
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SL2 3 8 - A SOFTWARE LABORATORY

INTERMEDIATE REPORT

U. Corwin U. Uulf

May

Carnegie-Mel

Pi ttsburgh.

1972

Ion Universi ty

Pennsylvania

This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44G20-70-C-0107) and is
monitored by the Air Force Office of Scientific Research.

SL238 - A SOFTUARE LABORATORY

ABSTRACT

This report describes the resources and data structures of SL230

{Software Laboratory 238) and the designing of SL238 modules and

systems. SL238 is a simple, multiprocess, operating system used to

create an environment suitable for the construction of experimental

programming systems for educational and research uses.

SL238 - A SOFTUARE LABORATORY 3

INTRODUCTION

The similarity betueen many of the components of various systems

programs has often been noted but seldom exploited. Lexical

analyzers and syntax analyzers, for example, occur in all compilers

and to some extent in assemblers, editors, command interpreters, etc.

Yet they are generally re-written for each such system

(translator-writing systems, or compiler-compilers, have been the one

exception to this practice). This situation is especially annoying

to two groups of people to whom the present report is primarily

aimed: (1) the researcher uho would like to quickly fabricate a

system in order to experiment with a single aspect of it in depth and

(2) the instructor uho would like to assign programming problems on

some aspect of systems programming but which only make sense in the

context of a complete system. To illustrate this point, consider the

researcher (or student) uho would tike to (is assigned to)

investigate various compiler optimization strategies on the

tree-representation of a program. To do this, lexical analysis,

symbol table and space management, parser, tree-generation, and I/O

functions must first be written. None of these is essential to the

project at hand, and collectively they may be sufficiently

effort-consuming to make the project impractical.

This report describes the intermediate results of a project to

design a software laboratory (SL238) suitable for the study of

software systems.

SL238 - A SOFTUARE LABORATORY 4

The Physical Model

M
n

FIGURE 1

THE PHILOSOPHY

The objective of SL238 is to create an environment within which

researchers and students may experiment with the construction of

software systems. The system accomplishes this by providing a large

number of functional "modules" together with a mechanism for flexibly

interconnecting them in various ways. The philosophy of the system

is a software analog of the hardware "macro-modules" of Clark El] and

"register-transfer-modules" of Bell (23. Much of the philosophy for

the approach described below is due to Krutar [31; key ideas were

borrowed from Habermann and Jones W and from many discussions with

Per Br inch Hansen.

The philosophy of the SL238 environment results from

consequences of a particular physical model. The concepts implied by

that model are essential for the user to understand that environment.

That model is:

A (user) system is constructed from a number of

component modules. The module is a functional unit

receiving signals (data) from one of a number of wires,

cables or ports, performing some operations and (possibly)

generating output signals on other cables (or ports). The

cables connected to a module are fitted with standard

male/female connectors so that the output of any module may

be directed to the input of any other module by an

appropriate interconnection of their cables. Rather than

direct interconnection, a special "patch panel", similar to

PTREAD

Suppressing the patch panel helps to clarify the diagram in more

complex examples, this configuration may be drawn simply as:

PTREAD TTYOUT PTREAD TTYOUT

Now suppose one would like to add pagination of the output. Further,

an old-fashioned telephone switchboard, is provided to

facilitate the interconnections. Figure I illustrates this

model.

In this model modules do not know to whom or to what they are

connected. Internal names are used to reference ports for receiving

and sending information and the actual supplier or receiver is

specified externally by the particular cabling pattern established by

the user. This fact, coupled with the "standard connector"

assumption, permits the substitution of a module for a functionally

equivalent one (or network of ones) at any time.

The use of the system is best illustrated by a simple example.

Suppose one wished to construct a program to read text from a

paper-tape reader and print it on the teletype. Modules exist for

reading (characters) from the paper tape reader (PTREAD) and writing

(characters) on the teletype (TTYOUT) — they can be interconnected

as follows:

suppose there is a module (PAGER) which accepts input and passes it

along to its output, but also looks at each data item for a special

end-of-line (EOL) character and, after the nth occurance, inserts a

special upspace-the-paper (form-feed) character. If the original

connection is broken and reconnected as shoun below, the desired

pagination wiI I result.

PTREAD PAGER TTYOUT PTREAD PAGER TTYOUT

Suppose further that it is desired to get a character frequency

distribution in the text while the printing is going on. If a module

(CHRFQR) to do this exists, the following configuration might be

created:

CHRFRQ

SPLIT PAGER TTYOUT SPLIT PAGER TTYOUT

In this configuration, 'SPLIT' is a simple module which, when it

receives input, replicates that same input on each of two output

ports. Much more complicated configurations could be built in this

manner but this example has served to illustrate the general

philosophy.

Of course, software modules are not physical objects; they do

not have tangible cables dangling out of them. The patchboard does

not have a physical existence either. The acts of connection and

SL23B - A SOFTUARE LABORATORY 8

reconnect ion are not accomplished by physical acts but rather by

commands typed on a terminal. The precise syntax of these commands

is defined in the command language interpreter module (CLI) and may

change as more attention is paid to the human engineering aspects of

the system (which is considered to be a crucial aspect of the whole

project). However, the structure of these commands is intended to

reinforce the conceptual model presented above; thus the commands

mimic the things one would expect to do to modules physically wired

together — for example: connections may be made or broken at any

time, the complete "wiring list" may be displayed or individual wires

traced, the signals flowing along a particular cable may be

monitored, etc.

IMPLEMENTATION AND RESOURCES

The system model presented in the previous section might be

implemented in any one of a number of uays — each module could have

a subroutine or co-routine structure, for example. It uas decided to

construct each module as an asynchronous (sequential) process. The

cabling and patchboard are implemented as a "mailbox" message

buffering system. The system is implemented in tuo pieces: (1) a

small "kernel" which includes space management, process management,

and message handling primitives, and (2) the modules.

The command language (CD for using SL238 is implemented as a

set of modules using the mechanisms provided by the kernel. It is in

no way different from, or more privileged than modules assembled by

the user. This construction philosophy permits the CL to be easily

modified, permits different versions of the CL for different users,

and permits the CL to be easily adapted to various configurations and

needs. Finally, the CL, being constructed from modules itself, forms

an advanced example of the use of the system and is discussed in a

later section on current systems and modules.

THE KERNEL

The kernel consists of a small number of data structures,

accessors, and routines for manipulating the structures. The data

structures used in the kernel are instances of a smaller number of

"classes" of structures (objects, lists of objects, semaphores, and

vectors).

SL23 8 - A SOFTWARE LABORATORY IB

The routines in the kernel are constructed such that each

performs an operation appropriate to a class of structures on any

instances of a member of that class. This operation is never

performed by any other routine. This is a working definition of the

term "clean" used earlier. It should be noted that this definition

of clean conflicts with similar ones proposed elsewhere [71 in that

it implies a strong functional interdependence). It was chosen in

favor of a data semantic inter dependency because of the clarity and

modifiability it affords.

The kernel has been purposely kept small (the entire kernel

consists of lees than 280 PDP-11 instructions) allowing (1) the

design and implementation to be iterated. (2) the kernel itself to be

an object of study in a systems programming course, and (3) a usable

subset of the total system to be used on a minimal (4K) PDP-11

configuration.

The following is an English description of the data structures

and their associated manipulative routine supplied by the kernel.

(1) objects

An "object" is a data structure which is composed of 2tN (1 £ N

£ IB) w o r d s , two of which contain a link field (objects are

frequently chained together on lists), and a priority field (when on

a list, objects are always in priority o r d e r) .

All system objects have system defined names associated with the

offsets from the base address of the object. ThBse names are always

used when accessing the areas of an object and are given beside the

locatione in the diagrams of the objects (each block in a diagram

repreeents one word).

The routines for manipulating objects are:

a) get (n) allocate memory for an object of size 2t"n"
and return its address.

b) release (a,n) deallocate the space for an object whose
address is "a" and size is n. The value of
"release" is undefined.

c) copyold (a.n.b) copy the contents of an object whose base
address is "a" and size is 2t"n" words into
an object whose base address is "b"j exactly
2t"n" words will be copied. Return the base
address of " b \

d) copy (a,n) create an object of size 2t Mn" and make its
contents identical to those of "a"; return
the address of the new copy.

e) link (a,h) link the object whose base address is "a" on
to the list whose header address is "h". The
object will be linked into the proper
priority position on the list. Return the
address of "a".

f) delink (h) remove the first object, that is the highest
priority one, from the list whose header
address is "h" and return the address of this
object.

g) swap (hl,h2) delink the first object of the "hi" chain and
link it onto the "h2" chains return the

SL238 - A SOFTUARE LABORATORY 12

address of the swapped object.

(2) The "feasible" list, semaphores, and synchronization

A particular class of objects are called "DIB's", Dynamic

Information Blocks. DIB is the name given to what has been called a

"process description" in other systems, and contains relevent state

information for a process. The "feasible" list Is a chain of all the

DIB's for processes which are ready to run. All other processes are

"pending on a semaphore" and these DIB's are chained on a list

associated with that particular semaphore. The reader is assumed to

be familiar with Dijkstra's P and V primitives and their use for

process synchronization [BJ.

SEMHDR

SEMCNT

SEMAPHORE FEASIBLE HEADER

HEADER

COUNT 1
HEADER

LINK

PRIORITY

LINK

PRIORITY

1

DIBLNK

DIBPRO

DIBNflE

OIBSP

OIBSIB

DIBULK

OIBDLK

DIBPRT

DIB

LINK

PRIORITY

NAME

STACK REGISTER

POINTER TO MODULE

LINK FOR USER DIB LIST

LINK FOR MODULE DIBLIST

— PORT INFORMATION

The routines which manipulate semaphores and the feasible M e t are:

savstart

P (eem)

V (sem)

saves the context of the current process on its
stack, saves the stack pointer of the current
process in its DIB, and initiates the process whose

t the top of the feasible list by
- stack pointer and restoring its

process
DIB is a
retrieving its
context from the stack.

Dijkstra's synchronization primitives.

(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called

"messages". Modules do not send messages directly to other modules

but rather to "ports". A port is a local (to the module) name for

one of the cables in the model — thus modules are not aware of which

other modules they receive messages from nor send messages to; they

are aware only of their own local port names.

A MESSAGE MAILBOX

MSGLNK

MSGPRI

MSGTYP

MSGDAT

LINK

PRIORITY

TYPE | SIZE

— USER DATA

MBXHOR

MSGSIZ MBXUSE

MBXACC

MBXLIM

HEADER

MUTUAL
EXCLUSION
SEMAPHORE

ACTIVITY
SEMAPHORE

LIMIT
SEMAPHORE

The message handling primitives are:

send (m,p) A copy of the message whose base address is "m"
will be sent to the mailbox connected to port "p".
If the mailbox is currently full the sending
process, is suspended until space for the message
becomes avai table.

receive (p) Return the address of a message in the mailbox
connected to port " p \ The message is removed from
the mailbox. If no messages are currently in the
mailbox the process is suspended until a message is
sent to it.

