NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

A Guide to $\mathbf{1 5}$-180
R. N. Chanon

Department of Computer Science Carnegie-Mellan University

August, 1972

Contents

2. Introduction
3. Textbooks
4. Grades and Grading
5. Policy Statement on Cheating
6. Computers and Computing
7. What is a "Solution" to a Problem?
8. Programming Problems: I low to keep these from ruining your weekends and your health.
9. How to Attack a Programming Assignment
10. Array Walking
11. Some Words about Recursion
12. Preface to the Problems
13. Computing the Greatest Common Divisor
14. Solving Quadratic Equations
15. A Birthday Problem
16. A Nest of Squares
17. Evaluating Arithmetic Expressions
18. A Monotone Sequence

SO. Gaussian Elimination
2. Matrix Multiplication
56. The Eight Queens Problem
57. The Towers of Hanoi
60. The Coin Problem
64. Counting Lattice Points

Introduction: Why and How this Guide Came to Be

I wrote these pages because blank expressians hother me! By that I mean, I don't like to see a classroom filled with people who are either unwilling or unable to answer a question and who manifest their state of mind by a sort of nebulous stare the blank expression. This unheppy situation is probably just as disconcerting to students as it is to me. The reason for it, I think, relates to the nature of the questions which I ask. They're meant to be non-trivial. I feel that class time is valuable and shouldn't be wasted by simply presenting material which can be read from a textbook. Instead, time should be spent discussing the implications and intent of the assignment. This means answering questions and solving problems. Unforfunately, existing course materials - textbooks and programming problems - don't seem to prompt much inquiry as to either the implications or the intent of an assignment. Students seem to think it's sufficient to simply read some assigned text and digest only its content. Hopefully, this little guide will heip change that attitude.

In the pages which follow, I've been critical of what seems to be about the best material for an intraductory course in computing. As I see $i t$, the marketed textbooks are abysmally bad. They tend not to provoke much inquiry into what programming is about, and frequently address nothing more than the syntax of a proyramming language. Hence, I have tried to expose some essential ideas from amid all the verbiage.

Note, however, that this guide is NOT a textbook. It was written to specifically accompany $15-180$ at CMU. Its primary purpose is to provoke questions about programming and problem solving; nothing mare, nothing less.

I also emphasize the importance of asking questions.

ASK QUESTIONS!

Questions allow your instructors to talk about issues which are important to you. They can also prevent him from wasting your time while he discusses things you already understand. This guide should prompt lots of questions.

Also included are some pragramming problems and their analyses. Each is accompanied by a few sentences describing what mativated me to include the problem and what I expect you to learn from it. The texts of complete, running PLAGO programs accompany them all. Understand them!

There are even a few pages of motherly advice about how to allocate your time while working on the probiems, along with some words about how to prepare and submit programs.
R. N. Chanon

August, 1972

Same Words about 15-100

15-1B0 is offered every semester to students of engineering and science at CMU. Because there are no prerequisites for 15-108, and because both freshmen and graduate students take the course, the backgrounds of the students are diverse - to say the least. Therefore, since essentially the only information your instructor has about you is your name, it is vital that you ask questions about the material which you don't understand - more about this later.

The purpose of this course is to teach you to sulve problems using a digital computer. By the end of the course, you should be able to:

1. Recognize when a computer is an appropriate tool for solving a problem.
2. Define a problem pretisely and farmulate an explicit process for solving it.
3. Write such a process as a program in the PLAGO programming language.
4. Determine whether a pragram actually does the task it was intended to do.
5. When a program does not perform as expected, alter it 50 that it does.

The course tries to present a large number of problems and asks how a computer might be used to help solve them. Hence, problem solving and the use of a camputer as a tool to help salve problems is the roal thrust of the course. The details of creating syntactically correct PLAGO programs, punching or marking cards, and submitting pragrams are of only ancillary interest.

The course mects three times a week for one lecture and two problem solving/question answer sessions - called recitation sessions. The lectures are intended to present "general", but vital information about both problem solving and programming. They are not to be ignored. Recitation sessians will be used by your instructor to discuss PLAGO, problems, material from the lectures, and, in general, anything of interest to the course. These sessians, however, should be driven by questions. If you dan't ask questions, there are very lew things which an instructor can do except give quizzes, read to you from the texibook, or present more problems. If you don't ask questions, recilation sessions become a waste of your time. If you don't intend to ask any questions, γ ou might just as well not go to class. Your presence will just add anather warm body to an already over-heated tlassraom.

Besides class meetings, you are asked to write algorithms to solve several problems and to represent these algorithms as PLAGO programs and to run them on CMU's computer. They are important. Do them!

Finally, 15-188 requires that you take a final exartination and a mid-term. See the section which digcusses grades and grading to find out how these exams and the rest of your performance will be evaluated.

Textbooks: Which to Buy and What They're Good For \cdots (Besides the abvious of course)

Buy These:
(1) A Short Intraduction to the Art of Programming by E. W. Dijkstra
(2) PL/L Programming in Technological Applications by G. F. Graner
(3) PLAGO/368 User's Manual
(4) A Guide to $15-100$ by R. N. Chanoa

What they're gaod far:

The book by Dijkstra (referred to hercaiter as EWD316) is the best introduction to programming with which I am acquainted. It addresses what seem to be the fundamental issues of the discipline in a clear, cancise and careful way. The text isn't encumbered with the syatactic and semantic details of a particular programming language. He emphasizes the lask of finding and developing algorithms as THE fundamental issue in programming. I think the bask is excellent!

Unforiunately, as a texthunk, EWD316 can be used in the wrong way. Firsi at all, material is presented in such a coherent way that a stutent might gain a false sentee of security about his understanding. It all loaks so easy - esperially in the first threc sections. Dan't be mislead, however. The lext is somewhat like the Bible in the sense that it is easy to read but difficulit to understand in terms of the real deplh that is present. Even though the assigaments trom the boak will be short, study thern carefully. Don't fall into the trap of teeling "cheated" if you think you understand the text aiter just one reading. The chaness are, you really don't

Secoudly, the hutk contains too few exercises. In the pages which follow, that problerte will hopefully be remedied.

The brak by Groner, "PL/I Programming in Technological Applications", is meant to be a source tor'information as to the syntax and semantics of the pragramming language which you will use to implement your aignrithnos. It contains numerous completely worked examples, as writ as carefully prepared summaries of the features of the linguage. The examples are related to many algorithmis which are commonly used in enginecring and science. Many of the algurithms, however, are poorly developed. The book also contains an enormaus amound of verbiage which wan't be relevant to the nourse. Therelore, you should rely on your recitalion instructar to direct your atiention to those parts which are impartant.

Lectures

The lectures for $15-188$ present information of general relevence to computing, problern solving, and the administration of the course. In the first two categorics, most of the detail is omitted - rightly so - and left to the recitation sessions. In particular, the lectures will tell you how to go atout solving the problems. You may not believe it, but the way you approach a programming assignment tan have a trementinus effect on the amount of time you spend on it. In the last category, announcements of due date changes for the programming problems are made. The lectures are carefully planned to focus your attention on what we feel are the important issues. They are important. The lettures can also be inspirational indeed, there are those who believe that that's all a lecture can be.

Attend them.

Recitation Sessions

Recitation sessions should be driven by questions.

The PLAGO manual describes the dialect of PL/L in which you will write your programs. The syntactic and semantic descriptions are clear, but the examples of complete` pragrams which appear in the appendix are bad.

Do you understand what the phrase "syniax of PL/C" means? Are you going to ask about it?

Grades and Grading Policies

You will have the following opportunities to EARN points:

*Programming Problems

2 at 38 points	60
4 at 28 points	88
6 at 18 points	68

*Exams

Midterm (mean about 55-68) 188
Final (mean about 118-128)
280 380

*Recitation

Recitation periormance 50
*Basic points for semester
550 points
You may earn bonus points for turning the 20 and 30 point problems in early:
1 point for each two days
(upto a ceiling of twenty per-cent of the value of the problem!)

You will have the following opportunities to LOSE points:

*Cheating: all credit for the thing on which you were cheating
*Turning problems in late:

$$
1 \text { point for each two days }
$$

*Computing too much:
one point for each dollar more than the limit used in each month

The final grade will be assigned on the basis of the following scale
$475-550 \mathrm{~A}$
$368-474 \mathrm{~B}$
$258-359 \mathrm{C}$
288.249 D
$888-288 \mathrm{R}$

Polisy Statement on Cheating and Course Help

With regard to hemework, quizess, and exams, sleating wil! not be tolerated. Anyone caught cheating on a problem will reccive zero credir for the problem. Anyone caught chealing an an exam will recieve zera credit fur the exam. It is recognized that student B ean eheat from student A without A's knowledge. In such a case, A must prove his innocence. Protect your hard work trom porasites!

When you came in an exam, do NOT sit next to the people you have studied with. Your argument that your answer is just like your friend's because you study together will be much more convinring if yau dan't sit tagether during an exam.

Some students will finut thenselves umble io complete a problem on time ar at all. Such siluations allow the student three chaices: first, copy sameone else's project and hope he is nol cauglit; second, give up and put the course; third, see your instructor. The second implies an R or a withdrawal, if possible. We intend that the first case will also imaply an R. Hence, the student's logital choice should be the thirsl alternative (it can't be worse). Your instructor's door is always open, and the results of a visit may prove beneficial.

Posiponements of due dales are possible. It you turn in your assignments late without discussing the situation with your instructor, your grade will be decreased by an appropriate number of points (see ahove).

You may discuss all problems (NQT exams!) uniess otherwise specified by your instructor. Student discussion is fruifful and encouraged, but all programs must be written by the individual student. That is, you may talk with anyone (ineluding your instructor) about assigned problems, but the actual writing of the program must be dane by you.

