
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

71

A Guide to 15-188

R. N. Chanon

Department of Computer Science
Carnegie-Mellon University

August, 1972

Contents

2. Introduction

4. Textbooks

7. Grades and Grading

8. Policy Statement on Cheating

9. Computers and Computing

9. What is a "Solution" to a Problem?

11. Programming Problems: How to keep these from ruining your

weekends and your health.

12. How to Attack a Programming Assignment

15. Array Walking

18. Some Words about Recursion

26 . Preface to the Problems

28 . Computing the Greatest Common Divisor

3 0. Solving Quadratic Equations

3 3 . A Birthday Problem

37. A Nest of Squares

4 0 . Evaluating Arithmetic Expressions

4 8 . A Monotone Sequence

SO. Gaussian Elimination

52. Ma t r ix Multiplication

56. The Eight Queens Problem

57. The Towers of Hanoi

6 0 . The Coin Problem

6 4 . Counting Lattice Points

2

Introduction: Why and How this Guide Came to Be

I w r o t e these pages because blank expressions bother me! By that I mean, I don't
l ike to see a classroom filled with people who are either unwilling or unable to
a n s w e r a quest ion and who manifest their s tate of mind fay a sort of nebulous s t a r e -
the b lank express ion. This unhappy situation is probably just as disconcerting to
s t u d e n t s a s it is to me. The reason for it, I think, relates to the na tu re of the
q u e s t i o n s which I ask. They ' re meant to be non-trivial. I feel that class t ime is
v a l u a b l e and shouldn't be wasted by simply presenting material which can be read from
a tex tbook . Instead, time should be spent discussing the implications and intent of
the a s s ignmen t . This means answer ing questions and solving problems. Unfortunately,
e x i s t i n g course mater ia l s - textbooks and programming problems - don't seem to prompt
m u c h inqu i ry a s to ei ther the implications or the intent of an assignment. Students
s e e m to think it's sufficient to simply read some assigned text and digest only its
con ten t . Hopefully, this little guide will help change that attitude.

In the pages which follow, I've been critical of what seems to be about the best
m a t e r i a l for an int roductory course in computing. As I see it, the marketed
t e x t b o o k s a r e abysmal ly bad. They tend not to provoke much inquiry into what
p r o g r a m m i n g is about, and frequently address nothing more than the syn tax of a
p r o g r a m m i n g language. Hence, I have tried to expose some essential ideas from amid
all the ve rb iage .

Note , however , that this guide is NOT a textbook. It was wri t ten to
specifically accompany 15-188 a t CMU. Its pr imary purpose is to provoke questions
abou t p r o g r a m m i n g and problem solving; nothing more, nothing less.

I a lso emphasize the importance of asking questions.

ASK QUESTIONS!

Ques t ions allow your ins t ructors to talk about issues which a r e important to you.
T h e y can also p reven t him from wasting your time while he discusses things you
a l r e a d y unde r s t and . This guide should prompt lots of questions.

Also included a r e some programming problems and their analyses. Each is
accompanied by a few sentences describing what motivated me to include the problem
a n d w h a t I expect you to learn from it. The texts of complete, running PLAGO
p r o g r a m s accompany them all. Understand them!

T h e r e a r e even a few pages of motherly advice about how to allocate your t ime
whi le w o r k i n g on the problems, along with same words about how to p repare and submit
p r o g r a m s .

R. R Chanon
August, 1972

3

Some W o r d s about 15-106

15-180 is offered eve ry semester to students of engineering and science at CMU.
Because t h e r e a r e no prerequis i tes for 15-188, and because both freshmen and g radua t e
s t u d e n t s t a k e the course, the backgrounds of the students a re diverse - to say the
l eas t . The re fo re , since essentially the only information your instructor has about
you is y o u r name , it is vital that you ask questions about the material which you
don' t u n d e r s t a n d - more about this later.

T h e purpose of this course is to teach you to solve problems using a digital
c o m p u t e r . By the end of the course, you should be able to:

1. Recognize when a computer is an appropriate tool for solving a problem.

2. Define a problem precisely and formulate an explicit process for solving
it.

3 . W r i t e such a process as a program in the PLAQQ programming language.

4 . Dete rmine whether a program actually does the task it was intended to do.

5. When a program does not perform as expected, alter it so that it does.

T h e course t r ies to present a large number of problems and asks how a computer
migh t be used to help solve thnm. Hence, problem solving and the use of a computer
a s a tool to help salve problems is the real thrust of the course. The details of
c r e a t i n g syntac t ica l ly correct PLAGO programs, punching or marking cards, and
s u b m i t t i n g p r o g r a m s a r e of only ancillary interest.

