi2

msgmod: B

dirman:8

dirman:i

floor:8

floor:l

disply:8

disply:l

ASSEMBLY: symhed, atowmg




SL238 - A SOFTWARE LABORATORY 62

MODULE BUFLIN

FUNCTIOM: changs butfsrs into linss. looks (lke & ifo device and connects
to & block tfo device. accepts commands and raturpa &ither
With & raply or & sariex of strings followed by & reply. terminators
of atrings ars carrdgs return (poszibly folicusd by & Vine
foasd, which I includedin the steing), & 1ine feed (possibly
‘ol lowsd by & carrage return, swhich in included In tha string) or
an a'tmods, if the butfer bscomes fuli, the siring is
ment on and & nan string started.
sxrerrsundebuggadessries

PARRMETERS: priority= 2B3BH
steck sizes= 217
dit slze= 214
number of ports= &
wodile sizes 228 words

PDRTS: port nake function

9 command input port. ths commands are thoss given
for block i/e. only rasd-iype, non directory
comwand gansrats non-srror returns. |1 1hs command
iz road, & buffer Is read and ihan turred into
strings (typs fie?d iz positive) where 2 niring
has A byts count in the 1irs! detia word ad the
charactre in the foiloning bytes,

1 command reply porl. aso the string ouiput port
2 ifo module command port. commands for the ifo
modile are set oul this port,
3 ifo reply port.
CONNECTIONS:

port moduie

2 /o wmodule :08

3 I/o0 module 11

ASSEMBLY: symhed, dskcom




SL238 - A SOFTWARE LABORATORY 83

NODULE PIP1L

FUNCTION1 tranfer #iles belusen tuo block orlentad i/c devicas. Accepls
commands from tha 1ty {through saveral wodules} and
exacutes thoss commands. afl commands shown are thoss that
Would be tuped on ths 1ty. the comeand format isi
icitam»ecitam list>
<ttem llgt> t1= tem ! item '," (tem Jist>
<ttem> ri1= < specific ! specific itam»
wapecific> 1t= < sysporinusbar | unitnumbar | fllenseme | 11 lasxtension |
suiich >
sympor tnumbar 1:= symbolic par! number *j'
vnithumber tis nusber of device unit ‘!
<filenama> ri= file name in direciory
<tilasxtension> 1im *~* gxtension
<sutehs 1= 'St o< 240 0wt b gt | Y
the sulichz have the follouing resuit (all suttches must be
on the left side.to have any of fect)
I - list the directory ({es} of the input devicas (right midae)
X — usa the zsams filn name as given for Input
z - zearo tha directory of the cutput davice
d - delste 1he fites glven as input
& typical command locks |lke:
B;l:/zelsbizityinabin, t1yout accum, aton, (exam;cl |
(the defaults are the previous ohject ussd in that
position - possibly from the previous coweand |ine)
FleBls 21,1381, s ’
FdeB3 B imp. bak, impl, tmp2
131z input.plleB; Lisymhed. pll, atomng, cti, tail

PARAMETERS: priorityms
stack xizax 216
dik sizex 215
number of ports= 12
mothtin sizes 688 word



SL238 - A SOFTWARE LABORATORY 64

PORTS1  port

8

2,3

4,5
6,7
18,11
12,13
14,15

CONNECTIONS :

port
8

2,3
4-15

ASSEMBLY :

1

aymhed,

name

modale

function
command input port, this port it used

to receive all command*, tha format c¢f tha massages

is intarnal atom as givan 1in atommg.

command rasponsa port* tha rasponsa of tha commands

is output to this port, normaally Jjust a '*' is

cutput but whan a diractory is listad, it goas through
this port.