Computers and Computing

The programming language taught in this course is PLAGO (FORTRAN conversion will be available at the end of the semester for those who want it). PLAGO runs on CMU's IBM 360 model 67. Unfortunately, computer time is a scarce resource and it is not possible to provide each student with an unlimited amount of computer time. Therefore, each student in 15106 will be expected to plan his time so that he can live within two kinds of restrictions

1) A limit on the number of programs run cach day. This will be enforced by the 360: after you have used up your limit, it won't run any more of your programs.
2) A limit on the dollar value of your computer usage each month. This will be enforced by your instructor: you lose one point for every extra dollar cach month. The cost of each program is printed at the end of each job, so YOU can kecp track of your usage. The exact limits will be anmounced at the first lecture. The cost limit will be generous - most students should require only 75 per-cent of the allotment.

Note that these are upper limits and you are NOT guaranteed to be able to get this much service. You are competing with many other users for a resource that is in short supply. Indeed, there will be times (especially the day before a problem is due) when the system can't give as much service as is requested.

If you are excited about computing and want to work on extra problems of personal interest, see your instructor. We will try to make arrangements for you to use one of the less congested computers on the campus.

What is a "Solution" to a Problem?

A solution to a programming problem is a working, documented program. It must:

1) get the right answer, even on special cases and with bizarre sets of data we might construct.
2) be reasonably efficient (don't go overboard on this point!)
3) include program documentation, i.e. your working plans for the problem.

This documentation should contain:

1) About a page of understandable English prose explaining the organization of your program, what the important variables arc used for, and the representation of the data (c.g. "X is a FIXED array of length 10 which contains the x coordinates of the input").
2) A list of the procedures you will use, with a short description of what each does and how they are related.
3. A flow chart or structured description (as done often in lecture) for each such procedure.

The tredit for the prablem will be split between the program and the documentation as follows

If the problem is worth...	The program is worth..	The dacumentation is worth...
38	28	10
28	15	5
10	8	2

Pragramming Problems - How to kcep these fram ruining

 your weekends and your healthEach semester, $15-188$ students are required to write a number of programs. These assignments differ from ordinary homework problems in that they require complete, running, and correct pragrams as solutians. You can't turn in stipshod. partially complete programs and expect much partial credit. This semester, your programs are to be written in PLAGO - a dialect of PL/I. The programming problems are important. Much of what you will iearn from $15-180$ will be a direct consequence of the experiences you have as you write and debug solutions for them. Sadly enough, however, students complain about the difficulty of the problems and that they have to spend many hours finding and delugging salutiona. My answer to this complaint is quite simple:

Your appraach is probably wrong.

(That's not very comforting, but it's still my reply.) With very few exceptions, the analysis required to solve the problems is simple, if you are willing to analyze the problem systematically and completely. There is no need to spend vast amounts of time. If, however, you do spend lats of time solving the problems, see your recitation instructor and explain your difficulty. He might have some suggestions.

Despite rumors to the contrary, these programuming assignments are intended to farce you to to the follawing:
(1) Find or understand an algorithm which solves the problem.
(2.) Represent the algorithm as a PLAGO program.
(3) Debug the program.
(4) Convince yourself that the program solves the problem.

Items (1) and (4) are the most important issucs in the above process, in the crurse, and in essentially all of programming - and for which I can't give you algorithens. Iterns (2) and (3) can be handied in a fairly mechanical way and will present only minor difficulties after you've written and run a few programs.

So, it would seen that the obvious thing to do is to spend enough time to find a complete and correct algorithm sa that the remaining items require only minor attention. An hour or two of thought about the problem BEFORE writing any PLAGO statements will probably save you several hours of the total time spent finding a solution. Do this and your tenure as a student of $15-180$ will only be a minor hassle - who knows, yau might even like it!

How to Attack a Programming Assignment

Imagine that you have been assigned a problem - nat a keypunching exercise, but a real programming problem. How can the prablem be solved? Whole books have beer written to help answer this question. One of the best is the small volume by Gearge Polya entitled "How to Solve lt". I recornmend it as a general aid to analyzing the programming problems. More specilically, I can offer several suggestions and refer you to the programs in a later part of this guide. guide.

Things to do:
(1) Make sure that you undersiand what the problem asks.

Usually, the problems are posed fairly well. Hence, understanding what a problem asks isn't difficult. However, be certain that you really understand the problem statement before proceeding to the next step.
(2) Find and understand an algorithm which solves the problem.

This is the most important part of the whole process! It involves, among other things, finding an appropriate data structure and control structure for the problem.
(3) Cast your algorithm in a step-by-step way using the ideas of structured programming.

This tends to clarify your ideas and will frequently point out difficulties with your original algorithm. Never feel too proud to write a flowchart or a sequence of structured statements. The stepwise refinement technique due to Dijkstra and Wirth is particularly appropriate to this step.
(4) Write a PLAGO pragram which is equivalent to your flowchart or structured statements.

This step can be performed in a fairly mechanital way - it's easy, It is sometimes helpful to write several drafts of the program. Embellish your code with lats of informative comments. These comments are exceedingly usefull Comments help you to understand the mess you've created if you contract mono-nucleosis and must put the program aside for awhile. Your final draft should be compiele (including system contral cards). This really means that if you are lucky enough to have a gor! friend who is willing to punch your cards for you, she should never have to ask you what characters to punch.
(5) Go to the third floor of Science Hall and punch or mark your cards.

This is annther easy step. Examine your cards carefully before you submit them to make sure that they exactly represent your final draft. This quick check can sometimes save you several submittals.
(6) Run your program.

Jf jt doesn'i run correcily, carrect it and run it again. Dan'i, howaver, just change the program "randomly". Think ahout what went wrang and how changes will affect the program. Aepeat this process until you are convinced that your program behaves as it shauld (see the comments below). Make sare that you have considered all the special cases and not just the ones which our data gives youl

One final important point: TRY TO START WORKING QN A PROBLEM AS SOON AFTER IT IS ASSIGNED AS POSSIBLE, AND DONT BE AFRAID TO WORK ON TWO PROBLEMS AT DNCE!!!!!! I! There are almast always two problems pending at the satne time.

Things not to da:
(1) Don't try writing a PLAGO program from scratch. It's almost certain to be wrong. Do so at your awn risk. It has been my experience that regardless of the size or complexity of the problern, a sel of structured siatements or flawetharts is helpful. Should you decide io ignore this warning, expect the following things in happen:
(a) Your program will contain mare syntactic and logical errors than the corresponding result had you followed the steps above.
(b) You can expect to make many changes in the program before it finally runs carrectly - it it ever runs correctly.
(c) You can expect to spend lots of time at the computation center submilting programs and wailing for autput. The computation center is very dull, and, frankly, isn't a very pleasant place to be.
(d) Your arogram will be difficult to understand, nat only by someone eise, but also by you.
(e) Your pragrsm will tend to be longer than the correspending program produced by the steps above. It will also tend to cost more to rua.
(f) Your understanding of programming and problem solving will tend to be weaker than had you followed the above steps - hence your grades will tend to be lower than they could have been.

That's all l have io say about this matler. Be warned.
(2) Don't spend lots of time correcting and re-correating a pragram that daesn't work. The point of diminishing returns can approach quite rapidly and you can easily waste time in an uniruittul pursuit. Time is best spent making sure that your algorithms are correct!
(3) Dan't wait until the day belore a problem is due to start solving it. You are almost certain not to héve a solution in time. Programming assignments are not like ordinary homework exercises. Nat only must you solve the problem, but you musi also compete fur a valuable resource - cormputing time - to demonstrate that your program is right. Instzad, start step (1) on the day the problem is announced, and finish it as soan after that as possible.
(4) Dan't try to run pragrams the day before a problem is due. The user area is mobbed by people who have neglected the problem. It is almost impossible to get anything dane under these circumstances.

That's all the motherly advite I wish to give about programming problems. Write brlow the phrases from the above passages which you dun't understand, and ask about them.

Array Walking

In addition to the simple variable, data may also be stored into objects known as ARRAYs. An array is nothing more than a name - just like one for a simple variable - which identifies a whole collection of simple variables. Names become associated with array data siructures by declaring them as such. Thus in PLAGD

DECLARE A(0:180) FIKED;
declares A to be an array of elements $A(0), A(1), \ldots, A(100)$. Arrays are particularly useful because the symbois which name array elements can irequently name more than just ane element. Thus

A(I)

names an element of A_{1} designated by the value of L . Thus if the 101 elements of A contain numeric values, the following fragment camputes, respectively, the minimum and maximum values contained within A.
/* compute the maxisnum value in A and store it into MAXA.
compute the minimum value in A and store it into MINA */
/* set MINA and MAKA to the value of an elcment of $A * /$
MINA, MAKA $=A(0) ;$
DO I $=1$ to 100;
IF A(I) < MINA THEN MINA = A(I) ;
ELSE IF A(1) > MAXA THEN MAKA = A(I);
END ;

This fragment can be made more flexibie by ating that the upper baund of the 00 statement can be replaced by a variable, say N . This means that if $\mathrm{B}<\mathrm{N}<=180$ then only the first N elements of A will be examined for the maximum and the minimum. Obvinusly, the lower bound, \boldsymbol{D}_{1} can be made a variable as well (5ay M):

Now, suppose that we wish in rearrange the conients of $A(B)$,..., $A(N)$ such that these elements of A are in ascending order. There are many ways of doing this. One way which every heginaing programmer learns is a method called the SHUTTLE SORT. It can be developed by. nating that the smallest elcment of $A(O), \ldots(N)$ should accupy $A(\theta)$. This value can be faund by computing the misimum of $A(B), \ldots(N)$ and interchanging the contents of $A(B)$ with the element of A where it was found. Naw, we have a simpler, but similar siluation. We must find the minimum of $A(1), \ldots, A(N)$ and again perform the appropriate interchange. The process can be cartinued until we have processed $\mathrm{A}(\mathrm{N}-1)$ and $\mathrm{A}(\mathrm{N})$.