SYSTEM FUNCTIONS

Although the kernel supplies all of the support facilities

necessary for the running process, there is a set of functions that

The patchboard is implemented as numbered a set of "mailboxes"

— data structures which contain (among other things) a (possibly

empty) set of messages. Patchboard connections are accompli shed by

making the "port information" portion of a process's DIB reference a

particular mailbox by its number.

is useful to have in a common area where it may be shared by all the

modules. These functions are those which are either performed by

many modules (but too simple to be an independent module) or are best

performed with more access to system data structures.

The system functions are neither necessary for the operation of

the kernel nor do they form a permanently defined set. They exist

solely as a convenience for the user.

(1) Process creation functions

The kernel supplies routines to support processes but it does

not provide any means to create them or interconnect them. A module

could perform these activities but this might endanger the

reliability of the system. The process control functions are:

create (a,b,c) create an incarnation of the module whose base
address is "a"; give it the name located in the 2
word area whose address is "b" and use the first 7
words of the area whose address is "c" as the DIB's
priority and its context values (if c-0, the
priority becomes the modules priority and the
context values are undefined). Link the DIB on the
feasible list and on the system DIB list. Return
value is the address of the new DIB.

connect (a.b.c) disconnect the Ath port of the DIB whose base
address is "b" from any connection and reconnect it
to the mailbox number "c". If "c" is 0, allocate a
new mailbox. Return values are the mailbox address
and number.

(2) Arithmetic functions

The PDP-11 is a mini-computer and does not supply all the

hardware arithmetic functions that are normally used by processes.

Rather than every module having its own routines, the most useful are

SL238 - A SOFTUARE LABORATORY IS

provided in the system functions (if the functions become available

as hardware, the modules can be changed to take advantage of it

and/or the system functions can be changed to be more efficient).

The arithmetic functions currently provided are«

multpy (a.b) unsigned integer multiply "a" times "b" and return
the double precision result.

multSB (a)

divide (a,b)

div58 (a)

log2 (a)

has the result of "multpy(a,#58)"
octal)

("#" denotes

unsigned integer division of "a" by " b \ returning
a quotient and a remainder.

has the result of "divide (a,#58)".

calculate the log, base 2, of "a" and round it to
the next higher integer. Return value is the log
and the difference between "a" and 2t(first return
value).

power2 (a) calculate 2t'V and return it.

(3) Conversion functions

The names in the DIB's and in the modules are in RADIX 58

(allowing 3 characters/word). The conversion functions from RADIX 58

and ASCII are:

conv58 (a)

conasc (a)

returns the RADIX 50 value of "a",

returns the ASCII value of "a".

MODULES

The modules are the basic building blocks of all SL230 systems.

As such there are several restrictions placed on the code and several

conventions that should be followed when modules are coded. A SL238

module (source file) is composed of 3 parts, (1) documentation (for

programmer use), (2) Static Information Biock (SIB) and (3) the

executable code. A detailed description of the parts follows and an

example of a module is given in appendix A.

DOCUMENTATION

The documentation is a description of what the module does and

how to sucessfully interface the module to other modules. It gives

all the information that is externally visible (message formats, what

the module does,...) but it doesn't give the algorithms used or the

internally defined data structures. The format has the purpose of

insuring that all information necessary for the proper use of the

module is available to the user. This forces the modules to be clean

(as defined earlier), the internal data is unavailable and it can hot

be used in assumed connections. The format consists of keywords and

deecriptions (see the example in appendix A) . The following

describes what the keywords signify:

MODULE module name as given in the SIB

FUNCTION: English description of the function of the
module, exclusive of port information, message
formats and algorithms

PARAMETERS: the parameters of the module as given in the
SIB, which are: priority, stack size, dib size,
number of ports, and module size (approximate)

SL230 - A SOFTWARE LABORATORY 18

EXTERNAL: external variables referenced by the module.
These are given in the format:
<EngIi sh name> Usystem name>)
example:
TELETYPE INPUT STATUS REGISTER (T8KBS)

PORTS: description of the message format that is sent or
received through each port, including what the
module uses the port for. The format is:

<port number> <port name> <port function>

CONNECTIONS: modules that the module is "normally"
connected to. The format is:

"CONNECTIONS:
PORT MODULE

<P0RT NUMBER> <MODULE NAME>:<PORT NUMBER CONNECTED T0>

ASSEMBLY: all the files with which the module must be
assembled, usually the files which define
interface languages (explained in a later
section) and assembly time options

S I B

The SIB is the name given to the object that contains the system

module data constants for a particular module. All SIB's are linked

on the system SIB list (SIBHED) and are available to all users. The

SIB is located at the head of a module's code and its format is:

SL2 3 0 - A SOFTWARE LABORATORY 19

SIBLNK

SIBPRI

SIBNME

SIB

LINK

PRIORITY

NAME

SIBDSZ DIB SIZE |STACK SIZE SIBSSZ

SIBNPT U OF PORTS | ENTRY PT SIBEPO

SIBMSZ MODULE SIZE

SIBDLK MODULE DIB LIST

SIBPRT PORTS

PORT FORMAT

MAIL BOX

PORT NAME

The contents of each field (at load time) must be:

SIBLNK - module size (in bytes) . This value is used by the loader to

a I locate space.

SIBPRI - module priority

SIBNME - RADIX 58 value of the module name. (1)

(1) If PALX11 is used, this value must be calculated. If MACX11 is
used then the .RAD58 directive may be used.

SL238 - A SOFTWARE LABORATORY 28

SIBSSZ - one byte value indicating the size of the stack necessary to

run an incarnation of the module. The value is the log

base 2 of the number of words in the stack. The minimum

value of the field is "5" resulting in a stack of 2T5 (-32

words) of which 20 words are required for system overhead

(hold the context when the process isn't running, interrupt

stacking, etc.) leaving 12 words free for the user

(subroutine calIs, local storage, etc).

SIBOSZ - the log, base 2, of the number of words in a DIB of this

module. The minimum value of the field is "3" giving a DIB

of 2T3 (-8 words) but not allowing any ports, or at least

"4" (2T4 -16 words), allowing 4 ports.

SIBEPO - module entry point (offset from the SIBLNK field to the

first executable instruction).

SIBNPT - number of ports in the module.

SIBDLK - one word DIB list header, initial value 8. When the module

has incarnations, this field is the header for a list of

the DIB's.

SIBMSZ - one word size field, initial value, undefined. When the

module is loaded this field is given the value of the

number of words that the module actually has allocated to

it (not necessarily an integer power of 2).

SIBPRT - SIBNPT port entries, mailbox number is 9, the port name is

the RADIX 50 value of a 3 character name and may be 0.

CODE

The actual coding practices used in the modules are not

important as long as they do not violate certain restrictions and

conventions. These restrictions are imposed to insure that the

modules function properly in the software laboratory environment and

do not harm the system.

The most important set of restrictions centers on the

possibility of multiple incarnations of a module. This property of

SL238 modules forces all code to be pure and re-entrant. A pure

module, in this sense, has two implications: (1) the code must not

contain any instructions that alter other instructions in the module

and (2)the module must not contain any local storage.

Since local storage can not be located in the module, it must be

allocated from core when an incarnation of the module is first

started. There are two ways storage may be allocated:

1) from the stack

2) using a new section of core

Both of these methods work quite well and require about the same

amount of work.

To allocate from the stack, it is first necessary to start out

with a large enough stack. The first instructions (outside of any

and all loops} subtract the proper amount from the stack pointer (SP)

and save the SP in a register. Throughout the rest of the module the

local storage is referenced as indexed on the register.

1. A feasible solution appears to be one having the module deciding
when and if an incarnation can be deleted. This could be done with a
system function and a delete bit in each DIB.

To allocate local storage from core, a call on GET is done for

the required core and the address of the core is saved in a register.

It is accessed in the same manner as space on the stack.

Allocating from the stack is the preferable (possibly may become

required) method of allocating storage. Since the stack assigned to

a process is completely is defined, the system can easily control it.

This may become important when it is desired to implement a function

to delete an incarnation of a module. The major reason why the

delete function does not exist in the current version is the virtual

impossibility of deallocating all the space (such as messages, local

storage, etc.) an incarnation has. This problem has been given some

attention but no suitable (neat and easy) solution had been found

that did not involve a considerable overhead in the allocation and

deal location process. (1)

Another restriction on the code is that it must be entirely

relocatable. This restriction results from the lack of hardware

relocation facilities on the PDP-11. The problems of writing

relocatable code are dicussed in the later secton on coding hints.

If the code in a module comforms to these restrictions, then

there will be no problems in running it under SL238 (once it is

debugged).

Conventions

In the process of coding many modules there are certain coding

conventions that have been found to be useful. These conventions do

not actually affect the module code (other than in the conceptual

manner in which the modules are coded) and apply mostly to coding

done in PDP-11 assembly code (PAL11). They are not required but it

is adviseable to use them since they do make coding easier.

To facilitate the use of local storage it is desirable to use

direct assignments rather than numeric offsets. This allows two

things to be done, the format of the local storage may be changed

easily and the format is well described for later referencing. At

the start of a module, values are assigned to names and a description

given of the data. An example of this would be:

NAME -8 ; t RADIX 58 NAME t

NUMBER -2 ; f FILE NUMBER t

REFCNT -4 ; t NUMBER OF REFS t
; f-ltleirtrlcltlrttletriftcttin'tJiicf

The data would be acessed by an instruction like:

TST REFCNT(R5) ;ANY REFERENCES?

It is also desirable to use direct assignments of variables for

port assignments. This allows the assignments to be easily changed

and provides more information for anyone reading the code.

The kernel routines and system function, defined earlier in this

report, are accessed, on the PDP-11, by means of the TRAP and EMT

instructions (TRAP for Kernel routines and EMT for system functions).

These instructions allow an argument which is used by the TRAP and

EMT routines to determine which routine is being called. Thus, if

the SEND routine is number 2 the calling instruction would look like:

TRAP 2

allowing position independent accessing of the routines.

The system data that a user might need has been defined in the

file SYMHED. In addition to defining the hardware registers (R8 -

R5, SP, PC, PS, I/O registers), SYMHED defines all the names of the

system data structures (SIB, DIB, messages, semaphores) with the

identifiers given in this report. SYMHED also defines a mnemonic and

gives the relavent information about the parameters and return values

for each argument of the TRAP and EMT functions. This allows the

kernel routines to be called by their name. By assembling SYMHED

with a module all that Is necessary to access the send routine is to

code the instrueton:

TRAP SEND

after setting up the parameters.

SYMHED defines the "interface" language between the module and

the kernel. An interface language is a definition of the

assumptions, structures, commands and conventions that exist between

two objects that interact with each other (such as kernel and module,

module and module). If a module is written that has a non-trivial

message format, a large set of possible commands, or usee a common

data format, it is best to create an interface file like SYMHED.

Defining interface languages in a file like SYMHED has a great

advantage over putting the assignments at the start of every module.

It is easier to access parts of a data structure using mnemonics and

it allows the format of the structure to be changed with only the

cost of a reassembly instead of a change and reassembly of every

module that accesses that structure. Another advantage is having the

interface completely defined so other programmers can use it.