gymbelic port 8. commands for tha 8th davlca ara sant
through thasa 2 ports, (saa dekcom for formate)
symbolic port 1

symkbolic port
avmbolic port
symkbolic port
symbolic port

[SaI =R VeI S

ITexam:1, texams8 to atoms 1, atomesl to accums?2

maxel: 8

any ifo module

any i/ modules

atommg, dskcom



SLZ238 - A SOFTWARE LABORATORY BS

RODULE LINBUF

FUNCTION: accumulats wingls characiers inlc hutfers. this wodule
looks !Ixe an input ifc wmoduls (bufier side) and witl
conver! & zingle charactsr |/o0 modufs Intc & buffer
ona. the terminator cn the Input is the contrel z character,
(G626 ascli decmal)

PRRANETERS: priority- 28388
stack xizes= 2
dib slze= ZT4
nusbar of porise 3
moduie Riza= 178 words

PORTS: port nawe function

a {70 command Input port. & block orisntad i/o0 command
ts accep! through this port. for formats
sen dakcom,

1 1o raply port

2 characier |rput port. charactar (s the flrst

byte In 1k dats part of the message

ASSEMBLY: symhed, dskcom



SL238 - A SOFTWARE LABORATORY 66

NMODULE MSGNOD

FUNCTION: take a numeric input and convert It into & massage.
the mmessages are (currantly) & "." and a *?* (in single
character format wessages.

PRRAMETERS: prioritys 477
stack sizes 215
dib mize= 214
number of portss 2
wmodule sizes 64 words

PORTS: port name tunction

) command Input port. tha first word of the message
is used to determins Which of the messages to
output.

1 magsage output port. the messages are in the
gingle character format ( chractsr in the first data
byte). .

CONNECTIONS
port modu les
8 eli:l
1 ttyout: @

RSSENBLY: sywhed



SL238 - A SOFTHARE LABDRATORY &7

MOOULE ACUMLE

FUNCTION: accumulate characters untid a ful! !ine iz In the
buffar and then cutput A string. & lira is dellnested by 1
of § things, {1} a carrage raturn is the input character (pozmibly )
tollowsd by & lina fesd, which would alse be included In tha
tined, (2) & line fewd I 1he Input character (pommibily
followed by & carrage raturn, which would atso be Included in
tha lina}, (3} an altmeds, {4) an anterisk ("3"}, (5) a period
™.") or (B) & full bulfer.

PARAMETERS:1 priority= 77778
stack size= 217
dib zizes 214
numbar of portes 2
module slze= 188 words

PORTS: port nane function

e Inp character input port. westaged Wlth charscisrs in
low data byts ars received through this
port

1 out siring owtput port. the accumilnted

strings ars gent pui this port. & byte count s
In the tiestdata byrs mith the
charactars 'ollowing.

ASSENBLY: zywhed



SL.238 - A SOFTWARE LABDRATORY B8

MODULE ACUM1L

FUNCTION: accumuiate characters into strings, schoing the indlvidual
characters. & string is comprised of characters fol louwsd
by.a terminator (line feed, carrage refurn or altmode), i1 the
lsruinator {s & line fesd, & carrage return i &0 schosd
! & alimode, then a dollar sign {"$") Iz alzo schosd
or it & carrage return then & line fead is al30 echeed
if a atiempt ix made to input mors than 88 characters
tn & line, all characters which would make the count
excead 88 are ignered and the bell on the tiy is rung.
in sddition, sccum inplemants the special charactesrs
control u, rubout, control ¢ and control o. pontrol w
causss the antire current |ire to ba ignored and acoum
to sifectively restart with an ampiy buffer. rubout caAuses
the previous character to Be lost, alter schoing It balusen slashas
(the {irst slash is tuyped when the first rubout
is detected, and the last slash isn’t typed until somsthing
other than a rubout iz typsd. wx. "acdesdcbcde”
the buffer nou contains "abcde”). control
€ cavses & "v" to ba dona on the flicor semaphors. this
i uged 1o release the floor uhen it is dezired to stop
the user wodules from running.
conro! o causses A bit to be st so that the ttyout module
siops printing. this blt is clearad by accum
whenesver a character iz received.
in addition, thers ars contrc! characters which determine
tha cutput port. contre! & serds the accumlated lines
out the first output port, contrel b the second, and &
control d causes an alimode to ba xent out the third
ouiput pert