The first attentpt at such an algorithm might be

```
DO 1 = = TON - 1;
compute the index af the smallest
element oi }A(T),A(I+1),\ldots,N(N) an
slare that index inio J;
interthange A(I) with A(J)
END;
```

The interchange aperation is particularly straightiorward.
$/ *$ interchange $A(I)$ with $A(J)$ m/
TEMP $=A(1)$
$\mathrm{A}(\mathrm{l})=\mathrm{A}(\mathrm{J}) ;$
$\mathrm{A}(\mathrm{J})=\mathrm{TEMP} ;$
Now, to campute the index of the smailest element of $\mathrm{A}(\mathrm{D})$ through $\mathrm{A}(\mathrm{N})$, we write
/* assign J the value l , as a ientative index /*
$\mathrm{J}=\mathrm{I}$;
DC K = I + 1 TD Ni
IF $\mathrm{A}(\mathrm{K})<\mathrm{A}(\mathrm{J})$ THEN $\mathrm{J}=\mathrm{K}$; END :

Write this sarting prugram in PLAGO and run itl!!
There are many ways of sorting a sequence of values. Your recilatian instructor will utidoubtedly mentian several others. Be certain that you understand the above program.

Exercises:

(1) Compute ithe metan, median and standard deviation of $\mathrm{A}(\mathrm{B})$..A(N).
(2) Compute the sum of $\mathrm{A}(\mathrm{O}) \ldots \mathrm{A}(\mathrm{N})$
(3) Compute the greatest comman divisor af $A(B)_{m} A(N)$.
(4) Compute the leasi cammon multiple of $\mathrm{A}(\mathrm{E}), \mathrm{A}(\mathrm{N})$.
(5) Rewrite the following programs so that data is pracessed from the contenis of arrays rather than as input values
a) The Birthing Problem
b) The GCD Probiem

- * *

Arrays came in infinitely flavors, depending upon their dimensionality. Thus, the array A above was a one-dimensional array. A two-dimensional array, B, might be declared as

DECLARE B $(25,30)$ FLOAT ;

Such an array can be visualized as a two dimensional table of simple variables having 25 rows and 38 columns. Thus $B(5,17)$ names the item in the fifth row and the seventeenth column. You should gain a mastery of systematically storing and retrieving values from such arrays. As an example of such a computation, suppose that the variable N contains an integer value such that $1<=N<=25$ and that the elements in the first N rows of the first N columns contain values.

Compute the sum of the elements $A(1,1), A(2,2), \ldots, A(N, N)$ and store the result into MDS. Also compute the sum of the elements $\mathbf{A}(1, N), A(2, N-1), \ldots, A(N, 1)$ and store this value into SDS;

Clearly, we have
Set MDS and SDS to 0;

For each row of B, say $I(i=1,2, \ldots, N)$ add
to MDS $B(I, I)$ and add to SDS the value
B(I,N+1-I);

Hence the fragment
MDS, SDS - 0 ;
DO I * 1 TO N;
$\mathrm{MDS}=\mathrm{MDS}+\mathrm{B}(\mathrm{I}, \mathrm{I})$;
$\mathbf{S D S}=\mathbf{S D S}+\mathbf{B}(\mathbf{N}+\mathbf{1}-\mathbf{I}) ;$

Exercises:
(1) Write programs which input (output) values to (from) variously dimensioned arrays.
(2) Write programs, which test square arrays for
a) symmetry
b) diagonal dominance
c) whether or not the array is a Latin Square or a magic square.

Some Words About Recursion

In EWD316, Dijkstra devates a chapter to discussing several ways af writing programs which correspond to recurrence relations. Skim the chapter before yau read the text belaw.

There are many recursive definitions which arise in mathematics. A definition of N -factorial can be expressed as:

$$
\begin{gathered}
8!=1 \\
\mathrm{~N}!=\mathrm{N}:(\mathrm{N}-1)!\text { where } \mathrm{N} \text { is an integer greaiter } \\
\text { than } \mathrm{g}
\end{gathered}
$$

The Fibonacci sequence tram Chapter 1 of the book by Forsythe el al. can alsa be defined recursively

```
F}=
1
F : 1
2
F}=\mp@subsup{\textrm{F}}{\textrm{N}-1}{}+\mp@subsup{\textrm{F}}{\textrm{N}-2}{}\quad\operatorname{tor}\textrm{N}>
```

Recursive definitions actur quite frequently in numerical analysis, One such definition defines the Chebyschav polynomials of the first kind (bear with me please) They are:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{X})=1 \\
& \mathrm{\theta} \\
& \mathrm{~T}_{1}(\mathrm{X})=\mathrm{X} \\
& \mathrm{~T}(\mathrm{X})=2-X-\mathrm{T}_{\mathrm{N}-1}(\mathrm{X})-\mathrm{T}_{\mathrm{N}-2}^{(X), N>1}
\end{aligned}
$$

Now, the abviaus question is:
How tan recursive definitiana be used to write programs.
The answer is Irequently quite simple. Since PLAGO allows procedures to call themselves, recuraive procedures can be written by tollowing theate ateps:
(1) Explicitly teat for the cases where a closed lorm regult can ber returned and return the value as appropriate.
(2) For all the remaining cases, call the procedure recursively with the appropriate arguments.

Thus the procedure T which computes the value of the N -th Chebyschev polynomial at X can be written as:

```
T.. PROCEDURE (X, N丁 RETURNS I FLOAT T,.
    DECLARE X FLOAT, N FIXED..
IF N=0 THEN RETURN 1 1.0.!,0
    IF N=1 THEN RETURN (X) :.
```


Study the above pracedure carefully.
To heip clarify some of these ideas, consider the following exercise.
On the following few pages, are lots of copies of the above procedure. Cut them out, and staple them together so that you have a booklet of identical pages, each page containing just one copy of the procedure. (That's right, cut out the next few pages and staple them together!) Notice that at the top of each are two boxes, ane labelled N and another labelled K . These baxes will contain appropriate values for N and X. Now simulate the execution of T where X equals 4 and N equals 4.

Do this by first writing the above values in the boxes at the top of the first page of your booklet. Simulate the procedure. Clearly, in order to return the required value for T , other evaluations of T must be made. Do this by marking the function call that will be made (just put an arrow under $\mathrm{T}(\mathrm{X}, \mathrm{N}-1)$) and then turn to the next page where there is a new copy of T. Insert the appropriate values for N and X in the boxes ($N=3, X=4$) and execute this procedure. Continue this pracess until a procedure can be executed to completion. In this case, simply write the value to be returned in the upper right corner of the sheet; TEAR IT OUT (That's right); and flip to the immediately preceding page and write the value you wrate in the corner of the sheet that was torn out of the book beneath the marker you left behind. That's the value of the marked call! Continue evaluation by flipping to a clean copy of T or going back to a previous copy of T. The whole process terminates when the first page has a value in the upper right corner.

Can you think of another way of simulating a recursive procedure? (Hint: Consider stacking the values of X and N_{1}, similar to the way values were stacked in the

discussion of arithmetic expressions.)

Recursive pracedures have the property that they are usually short and concisely represent a computation. They also have the property of executing rather slowly (there are notable exceptions to that observation, however, cif. The Marriage Problem). Therefore, it is frequently, to your advantage to try to represent recursive algorithms as non-recursive ones, AFTER the recursive algorithm seems to behave properiy. Several of the Problems address exactly this issue.

ENR I , .

\therefore vir 1.

rive I ..
 LIEClNREX FLUAT, N FIXEU..
 IF in =1 TḦEn RETURN (x),

---......
ENก 1 •.

KETURN $\left.12 \neq x * T\left(x_{1} N-1\right)-T(x, N-2) 1\right)$

ENC 1.

- \ldots
I. PRIRERURE (X, N, RECURSIVE RETURNS I FLOAT) ... GECLAREX FLCAT, N FIXEU
IF iv = OTHEN RETURN (1.0)

 -1..............-
rate 1 ..

 UECLARE X FLUAT: N FIXED.O

$X \quad \square$
RETUKN $\left(2 * x * T\left(x_{2} N-1\right)-1(x, N=2,1) \cdots\right.$
-.......-_ - END 「....
T.- PRUGCDURE (x. A) RECURSIVE RETURNS (FLUAT 1. . beclare x flcat, n fixed **

IF N = OTHENETUPN (1.0) \because IF N = 1 THE: RETURN $(x), \therefore$

risl 1 , .

T.. Píuchoure (X, N) recursive returns (float), . UECLARE X FLUAT, N FIXED,
IF $N=0$ THEN RETURN. $1.01, \ldots$

IF N = 1 THEN RETURN $1 \times, 1, \ldots$
$\times \square$
RETUKN $12 \neq x \neq I 1 x_{2} N-11-I\left(x_{0} N-21,1, \cdots\right.$

..................END I..........................

```
I.. PRUCTDLIRE ( }\mp@subsup{x}{2}{}\mathrm{ N ) RECURSIVE RETURNS ( FLOAT ) %.
    OECLARE X FLOAT, N FIXEU
        IF N = 0 THEN RETUQN ( 1.0}),
        IFN=1 THEN RETURN ( x % ,.
        PETURN(2*X*TTX,N-1TMT(X,N-2),
    rivo T ,.
```


r.. Piructodunt $(x, N$) RECURSIVE RETURNS $($ float $)$,. UECLARE X FLUAI, N FIXED,
 \qquad

IF $N=0$ IHFIN RETURN 1,0 ,
IF $N=1$ THEN RETURN (X) , .

END T.,
T... PRUCEDLIRE $1 \quad x$, N, RECURSIVE RETURNS (FLOAT, , UECLIRE X FLOAT, N HIXEU

IF $N=0$ THEN RETURN (1.0),
IF $\mathrm{N}=\mathrm{I}$ THEN RETUSN (x)

\times

rival 1 ..