Hints

The following paragraphs describe several PAL11 oriented tricks

that can be used to ease the job of writing a module.

As someone who closely studied the SIB format may have noticed,

some of the information required would be non-trivial for the

programmer to calculate. Specifically this is the module size in the

location SIBLNK and the module entry point offset in the location

SIBEPO. An easy way to get these values is to have the assembler

calculate them. The module size is calculated by having a label at

the start of the SIB and one at the end of the module (after the last

instruction). The start of the module would have an assignment of

the form:

MODLNK-<LASTLABEL>-<F I RSTLABEL>

and the first word of the SIB would have the value of "MODSIZ".

Alternately, if the labels were "SIB" and "LAST" the start of the SIB

could look tike:

SIB: .UORD LAST-SIB tMOOULE SIZE

The same technique can be used for SIBEPO. (see the example in

appendix B)

It is sometimes useful to assemble several modules together, so,

instead of putting a ".END" at the end of each module, it is usually

better to put the ".EOT" directive there. Ail currently existing

files follow this practice and for this reason the file "TAIL"

exists. It contains only one line, a ".END" statement.

Example: to assemble the module "DTACON" we find from the

documentation that it requires the files "SYMHED" and "DSKCOM"

assembled with it. The assembler command string would look like:

DTACON, /CDTACON«SYMHED, DSKCOM, DTACON, TAIL

NOTE: SYMHED must be the first file in the string since it defines

the hardware registers.

The lack of relocation hardware forces all modules to be

location independent. Uhen a module is loaded, it can and will be

placed almost anywhere in core. On most machines this requirement

would place a great burden on the programmer and/or the programming

language. On the PDP-11 relocatable code is easy to write, the only

problems requiring care are accessing fixed addresses (the PS word,

I/O registers, etc) and accessing module information (such as command

vectors). On the PDP-11 this requirement is easy to fulfill due to

the ability to do indexing relative to the program counter (PC). The

only problems occur when it is desired to access a vector of data

within the module (such as a command vector) or uhen trying to access

a fixed location in core (such as the PS or 1/0 register).

A fixed address can be referenced position independently only by

the "deferred auto increment on the PC" mode. This mode forces

absolute instead of relative addressing. The correct and incorrect

methods of referencing the PS would be:

MOV «#PS,-(SP) ;RIGHT (ABSOLUTE)
MOV PS,-(SP) ;UR0NG (RELATIVE)

(NOTE: timing is identical)

Accessing module information (indexed by a register) involves

using the PC to find uhere the module is located and calculating

relative displacements. If it is desired to use a vector as a

command break (a vector indexed by a register the correct and

incorrect methods of coding are:

VECTOR: C0MMD1,C0MM02

JMP ©VECTOR(RB) ;UR0NG METHOD

ADD PC.R8 CALCULATE POSITION
HERE: MOV VECTOR-HERE(RB),R8 ;GET RELATIVE OFFSET TO LABEL

ADD PC.R8 ;MAKE IT ABSOLUTE
HERE 2: JMP -HERE2(R8)

Explanation: R8 has a value (even) that is to be used to index into

VECTOR. Since the module may be located anywhere in core using the

label "VECTOR" as an absolute value will pick up a word from core

that corresponds to where the assembler put the module (usually 0) .

SL2 3 8 - A SOFTUARE LABORATORY 2 8

Instead, the PC is added to R8 so that R8 points to the label "HERE"

offset by the amount that it formerly contained. The desired word is

picked up by indexing with the displacement from "HERE" to "VECTOR".

This is now the value of a label, as ths assembler saw it. So the

initial process is repeated with the final instruction a "JMP" if the

process is for a command break or possibly a H M 0 V H or "CMP" if the

vector contained data.

DESIGN

Thus far, the discussion has centered on how to write a module

rather than what should go into it. From what has been said, it is

evident that SL238 will actually support almost any piece of

relocatable code that has a SIB on the front of it. This is due to

the impossiblity of checking or protection on the PDP-11. Designing

a module as if i t was a stand-alone program is ignoring the resources

of the software laboratory. The entire concept of SL238 rests on the

general availability of small functional modules. Proper design of a

module is of the utmost importance so as to maximize its usefulness.

The guiding philosophy should be to design modules that are

globally useful. This means we want to design the modules small and

functionally simple. Complex functions are generated by connecting

many of these simple modules together. Unfortunately, there is a

lower limit upon the size of a module. At some point the overhead

involved in the system structures (DIB and stack, minimum - 48 words)

is bigger than the module. In most instances this is undesirable.

If modules this small are implemented, core is quickly lost through

fragmentation and cluttering. A module in this range should be

re-examined to see if it is really useful. If there are few uses for

it, then it possibly should be included as a subroutine in the module

that uses it. If there are many users the possibility of including

the module as a system function should be considered. An example of

a email module that can not reasonably do either of the alternatives

is the TTYIN module. This module is 32 words in length (18 of which

are the SIB) and is an independent module solely because it does 1/0.

By having it do the I/O, other modules become more generally useful.

Modules should have a size on the order of 75 to 488 words.

(The figure 488 results from writing many modules ana evaluating what

is contained in each. It is not an upper bound but rather a guide to

be used when designing modules.) If a module is larger than 488 words

It probably incorporates several functions that independent modules

should do. It should be examined to sea whether it can be broken

down into smaller modules. An example of a "large" module is the

Command Language Interpreter (CLI). It has a size of 512 words and

consists mostly of special cases (the various commands). It would be

difficult to divide the CLI into separate modules due to the common

data base that the commands require and the fact that each individual

command is too small to be an independent module.

The normal condition for the existence of large modules is the

grouping together of several small sections of related code that are

all accessed in the same manner. A possible way to eliminate this

type of module is to provide a module that consists almost entirely

of ports and the code merely sends the incoming messages out the

various ports according to some well defined rule. If the resulting

small modules are not generally useful it is not evident it is worth

the effort (and overhead!) to do this.

Most modules occur in the context of a larger system or project

and are originally designed as a part of that system. Dividing a

system into modules can be done in many ways, not all of which are

desirable. An example of modularizing a project is given in [91 in

what we consider to be one of the better ways to divide a system. A

system should be divided along functional boundaries instead of the

usual data flow boundaries. Functionally interdependent modules are

easier to change then data interdependent ones. Since we wish to

have the facility of easy changablity in the system, we must have the

modules functionally interdependent, keeping data interdependency

restricted to the messages that pass between two modules.

SL230 lends itself to functional interdependency. It is easy to

see this in terms of an I/O module. SL238 has two classes of I/O

devices, single character devices (teletype, link) and block devices

(disk, DECtape). The I/O messages from different devices are not

identical. If a module were designed requiring a block formatted

input, it could not connect directly with a character oriented

device. By keeping the I/O functions independent we seem to be

losing access to some of the devices from a particular module.

Obviously all that is necessary is to insert a conversion module

between the two. If a module requires a particular type of I/O input

this is the type of solution that should be considered. The link

dedicated system provides us with an example of I/O type dependent

modules. If it would be desirable to send an ASCII file from the

PDP-18 to the PDP-11 the character would come into the 11 through the

link input module(LKHN). This module is single character oriented

so that if we wished to use PIP11 to transfer the file to disk a

direct connection could not be made. Instead, a character-to-buffer

module would have to be inserted between the two. Schematically this

looks like:

SL230 - A SOFTWARE LABORATORY 32

<
PIP LINBUF < LK1IN »

BLOCK I/O CHARACTER LINK INPUT
HOOULE ACCUflULATOR IIOOULE

Doing input from the link this way allows the continued use of the

single character capabilities of tne iirv; ar,c also £i lews us to

transfer files with a minimum of work. This solution would be

superior to writing a r,e« IK U N module for it a, so generates the

LINBUF module which should be useful elsewhere. <?r.e ,JaR system is

described in the following section on current systems)

As in most problems, the dividing of a project into modules

involves the making of various trade-offs. In the software

laboratory the desired end result is to have as many useful modules

as possible. By checking on the kinds of existing .^oouies it is

(should be) possible to find most of the programming work done.

CURRENT SYSTEMS AND MODULES

At the present time there are two major systems that have been

designed; a command language system and a link oriented system (see

schematics in appendix B). The command language system is designed

to provide the resources necessary to debug modules and construct

systems. The human engineering aspect of the command language has

been given considerable attention and the commands are designed to

allow efficient use of the human resources available. The commands

are given in the documentation of the Command Language Interpreter

(CLI) module (see apendix D) and will not be given here.

The command language system can be easily extended if a user

wants it to be. If a new command or facility is desired, a new

module can be written to implement the command or an existing module

can be modified. There is nothing permanent about the current

version of the command language module other than the kinds of

commands that it provides. The current version is actually the third

one and represents a year of experimentation and use of other

vereions.

The link dedicated system is used to communicate with another

computer by means of a link connecting the two machines (currently

the link goes to a PDP-10). Since the PDP-11 is a small machine, the

second machine is used to edit and assemble PDP-11 files and the

binary output is sent to the PDP-11 over the link. Resources are

available in the link system to transfer from the link to any other

SL230 - A SOFTUARE LABORATORY 34

block I/O device. This system allows the rapid debugging of modules

(or systems) since the power of a bigger computer is available to the

user. For a more exact description of the link system, see the

schematic in appendix B and the description in appendix C.

In addition to the modules composing these two systems, there

are several others that have been written. The documentation of all

cuurrently existing modules is given in appendix 0.

FUTURE PROJECTS AND SYSTEMS

There are only a feu major projects left involving changes to

existing systems. They are outlined in the foI lowing paragraphs to

give examples of the kind of projects that could be considered. The

particular ones given are those for which a solution is thought to be

easily avai table.

There are some changes that should be done to SL230 itself (as

opposed to modules). One of these is the addition of a delete

function. As uas mentioned earlier in this report, this function is

not in the current version because of the difficulty in deallocating

the core assigned to a process.

Another major change to SL238 involves the manner in uhich a

system is initially loaded. In the current version, each system must

have its oun system assembly since information about uhich modules

are loaded exists as a vector in the system. A better way to

initialize the system is to have the capability of using a load file

that specifies the modules to be loaded and the connections to be

made. This is easily implemented by using a subroutine, "OOEVER",

from the command language interpreter module. By making this routine

part of the system, all that is necessary to perform the proper

connections (and loadings) for a system is to give the routine the

correct data structure. The source of the data structure could be

anywhere and thus could be a file on an I/O device. This uould allow

more efficient system loading and the system in core could be changed

more easily. It would also ease the implementation of a command

SL238 - A SOFTWARE LABORATORY 3B

language with each system (the link system does not have command

language facilities).

Sometime, it might be desirable to change SL238 into a multiuser

system. The PDP-11's available for this project were not big enough

for more than one user so a multi-user system could not be

implemented. Since SL238 is already designed as a multi-process

system, it would be a simple matter to have each user have one

process for his use. This would be the equivalent of the way most

current operating systems are implemented, but it would provent the

user from accessing most of the resources provided by SL238. of

SL230 (multiple feasible lists, a recursive defination of the kernel,

etc.) but they will not be discussed in this report.