PARANETERS: priority= 18837
stack sizes 217
dib sizen 214
nuwber of portg=e 3
medule sizes 288 words

EXTERNAL: ftoor samaphors (floor}
tty status word (tiysts)




SL238 - A SOFTWARE LABORATORY &9

PORTS: port
4
1
2

CONNECTIONS
port

[:]

1

RSSEMBLY: symhad

ttyin
tiyout

{funciion

charactar input port, data is low byte of message.
character scho pert, format is the zame a5 port B.
firs! string ouiput port, tiret byte of meszage

iz character count, characters are In the consscutive
bytex

second siring output port, format same as port 2
third output port. only an altmode can he ment

out this pori. tha lformat of the massage I3 the

sams a3 thoss of poris 2 and 3

modul ez



SL238 - A SOFTWARE LABORATORY 78

MOOWLE ACCUN

FUMCTION: accumulate characters into strings, achoing the Individual
characters. a string is comprised of characters followed
by a terminater (lire teed, carrage return or altmods). if the
tarminatar is a (ine fewd, 8 carrage return |5 Alzo schosd
il a altmede, then a dollar sign ("$") iz Also echosd
or if a carrage return than &8 line fesd iz alsc schoad
it an atismpt Ix made to input mors thar 38 charactars
in & tira, al! characiers which would make the sount
axcand B8 are Ignored and the bell on the tty Is rung.
in addition, accum inplaments ihe special charactars
econtral u, rubout, controf ¢ and control o. control u
causas the eniire current line to be ignorsd and aAcoum
to effactively restart with an ampily buffsr. rubout causes
the previocus character ic be lost, afier achoing it between &lashea
i{the first slash is typsd uhen the first ruboul
iz dutectad, and the last siash fen't typad until somathing
other than & rubout ix 1ypsd. sx. "acdesdebeds”
the buffer new contains “abede™). contret
€ causes & "v" io bs done on the flcor semaphors. this
is used to retaase 1he floor when it is casired to mtop
the user wodufes from rumning.
conrol o causas & bit to bs sei 5o that the tiyout module
stops printing. this bit is clearad by asccum
whensver & characisr is recalived.

PARAMETERS: priorliy= 12087
siack size= 217
dib size= 214
rumber ¢ poriss 3
module siza= 288 words

EXTERNAL: 1lcor semaphora {floor)
tty status regivter {itysis}

PORTS: port name funciion

] charactar input port, datm iz lon byts of message
1 charactar scho pori, format is same am port 8
2 string cutput port, first byts of message
is character coun!, charactars ars In ihe consecutiva
hyies
CONMECTIONS:
port modu les
a ttyin
1 ttyout

RSSEHBLYr sywhed




SL238 - A SOFTWARE LABORATORY 71

HMODULE BINACH

FUNCTION: accumulate individual binary characters into an

absclute binary file (klock oriented 1/0}. checks the

checkaum of the fils and elimentates unecessary characters. this
module acts just like & byte oriented iocader that

PARAMETERS: prior|tys=

PORTS:

puts the bytes inte

buffers instead of core (retaining the control bytes).

stack size=
dib siza=

20888
215
214

number of poris= 3

module sizes

port nane
]

words

function

command input port. the input from this port is

a block orientad I/¢ command message. ths command
generates & return (always) which is & srror return
tf the command is aither directory oriented or
output oriented. (commsands are gven in dskcom).
command reply port. replies to the block crisnted
commands are sant out this port.

binary kyte input port. wessaqes recelived through
this port are assumed tc contaln one binary byte
in the first byta of the data area.