Preface to the Problems

The programs which accompany the fallowing problems were all run as PLAGO programs. Each compiled and executed correctly. Hopefully, these programs will serve as models as well as objects subject to criticism. Several of the problems make reference to an introductory text by Forsythe, Organick, Keenan, and Stenberg. The book:
"Computer Science: A First Course"
is on reserve in the library.

Because of the limited character set which can be printed by the line printer from which you will receive listings of your programs, the following PL/I characters are printed as indicated
PL/I Printer

	NE
$>$	GT
	LT
	NG
$<=$	NL
$>=$	LE
	GE
I	NOT
II	OR
	CAT

Always punch the characters appearing in the left-hand column, NEVER the ones in the right-hand column.

One minor difficulty which you might encounter has to do with the programming notation used by Dijkstra in EWD316 and the notation required by PL/I. These difficulties arise because, in many cases, both use the same notation to mean slightly different things. The most important of these are listed below.
(1) The assignment operator in $P L / I$ is V and not V. However, statements having multiple left parts in PL/I are written with the left parts separated by commas

I, J, K : 8; means I «J » K » B;
(2) The while clause which Dijkstra uses is of the form
while $B E$ do
in PL/I, its equivalent is
DO WHILE $(B \varepsilon)$;
(3) The repeat statement
repeat δ until $B E$:
has only several messy equivalents in PL/I. Dne such equivalent is a form of the DO staternent which uses a variabie called REPEAT

1 DO REPEAT $=0,0$ BY 0 WHILE $(-B E)$;

Another, more straightforward equivalent is
$\mathrm{R}=1$;
DO WHILE (R|ᄀBE);
-
$\mathrm{R}=\mathrm{B}$;
END;
Study both of these forms and find several of your ou situations where either of the above will fail?
(4) Dijkstra uses begin and end to parenthesize statements. In PL/I, D0; and END; parenthesize statements and $\overline{B E G I N} ;$ and $E N D_{;}$delimit blocks!

Computing the Greatest Comman Divisor

Why I've included this prablem:

\cdots It provides an example of some af the difficulties and shows some of the techniques ane encounters when transforming a structured description inta a running program.

The algarithm first described can easily be made a part of a program which computes the GCD of a sequence of pairs of positive integers, thereby providing a simple example of a complete program, including all the input/output statements.

The Problem:

On page 37 of EWD316 is a program which computes the greatest common divisor of two positive integers. Suppose we wish to extend this program so that it computes the greatest comman divisor of arbitrarily many pairs of positive integers. One way of doing this involves punching the sequence of pairs into data cards. We can terminate the sequence by following the last pair of integers by a pair of zeros. Hence, an algorithm which solves the problen might be.
input values for A and B;
while A is not equal to 0 do hegin
print the values of A and B;
compute the GCD of A and B and leave the result in GCD;
print the value of GCD;
input values for A and $B_{\text {; }}$ end :

A PLAGO program which is equivalent to this description is
G.. FRCCEDURE CPTICNS (MAIN) ..

```
/* PRINT YHE VALUES OF A SEGLENCE OF PAIRS OF POSITIVE INTEGERS */
1* AND THEIR GRENTEST゙COMMON DIVISORS. THE INPUT WILL- WEGERS
/* RE TERMINATEO BY A PAIR OF ZEROS
*/
CECLARE ( A, E, GCD I FIXED...
/* INPUT VALUES FOR A ANO B*I
```

```
GET LIST (A, E ) P
    dC While ia ne O& b Ne O;,.,
/* PRINT THE VALLES OF A ANO 8 */
```


I* ccmputte the gcdecfa and a and leave the result in gcd */

```
    CO WHILE (A NE B ),:
        DC WHILE IA GT B,?
        A}=\overline{A}=\overline{E,
        ENC !.
        CC WHILE I B GT A !..
        B=B=A
        END :-
        END..
    GCL =A..
```

1* PRINT THE VALLE CF THE GCD CF A AND B *!
PUT LIST 1 GCE = , GCC) \because
GETLIST (A, B).
ENC
Enc
-
-•

Exercise:
(1) Write and run a PLAGO pragram which prints the values of a sequence of pairs of positive integers and their grealest common divisars and their smallest cormmon multiples. The input should be terminated by a pair of zeros. Use the pragram on page 41 of EWD316. Your solution should include the set of stepwise refinements which led to the program.
(2) PLAGO has a special built-in function called MOD which does the foilowing

MOD(se1, se2) has the value of the remainder of the division $\mathrm{sc} 1 / \mathrm{sc} 2$

For example

$\operatorname{MOD}(28,7)$ equals 6 ;
$\operatorname{MOD}(2,6)$ equals 2
If you are allowed to use only the MOD function and no other arithmetic operations, how would the GCD program change? Rewrite it using only the MOD function (comparisons of variables are still allowed, but not of more complicated expressions!)

Solving Quadratic Equations

Why I've included this problem:
Little mathematisal background is needed to understand the problern. Hence, the development can concentrate on programming issues.

The Problem

The equation

$$
A * X * 2+B * X+C=B
$$

can be solved, when A is not equal to B by

$$
\frac{-B+o r-\sqrt{B * B-4 * A * C}}{2 * A}
$$

We wish to write a program which will accep, as its input, values for A, B, and C, and produce, as output, the values of the root or roots of the equation. Thus, a first description of the solution might be
input values for A, B, and C;
output values of A, B, and C ;
solve $A=X * * 2+B * X+C=0$,
and output the values of the roots along with the case which was solved:

Several situations arise, hawever, in attempting to solve the equation. First, if A is not equal to 8 , the formula applies. If not, and B is not equal to O, then the equation is linear in X and has a root which is C / B. If $B=\theta$ and C is not equal to 8 then no equation is represented. We might wish to print some kind of error message to accompany this case. Finally, if $A=B$ and $B=8$ and $C=8$, an identity is represented. Again, a message might be appropriate as part of the output.

A refinement of the third statement might be
/* solve $A * X * 2+B * X+C=8 * /$
if A not equal to 8 then
begin
solve the quadratic using the formula;
end
else if B not equal to 0 then
begin

```
    solve the linear equation;
    end
else if C not equal to 0 then
    begin
    print a message saying that no
            equation is represented;
        end
    elge
    begin
    print a message saying that an identity
        is represented (0:8);
    end
```

The quadratic formula may be evaluated by observing that if
B = B- $4 * A * C\left\{\begin{array}{l}=0, \text { there is one real root } \\ >8, \text { therc are } 2 \text { real roots } \\ <8, \text { there are } 2 \text { complex routs }\end{array}\right.$
Hence the final program is

```
GUAO.. PRGCECURE OPTIONSI MAIN I ..
OECLARE ( A, B, C, DISC, SGO ) FLOAT ..
%TNPUT VALUES FOR-A,B, ANCC'*/-
GETLIST (A, B,C (, '
```



```
/* RCOTS WITH THE CASE WHICH WAS SOLVED
if A NE O THEN
    DC,.
1* sclve the ouacratic with tméformula**/
    DISC=B*日-4*A*C *
    IF EISC = O THEN
1* THERE IS CNE REAL ROOT *! .....
        puT SKIP LIST |' THERE IS ONE REAL ROOT WHICH EGUALS ',-E/2/A)..
```

```
    IF CISC GT O THEN
T* THERE TRE TWO RENL ROCTS%*/
```

```
            DC;.
```

 DC;.
 SCD = SSRT (DISC) ..
 SCD = SSRT (DISC) ..
 PLT SKIP LIST'G THERE ARE TWO REAL ROOTS,', (-B + SQDI/2/A,
    ```
            PLT SKIP LIST'G THERE ARE TWO REAL ROOTS,', (-B + SQDI/2/A,
```



```
    ELSE
```

 ELSE
 /* THERE ARE TWO COMPLEX ROCTS */

```
/* THERE ARE TWO COMPLEX ROCTS */
```



```
            PUT SKIP LIST (' THERE ARE TWO COMPLEX ROOTS,',
```

 PUT SKIP LIST (' THERE ARE TWO COMPLEX ROOTS,',
 -B/2/A, '+', SCD/2/A,' F I !., AND.,
 -B/2/A, '+', SCD/2/A,' F I !., AND.,
 -B/2/A, ' - ', SOC/2/A, . * I' 1 :.
 -B/2/A, ' - ', SOC/2/A, . * I' 1 :.
 END..
 END..
 ENO
 ENO
 ELSE IF B NE O THEN
 ELSE IF B NE O THEN
 PUT SKIP LIST (' THERE IS CNE REAL ROOT - LINEAR CASE ', -C / BI,.
 PUT SKIP LIST (' THERE IS CNE REAL ROOT - LINEAR CASE ', -C / BI,.
 ELSE
 ELSE
 IF C NE O THEN
 IF C NE O THEN
 PUT SKIP LIST ('//// NO EQUATION IS REPRESENTED ////') ..
 PUT SKIP LIST ('//// NO EQUATION IS REPRESENTED ////') ..
 ELSE
 ELSE
 PUT SKTP LTST IT THE IDENTTTYO = OTS REPRESENTED %..
 PUT SKTP LTST IT THE IDENTTTYO = OTS REPRESENTED %..
 END
    ```
    END
```

Why I've included this problem:
Its analysis is straightiderward.
The computations in the final program must be arranged sa that overilows do not occur at intermedjate stages of computation.

The Prablem:

Suppose that K persons are gathered in a room. What is the probability that at least two of the persons were born on the same day of the year? (Ignore the possibility of anymne being born on February 29)

The protilem can be analyzed by noting that the answer equals

$$
1 \cdot\left\{\begin{array}{l}
\text { the probability that no two } \\
\text { persons in the room were born } \\
\text { an the same day of the year }
\end{array}\right\}
$$

The quanlity in braces is now just the number of ways k persons can have different birthdays divided by the total number of ways K persons can have birihdays, i.e.

$$
365 * 364 * \ldots(365-K+1)
$$

365 ** K
Note: Those students worried about the relevance of this problem may wish to consider the solution to the following:

An electronic assembly confains K componenis, cach of which will fail sometime during the next N time periods. The assembly will continue to operate if only single cornponents fail in a time periad, but will fail if more than ane component fails in a time period. What is the probability that the assembly will fail? Let N be 365 to be definite!