There are many systems that could be designed for the software

laboratory. Most of the first systems built should have the purpose

of building up the library of modules in addition to ouilding a

useful system. Among these projects are a few that can be done with

very little work, the modules that should be written are readily

apparent. One of these would be a text editor. The editor need not

be complex but should have a great deal of power. The actual design

of the modules will depend upon the type of editor jsed (text mode,

line mode, etc.) and the desired features of that type. It should,

however, contain modules that are common to all types of editors. A

poeeible design of an editor is:

SL230 - A SOFTWARE LABORATORY 37

TTYOUT I/O

SI LED

BUFLIN I/O

TTYIN ACCUtl EDITOR TTYIN ACCUtl EDITOR

I t I t
I I

LINER 4 M M M * LINBUF

The only modules that are not written are the three editoring

m o d u l e s , EDITOR, LINER, SI LED. The first is the type dependent

editor controler, it is the one that scans the input and decides what

to d o . Liner is a simple module that handles a list of strings (in

m e s s a g e s) . SILED is a more sophisticated part of the editor. It

implements an "alter" command (a command which would allow the

internal editing of a line of text with a line mode text editor) and

would not be necessary for an initial version of the editor. All the

other modules exist in some form. This design is neither the only

possible design nor necessarily the best. It is one of the simpler

ones and should be easy to implement.

Other systems that could be implemented include assemblers,

compilers and text justification programs. Each of these should also

have several modules implemented for each function, such as several

symbol table modules, optimizers etc. Uhen several projects such as

these are completed there will be a useful library of modules

available for users.

SL238 - A SOFTWARE LABORATORY 38

APPENDIX A

This appendix contains an example of a module.

FUNCTION; ACCUMULATE SINGLE CHARACTERS INTO BUFFERS. THIS
ttOOULE LOOKS LIKE AN INPUT I/O ttOOULE (BUFFER SIDE)
RND UILL CONVERT fl SINGLE CHARACTER I/O H0DULE INTO
A BUFFER ONE. TERMINATOR ON THE INPUT IS THE
CHARACTER CONTROL Z (826 ASCII DECMAL).

PARAMETERS: PRIORITY. 28080
STACK SIZt= 2tS
Dia SIZE* 2t4
NUMBER OF PORTS* 3
MODULE SIZE- 170 WORDS

PORTSr PORT NAME FUNCTION
8 I/O COMMAND INPUT PORT, A &LQC<

MODULE LINBOF

1
2

ORIENTED I/O C0IW1ANB IS fiCCEPV
THROUGH THiS PORT. FOR fCRftATS SEE
DSKCOH.
I/O REPLY PORT
CHARACTER INPUT PORT. CHARACTER IS
THE FIRST BYTE IN THE DATA PART OF
THE MESSAGE

ASSEMBLY: SYMHED, OSKCOfl

PAGE

SL23B - A SOFTUARE LABORATORY 39

?
s

, t*******************T
BUFBDR-B ; T BUFFER ADDRESS t

BUFCT-1 i t BUFFER COUNT t
, t * * * * * * * * * * * * * * * * * * * t

J
RECIVS-0
REPYS-1
INPUTS-2
!
LODSIB:
>
LODtlDS-LODLST-LOOSIB
LODENPT-QSTflRT-LOOSIB
:

.UORD L00t1DS,2BBBB

.UORD 46166,7716 t"LINBUF"

.BYTE 5,4,L0DEHPT,3

.UORD LODHOS.B

.UORD 0,8]PORT 0

.UORD 0,0 |PORT 1

.UORD 0,0 (PORT 2
J
j PACE

SL238 - A SOFTUARE LABORATORY 48

QSTRRTt

;

;

RSTARTi
BOONE:
HDONEs

J
i
i
L0P2i

i
RENDt
REND2:

REN03t

;
;
;
HUNTHi

CLR
CLR
IIOV
CLR
BR

nov
JSR
JSR
CflPB
BNE
JSR
CUPB
BNE

JSR
crips
B£Ei
JSR
BR

JSR
CnPB
BNE
HOVB
JSR
BR

CMPB
BEQ
CUPB
BEQ
TST
BNE
BR

-(SP)
-(SP)
SP.K2
R3
AOOftE

(PC:sT INTO THE
;ZERO R3
jSYflRT

STACK

#-l,DEVCHD<R3) ;ERROR, AND TELL HIM SO

PC, li^'ZL
R&,tirO?l<H jOPEN FOR .NPUT
asTA-ft" ;:? uc, C:VE Hin
pc.counn jiF SO, OK
R8,*R£ADF ;HAVE THE NEXT, IS IT A
r,^Vn j IF fcOT, HE GOOFED!

A NEGATIVE NUflSER

REAO?

PC.PJYiYT
LC?2

PC,S£«DBF
RB,#READF

#E0r',0£VCnD(R3)
pc.counn
REND2

;G£T ONE 6YT£
;IS IT A CONTROL Z (THE END)

;GO SEND THE CURRENT BUFFER
;UAS REPLY A READ? IF SO SEND EOF

R8,#CL0SZ
BDONE
R8,*RELESE
BOONE
R8
REMD3
BDONE

tA CLOSE?
;IF SO, START OVER
;A RELEASE?

5IF SO , START OVER
•AN ASSIGN?

jPRSE

SL236 - A SOFTWARE LABORATORY 41

i
i
i
PUTBYTt

THE FOLLOUIKG IS THE GETBYTE ROUTINE

i
i
GETBYTi

INC
BGT
HOVB
INC
RTS

HOV
TRRP
MOVB
ftOVB
TRAP
flOV
BIC
RTS

2 (R2)) INCCREflENT THECHRRRCTER COUNT
GETBUF (IF >8 THEN NONE LEFT, GET HORE
RB,s(R2) (GET THIS BYTE
(R2) | INC THE POINTER
PC (RETURN

#INPUTS,R8
RECIV
I1SG0AT(R8),-(SP>
nSGSIZ(R8),Rl
RELEBS jRELERS
(SP)+,R8
#177608,R8
PC

jGET THE BYTE
;SRVE THE DATA

THE tIESSRGE

J
jPRGE

SL23B - A SOFTWARE LABORATORY 42

t
i
GETBUFi

OKSPSi

t
BOHBt

SENDBFt

1
;
NOSTUFt

SINKt

;PRGE

nov R8,-(SP) ;SRVE THE DATA BYTE
JSR PC,SENDBF {SEND THE CURRENT BUFFER(IF RNY)
CMPB R8,#READF jREADF NEXT?
BNE BonB 1 IF NOT, BOPIB
nov DEVLNK(R3),R8 jGET THE BUFFER PROVIDED
BNE OKSPS ;MAYBE NO BUFFER?
nov R3.RB 5DITCH MESSAGE, IT HAY BE TOO Sf
novB nSGSI2(R3),Rl jWE NEED A SIZE A RND IT MAY BE
TRRP RELERS ;FOUND OUT THE HARD UAY!
nov #4,R8
TRRP GET jimOW U£ HAVE THE RIGHT SIZE
nov R8,R3 (SAVE IT
CLR (RB> + j ZERO THIS HESS
CLR (R8> +
nov #4,(R8)) SIZE
nov #18,RB
HOVB R8,DEVSIZ(R3> ;PUT IN THE SIZE
TRRP GET {GET THE BUFFER
nov R8,D£VLNK(R3> {PUT IT IN THE MESSAGE
nov #-776,2(R2>
TST
nov R8, (R2)
nov (SP)+,R8 {RESTORE DATA
BR PUTBYT ;PUT OUT THE CURRENT CHARACTER

nov R2,SP {RESET THE STACK
BR HUNTH

TST (R2) tUE DO HAVE A BUFFER, DON'T ME?
BEQ NOSTUFF {IF NOT, FORGET ITt
RDD #776,2(R2> {SET COUNTER TO RIGHT VALUE
BEQ NOSTUFF {IF 8, THEN NOTHING TO OUTPUT
nov 2(R2),iDEVLNK(R3) JURKE THE COUNT IN THE (
CLR 2(R2) {ZERO THE WORLD
CLR (R2)
8R counn

nov DEVLNK(R3),R8
BEQ SINK
CLR DEVLNKCR3)
MOVE DEVSI2(R3),R1
TRAP RELERS
CLR (R2) ;ZERO POINTER
CLR 2(R2) {ZERO COUNT
nov #REA0F,R8
RTS PC

SL238 - A SOFTUARE LABORATORY 43

i
j
;
;
j
OUTFILt ftOV

HOVB
n o v
TRAP
RTS

;

;

c o w i n < jsr

»
infil» n o v

BEQ
n o v B
TRAP

OKnsct nov
TRAP
nov
n o v

n o v B
RTS

!
i
t

;
LODLSTt

R3,R8 {SEND THE MESSAGE THAT UE HAHVE
#F ILCMD,nSGTYP(RB) {PUT IN A GOOD TYPE
#REPYS,tR8
SENO {SEND IT ON
PC

PC.OUTFIL

R3,R8 {NOU, RELEAS THE MSG UE HAVE
OKHSG
nSGSIZ(R8),Rl
RELEAS
#RECIVS,RB
RECIV ;GET THE REPLY
R8.R3
DEVLNK(R8),R1 {PUT THE LINK IN Rl
DEVOID <R8),R8
PC

SL238 - A SOFTWARE LABORATORY 44

APPENDIX B

T T Y O U T T T Y I M

\

A T o m

t

L O A ,

3/0 MODULES)

Schematic for the command language system.

SL238 - A SOFTUARE LABORATORY 45

TTYOUJ

V

T T Y I N

Schematic for the link dedicated system.

SL230 - A SOFTWARE LABORATORY 46

APPENDIX C
LINK DEDICATED VERSION

The link dedicated system is designed to provide facilities to
make the PDP-11 appear like a TTY to the PDP-10. It also provides
the mechanism to transport files both ways across the link. Input is
from the TTY and is accumulated in an accumulation module (A C U M 1 1) .
This module does all the echoing and handles control U , control 0,
rubout and line overflew. For more information on exactly what
happens in each of these cases see the module itself (it should
suffice to say that the resuit is approximately the same thing as
would happen on the P D P - 1 0) . A C U M1 also provides another service,
it has several output ports for the string, one to the link and thus
the PDP-10 and one to the PDP-ll's port interchange module (P I P 1 1) .
It also has a port connected up to the link input accumulation module
(the link input is accumulated into lines to provide more efficient
buffering) and will send an altmode to this port if required. The
purpose of this is to free any message that is stuqk in the
accumulation module because it wasn't terminated by a break character
(ex. 'CONFIRM:* from a L O G O U T) . The ports are changed by control
characters:

tA set port out so the string goes to the PDP-10
fB set port out so the string goes to PIP11
tD send an aitmode to link accumulation module

The PIP module, when initially loaded has the following symbolic
port assignments (see PIP documentation for explaination):

0 - system initial load device. In SYSLDT «> DECtape,
SYSLDK »> disk

1 - alternate device (one not used as system load. SYSLDT
«> disk, SYSLDK => DECtape

2 - binary accumulation module. Input device for shipping
binary files over the link

3 - ASCII accumulation module. Input device for shipping
ASCII files over the I ink

4 - link output module. output device for shipping any
file to the PDP-10

5 - unassigned

The current binacm module allows only absolute binary files to
be shipped to the PDP-11. It should be noted that the commands for
each machine must be typed individual ly.