ASSEMBLY: symwhed, dskcom



SL238 -

A SOFTWARE LABORATORY

72

MODULE  ACUHE
FUNCTION; accimulata charactars until a full Una iz in tha
buffar and than output a string, a lina is dslinsatad by 1
of 4 things, (1) a carraga raturn Is tha input charactar {(possibly
followad by a lina faad, which Mould also ka ineludad In tha
linal, (2} a Una faad iz tha input charactar (possibly
followad by a earraga raturn, which would alse ba Ineludad In
tha Una)}, (3) an altneda or {4) a full buffar.
PARAMETERS! priority- TIVIB
stack siza- 267
dib siza- 2t4
nuMbar of parts- 2
Module siza¥* 188 words
PORTS i port nana functicn
8 Inp charaotar input port* masgeagas with charactars In
low data bvta ara racaivad through this
port
1 out atring output port, tha ascunulatad
strings ara sant out this port, a byta count is
in ths firstdata bvta with tha
charactars folleowing.
ASSEMBLY! symhad



SL238 - A SOFTWARE LABORATORY 73

HODULE SPLIT

FUNCTION: take an input massage and produce two copies of it,

PRRANETERS: prioritys 777

stack size= 215

dib size= 214
number of portsa 3
module sizes 28 words

PORTS: port name function

8 message input port. input is accepted through
this port.
1 firzst massage output port. an exact copy of the
Input meszaga is sent out this port
2 second message output port. and exact copy of the

input message Is sent out this port

ASSEMBLY: sywhed



SL238 - A SOFTWARE LABORATORY 74

HODULE DIRMAN

FUNCTION: to manage the sib list, this module handles all requests
to find, deletes, or add modules to the running system.

PARAMETERS: prioritys

stack si

dib sizes
number of ports=s &
module gize=

PORTS: port
8

CONNECTIONS:
port

2

3

ASSENBLY: sywhed

name
rey

rep

lod

ent

modu |
loader: 8
loader:1

788
215
214

688 words

function

directory request port. & massage is received on

this port that tetis the directory manager what to do

valid request codes ars ;

8 - lodnxt / load next sib on tape into core and link it onto
siblist, and return its adress. if the sib
is alrsasdy on the siblist the adr of the oid
varsion uill bs returnad

1 - tndsib / search list for specified sib and return its adress

2 - fndlod / search siblist for specified sibb and return its
address, if not found search tape for specified sib,

load it, link it on the siblist and return

its adress.,
3 - delsib / delets specified sib from siblist
4 - delal) / delete all unused sibs from sibtist
reply port. the reply message normally just contains
the address of the required sib, or is positive.
if a srror occurs the return code corresponds
to an address In ths /o0 page.
valid srror codes are:

8 checksum arror

-1 no more coras

-2 too many blocks In tape sib

-3 not enough klocks in tape sib

-4 sib not found

-5 slb in use

-6 invalid regquast
loader communication port. masssas just contains
the filename of tha wmodule required.
Ioader reply port. +tirst word is 8 if an srror, otharuise
it contains tha addrass of the loaded moduie.




SL230 - A SOFTWARE LABORATORY 75

HODULE FILHAN

FUNCTION: this module handles references to files. It
uorks in terms of directories and forms theinterface
betuean the user and the directory device controler.
an atempt hag been made to keep it devics independent
and along this lina it makes no assumptions about
the sizes of the directories or the positioning
of the entrias in the directory. rather this information
comas from the individual device handier.

PARAMETERS: prioritys 777
stack xize= 215
dib size= 2t4
nuwmber of ports=s &
module sizes aza
PORTS: port name function
8 the format of the user input Iz (specifying oniy
the data)

Tdevice | command T the command for the file handier

+ t and the device nuwber
T data words T any requirad data
T» % et

the raquirad data varies with the command.
for the directory command a block number ix needed
that tells which directory block is wanted
for the open and snter command & file name is
needed,and for the write command a buffer
address and size |s needed

1 the user gets back the address of the {illed buffer
sven it its his, if the transfer uas sucessful
and a B if an error occured With the next word
talling the source of error.