The solution to this problem can be exiended in allow it to cormpute a sequence of probabilities, i.e. we wish to print the values of N positive K's the number of propie in the raom) and for each K, the pratabizity that at least two of them were born on the same day of the year. The values of K are to be read trom data cards. Preceding the first value for K is a pusitive integer, N, corresponding to the number of times K is to be assigned a new value, implying a new computation of the prabability.

The first stage in the development might be

```
input a value to N;
```

```
while N > B dfl
    bcgin
    input a value to K;
    output the value oi K:
    compute the value of the probability that
        at lcast two people, among K, were born
        on the same da/ of the ycar. Store this
        value into PROB:
    output the value of PROB;
    N = N - 1;
    end
```

The details of developing ail the parts of the design, except the computation of PHOB are straightforward. They appear in the final program. However, the task of computing PROB requires more analysis.

Scveral cases are apparent. First, if the value of K is less than 2, the probability of two people being barn on the same day of the year is, of course, zero. Further, if there arc more than 365 people in the room. the probability that at least two were born on the same day of the year is 1 . In the remaining cases, the formula can be calculated. Thus, we have
/* compute the probability for K and store it into PROB */

```
ji K < 2 then PROB := 8
        else if K > 365 then PROB := 1
```

 else
 /* compute the formula */
 The formula can now be refined as follows. We select DEN to represent the value of the denominator and NUM to represent the value of the numerator. Both can initially be set to 1 to get

```
NUM < DEN = 1:
I " l;
while I <= K do
    begin
    NUM = NUM * (366-I):
    DEN DEN » 365:
    I I. 1:
    end ;
PROB := 1 - NUM / DEN:
```

The final program is now

```
BCAY.. PROCECURE OPTIONS ( MAIN ) ..
/* redc a value into n, indicating the number off times a value is */
/* TC eE REAC INTC K. PRINT faCH K ALCNG WITH THE PRGQABILITY TH.TT*/
1* at least thC Cf K people in a rocm weke burn lin the same vay */
/* CF THE YEAR.
OECLARE ( I,N, K ) FIXED,.
DECLARE ( NLM, DEN, PROB ) FLOAT,.
/* inplit a valle for n */
gET LIST (N ),.
    OC WitLEE ( N GTO),.
/* INPUT A VALUE FORK */
    GET LIST ( K ) ,*
/* ol'tput value of k */
    PUT`SKI'`liST \ ! K = ', K , ,.
/* COMPLTE the probability for K and store the resuly
/* CCMPUTE THE PROHAEILITY fOR K and StCRE THE RESULT IN PrUB */
    IF K LT 2 THEN PROB = 0 ..
        ELSE IF K CT 365 THEN PRCB * 1, :
            ELSE
            OC ..
            NUM, DEN = 1 ..
            I # 1 ..
                    oc while ( I lek).
                    NUM = NUM *- 366 - i') ..
                    DEN = DEN * 365 *.
                    I = I + L ,.
                    END ..
            \rhoROE = 1 - NUM / OEN ,.
            END **
    PUT SKIPLIIST (: PROB= ', PRCB), -- -
    N = N - 1 ,.
    ENC .-
END **
```


CUNCITICN •OVERFLCW' SIGNALLEC IN STATEMENT 15
CQNDITICA ERRCR' SIIGNALLED IN STATEMENT 15
CLINDITICN 'FINISH' SIGNALLED IN STATEMENT IS.

Unfortunately, this PLAGO program will fail for several values of K . The reason for this is that the finite capacity of a storage cell is exceeded during an intermediate calculation (EWD316, p.26). This explains the peculiar message in the output. It's not difficult to see that if K is, say, 75 , the value of the
denaminator exceeds 18**150, which exceeds the default magnitude of a FLOAT variable.
A much better way of performing the calculations would be to initialize PROB to 1 and within the loop compute:

```
PROB := PROB * ( 366 - I ) / 365
```

This assures us that intermediate calculations will not lead to results which are extremely large.

Exercise:

(1) Modify the program using the above suggestian. Could the suggestion lead to other kinds of difficulties?
(2) Consider the following simple problem:

Suppase you wish to compute the distance between two points in a plane. Let the coordinates of the first point be represented in the variables X 1 and Y 1 and those of the second in X2 and Y2. The formula

$$
(\mathrm{X} 1-\mathrm{X} 2) * * 2+(\mathrm{Y} 1-\mathrm{Y} 2) * * 2
$$

computes the value we want. Now suppose that you are guaranteed that the distance between the two points will not raise the overflow condition. How can you guarantee that no intermediate calculation in the above formula - or a modification of it - will raise the overflow condition?

Develop a PLAGO program which computes the distance between pairs of points. The input should contain a value for N , as the first value of the input, followed by N groups of four values, corresponding to the coordinates of two paints. The program should output the values of these coordinate pairs along with the distance which separates the two points.
(3) Modify the pragram from exercise (2) so that the value of the shortest(longest) distance is printed at the end of the nutput.

A Nest of Squares

Why I've included this problem:
This problem shows how an algorithm can be transformed into a lower echelon algorithm just by recognizing a simple properly.

The Problem:

Suppoze that a family of squares, $S(8), S(1), \ldots, S(1), \ldots$ is defined 50 that the area of square $S(1)$ equals

$$
\langle I+1\rangle * A \text { where } A \text { is positive and real. }
$$

Suppose further that this family of squares is centered at the origin of a iwo-dimensional coordinate system with sides paraliel to the X and Y axes. For example:

Now imagine that the variables X and Y define the respective X and Y coardinates of some point. What is the index of the smallest square which contains the point (X,Y)?

For example, if A is $1, X$ is 4 , and Y is 3 , then the index of the smallest square containing $(4,3)$ is $63-S(63)$ is the smallest square cottaining (4,3). (convince yourself that this is true before going on)

This problem can be analyzed in several ways. One way is to notice that since each square is symmetric about the X and Y axes, the smallest square in our family
containing (X, Y) also contains the smallest square centered at the origin with sides parallel to the axes, and with (X, Y) on its boundary. Hence the area of each square in the family (starting with the smallest) can be compared with the area of the square with (K, Y) on its boundary - call this square S . The first square whose area is greater than or equal to the area of S is the square whose index answers our question.

More concisely, we might write:
ASQ<area of square with point (X, Y) on its boundary;
$1<8$;
while area of $\mathrm{S}(\mathrm{I})<$ ASQ compute $\mathrm{I} \leftarrow \mathrm{I}+1$;

The more intrepid analyst, however, might notice that there are infinitely many values of I for which this inequality holds:
(area of S) <=A * (I + 1)
Solving this for I yields
(area of S) / A - $1<=1$.
Clearly the left side can be computed. Therefore, if we can compute the value of the smallest integer which is greater than or equal to the left side, our question is again answered!

The following program does just this. Why? Think of some other ways of solving this problem.

```
INDEX.. PROCECURE OPTIONS (MAIN),.,
    LECLIRE (X, Y, A, ASO) FLUAT, (I) FIXEC ,.
1* GRAB SONE INPUT VALUES AND PRINT THEM *L
    GET LIST (A, X,Y) ,*
```



```
    I* COMPUTE THE AREA UF THE SMALLEST SGUARE CONTAINING (X,Y) */
    l = CEIL 1 1 4* MAXI ABS (X), ABS (Y) 1 ** 2 1, A - 2, !
    f% I CONTAINS THE VALUE WE are after... SO, priNT IT */
```


Evaluating Arithmetic Expressians

A quiz similar to the following was given during a 15.180 lecture. Try it. Don't spend more than 18 minutes.

The variables in the following expressions have the values inditated in the table:

A	B	C	E	I	J	K
3	4	7	3	1	2	10

Evaluate each of the following expressions:
Expression 1:

$$
A+B+C / I / I / I * K \cdot B * C
$$

Expression 2:

$$
A m B+C-(E+K / 5) * *(3-I) *(J-2 *(C+A))
$$

Expression 3:

$$
\begin{aligned}
& (A+B+C / I / I / I * K-B * C) * B+C-(E+K / 5) * *(3-I) \\
& \text { * (J-2*(C+A) }-K+J-E *(A-B * K *(C-E / i)-4=(1
\end{aligned}
$$

$$
\begin{aligned}
& K-B *((() J+C)=(K-4) / J-I) *(E \cdot I)))=E+A)
\end{aligned}
$$

The results of the quiz are easy to describe. Almost everyane evaluated the firsi expression correctly; abous half the sludents evaluated the second expression correctly; and no one evaluated the third expressian corrcctly! WHY. If you examine the three expressions, you should nate that the anly essential difference between thern is their lengths. All the arithmetic operations are trivial. Probably the reason sludents had so much trouble with the last expression was because they didn't have a very careful bookkeeping system which would lell them when to pertorm arithmetic and on what to periorm it. The methods described in your texibook I find rather clumsy (you may not). Therefare, I have written a tlowchart which evaluates
arithmetic expressions by scanning them from left to right without ever re-scanning any pact of the expression.

The flowchart which follows - an informal but precise one - does this by systematically postponing arithmetic operations until they can be performed. This is accomplished with the aid of an OPERATOR STACK and an OPERAND STACK.

Before you proceed, take a look at the flowehart. Pay special attention to the comments.