EXAMPLES:

shipping a binary file to the PDP-11

(1 «> disk, <character> «> control <character>)
tA "switch ACUM11 to send to the link
tC !stop anything running on the 10
.R PIP Istart PIP
*tBl;0:PIPll-BIN*2;0: Ireturn to 11, give PIP11 command

tATTY:/I«OSK:PlPll.BIN Iback to IB, tell PIP to output file
to TTY

* !PIP done
* IPIP11 done

shipping an ASCII file to the PDP-11

ta
tc
.R PIP
*tBl;8:PIPll-Pll«3;8:
tATTY:/I«OSK:PIPll.Pll *
*

shipping a file to the PDP-18

tA
tc
.R PIP
*DSK:PIP11.P11«-TTY:/A
tB45B:*l;B:PIPll-PU

If an error occurs during the transfer of a file, one of two
things uill happen. If the binary accumulation module should stop
too soon (caused by a premature start block) then the rest of the
file will be fumped on the TTY. The best thing to do is type control
0 on the TTY and when the file is really finished try again. The
other thing that can happen is that the binary module won't see the
start block and thus continue waiting for more input. This is
characterized by the fact that even after a long wait nothing
happens. Of course the problem may be that the PDP18 has gone down,
but for most purposes this is unlikely. In this case you either have
to reload the system or transfer another file over the link an hope
the module becomes unstuck.

Once a file is on the PDP-11*s disk It ie very easy to transfer
it to a DECtape so that it may be loaded using H U P .

EXAMPLES:
transfering files from disk to DECtape

(l-> disk, 8 -> DECtape)
*0;0:PIP11-BIN«-1;0:PIP11-BIN

*/X*TTYIN-BIN,TTYOUT,ACUM11,ATOM

SL230 - A SOFTUARE LABORATORY 48

TTYIN BIN
TTYOUT BIN
ACUmi BIN
ATOM BIN

All the underscored parts are the print out of the PDP-11. The
second command is an example of the advanced form of PIP11 and makes
use of the fact that nothing is lost between commands.

SL238 - A SOFTWARE LABORATORY 43

APPENDIX D

MODULE LOADER

FUNCTIONi pdp-11 abcoluta binary loadar. toads Mdulas Into eora from
a block or Iantad l/o Input, for tha forBat of an
absoluta binary fila a«a tha papar taps software
loadar manual.

PARAMETERSi priority- 780
stack siza- 2t5
dib siza- 2t4
nuMbar of ports- 4
Modulo siza- 261 words

PORTS: port nana function
0 command Input port, tha sacond and third data

uorda ara assusad to contain tha flls nas*
that tha Modulo Is in.

1 raply port, uhan tha Mdula is loadad, tha addrass
Is raturnad in tha first data word of tha Mssag.a.
ff a arror occurtd, tha raply addrass Is In tha
i/o pagt or alsa 0. valid arrors arai

valua raturnad mrror
0 chacksuM arror occurad
-1 no roon in cora for Mdula
-2 Mdula siza trobla(too many blocks)
-2 Mdula aiza troublattoo faw blocks)

all othar arror ara i/o arrors and tha i/o
arror nutbtr Is raturnad. saa dskcoa for
thaaa valuos.

2 i/o output port. coMMnds to tha i/o Mdula ara
sant out this port.

3 i/o raply port, for Mssaga format saa dskcoai.

CONNECTIONS!
port Mdula
8 d imam 2
1 dirMnt3
2 I/o Mdula t0
3 I/o Mdula il

ASSEMBLY! symhsd, dskcoa

SL238 - A SOFTWARE LABORATORY 50

MODULE PTP11

FUNCTION* does character, string and block koda l/o with tha paper
tapa punch, mods Is dot or mined by tha message type in accordance
with atommg and dskcom. If block mode I/o than any output
oriented command ara accepted and a raply is generated, an error
occurrs if a read or read oriented command Is given (such as
read a block, read a directory) or if a directory oriented
command is given (delate a file).

PARAMETERS, priority. 77771
stack size* 2T5
dib size. 2t4
number of ports- 2
module size- 74 words

EXTERNALi paper tape punch data registsr (ppb)
papar tapa punch status register (pps)
papar tapa punch semaphore (hap)

PORTSi port name function
8 massage input port, messages ara received through

this port, if tha type is 0, it is assumed to be
a singls character type message (the
data in the low byte of the message data area,
if tha type is positive, a string Is assumed with tha
first byte of data being the character (byte) count,
if the type la negative, a block oriented I/o Is
assumed and a reply is sent out port 1

1 reply output port for block oriented i/o

ASSEMBLY* symhed, dskcom

SL230 - A SOFTUARE LABORATORY 51

nODULE PTREAD

FUNCTION: hand I • tha Input from tha papar tapa rsader. Initiates tha
ptr for input and waits on tha ptr Input ssMphoro. output is
single byte Mode t/o.

PARAMETERS, priority- 17788
stack size- 2t5
dib sizs- 2t4
number of ports- 1
module sizs- 32 words

EXTERNALi ptr status register (prs)
ptr buffer register (prb)
ptr input semaphore (hsr)

PORTSi port name function
8 inp character output port, character Is In the low

byte of the message

ASSEMBLY] symhed

SL238 - A SOFTUARE LABORATORY 52

HODULE PTR11

FUNCTIONt do block mod* i/o on tha papar tapa reader, will accept any
block mode command as given In "dskcom" but H i l l return an
error if an output is triad, of any sort
i.e. a write, open for output, delete, etc. or H
a directory Is requested.

PARAMETERS: priority- 77771
stack size- 2tS
dib size- 2t4
number of ports- 2
module siza- 84 words

EXTERNAL) papar tapa status register (prs)
papar tape reader data register (prb)
papar tape input semaphore (hsr)

PORTSi port name function
8 command input port, massages of the command

format (as given In dskcom) are input through
this port

1 data and command raply output port.

ASSEMBLYi symhod, dskcom

SL238 - A SOFTUARE LABORATORY 53

MODULE SINK

FUNCTION) th« message bit bucket, all messages received are delated,
never to be seen again.

PARAMETERSt priority. 777
a tack size« 2TS
dib size- 2t4
number of ports- 1
module size- 16 words

PORTSt port name function
8 message input port, any format of massage

Is a)lowed.

ASSEMBLY: symhed

SL238 - A SOFTWARE LABORATORY 54

MODULE FLOOR

FUNCTION) to npiriti two groups of modules on ths feasible list, this
modulo doss a busy watt loop. It looks for a massaga on tha
input port by repeated, tests of empty, whan a message Is received
a V Is dona on the floor semaphore, when released from
the semaphore, the input message Is sent out and a wait for
a new message is started.

PARAMETERSi priority. 488
stack size- 2T5
dib size- 2t4
number of ports- 2
module size- 32 uords

EXTERNALi floor semaphore (floor)

PORTSt port name function
8 message input port, the message may be any

format.
1 message output port, the output message Is the

same as tha input message.

ASSEMBLY, symhed

SL2 3 8 - A SOFTUARE LABORATORY 55

MODULE U1IN

FUNCTIONS to do i/o with tht link, input only, this moduli is
used for a "fast response" link, ona that raquiras a
rasponsa Mi thin 288 to 808 micro-seconds, it raquiras
a spacial interrupt routine that fetches tha data
byta into cora before doing tha "v" on the semaphore,
tha semaphore Is usad as tha data countar, (i.a. a "v"
is dona for avary data byta).

PARAMETERS: priority*
stack size* 2t5

18887

dib size« 2t4
number of ports* 1
module size*

EXTERNAL: link 1 input status register (Inkaos)
link 1 input semaphore (liisem)
link 1 temporary data buffer (InkbO
link 1 tmp data buffer size (Inksz)

PORTSt port
1

name
inp

function
data output port, data is in tha low
byte of tha message

ASSEMBLYi symhed

SL230 - A SOFTUARE LABORATORY 56

NODULE LK2IN

FUNCTION: to do i/o with tho link, Input only, single
character Mod*, this Modulo gets tho data from tha
link data ragiatar and thua raquiras only tha
semaphore (see Iklin for a different kind of
link input.

PARAMETERS: priority- 18087
stack size- 2T5
dib size- 2T4
number of ports- 1
module size*

EXTERNAL: link 2 input status register (Inkboa)
link 2 input data register Clnkbob)
link 2 Input semaphore (121 asm)

PORTS: port name function
1 Inp data output port, data is In the Ion

byte of the message

ASSEMBLY: symhsd

SL238 - A SOFTWARE LABORATORY 57

MODULE LKIOUT

FUNCTION, modula to do to with tha link - output only.

PARAMETERS: priority. 16868
stack size- 2t5
dlb siza- 2t4
nuafear of ports- 2
Mdule siza- 80 wrds

EXTERNRLi link 1 output coMMnd register tlnkaos)
link 1 output data ragstar (Inkaob)
link 1 output sa«aphora (Hasan)

PORTS* port natw function
8 data Input port. If tha typa it zero than tha

first and only tha first byta of data is outputad
to tha link, if tha typa la posit Iva than
tha first byta of data is assuMd to ba a count Mlth
tha data following, if tha typa (s nagativa than it
tha is assunad that tha nassaga is a fila typa
coMand (taa dakcoi* for what thasa conmands ara>.
if tha cOMMnd Involvas a diractory or
a r e a l f l t e t h e n an e r r o r c o n d i t i o n Is r e t u r n e d , an
e r r o r c o n d i t i o n is r e t u r n e d if t h e coanand has t o do with

i n i t i a t i n g a f i l e . o t h a r N i s t t h e o n l y eoimnand anything is
d o n e Hith i s t h e n r l t f coMnand w h i c h c a u s e s a b u f f e r

t o b e o u t p u t e d (t h e b u f f e r a d d r e s s i s t h e s e c o n d data w o r d

and t h a f i r s t word of t h a b u f f e r Is a b y t e c o u n t)

1 file coNsand reply port

ASSEMBLY: suished, dskeoH

SL238 - A SOFTWARE LABORATORY 58

rlODULE LK20UT

FUNCTIONr M o d u l e t o do i o w i t h t h o (Ink - o u t p u t o n l y .