2 device controler output port. the format of thes output
varies With the command. for more Information see
& device controler (dtacon)

3 davice controler reply port.
CONNECTIONS:
por-t module : port number
] user moduls
1 user moduls
2 devconiB {device controler)
3 devcon:l {device controler)

ASSEMBLY: sywhed, dskcom




SL238 - A SOFTWARE LABORATORY 76

MODULE DTACON

FUNCTION: dectape device controler. |t takes input from the fiils handier
in tarms of 4@ directory #ntry. ths various commpnds cause
thiz module to read the dirsctory, urite it , update
it, read or write a block in & file, automstioally
kesping track of space on tha dectaps.

PARAHETERS: prioritys

stack ziza=
dib slzes

nuwber of portes

module xizes=

PORYS: port
]

3
CONNECTIONS:
port

]

1
2
3

777
215
214
2
SED words

function

-command input port. the format of the command varlous

Hith the command. the aimplest is the reaguest for a
directory bilock, thiz comsand messags han the formwat
ofr Tretbderetsiennt

T ounit T comd T

Trerrerrrerroenst

T block number T

Terschiusrrerint
the othar formats and ths replys are glven in the
interface language fils - "dsKoom"
reply
dectape handier command ouput port. the nessage that
i gsent out this port containg commands for the devioa
handisr. nes “dtahan” for ihe format of tha sexsages.
duvice handier reply port

madule ¢ port number
filhami2
filhani3
dtahamd
dtabhan:l

ASSEMBLY: symhad, dskcom




SL238 - A SOFTWARE LABORATORY 77

HODULE DTRAKAN

FUNCTICM: medulm to hand!s the ¢ireet 1/c wiih & dactaps.
toesn't do any Work on the daia received, Justs put it In
the dactape registers and then waitz on tha dectaps |/e
semaphors. if an srror occurs the opsration will be repessted
halora gliving up.

PARAMETERS: priority= 18887
stack sizes 215
dib sizex 214
mumber of portes 2
module gizes 18€ words

EXTERNAL: dectaps connamd register {dtacmd)
dectaps samaphors (decssm)

PORTS: port nikme function
] command [nput port.ths format of t1he
message in is:

t heade t
T ol t
T massage L
/ £
/ f
Tesxn T
1 dev num ! command t
+ * a ons word address

block numbar

3 =

<> -

t
T
namory addrass T whare in core it goes
t
T

nagativa of numbar of

T werds to transter
the commands ara: l=> read, 2Zw> write
alt others are errors

i reply pori. whan fintshed, & mssage is replyed
that indicates the status of ths regussted oparation
1f the cpsraticon sucesded then ths command byte is
sat to zero, otharulse if an srror the byte is
negallve and the second data word haw the folicking
medantng:

T word couni
T




SL238 - A SOFTWARE LABORATORY 78

kit maaning
1% arror
14 parity srvor
13 mark irack sreer
12 device Is wrlie locked
11 salact arrer
18 block miss {2 soft srror}
8 data miss{bus was busy, moft arror)
L] non-axistani mamory
CONNECTIONS)

pori module

a dtacon:2

1 dtacon:3

RASSEMBLY: mywhed, dekcom



SL230 - A SOFTWARE LABORATORY 79

MODULE DSKHAN

FUNCTION: wmodule to handie the direct 1/0 with a disk
dossn’t do any work on the data received, justs put it in
the disk registers and then waits on the disk /0
semaphore. if an earror occurs the operation uill be repeated
before giving up.