Let me demonstrate the flow chart by using it to evaluate the expression:

$$
\mathbf{A} * \mathbf{B}+\mathbf{C}-(\mathbf{E} . \mathbf{K} / \mathbf{5}) * *(\mathbf{3}-\mathbf{I}) *(\mathbf{J}-2 *(\mathbf{C}-\mathbf{A}))
$$

where the variables have the values tabulated below

The algorithm begins by inserting the symbol - to the right of the rightmost symbol in the arithmetic expression. This symbol - sometimes called a "right terminator" or "right turnstile" - simply signals the end of the arithmetic expression. Before proceeding, arm youself with a bunch of small slips of paper. Make sure that each slip can fit inside the labelled squares on the page following the flowchart. Next, place some kind of pointer (a pencil mark will do) beneath the leftmost symbol in the expression. By symbol we mean a variable name or constant or arithmetic operator or parenthesis.

Now, determine whether the symbol is a variable name or a constant. In the cxample, the symbol is a variable name, A. So, "push" the value of the variable name onto the OPERAND STACK. This amounts to simply jotting the value of A on a slip of paper and placing this slip on top of the pile (possibly empty) of slips inside the square labelled OPERAND STACK. Next, advance the pointer one symbol to the right and follow the flowchart until you find the test box which inquires as to the PRECEDENCE of the newly scanned operator. This box asks whether the precedence of the scanned operator is greater than the precedence of the operator at the top of the OPERATOR STACK. By convention, we say that an empty stack and a left-parenthesis have lower precedence than all the operators. Hence we copy the symbol V onto a slip of paper and "push" it onto the OPERATOR STACK. Again, move the pointer one symbol to the right; scan B; push its value onto the OPERAND STACK; move the pointer one symbol to the right; and scan V. Here, note that V has lower precedence than V (which is the top of the OPERATOR STACK). Because of this circumstance, "pop" the top of the OPERATOR STACK to OP, i.e. move the slip on top of the OPERATOR STACK to the square called OP; "pop" the top of the OPERAND STACK to ROP; and "pop" the top of the OPERAND STACK to LOP. Next, perform the arithmetic operation "OP" on "LOP" and "ROP" and write the result on a new slip of paper. Push this value onto the OPERAND STACK and throw away the slips in OP, ROP, and LOP.

What we have just done has been to compute the praduct of A and B, with the result now on the OPERAND STACK. Now compare the precedence of the scanned symbol with the precedence of the symbol at the tap of the OPERATOR STACK. Again since the OPERATOR STACK is empty, simply push the ' + ' onto the OPERATOR STACK.

The Table which follows is a sequence of "snapshots" describing the process by which the expression is evaluated. Note particularly how parenthesized sub-expressions are handledl Observe that when the flowchart staps that the value of the expression is the single value left in the OPERAND STACK! Don't let yourself get bagged dawn. The flowchart is straightorward but somewhat tedious. It might be helpful for you to look at the flowchart again befare proceeding.

Snapshots of the Evaluation Process for

$$
A * B+C \cdot(E+K / 5) *(3-I) *(J+2 \geqslant(C+A))
$$

where

Note that the top of the OPERAND STACK and the top of the OPERATOR STACK is always the leftmost symbal in the appropriate column.

Scanned Symbal	LOP	OP	ROP	OPERAND STACK	OPERATOR STACK
A				3	
*				3	*
B				43	*
+		\cdots	4		
+				12	+
c.				712	+
-	12	+	7		
-				19	-
1				19	1 -
E				315	1 -
+				319	+ 1 .

43

It should be clear that the flowchart docsn't behave praperly for expressions containing unary ' + ' and \because ' sign. Fix the flowehart ta handle this case.

Modify the algorithum so that some spucial path and exit are failowed in the event that the expression is discovered to be syntactically incorrect.

LOP

$O P$

OPERATOR STACK

A Monotone Sequence

Why I've included this problem:
Algorithms which solve this problem seem not to be immediately obvious, but can be developed in a step-wise way. I think that's a good property for a programming problem to have.

The problem has some interesting generalizations.
The problem:
Put simply, if you have a linear array A, containing N different real values, find the length of the longest monotone increasing subsequence. The book by Forsythe et al. discusses this problem on pages 191-199. Read and understand that material before going on.

Write structured statements which correspond to the flowchart on page 199.
Now study the PLAGO program on the next page.
Rewrite it so that it camputes the length af the longest monatone DECREASING sequence. Follow the notation and suggestions of exercise 4 on page 198.

Modify the program again so that it not only produces the length of the longest monotone increasing sequence, but also produces an instance of such a sequence. Exercise 4 an page 198 suggesis a way of doing this. Create the subsequence by putting it into the first MAXINC elements of an array called MS.

Make sure you can prove the results in exercises 2 and 3 on page 198.
Can you think of other, more or less elficient, algorithms which solve the problem?

```
    PAIN.. PROCEDURE CPTIONS ( MAIN )
    DECLARE (A(50),N ) FIXED
/> COMPUTE THE LENGTH OF THE LCNG6ST MONOTONE INCREASING SEQUENCE */
/* IN A(1)...A(N)
    MCNSEQ.. PRCCECURE (A, N) RETURNS ( FIXED )
    CECLARE < J» K< A (N), 8(N),N, MAXINC I FIXEO
/* SET LENGTH CF LONGEST INITIAL SEQUENCE TO 1 */
        *AXINC = I
        CO J = 1 TO N
        B(J) - 1 ..
            DC K = I TO J - 1 %.
/* IF A(K) IS LESS THAN A(J) AND THE LENGTH OF THE LCNGEST \bullet /
/* MCNCTONE INCREASING SFCUENCE ENDING WITH A(K) EQUALS */
/* CR IS GREATER THAN THE LCNGEST SEQUENCE CURRENTLY ENDING */
/* WITH A(J), THEN LENGTHEN IHE SEQUENCE ENDING WITH A<J> */
            IF A(K) LT A(J) THfcN
                        IF e(J) LT 8(K) + I THEN
                        BIJ) > B (K) \bullet 1 t.
            ENCt.
            IF MAXINC LT B(J) THEN KAXINC = BIJ) >.
            END ,.
        RETURN ( VAX INC ) >.
    ENO MCNSEC
DC WHILE ( 1 ) t.
    GFT LIST ( Nt (AC) DO I * 1 TO N ) )
    PUT LIST ( - THE SEQUENCES ( A(I) DU I - I TO N )
    - HAS A LCNGtiST MCNGTONIC INCREASING SUBSEQUENCE UH LtNOTH\bullet »
        MCNSEQ( }\mp@subsup{A}{t}{}N\mp@code{N}) t
    END
    END PAIN 》.
```


Gaussian Elimination

Why I've included this problem:
Gaussian Elimination is a well known and important technique for solving systems of simultaneous linear equations. - every student of $15-10 \mathrm{D}$ should know it.

A Gaussian Elimination program in PLAGO requires that you know how to systematically aperate on the rows and columns af an array. These techniques you should know.

The Problem:

Both the problem of solving sets of linear equations and the method of Gaussian Elimination are discussed in the book by Forsythe, et al. (pp. 333-349).

Read and understand that material hefare proceeding.
Write structured statements corresponding to the flowchart on page 349.
Compare your structured statements with the body of the procedure, GAUSS, whose text fallows.

GAUSS does not perform the partial pivating operations described in the flowshart on page 349. Change the program so that it does pertorm this kind of pivoting.

It has been suggested that elimination could be periormed so that all coefficients both below and ABOVE the main diagonal are elininated. This would mean that the entire "back solution" process could be removed. Rewrite part of the program to do this. Compare the number of arithmetic operations required by both methods. That's right, compare them. Which method is more efficient? Can yau think of any other reason why one method is better than the other?

```
MAIN.. PROCECURE OPTIONS( MAIN ) **
DECLARE (A(25, 25), C(25), X(25), EPS. TEMP, MULP ) FLOAT,
        (N,I,J,K,L,LI) FIXED,..
/* INPUT EPS,"N, A, AND C */
GET LIST (EPS,N, ((AlI,J) OC J= = TON),
            C(I)DOI = ION),%
PuT LIST ((I A(I,J) DO J=1 TON ).,/!,
        C(I)DOI * ITON1,1..
```

```
ELIN..
    DC 1 = 1 TEN - 1.0
        CC J=1 + I TC N,.
        IF ABS( A(I,I) ) LE EPS then
            CC..
                DC L = I + I BY l WFILE ( abS( M(I,|) LE EPS & L LE N (,.
                    IF ABSI A(L,I) ) GT EPS THEN
                OC,.
                    CCLl=I TCN..
                    TEMP = A(I,LI) :.
                    \Delta(I,Ll)=A(L,LI) ..
                    \Delta(L,Ll) = 「EMP ,.
                        ENO..
                TENP = C(I) ,.
                C(I) = C(L) ..
                C(L) = TEMP %
                ENC..
            EvC
            IF ARSI A(I,I) ) LE EPS THEN
                DC..
                    PLT SKIP LIST ('SINGULAR SYSTEM////') ..
                    STOP ,.
                END ..
            EN: , ,
        MULP = A(J,I) / A(I,I),.
            CC K = I + I TCN,.
            A(J,K) = A(J,K) - MULP * A(I,K) ,.
            END ,.
        C(J) = C(J) - C(l) * NULP ..
        ENC ..
    ENC ELIM..
IF AES( A(N,N)) LE EPS then
    CC ,.
    PUT SKIP LIST ( 'SINGULAR SYSTEM////' 1 ,.
    STCP ..
    ENO ..
    1* PERFCRM THE BACKSOLVING PROCESS */
    BACKSOLV..
        DC I = N BY -1 rọ 1 ..
        X(I) = C(I)..
            coj = N 8Y-1 T01 + L,0
            x(I) = X(I) - X(J) * A(I,J) ..
            END ,
        x(I) = x(I) / A(I.I) ..
        ENC BACKSCLV ..
    puT data (l x(I) DO I = L TON )| ..
    ENO ..
```


Matrix Multiplication

Why I've included this problem:

Matrix multiplication is a useful thing to know.
Recent work in the area of computational complexity has revealed some new and more efficient algorithms for performing matrix multiplication. I think they are interesting. 1 also think they form the basis of some good programming exercises.