PARAMETERS, p r i o r i t y . 16368
s t a c k s i z s - 2tS

dib s i z s * 2T4

nuMbsr o f p o r t s - 2

M o d u l o s i z e * 68 w o r d s

EXTERNAL, l i n k 2 o u t p u t command r e g i s t e r (f n k b o e)
l i n k 2 o u t p u t o a t a r o o s t e r (I n k b o b)
l i n k 2 o u t p u t s e m a p h o r e (l2osem>

PORTS» p o r t name f u n c t i o n

8 d a i a i n p u t p o r t , i f t h e t y p e i s z e r o t h e n t h e

f i r s t and o n l y t h e f i r s t b y t e o f data i s o u t p u t a d

t o t h e l i n k . i< t h e t y p e i s p o s i t i v e t h e n

t h e f i r s t b y t e o f d a t a i s a s s u m e d t o b e a c o u n t w i t h

t h e d a t a f o l l o w i n g , i f t h e t y p e i s n e g a t i v e t h e n i t

t h e i s a s s u m e d t h a t t h e m e s s a g e i s a f i f e t y p e
command (s e e dskcom f o r what t h e s e commands a r e) .

i f t h e command i n v o l v e s a d i r e c t o r y o r

a real fit* then an error condition is returned, an
error condition is returned if the command has to do with
initiating a fife, otherwise the only command anything is

done with is the writf command which causes a buffer
t o be outputed (the buffer address is the second data word
and the f i r s t word o f the buffer i s a byte c o u n t)

1 f i l e command r e p l y p o r t

ASSEMBLYi s y m h e d , d s k c o m

SL230 - A SOFTUARE LABORATORY 59

noDULE nnxEL

FUNCTION: module to convert internal format messages into external format
messages, tha two typos of messages affected are binary numeric and
radix 58 alphanumeric, it converts these into asclt characters,
(numeric is converted into octal) all
other massages are unaffected, the types ara given in the interface
language file "atommg". leading zeros (on numeric)
are deleted, as are trailing spaces on alphanumeric.

PARAMETERS: priority- 1881
stack size- 2T5
dib size- 2t*
number of ports- 2
module size- 165 words

PORTS: port name function
8 data input port, the input has the relavent

data in the first word for numeric and first two
words for alphanumeric.

1 data output port, the first data byte ia a character
count followed immediately by the characters

ASSEMBLY: symhed, atommg

MODULE CLI

FUNCTION) to implement a command language for tha software fab. tha
tolatypa format of tha commands ici

load command
I U s lb name>K ><> £<unlt number> ' t'] [<f I iname>) '>']

fila nana defaults to slb nana, unit defaults to 8
muitipl* taads ara saparatad by a '-'
connect cotamand

c [<dlb n a m ^ f < t ; b nama>> £ '<» <unit nu*ber>
't' H<fiie name>) *>' 3 (':' <port number I
port name >] < I I cr>
if tha terminator Is '-' than a nau mailbox is gotten for the
connection and a connand string of tha sane format la
expected aftar tha tnotai thia command could contain
a new ' = ' or so that tha coanand can go on indaf inataly).
if the terminator M a s a '-' tha existing connaction of tha
laft sida (if any) is usad. again tha sana format of string
is got tan for tha connaction.
the carw.ec t command savas almost all data bat wean
commands, this allows a vary strong dafault
structure <<.a. or.ly tha port nead usually
b e c h a r g e d) , a l s o , th* internal defaults
a r a :

all names dafault to tha dib nana, If Is typed
(except t h e p o r t name)

tha tile nam defaults to tha sib
nama.

dd (< dib I lst>3
disply items about tha dlb(s) If no name
is given, disply tha 11st of possible dibs
i.a. tha names of all tha dibs on ths systom
dib list

ds I<sib list>)
disply charactaristics of tha stbs named. If no
name is given, tha names of ail tha sib
on tha system sib list ara disptied.

r
cause the floor to lift and tha cli to hang itself up.

those commands will have the described result only if all the
connections shown ara made,
examples)
c lexam.l*pip,pip<l:pipll>tB
c max.I.8^:1

these two commans connect the 8 th port of the pip
incarnation of the pip module to tha 1st port of lexan
and the 1st port of pip to tha Bth port of max,I.
note tha use of the defaults.

PARAMETERS: priority- 7888
stack siza. 2T6
dib sizs- 2tB
number of ports- 6
module size- 512 words

EXTERNALt system dib list (udibhd)
floor semaphore (floor)

PORTSi port name function
8 9 0 command input port, lexemes of the commands

are accepted in this port, types are given In
atommg. all messages ara assumed to be in
internal format, i.e. binary numbers, radix 58
character names.

1 ptr message output port, a number corresponding
to a particular condition is outputad tthrough
this port.

2 ok directory manager request port, requests
for the directory manager are output through this
port.

3 dlr dlrsctory manager reply port.
• floor output message port, when the

floor Is to be lifted, a message Is sent out
this port.

5 floor response port, when it is desired to release
the ell a message is sent to this port. I.e. after
the cli sends a message 0 the floor out port 4
it waits for a reply on this port.

6 disply communication port, a message for displying
is sent out this port, the first data word contains
the second letter (in radix 58) of the command
and the third word contains ths address of ths
dlb or sib (if any)

7 disply raply port, after sending a message out
port 6 a raply is waited for on port 7

CONNECTIONSi
port module
8 lexamtl, lexami8-atom-l, atom>8.aecumi2
1 msgmodiB
2 dlrman:8
3 dirmanil
4 floor:B
5 floortl
6 displytS
7 dlsplytl

ASSEMBLY! symhed, atommg

SL23B - A SOFTUARE LABORATORY 82

MODULE BUFLIN

FUNCTION! change buffers into lints, looks like a i/o davlca and connects
to a block i/o device, accepts commands and returns either
with a reply or a ssrlos of strings followed by a reply, terminators
of strings are carraga return (possibly followed by a tine
feed, which Is includsdin the string), a line feed (possibly
followed by a carraga return, which ia included In tha string,) or
an eltmode, if the buffer becomes full, the string is
sent on and a new string started.
«-******undebuggede******

PARAMETERSt priority. 2B888
stack size* 2T7
dib size- 2t4
number of ports- 4
module size- 22B wprds

PORTSt port name function
B command input port, tha commands are those given

for block i/o. only read-type, non directory
command generate non-error returns, if ths command
is read, a buffer Is rsad and then turned Into
strings (type field is positive) where a airing
has a byte count In the first data word ad the
charactrs In the following bytes.

1 command raply port, aso the string output port
2 i/o module command port, commands for the I/o

module ara set out this port.
3 i/o reply port.

CONNECTIONS!
port module
2 I/o module iB
3 I/o module il

ASSEMBLY! symhed, dskcom

SL238 - A SOFTWARE LABORATORY 63

MODULE PIP11

FUNCTION! tranfer files between two block oriantad i/o devices, accept*
command* from the tty (through several modules) and
executes those commands, alI commands shown are those that
would be typed on the tty. tha command format 1st
f<iten>-<item Iist>
< I tarn llst> >:« tarn ! Item ',' "em llst>
<ttem> M« < specific ! specific itam>
Mspeclfio it- < symportnumbar I unit number I fllenaeme I f I leextension I

switch >
symportnumbar it- symbolic port number
unit number n - number of device unit 't'
<f(lenama> t t - file name in directory
<tlleextension> t t - '-' extension
<swtch> n - '/» < * i* I 'x' I »z» I *d» >

tha sultchs have the following result (all switches must ba
on tha left side to have any affect)

I - list the directory (ies) of tha input devices (right side)
x - use tha same file name as given for Input
z - zero tha directory of tha output device
d - delete the flies given as Input

a typical command looks like:
8j1:/x-1j 8it ty in-taIn,ttyout,accum,atom,Iexam^c11

(the defaults ara tha previous object used In that
position - possibly from the previous command line)

/l.-8tl:,2:,lj8i,l!
/d-8,8t Imp.bale, t*pl,tmp2
lilt input.pll«.8ilisymhed.pll,atommg,cli, tail

PARAMETERS: priority-
stack size- 2T6
dib size- 2T5
number of ports. 12
module size- 688 word

SL238 - A SOFTWARE LABORATORY 64

PORTSi port
8

1

2,3

4,5
6,7
18,11
12,13
14,15

CONNECTIONS:
port
8
1

2,3
4-15

name function
command input port, this port it used
to receive all command*, tha format of tha massages
is intarnal atom as givan in atommg.
command rasponsa port* tha rasponsa of tha commands
is output to this port, normaally just a is
output but whan a diractory is listad, it goas through
this port.
symbolic port 8. commands for tha 8th davlca ara sant
through thasa 2 ports, (saa dskcom for formats)
symbolic port 1
symbolic port 2
symbolic port 3
symbolic port 4
symbolic port 5

module
Iexam:1, texams8 to atoms 1, atoms8 to accums2
maxel:8
any i/o module
any i/o modules

ASSEMBLY: symhed, atommg, dskcom

SL230 - A SOFTWARE LABORATORY G5

MODULE LINBUF

FUNCTION) accumulate •Ingle character! Into buffer*, thIs module
looks like an Input i/o modulo (buffer sids) and will
convert a single character I/o module Into a buffer
one. the terminator on the input is the control z character,
(826 ascll decmal)

PARAMETERSt priority 28888
stack sizs« 2tS
dib size. 2T4
number of ports- 3
module sizs- 178 words

PORTS) port
8

name function
i/o command Input port, a block oriented f/o command
is accept through this port, for formats
see dskcom.
I/o reply port
character input port, character is ths first
byte in the data part of the message

ASSEMBLY) symhed, dskcom

SL238 - A SOFTWARE LABORATORY 66

module nscnoo

FUNCTION) take a numeric input and convert It Into a message.
the mmessages are (currently) a "." and a (in single
character format messages.

PARAMETERS) priority- 477
stack size- 2T5
dib size- 2t*
number of ports- 2
module size- 64 words

PORTS) port name function
e command input port, the first word of the message

is used to determine which of tha massages to
output.

1 message output port, tha massages are In the
single character format (chracter in the first data
byte).

CONNECTIONS
port modules
B clitl
1 ttyouttB

ASSEMBLY) symhad

SL238 - A SOFTUARE LABORATORY B7

module ncunia

FUNCTION: accumulate characters until a full line is In ths
buffer and then output a string, a line is delineated by 1
of 6 things, (1) a carrage return is the input character (possibly
fol lowed by a Una feed, which would also be Included in the
line), (2) a line feed Is the Input character (possibly
followed by a carraga return, which would also be Included in
the line), (3) an a I(mode, (4) an asterisk ("*">, (5) a period
(".") or (6) a full buffer.