PRARAMETERS: prioritys 1887
stack sizes 215
dib zize= 2%
number of portss 2
module sizes 185 words

EXTERNAL: disk semaphore (dsksem)
PORTS: port nams function

8 command Input port.ths format of tha
messaga in is:

ERREBEASKEEE LSRR EREE
t header L
t of )
1  maszzage L
/ /
/ /
* 0

Tt dev num | command 1
t + & one word address

T  block number T
Texesesexxosensnxenst
t mamory address T where in core it goss
L t
T word count t negative of number of
t t

Words to transfer

the commands are: lx> read, 2e> write
all others are srrors

to allow word accessing of tha disk an alternate form of tha
massage is allowed. the diftference is that

the commands are negative 1-3 with 3 bing the

write check.ths altarnate form of the message

iz




SL238 - A SOFTWARE LABORATORY 80

CONNECTIONS:
port

8

1

FEFEETHE

EEREEERRR SR EREERERN AR

1 header t

t of L)

T  rmessage *

/ /

/ /

Trxsresrssoresssanxt

T dav num | command t

Taxs t & one word address

T disk address 1 describing the location
Tasrxkesrsrsorrssr’ on disk desired

T dsk offset T offset to desired word
1 t

T memory addrass 1 where in core it goes
kX t
1 dord count T negative of number of

-,

1 22T words to transter

the format of the internal disk address Is

device track number block number

numbar 8 -177 8 -7

a-7
reply port. whan finished a message is repiyed
that indicates the status of tha requasted operation
it the operation sucesded then the command byte is
et to zero, otherwise if an error the byte is
negative and the secend data word has the following

meaning:

bit meaning

15 error

14 parity srror

13 mark irack srror

12 device is wuritea locked

11 selact srror

18 block miss (a soft error)
9 data wiss(bus was busy, soft error)
8 non-exiztant memory

modules

dskeoni2 (or dtacon:2)
dskcon:3 (or dtacon:3)

ASSEMBLY: sywhad, dskcom




SL230 - A SOFTWARE LABCRATCORY 81

MODULE

DISPLY

FUNCTICN: display relavent informaticon about sibkbs and

dibse, for sgibs this includas tha names of all
incarnations and tha port names, ILor dibs tha
informatien is tha parant gib nana and tha number

and nama of all othar dibs connactad to aach port

PARAMETERS: priority 1888

etbc.

stack sizes 2t5

dib size- 2T4

numbar of ports* 3

nodule siza- 388 uords
PORTS: rport nana function

3 command input port, tha first data word is
assumed to ka a radix 58 command nerd.
if tha sacond charactar of tha command
iz a "d" than tha displaying iz dona for
a dib, cotherwige for a sib. tha
word of tha massage 1s assumed to ba tha
addrress of tha cbject to ba displayed,
the address is zero then the
names of 211 the possible objects is displaed.
(i.e. 1f the command Mas for dibs,
the dib names are displaved)

1 reply port, when finished processing the
command a reply 1s returned via this port,
the format has no meaning.

2 digplay output port, all the information
is oututed to this port for later processing,
the format is internal, i.e. radix 58 names,

CONNECTIONS ;
port nodule

8 cli

1 cli

z maxel

ASSEMBLY: symhed, atommg



SL23@ - A SOFTWARE LABORATORY 82

MOOULE RTON

FUNCYION: produce aioms frowm sirings. an atow iz defined as:

catol>iix= <ids]onumericsl<spaclaicharacters| <breakcharactear>
cld>ii= <letier> | <id> (<lettor>|cnumbers>}
<leiter>i:esbodeigh i jrImnopyrsivanys

<number> :=1234567598

<numer o> : ! =<nusber> ] crumer i c><nunbar>

<breskcharacier>iis <cralclis>!caitmode>l<last charactars>
<spaclalcharscisr>: rscotharnizse>

PARRNETERS: priorttys

stack size=
dib slzes

number of portes

modhtle size=

PORTS:.  por1t
a

CONNECTIONS:

port
8

nawe

¥r?
215
2T

2
2oe

function

string Input port. low data byte Is a character
count With the charsciers In the conzsculinve hytes
alom oulput port. for numeric, |d or bresakcharactsr
the low byte i & charactsr count with characters In
consecul lve byiles. for special cheracters 1he iow
data byte Is the character,

modules

accumylation modules {accum,scunll,scumll,scums,linbuf)