The Problem:
The product of matrix A, having M rows and N columns, and matrix B, having N rows and P columns, is a matrix, C, having M rows and P columns, where

That's all!
The procedure called, DEFN, which follows, performs exactly this computation.
Unfortunately, as M, N, and P grow large, the number of computations grows "very" large. In particular, if $\mathrm{M}=\mathrm{N}=\mathrm{P}$, the number of multiplications alone equals N cubed! Hence, enormous amounts of time can be spent multiplying even relatively small matrices.

Question: Are there better ways of multiplying matrices.
As it turns out, it wasn't until 1968 that any significant improvement was made over just the definition. At that time, S. Winograd presented a method which can
multiply matrices with about halt the number of multiplications used by the definition. He achieved this saving by noting that real mubliplitation is commutative and that some of the multiplications could be traded for additions. The method is based on the following identity:

where X means the greatest integer $\mathrm{Y} X$.
If \mathbf{N} is even then the left side is just the i, k-th element of C . Otherwise the product

$$
A_{i, N} * B_{N, K}
$$

must be added to the expression.
Admittedly, the expressions look much mare complicated than the original definition. The savings accrue by observing that the last iwo sums are dependent upon 1 and K respectively and need be computed just nance at the beginning of the program. Thereafter, the number of multiplications is half that required by the definition.

Compute an "operation count" of exactly the number of additions and multiplications that would be required by both methods. These computations should be functions of M, N, and P.

The procedure called WINOGRAD multiplies two matrices using Winograd's method. Study it.

For what values of M, N, and P would you expect WINOGRAD to execute more rapidly than DEFN? Note that M, N, and P will be larger than you might expect. Why?

Can you imagine situations where the accuracy of the results from WINOGRAD would be poarer than those from DEFN?

In 1969, in a paper by Strassen, ("Gaussian Elimination is Not Optimal ",
Numerische Mathematik 13, pp 354-356) a method was presented which could multiply two 2×2 matrices using just 7 multiplications instead of the usual 8 , and which didn't require that multiplication be commutative. His identities look just awful. And here they are:
then

$$
\begin{aligned}
& \left(\begin{array}{ll}
C & C \\
11 & 12 \\
C & C \\
21 & 22
\end{array}\right)=\left(\begin{array}{ll}
A & A \\
11 & 12 \\
A & A \\
21 & 22
\end{array}\right) *\left(\begin{array}{cc}
B & B \\
11 & 12 \\
B & B \\
21 & 22
\end{array}\right)
\end{aligned}
$$

where

Strassen provides no motivatian ar intuition as to how he ever found these. However, everywhere I've ever seen these things presented, the commentator has suggested a different mnemonic devise to help reconstruct thatm. Find one for yourself! These identities can be used to multiply matrices of any size if they are used recursively on matrices whose elements are themselves matrices. Try writing such a program. You'll learn much.

```
/* matRIX MlLTIPLICATICN by tre STANCAIC DEFINITIUN*/
```

CEFN.. PRCCECURE $1, A, B, C, N, N, P)$,
CECEAQE ($1, \mathrm{~J}, \mathrm{~K}, \mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{FIXED}$..
CECLARE ($A(*, *), H(*, *), C(*, *))$ fLÜAT. .
CECLARE (T I FLCAT ..
NEST.. LCI $=1$ TU N . .
CC $K=1$ TO $\rho \ldots$
$1=0 \ldots$
CC J $=1$ TO N
$T=T+A(I, J) * B(J, K) \ldots$
ENC
$C(I, k)=1 \ldots$
ENC NEST:.
END CEFN..
/* NATRIX MLLTIPLICATIUN USING WINOGRAD'S METHOC*/
WINCGRAO.. FRCCFDURE (A, B, C, M, N, P), .
CECLARE ($M, N, P, I, J, K, N 2$) FIXED.
BB FIXEC.

/* CCMPUTE IPE SUMS OF THE THINGS WE WANT TO THRGW AWAY */
$N 2=2 * \operatorname{FLCGR}(N / 2) \ldots$
C.C $\mathrm{C}=1 \mathrm{~T} \quad \mathrm{M} \ldots$
$T=0 \ldots$
CO J = 1 BY 2 TC N2 ..
$r=T+A(I, J) * \Delta(I, J+1) \ldots$
ENC..
AI(I)=1..
ENC *
CL $K=110$ P..
$\mathbf{r}=0 \ldots$
CO J = 1 8Y 2 TUN2 ..
$r=T+B(J, K) * P(J+1, K) \ldots$
ENC •

ENC .*
$P B=1 N 2 . N E N 1 \cdots$
WORK.. CC $1=1$ TCM..
CC K $=110 \rho \cdots$
IF EB THEN T = A(I,N) * B $(N, K) \ldots$

$J P l=J+1,0$
$J=T+(A(I, J)+B(J P L, K)) *(A(I, J P l)+E(J, K)) \ldots$
ENS ••
$C(I, K)=T-A I(I)-B K(K) \ldots$
ENC HCRK.
CNC WINCGRAC ..

The Eight Queens Problem

Why I've included this problem:
This problem has been analyzed in a step-wise way which is instructive.
Its solution can be expressed recursively.
The Problem:
Dijkstra has devoted a chapter to the problem of the eight queens. Read and understand that chapter before you proceed with the text below.

Dijkstra chose to find all the ways of positioning eight queens on a chess board so that no queen was attacked by any other. The program below, again by Dijkstra, can be used to find just one solution to the problem. How can it be modified so that all possible solutions are found? Study the program carefully. Its data structures are the same as the program in EWD316.

Exercise

Suppose the problem is generalized to consider a rather stylized chess board consisting of $\mathrm{N} \times \mathrm{N}$ squares un which we wish to place N queens so that none is under attack. Modify the program to solve this problem. Are there any statements you can make about the existence or nan-existence of solutions far arbitrary N ?

```
TRYC.. PRCCECURE (J)
    CECLARE 1 I. J) FIXED..
    \(D C\) I \(=1\) TO 8 WHILE ( NGTSAFE ),
        SAFE \(=A(I) \varepsilon B(I+J) \varepsilon C i I-J) \ldots\)
        IF SAFE THEN
            GUTS..
                00 ..
        \(A(T 1, B(I+J), C T I-J)=0 \cdots\)
                        \(X(J)=I\).
                IF JLT \(\triangle\) THEN
                    CO..
        SAFE = \(0 \ldots\)
                        CALL TRYCI \(J+11,0\)
                        END \(\cdot\) -
                IF NOTSAFE THEN A(I), BII + J), C(I-J)=1...
                        END GUTTS.:
                END :.
        ĖNC TRYC..
```


The Towers of Hanai

Why tive included this problem:
This problem can be solved by a short, natural, recursive algorithm which you should understand.

The problem has a nice generalization which ! like.

The Problem:

Dijkstra devotes a section of EWD316 to this prablem. His discussion, however, is somewhat more tedious than the one which follows. Read the text below, through the recursive solution to the problem. Then, read the section from EWD316. Finally, examine the program which solves the generalization to the problem.

Suppose that three spikes are driven into a flat board and that N doughnut-shaped discs have been arranged on one of the spikes with the smallest disc on top to the largest dise on the bottom. The diagram illustrates the situation.

The object of the game is to transfer all the dises from the starting spike to one of the other spikes so that they are left in the same order - smallest on top to largest an the bottom. The dises, however, may only be moved one at a time from one spike to another so long as a disc never rests on another disc of smaller diameter. That's the game!

The problem is to write a program that will produce a sequence of moves which will tell a player how to move each disc.

Clearly, if we have just one disc, the sequence of moves is trivial. Just move the one dise to one of the other spikes (designated as the finish spike).

If we have two discs, the situation is almost the same, except that the top disc must be moved to the intermediate spike: the bottom disc to the finish spike : and finally the dise on the intermediate spike to the finish spike.

This suggests that to move N discs, we should:
(1) Move N - l discs from the start spike to the intermediate spike.
(2) Nove disc N from the start spike to the finish spike.
(3) Move $\mathrm{N}-1$ discs from the' intermediate spike to the finish spike.

The following program does exactly this.

```
HC. PROCEDURE OPTIONS ( MAIN ) ".
HXNCI.. PROCEDURE"N,S, If F ) 7%
    CECLARE <N, S, I, F) FIXEO ,.
7* HANCT COMPUTES" AND PRINTS A SEQUENCE OF MOVES WHICH TRANSFERS *I
l* A PILE CF < N ) DISCS FROM A START SPIKE, S, TO A FINISH SPIKE, */
/* F, USING SPIKE, I, AS INTERMEDIATE STORAGE.
17 N~=-I TFEN
    PUT SKIP LIST ( 'MOVEJIISC 1, • FROM «, S, • TC •, F ) ,.
        ELSE
            CO ,.
                CALL HANOI < N - 1,S, F, I )
            PUT SKIP LIST t *HCVE DISC ', N, ' FROM N S ^ i T ^ S J ) ",
            END
        ENC HANCI
```

 CECLARE (N) FIXED
 CCWHJLE (\(1=1 _1\)
 "GET "LIST (\(¥ 1\)
 CALL HANCK \(N, 1,2,3\)) ,
 END ,."
 ENC HC
 Could the 'PUT LIST statement which specifically says to move disc one be eliminated?

What is the minimum number of moves necessary to move N discs? Find a formula which is a function of N and prove that it is correct.