PARAMETERS: priority. 77779
stack size. 2T7
dib size- 2t4
number of ports- 2
module size- 188 words

PORTSi port
8

name
inp

out

function
character Input port, messages with characters
low data byte are received through this
port
string output port, ths accumulated
strings are sent out this port, a byte count is
in the flrstdata byte with the
characters following.

in

1

ASSEMBLY: symhed

SL230 - A SOFTWARE LABORATORY 68

MODULE ACUM11

FUNCTION! accumulate characters into strings, echoing the individual
charactars. a string is comprised of characters followed
by a terminator (line feed, carrago return or altmode). if the
terminator is a Iino feed, a carrage return ie also echoed
if a altmode, then a dollar sign ("$") Is also echoed
or it a carrago return then a line feed is also echoed
tf an attempt is made to input more than 88 characters
in a line, all characters which would make ths count
exceed 88 are ignored and the bell on the tty is rung,
in addition, accum inplements the special characters
control u, rubout, control c and control o. control u
causes the entire current line to be ignored and accum
to effectively restart with an empty buffer, rubeut causes
the previous character to be lost, after echoing it between slashes
(the first slash is typed when the first rubout
is detected, and the last slash isn't typed until something
other than a rubout is typed, ex. "aedaedebedo"
the buffer now contains "abeda"). control
c causes a "v" to be done on the floor semaphore, this
is used to release the floor when it is desirsd to stop
the user modules from running.
conrof o causes a bit to be set so that the ttyout module
stops printing, this bit is cleared by accum
whenever a character is received.
in addition, there are control characters which determine
the output port, control a sends the accumlated lines
out the first output port, control b the second, and a
control d causes an altmode to be sent out the third
output port

PARAMETERSt priority- 18887
stack size- 2t7
dib size- 2T4
number of ports- 3
module size- 288 words

EXTERNALi floor semaphore (floor)
tty status word (ttysts)

SL238 - A SOFTUARE LABORATORY 69

PORTS t port name function
6 character Input port, data i« low byte of wattage,
1 character echo port, format it the tame at port 0.
2 first string output port, first byte of message

ts character count, characters are in the consecutive
bytes

3 sscond string output port, format same as port 2
* third output port, only an altmode can be sent

out this port, the format of the massage Is tha
same as those of ports 2 and 3

CONNECTIONS!
port modules
6 ttyin
1 ttyout

ASSEMBLYi symhed

noouLE flccun

FUNCTIONi accumulate characters into strings, echoing the individual
characters, a string is comprised of characters followed
by a terminator (line feed, carraga return or altmode). if the
terminator ts a line feed, a carraga return Is also echoed
II a altmode, then a dollar sign ("$") is also echoed
or If a carraga return then a line feed is also echoed
if an attempt is made to input more than 88 characters
In a line, all characters which would make the count
exceed 88 ara Ignored and the bell on the tty Is rung.
In addition, accum inplements the special characters
control u, rubout, control c and control o. control u
causes the entire current line to be ignored and accum
to effectively restart with an empty buffer, rubout causes
the previous character to be lost, after echoing It between slaahee
(the first slash is typed when the first rubout
is detected, and the last slash isn't typsd until something
other than a rubout is typed, ex. "acdeodcbcde"
the buffer now contains "abode"), control
c causes a "v* to ba done on the floor semaphore, this
is used to release the floor when it is desired to stop
the user modules from running.
conrof o causes a bit to ba set so that the ttyout module
stops printing, this bit is cleared by accum
whenever a character is received.

PARAMETERS! priority- 18887
stack size- 2t7
dib size- 2t»
number of ports- 3
module sizs- 288 words

EXTERNALt floor semaphore (floor)
tty status register (ttysts)

PORTS* port
8
1
2

CONNECTIONS;
port
8
1

name

ttyin
ttyout

function
character input port, data Is low byte of message
character echo port, format is same as port 8
string output port, first byts of message
Is character count, characters are In the consecutive
bytes

modules

RSSEilBLYt symhed

SL238 - A SOFTWARE LABORATORY 71

MODULE BINACH

FUNCTIONt accumulate individual binary characters Into an
absolute binary file (block oriented i/o). checks tha
chocksuH of tha fila and elte*ntates unecessary characters, this
nodule acts just like a byte oriantad loader that

puts tha bytas Into
buffers instead of core (retaining the control bytes).

PARAMETERS; priority- 28888
stack siza- 2t5
dib size- 2t4
nunbar of ports- 3
modulo siza- words

PORTSi port nana function
0 command input port, the input from this port is

a block oriantad i/o command massaga. the command
generates a return (always) which Is a error return
if the command is either directory oriented or
output oriented, (commands are gvan in dskcom).

1 command reply port, replies to the block oriented
commands are sent out this port.

2 binary byte Input port, messages received through
this port are assumed to contain one binary byte
in the first byte of the data area.

ASSEMBLY • symhed, dskcom

SL2 3 8 - A SOFTWARE LABORATORY 72

MODULE ACUHE

FUNCTION; accimulata charactars until a full Una is in tha
buffar and than output a string, a lina is dslinsatad by 1
of 4 things, (1) a carraga raturn Is tha input charactar (possibly
followad by a lina faad, which Mould also ba ineludad In tha
lina) , (2) a Una faad is tha input charaotar (possibly
followad by a earraga raturn, which would also ba Ineludad In
tha Una) , (3) an altnoda or (4) a full buffar.

PARAMETERS! priority- 77778
stack siza- 2t7
dib siza- 2t4
nuMbar of ports- 2
Modulo siza* 188 words

PORTS i port nana function
8 Inp charaotar input port* massagas with charactars In

low data byta ara racaivad through this
port

1 out string output port, tha aecunulatad
strings ara sant out this port, a byta count is
in ths firstdata byta with tha
charactars following.

ASSEMBLY! symhad

SL23B - A SOFTUARE LABORATORY 73

MODULE SPLIT

FUNCTION! talcs an input awssegs and product two copies of it.

PARAMETERS! priority- 777
stack siza- 2T5
dib siza- 2t4
nuMbar of ports- 3
aodula sizs- 28 words

input is accaptad through
PORTSt port name function

8 aassaga input port,
this port.

1 first aassaga output port. an axact copy of ths
Input aassaga la ssnt out this port

2 sacond aassaga output port, and axact copy of tha
Input aassaga is ssnt out this port

ASSEMBLY* syahed

SL230 - A SOFTWARE LABORATORY 74

HODULE DIRHAN

FUNCTIONi to manage th* sib list, this module handles all requests
to find, delate, or add nodules to the running system.

PARAMETERSi priority. 788
stack si2a- 2TS
dfb size- 2t4
number of ports- 4
module size- 688 words

PORTSt port
8

name function
req directory request port, a massage ie received on

this port that tells the directory manager what to do
valid request codes are
0 - lodnxt / load next sib on tape into core and link it onto

sib 11st, and return its adress. if the sib
is alreaady on the sib!1st the adr of tha old
version will be returned

1 - fndsib / search l i s t for specif ied sib and return i t s adress

2 - fndlod / search s i b l i s t for specif ied sibb and return i t s

address, If not found search tape for spec i f ied s i b ,
load it, link it on the siblist and return
its adress.

3 - delsib / delete specified sib from siblist
4 - detail / delete all unused slbs from siblist

rep reply port , the reply message normally just contains
the address of the required sib, or Is positive,
if a srror occurs the return cod* corresponds
to an address In the i/o page,
valid error codes arai

8 checksum error
-1 no more core
-2 too many blocks In tape sib
-3 not enough blocks in tape sib
-4 sib not found
-5 sib in use
-6 invalid request

led loader communication port, messsae just contains
the filename of the module required,

cnt loader reply port, first word Is 8 if an error, otherwise
it contains the address of th* loaded module.

CONNECTIONS!
port
2
3

module
loadert8
loadertl

1

ASSEMBLY* symhed

MODULE FILHAN

FUNCTION: this module hanctlss rsfsrancss to filss. It
works in tarn of dlrsetorlss and forms tha in tar fact
batwaan tha usar and tha directory davica controlar.
an atampt has bean made to keep it davica indapondent
and along this lino it makes no assumptions about
the sizss of ths directories or the positioning
of the entries in the directory, rather this information
comes from the individual davlce handler.

PARAMETERSt priority 777
stack sizs- 2tS
dib sizs- 2t4
number of ports- 4
module size- 378

PORTSt port name function
8 the format of the ussr Input Is (specifying only

the data)

fdevice I command t

t data words t

the command for the file handler
and the device number
any required data

1

3

2

the required data varies with the command.
for tha directory command a block number is needed
that tells which directory block is wanted
for the open and enter command a file name is
needed,and for the write command a buffer
addrass and size is needed
the user gets back the address of the filled buffer
even If i ts his, if the transfer was sucessful
and a 8 if an error occured with the next word
telling the source of error.
device controler output port, the format of tha output
varies with the command, for more Information see
a device controler (dtacon)
device controler reply port.

CONNECTIONS)
port module t port number

ussr module
user module
dovconiS (device controler)
dovcontl (device controler)

8
1
2
3

ASSEMBLY) symhed, dskcom

SL230 - A SOFTWARE LABORATORY 76

MODULE DTACON

FUNCTION) dectape device controlar. it takes input fro* tha ft la handlar
In tarns of a directory entry, the various commands cause
this module to read tha directory, write it , update
it, read or write a block in a file, automatically
keeping track of space on tha dectape.

PARAMETERSt priority. 777
stack size. 2T5
dib size. 2T4
number of ports. 2
module size- 568 words

PORTSt port name function
8 command input port, tha format of the command various

with tha command, the simplest is the request for a
directory block, this command message has the format
oft t***************?

t unit t comd T

t block number t

3

1
2

t******«»**«**s*t
tha other formats and the raplys are given in the
interface language file - "dskcom"
reply
dectapa handlar command ouput port, tha massage that
is sent out this port contains commands for the device
handler, see "dtahan" tor th* format of tha massages,
davies handlar reply port

CONNECTIONS)
port
8
1
2
3

nodule t port number
f Mhani2
filhan:3
dtahan:8
dtahan:1

ASSEMBLY) symhed, dskcom

SL23B - A SOFTUARE LABORATORY 77

NODULE DTMfflN

FUNCTIONi module to handle the direct I/o with a dectape.
doeen't do any work on the data received, Justa put it in
the dectape regietare and then Malta on the dectape I/o
semaphore, if an error occurs the operation H i l l be repeated
before giving up.

PARAMETERS) priority. 19087
stack size- 2T5
dib size- 2t4
number of ports* 2
module size- 188 words

EXTERNALi dsctape connamd register <dtecmd>
dectape semaphore (decsem)

PORTSi port name function
8 command input port.tha format of the

message in ist

«*«••*•*«***«****
t hsader t
t of t
t message t
/ /

/ /

t*«*e«e««*«**se«****t
t dev num I command t
t*e***e*************t a ona word address
t block number T
t****ft***ft***,**«***t
T memory address t where In core It goes
T«*«««*******««*****T
t word count t negative of number of
T*»**«*.*****,*««****,T words to transfer
the commands arei l-> read, 2-> write
a 11 others are errors

1 rsply port, when finished, a mssage is replyed
that indicates the status of ths requeeted operation
If the operation suceeded then the command byte is
set to zero, otherwise if an arror tha byte is
negative and the sscond data word has tha following
meaningt

SL236 - A SOFTWARE LABORATORY 78

bit

15
14
13
12
11
18
9
8

CONNECTIONSi

port modulo
8 dtacont2
1 dtacon»3

moaning

•rror
parity arror
mark track arror
dovica I k writ* lockad
sal act arror
block miss (a soft arror)
data miss(bus was busy, soft arror)
non-ax Istant mamory

ASSEMBLY) symhed, dskcom

SL23B - A SOFTWARE LABORATORY 79

NODULE DSKHBN

FUNCTION; module to handle tha direct I/o with a disk
doesn't do any work on the data received, Justs put it in
the disk registers and then waits on tha disk i/o
semaphore, if an arror occurs the operation will ha repeated
before giving up.