ASSEMBLY: sywhad, atommg



SL238 ~ A SOFTWARE LABORATORY a3

MODULE LEXAM

FUNCTION: convart atoms into internal format. intsrnal format
depends on the type of the atom. for special charactsrs and
bresk characters nothing is done. alphanumeric are converted
Into radix 58 and numeric atons (assumed to ba in octal)
are converted inte binary numbers

PARAMETERS: priority=
stack gize= 215
dib size= 214
nuwber of portss 2
modute zizes

PORTS: port name function

8 atom input port.
1 lexems output port
CONNECTIONS:
port module
8 &tom

ASSEMBLY: symhed, atommg



SL238 - A SOFTWARE LABORATORY 84

MODULE TTYIN

FUNCTION: handle the input from the teistyps. initiates tha tty for input
and waits on the tty input semaphors.

PARRMETERS: prieritys 17780

stack sizes 215
dib sizes= 214
numbar of portss 1
moduie sizex 32 words

EXTERNAL: tty status register (t8ks)
tty buffer register (tékb)
tty input semaphors (ttyrd)

PORTS: port name function
[ inp character output port. character is In ths low
byte of ths message

ASSENBLY: sywhed



5L238 - A SOFTWARE LABORATORY 85

NODULE TTYOUT

FUNCTION: handle output to the teistyps. simulates the
necessory functions for form fesd (8 line feeds), vertical
tab (& line feeds), horizontal tab (tab stops every 8
spaceas) and controt o (atop printing until control o bit is
cleared.

PARANETERS: priority= 108888
stack slzes 215
dib size= 214
numbsr of portss 2
module sizes I58 words

EXTERNAL: 1ty status register (t@ps)
tty output buffer register (tipb)
tty output semaphore (ttywrt)
tty status word (ttysts)

PORTS:1 port name function
8 input port. format iz aither a single character, string,
of buffer, if single character, then the character is
the low data byte. if a string, then the low data
byte is & character count with the characters in ths
congecutinve bytes or If a buffer then the tty output

looks |ike any other output only i/o device (see

the file dskcom for particulars)
1 reply port if input was & buffer mode meszage

ASSENMBLY: sywhad, dskcom



SL23@ - A SOFTWARE LABORATORY 86

MODULE QUTBIN

FUNCTIDN: to help calculate the radix 58 valuse of names by changing
tihe type of radix5S0 messages to rumeric (binary} and
ssnding on iwo kinary nusbers (one for sach thrsa charactsrs.

PARANETERS: prioritys

slack size= 215
dib size= 24
rumber ot portsa 2
wmodule sizes uords

PORTI:  port name tunciion
| mesage Input port. only iype cf
2inb58 are &lfectad by paseing through
this modula. (aw glven in atommg)

1 message output port
CONNECTYIONS:

port module

1 maxel: @

ASSEMBLY: wywhed, atommg



SL238 - A SOFTWARE LABORATORY 87

(1]
(21
(31

(4]

(5]
[e]
[71

(81

(9]

(18]
(111
(12}
(13]

(14]

[15]

Bibliograpy

Clark, W., "Macromodular Computer Systems," SJCC &7.

Bell, G., et al., "The Design, Description and Use of DEC
Register Transfer Modules (RTM}," Computer Science Department
Report, Carnegie~Mellon University, Oct. 1971.

Krutar, R., private communication related to his Ph.d. thesis,
Carnegie-Mellon University, 1971.

Jones, A. and Habermann, A. N., "Interprocess Communication
Mechanism, " Internal Memo, Computer Science Department,
Carnegie-Mellon University, 1978

Wulf, et al., "Bliss Reference Manual," Computer Science
Department, Carnegie-Mellon University, revised April, 13971.

Bi jkstra, E., "Cooperating Sequential Processes," Technclogical
University, Eindhoven, 19865.