Find a non-recursive algorithm which solves this problem. Which do you feel is the superior? Why?

```
NAIN.. PROCECURE OPTIONS I MAIN 1 **
CECLARE (I, N, NSPIKES, S,F,ISN( 5C) , FIXEC,.
GENHAN.. PROCECURE I N, NSPIKES; S,F I**
    CECLARE`I I, N,NS,NSPIKES,S,F,FT, FIXED,.
    IF N LE NSPIKES - I THEN
    DO !
    DC I = 1 TO N - 1 ..
```



```
    ENC :.
    PUTLIST 1 MOVE DISC*,N. FROM ', S, *TC, F, %
    OC I =N - 1 BY - 1 TO 1,
    PUT LIST I 'MOVE DISC,,I, FROM , ISN(I), , TC, ,F, ,.
    ENC %
    FNC ..
    ELSE
WORK.. DC %
    FT = ISN ( l ) , 
    ISN(1)=F%
    CALL GENHANT N-I; NSPIKES: S% FTS%%
```



```
    [SN(1)=S..
    CALL GENHAN (N-1, NSPIKES, FT,F),.
    ISN(1) = FT..
    ENC hCRK
    ENC GENHAN*
    CO WHILE (1),.
    GET LISI (N, NSPIKES, S,F 1,0
    J=1%
    DC I = I TC NSPIKES ..
        IF I NES & I NE F THEN
            CO ,.
            ISN(J)=1.
            J=J+1!*
            ENC %.
            ENC ,
    PUT SKIPLIST (TN=,NK,NNSPIKES=%NSPIKES;'S=, S,
    |F= ",F) !.
    CALL GENHANI N, NSPIKES,S,F),0
    ENC,
ENDNAIN*.
```

Suppose the problem is modified so that we allow a parameter which specifies the number of spikes the game will have. Thus the original game is a special case of of this more general one - in that game, the number of spikes was equal to 3 .

What is the minimum number of moves necessary to move the N discs if you are allowed to use NSPIKES spikes?

A program follaws which performs this computation. Can it be shortened? How?
What would a non-recursive algorithon look like?

The Cain Problem
Why I've included this problem:
This problem has a very natural and intuitive recursive solution which can suggest a non-recursive solution which isn't quite so intuitive. I think you should see it.

The problem also generalizes nicely.
The Problem:
Determine the number of distinct ways an arbitrary number of cents, A, can be "changed" in terms of half dollars, quarters, dimes, nickels and pennies. For example, 16 cents can be changed in exactly six ways, as:
(1) 16 pennies
(2) 11 pennies and 2 nickels
(3) 6 pennies and 2 nickels
(4) 1 penny and 3 nickels
(5) 6 pennies and 1 dime
(G) 1 penny and 1 nickel and 1 dime

How can the problem be analyzed? Consider first the notation:

$$
\mathbb{N}_{A}^{C}
$$

which is interpreted as:
"the number of ways of changing A cents with coins having maximum denomination C cents"

Thus the original problern is to find the value represented by the symbol

$$
\wedge_{A}^{50}
$$

since we wish to change A cents with coins having maximum denomination 50 cents.

Now observe that

$$
N_{A}^{50}=N_{A}^{25}+V_{A-50}^{25}+N_{A-2 * 50}^{25}+\cdots N_{A-\left[\frac{4}{50} j * 5\right.}^{25}
$$

What does this mean? Just this: the number of ways of changing A cents equals the number of ways of changing A cents without any half dollars plus the number of ways
of changing A cents using one half dollar plus the number of ways using two half dollars and so on.

Now nate that each subproblem on the right is similar to the problems with which we started except that there are fewer sain denominations to consider! Now notice these equations:

$$
\begin{aligned}
& V_{A}^{25}=/ V_{A}^{10}+-V_{A}^{10}+25+\cdots+V_{A-\left[\frac{A}{25}\right] * 25}^{10} \\
& V_{A}^{n}=V_{A}^{5}+V_{A-10}^{5}+\cdots+V_{A-1, i+N}^{5} \\
& / /_{A}^{5}=N_{A}^{\prime}+V_{A-5}^{\prime}+\cdots+V_{A-\left[\frac{A}{5}\right]}^{\prime}+5
\end{aligned}
$$

What is the value of each term on the right of the last equation? Just 1 . Surprise! In any case, the following program uses a recursive procedure to solve this problem based on the preceding analysis. Understand it.
CHANGE.. PROCEDURE CATIONS I MAIN: ..
CECIARE CCINSIS) FIXED.
[ECLARE A FIXED
WAYS.. FRCCEDLRE (N, A) RETURNS (FIXES), DECLARE (N, A, TOTAL, I FIXED.. IF $A=1$ THEN RETURN (1) ,. ELSE

 END..
RETURN ('TOTAL), .
BAD $1 \cdot$
ENE WAYS \#

CCIAS(5) $=50$ *

```
CO mHILE (1= = %;
    GETGIST (A * ..
    PLT LIST: THE AMOUNT ', A,
            * CAN be REPRESENTED IN', WAYS( 5, A), ' WAYS', ..
        ENE
END CHMNGE *
```

Which pragram would execute more efficiently for large values of A? Which program would be easier to explain to someone who had never considered the problem?

Suppose that we wish to add a third parameter to WAYS, i.e.
WAYS(ND, N, A)
where ND elements of COINS will contain distinct coin denominations in ascending order, such that $\operatorname{COINS}(1)$ always equals 1 . Thus the original problem would just be

WAYS (5, 5, A)

for some amount A. This generalization allows one dallar bills, five dollar bills, ten dullar bills, etc. to be considered in the computation of the number of ways of changing an amount A. Which of the above programs can easily be madified to handie this generalization? Write a non-recursive procedure which computes WAYS(ND, N, A). (Hint: use the eiements of an array to behave like the controlled variables of a nest of DC-loops)

Suppose you wished to compute not only the number af distinct ways of changing an amount A, but also precisely what those ways are. What problems arise when you attempt to change the programs?

A PARTITION of a positive integer, A, is a sequence of positive integers whose sum is A. Use the idcas of the above programs to write both recursive and non-recursive programs which compute the partitions of A so that no computed partition is a permutation of some other partition.

Try simulating the behavior of the program for a few simple examples. Then observe that the following program also solves the problean.

```
CHANGE.. PRCCEDURE CPTICNS ( MAIN ),.
    GAYS.. PRCDCECURE (A ) RETUURNS IFIXEC, ,0
        DECLARE (A, 11, I2, I3, I4, TOTAL ) FIXED ..
        TCTAL = C..
        NEST.. [C II = O BY 1 TC FLOOR (A / 50 1.,.
            CC I2 = OBY 1 TC FLCCCR (1 A - I1 * 50) / 25),.
            OC 13 = C HY 1 TO FLCOR 11 A - 11* 50-12* 25 ) / 10 1,.
            OC 14 = 0 BY 1 TU FECCR T
                                    (A - I1 * 50-12 * 25-13* 10) / 5 ) ,.
            ICTAL = TOTAL + 1.,
            ENC NEST ;.
        RETURN ( TCTAL ),.
        END hAYS,.
    CECLARE (A) FIXED *.
    [C WITILE (1 = 1 ),.
    GET LIST (A ),..., A, CAN BE CHANGEC IN ', WAYS (A !, ' NAYS', ,.
    plt list
    ENC ..
    enc crange,.
```


Counting Lattice Paints

Why I've included this problem:
This problem has a very nalural recursive solution. I think you should see it.

The Problem:
We can define a lattice point in N-dimensional rartesian space as a set of N coordinates which are all integers. For example, in 2 -space (jusi a plane) (-2, 0) is a lattice point but (.5, 2) is nat a lattice point. The problem can now be stated.

Haw many lattice points are contained in an N -dimensional hypersphere of radius A, centered at the arigin.

That is, if N describes the dimension of the space and R describes the radius of the hypersphere, the algoritiun should produce the number of lattice points within the hypersphere.

Consider first the cases which can be visualized. If N is O , then there is exactly one lattice point, the arigin, regardless of f.

It N is 1 , then our space is just a line centered at G, and the number of lattice points in just $2 \ldots$ FLOOR (R) +1 . Another way of viewing the problem would be to count all the answers to the zero-dimensional prablems which occur at the origin and to the right and left of the origin for integer I such that $\mathrm{f} * * 2$ - I**2 is greater than or equal to 0 . That is, count the origin just once and then ceunt the points on either side, recognizing that this value is just twice the number io the right, say.

If N is 2, then our space is a plane, and the hypersphere is a circle of radius R. centered at the origin. Thus, the lattice points are all (u, v) such that u squared plus v gquared is less than or equal to R squared and where u and v are bath integers. Another view regards the problem in terms of a bunch of one-dimensional probiems, i.e. count the number of lattice points on the x-axis and ande to this twise the nutnerer of lattice points in the upper semi-circle.

The three dimensional case is thus just a bunch of two dimentional prablems.
The aragram which follows periorms the desires computalings. Study it. Note that Rwa2 is passed as a parameler rather than just R. Why.

Find a non-recursive solution to this problem. He carefull
Sitnulate the recurgive structure of this pragrant by maintaining yaur own stack.

```
LATTICE.. PRCCECURE OPTICNS ( MAIN )
    POINTS.. PRCCEDURE ( N, RS) RETURNS ( FIXED ) ..
/* POINTS COMPUTES THE NUMBER OF LATTICE POINTS IN aN N-CIMENSIONAL*/
/* HYPPERSPPERE OF RADIUS SCRT( RS ; */
    DECLARE ( N ) FIXEC, ( RS ) flOAT ,.
    ceclare ( S ) fixEC ..
    IF N = 0 THEN RETURN 1 1 1,.
            ELSE
            CC ..
            S = POINTS(N-1,RS);
                            CO I = 1 BY 1 WHILE 1 I * I LE RS
                        S = S + 2 * POINTS (N-1, RS - 1 * 1 , ,
                            ENC ..
                ENC
            RETURN (S ):.
        END POINTS..
    OECLARE ( N ) FIXED, (RS I FLOAT..
    DC WHILE (1 = 1, %
    GET LIST ( N, RS ),..
    PUT LIST ( 'CIMENSION z' ', N, ' RADIUS SQUARED = ', RS,
        - numaer of lattice pcints = ', poIntS ((N), (rS)))..
    END,
    enc lattice.,
```