PARAMETERS, priority. 1887
stack size- 2TS
dib size- 2t4
number of ports- 2
module size- 18S words

EXTERNALj disk semaphore (dsksam)

PORTS» port name function
8 command Input port.the format of the

message in ist

t hsader t
t of t
t message t
/ /

t dav num I command t
t****«************»t a one word address
t block number t
t**t*********,******t
t memory address t where In core it goes
T««******««******f««t
t word count t negative of number of
t******«****«*«**««*t words to transfer

the commands arat 1 » reed, 2-> writ*
a 11 others are errors

to allow word accessing of ths disk an alternate form of th*
massaga is allowed, the difference Is that
ths commands are negative 1-3 with 3 blng th*
write check.the alternate form of the message
ist

SL238 - A SOFTUARE LABORATORY 88

****«**••**•*****»«»*
t hsader t
t of t

t**********«******«*t
t dav nun I command t
t****»e*eee******e*t a ona word addrass
t disk addrass t describing tha location
t****************«**t on disk dssirad
t dsk offset t offsst to dsslrsd word

t memory address t where in core It goes
t*e*s««******e******t
t word count t negative of number of
t***4*******«*******r words to transfer

the format of tha internal disk address Is

«****«***«*****#***«***********#**************

I I I I !
«**e**********t« « * * * * * * * * » « « * * * * * * * * * « * 4 * * * *

that indicates the status of tha requested operation
if the operation suceeded then the command byte is
set to zero, otherwise If an error the byte is
negative and tha second data word has the following
meanlngt
bit meaning

IS error
14 parity error
13 mark track error
12 device is writs locked
11 select error
18 block miss (a soft srror)
S data miss(bus was busy, soft error)
8 non-ex istant memory

device track number block number
number 8-177 8 - 7
8 - 7

1 reply port, when finished a message Is replyed

CONNECTIONSi
port
8
1

modules
dskcom2 (or dtacont2)
dskcom 3 (or dtacorn3)

ASSEMBLY: symhsd, dskcom

SL23 0 - A SOFTWARE LABORATORY 81

MODULE DISPLY

FUNCTION: display relavent information about sibs and
dibs, for sibs this includas tha names of all
incarnations and tha port names, for dibs tha
information is tha parant sib nana and tha number
and nama of all othar dibs connactad to aach port

PARAMETERS: priority 1888
stack sizes 2t5
dib size- 2T4
numbar of ports* 3
module siza- 388 uords

PORTS: port
8

function
command input port, tha first data word is
assumed to ba a radix 58 command nord.
if tha sacond charactar of tha command
is a "d" than tha displaying is dona for
a dib, otherwise for a sib. tha sacond
word of tha massage is assumed to ba tha
addrress of tha object to ba displayed, if
the address is zero then the
names of all the possible objects is displaed.
(i.e. if the command Mas for dibs, then all
the dib names are displayed)
reply port, when finished processing the
command a reply is returned via this port,
the format has no meaning.
display output port, all the information
is oututed to this port for later processing,
the format is internal, i.e. radix 58 names, etc.

nana

1

2

CONNECTIONS:
port module
8 cl i
1 cli
2 maxel

ASSEMBLY: symhed, atommg

SL238 - A SOFTWARE LABORATORY 82

NODULE RTOn

FUNCTION! produce M o m fro* strings, an aton Is defined ast
<a tom>j t« < 1 d> 1 <numor I c> I <spac i a I character> I <breakcherac ter>
<id>!:- <letter> I <id> (<lottar>l<nuMbar>)
< I e 11er>i i -abcde f gh I j Ic I mnopqrs tuvwxyz
<number>ii-123*SS7S90
<numer I c » i «<number> I <numer I cxnumber >
<breakcharacter>it. <cr>!<lf>!<attmode>!<last character
<specI a I charac t*r>t t.<o therwIse>

PARAMETERS i priority. 777
stack size. 2TS
dib size. 2t4
number of ports. 2
module size- 280

PORTSi port name function
8 string Input port, low data byte Is a character

count with th* characters In the consecutinve bytes
1 atom output port, for numeric, Id or breakcharacter

the low byte is a character count with characters In
consecutive bytes, for special characters the low
data byte Is the character.

CONNECTIONSi
port
0

modules
accumulation modules (accum,acumlB,acumU,acume, I inbuf)

ASSEMBLYi symhed, atommg

SL238 - A SOFTUARE LABORATORY 83

noouLE LEX AN

FUNCTIONi convert M o m into internal format, internal format
depends on the type of the atom, for special characters and
break characters nothing Is done, alphanumeric ara converted
Into radix 58 and numeric atoms (assumed to be in octal)
are converted into binary numbers

PARAMETERS! priority.
stack size- 2tS
dib size- 2T4
number of ports- 2
module size.

PORTSt port name function
8 atom input port.
1 lexeme output port

CONNECTIONS:
port module
8 atom

ASSEMBLY: symhed, atommg

SL238 - A SOFTWARE LABORATORY 84

MODULE TTYIN

FUNCTION* handle tha input from tha teletype. Initiates th* tty for Input
and Ma l ts on ths tty Input semaphore.

PARAMETERS! priority- 177BB
stack siza- 2T5
dib stz*- 2T4
number of ports- 1
module size- 32 words

EXTERNAL: tty status regis tar <t flics)
tty buffar register (tBkb)
tty Input semaphore (ttyrd)

PORTSi port name function
B inp character output port, character is in th* low

byt* of th* message

ASSEMBLY) symhed

SL238 - A SOFTWARE LABORATORY 85

MODULE TTYOUT

FUNCTION! hand I* output to tha talatypa. simulates the
nocessory functions for form feed (8 line feeds), vertical
tab (4 line feeds), horizontal tab (tab stops every 8
spaces) and control o (atop printing until control o bit is
cleared.

PARAMETERS* priority. 18888
stack size. 2T5
dib size. 2t4
number of ports- 2
module size- 158 words

EXTERNALt tty status rsglster (tBps)
tty output buffer registsr (tftpb)
tty output semaphore (ttywrt)
tty status word (ttysts)

PORTSi port name function
8 input port, format is either a single character, string,

of buffer, if single character, then the character Is
the low data byte, if a string, then the low data
byte is a character count with the characters in the
consecutlnve bytes or If a buffer then the tty output
looks like any other output only i/o device (see
the file dskcom for particulars)

1 rsply port if Input was a buffer mode message

ASSEMBLY* symhed, dskcom

SL238 - A SOFTWARE LABORATORY 86

MODULE OUTBIN

FUNCTION: to help calculate tha radix SB values of names by changing
tthe typa of radixSB messages to numeric (binary) and
sanding on two binary numbers (one for each three characters.

PARAMETERSi priority.
stack size- 2TS
dib size- 2t4
number of ports- 2
module size- words

PORTS> port name function
0 mesage Input port, only type of

alnb5B ara affected by passing through
this module, (as given in atommg)

1 message output port

CONNECTIONS:
port module
1 mexeliB

ASSEMBLY! symhed, atommg

Bib Iiograpy

CI] Clark, U. ("Macromodular Computer Systems," SJCC 67.

[2] Bell, G., et al., "The Design, Description and Use of DEC
Register Transfer Modules (RTM)," Computer Science Department
Report, Carnegie-Mel Ion University, Oct. 1971.

[33 Krutar, R., private communication related to his Ph.d. thesis,
Carnegie-Mellon University, 1971.

[43 Jones, A. and Habermann, A. N., "Interprocess Communication
Mechanism," Internal Memo, Computer Science Department.
Carnegie-Mellon University, 1978

[5] Uulf, et al., "Bliss Reference Manual," Computer Science
Department, Carnegie-Mellon University, revised April, 1971.

[61 Dijkstra, E., "Cooperating Sequential Processes," Technological
University, Eindhoven, 1965.

[7] Uirth, N., "Program Development by Stepwise Refinement," CACM,
Vol. 14, No. 4, (ApriI, 1971).

[81 Bell, et. al., "C.mmp: The CMU Mul ti mini processor Computer,"
Department of Computer Science, Carnegie-Mellon University,
August 1971.

[9] Denis, J, B., and Van Horn, E.C., "Programming Sematics for
Mult(programmed Computations," CACM 9, 3 (March 1966), 143-155.

[103 Dijkstra, E.U., "Cooperating Sequential Processes," Programming
Languages, (F. Genuys, ed.), Academic Press (1968), 43-112.

[113 Dijkstra, E.U., "The Structure of THE MultiprogramminG System,"
CACM 11, 5 (May 1968), 341-346.

[123 Hansen, P.B., (ed.), RC408a Software Multiprogramming System,
..- A/SRegnecentralen, Apri I 1969, Falkoner Al.le 1,. Copenhagen F.

Denmark.

[133 Lampson, B.U., "Dynamic Protection Structures," Proc. AFIPS
Conf. 35 (1969) FJCC.

[143 Jones, A.K., Private Communication, Carnegie-Mellon University,
1971.

[153 Parnas, D.L., "Information Distribution Aspects of Design
Methodology," Special Report, Department of Computer Science,
Carnegie-Mellon University)February 1971)

SL238 - A SOFTWARE LABORATORY 88

[16] Parnas, D.L., "A Technique for Software Nodule Specification
with Examples," Special Report, Department of Computer Science,
Carnegie-Mellon University (March 1971}

[173 Parnas, D.L., "On the Criteria to be Used in Decomposing
Systemsinto Modules," Special Report, CMU-CS-71-181, Department
of Computer Science, Carnegie-Mellon University (August 1971).

[181 Dijkstra, E., "A Constructive Approach to the Problem of Program
Correctness," BIT 8 (1368).

[19] Uulf, et.al., "Bliss/11 Reference Manual," Department of
Computer Science, Carnegie-Mellon University, 1971.

[28] Hansen, P.B., "Short-term Scheduling in Multiprogramming
Systems," Third Symposium on Operating Systems Principles,
October 1971.

(Security classification of title, body ot mbatrmct mnd Indexing annotation must be entered when the overall report la classified)
1. O R I G I N A T I N G A C T I V I T Y (Corporate author)
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2m, R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1. O R I G I N A T I N G A C T I V I T Y (Corporate author)
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2b. G R O U P

3 R E P O R T T I T L E

SL230 - A SOFTWARE LABORATORY: INTERMEDIATE REPORT

4. D E S C R I P T I V E N O T E S (Type of report mnd inclusive dmtee)

Scientific Interim
5- A U T H O R (S) (First name, middle initial, laat nmme)

W. Corwin, W. Wulf

6 . R E P O R T D A T E

May, 1972
7a. T O T A L N O . OF P A G E S 7b N O . OF R E F S

89 20
» « . C O N T R A C T OR G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
c- 61102F
* 681304

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) » « . C O N T R A C T OR G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
c- 61102F
* 681304

Ob. O T H E R R E P O R T N O (S) (Any othernumbera that may be maai#ied
thie report)

10 D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

11 . S U P P L E M E N T A R Y N O T E S

TECH OTHER
12 S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Va. 22209

13. A B S T R A C T

This report describes the resources and data structures of SL230 (Software
Laboratory 230) and the designing of SL230 modules and systems. SL230 is a simple,
multiprocess, operating system used to create an environment suitable for the con¬
struction of experimental programming systems for educational and research uses.

DD,rr,.1473
Security C l a s s i f i c a t i o n

D O C U M E N T C O N T R O L D A T A - R & D