Wirth, N., "Program Oevelopment by Stepwise Refinement," CACH,
Yol. 14, No. 4, {April, 1971).

Beil, et. al., "C.mmp: The CMU Multiminiprocessor Computer,"”
Department of Computer Science, Carnegie-Mellon University,
August 1871.

Denis, J. B., and Van Horn, E.C., "Programming Sematics for
Mul tiprogrammed Computations,” CACM 9, 3 {March 1966}, 143-155.

Di jkstra, E.W., "Cooperating Sequential Processes,"” Programming
Languages, (F. Genuys, ed.), Academic Press (1968), 43-112.

Di jkstra, E.W., "The Structure of THE MultiprogramminG System,"
CACM 11, 5 (May 1968}, 341-346.

Hansen, P.B., {ed.}, RC4888 Softuare Multiprogramming System,

. A/S Regnecentralen, April. 1969,. Falkoner. Alle..1,.Copenhagen F.

Denmark.

Lampson, B.W., "Dynamic Protection Structures,” Proc. AFIPS
Conf. 35 (1963} FJCC.

Jones, A.K., Private Communication, Carnegie-Mellon University,
1971.

Parnas, D.L., "Information Distribution Aspects of Design
Methodology," Special Report, Department of Computer Science,
Carnegie-Mel lon University )February 1971}




SL230 - A SOFTWARE LABORATORY 38

(163

(171

(18}

[13]

[zel

Parnas, D.L., "A Technique for Software Module Specification
With Examples," Special Report, Department of Computer Science,
Carnegie-Mellon University (March 1971}

Parnas, D0.L., "On the Criteria to be Used in Decomposing
Systemsinto Modules," Special Report, CMU-CS5-71-181, Department
of Computer Science, Carnegie-Mellon University (August 1971).

Di jkstra, E., "A Constructive Approach to the Problem of Program
Correctness," BIT 8 (1S68).

Wulf, et.al., "Bliss/ll Reference Manual," Department of
Computer Science, Carnegie-Meilon University, 1971.

Hansen, P.B., "Short-term Scheduling in Multiprogramming
Systems," Third Symposium on Operating Systems Principles,
October 1371.



Security Classification

DOCUMENT CONTROL DATA -R&D

Securit classification of thie, b ot mbatrinct [12.11x ] Indexin atrnotation st be entered wiret the overal repoit fa ciasalfied)

1. ORIGINATING ACTIVITY (Corpotate  authot) im REPORT SECURITY CLASSIFICATION
Computer Science Department UNCLASSIFIED
Carnegie-Mellon University o emour

Pittsburgh, Pa. 15213

REPORT TITLE

SL230 - A SOFTWARE LABORATORY: INTERMEDIATE REPORT

4. DESCRIPTIVE NOTES (Type of repont mnd fnciusive dmee)

Scientific Interim

& AUTHORI({S) (First name, niddie Inital, Jaat mome)

W. Corwin, W. Wulf

6. REPORT DATE 72. TOTAL NO 0OF PAGES Tk NO OF REF 8

May, 1972 89 20

we CONTRACT OR GRANT NO fa. ORIGINATOR'S REPORT NUMBER({S)

F44620-70-C-0107

k. PROJECT NO.

769
Ob. OTHER REPORT NO(S5) f(Any other number & that may be maaiied
- 81102F thle  repory
* 681304

OISTRIBUTIAON STATEMENT

Approved for public release; distribution unlimited.

N} SUPPLEMENTARY NOTES 1z SPONSORING MILITARY ACTIVITY

TECH OTHER Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.

Arlington, Va. 22208

12 ABSTRAGCT

This report describes the resources and data structures of SL230 (Software
Laboratory 230) and the designing of SL230 modules and systems. SL230 is a simple,
multiprocess, operating system used to create an enviromment suitable for the con-
gtruction of experimental programming systems for educational and research usges.

DD,rr,.1473

Security Classification