The c o u r s e mee t s three t imes a week for one lecture and two problem
so lv ing /ques t ion a n s w e r sessions - called recitation sessions. The lectures a r e
in tended to p re sen t "general", hut vital information about both problem solving and
p r o g r a m m i n g . T h e y a r c not to be ignored. Recitation sessions will be used by your
i n s t r u c t o r to discuss PLAGO, problems, material from the lectures, and, in general ,
a n y t h i n g of in te res t to the course. These sessions, however, should be dr iven by
ques t ions . If you don't ask questions, there a re very few things which an ins t ruc tor
can do except g ive quizzes, read to you from the textbook, or present more problems.
If you don't a sk questions, recitation sessions become a was t e of your time. If you
don' t in tend to ask any questions, you might just as well not go to class. Your
p r e s e n c e will just add another w a r m body to an already o v e r h e a t e d classroom.

Besides class meetings, you a re asked to wri te algorithms to solve severa l
p r o b l e m s and ID r epresen t these algorithms as PLAGO programs and to run them on CMU's
c o m p u t e r . T h e y a r e important . Do them!

Final ly, 15-188 requi res that you take a final examination and a mid-term. See
the section which discusses grades and grading to find out how these exams and the
r e s t of y o u r performance will be evaluated.

4

T e x t b o o k s : Which to Buy and What They ' re Good For
' (Besides the obvious of course!)

B u y These;

(1) A Short Introduction to the Art of Programming
by E. W. Dijkstra

(2) PL/I P rogramming in Technological Applications
by G. F. Groner

(3) PLAGO/360 U s e r s Manual

(4) A Guide to 15-168
by R. N. Chanon

W h a t t hey ' r e good for:

The book by Dijkstra (referred to hereafter as EWD31G) is the best introduction
to p r o g r a m m i n g wi th which I am acquainted. It addresses what seem to be the
f u n d a m e n t a l issues of the discipline in a d e a r , concise and careful way . The text
isn't e n c u m b e r e d with the syntactic and semantic details of a particular programming
l anguage . He emphasizes the task of finding and developing algorithms as THE
fundamen ta l issue in programming. I think the book is excellent!

Unfor luna te ly , as a textbook, EWD316 can be used in the wrong way. First of
all . m a t e r i a l is presented in such a coherent w a y that a student might gain a false
sen;;e of secur i ty about his understanding. It all looks so easy - especially in the
f irs t t h r ee sections. Don't be mislead, however. The text is somewhat like the
Bible in the sense that it is easy to read but difficult to understand in te rms of
the r ea l depth that is present . Even though the assignments from the book will be
shor t , s t u d y them carefully. Don't fall into the t rap of feeling "cheated" if you
th ink you u n d e r s t a n d the text after just one reading. The chances are , you really
don't!

Secondly, the book contains too few exercises. In the pages which follow, that
p rob lem will hopefully be remedied.

The bonk by Groner, "PL/I Programming in Technological Applications", is meant
to be n source for information as to the syntax and semantics of the programming
l a n g u a g e which you will use to implement your algorithms. It contains numerous
comple te ly w o r k e d examples, as well as carefully prepared summaries of the features
of the hinguagc. The examples a r e related to many algorithms which a re commonly used
in eng ineer ing and science. Many of the algorithms, however, a re poorly developed.
T h e book also contains an enormous amount of verbiage which won't be re levant to the
cou r se . There fo re , you should rely on your recitation instructor to direct your
a t t en t i on to those pa r t s which are important.

5

L e c t u r e s

T h e lec tures for 15-106 present information of general rclevence to computing,
p r o b l e m solving, and the administration of the course. In the first two categories,
mos t of the detail is omitted - rightly so - and left to the recitation sessions. In
p a r t i c u l a r , the lec tures will tell you how to go ahcut solving the problems. You may
not be l ieve it. but the w a y you approach a programming assignment can have a
t r e m e n d o u s effect nn the amount of time you spend on it. In the last category,
a n n o u n c e m e n t s of due date changes for the programming problems arc made. The
l e c t u r e s a r e carefully planned to focus your attention an what we feel a r e the
i m p o r t a n t issues. They a r e important. The lectures can also be inspirational -
indeed, t h e r e a r e those who believe that that 's all a lecture can be.

At tend them.

Rec i ta t ion Sessions

Reci ta t ion sessions should be driven by questions.

Enough! Be advised.

6

T h e PLAGO manual describes the dialect of PL/I in which you will wr i t e your
p r o g r a m s . The syntact ic and semantic descriptions a rc clear, but the examples of
comple t e p r o g r a m s which appear in the appendix a re bad.

Da you unders tand what the phrase "syntax of PL/C" means? Are you going to ask
abou t i t?

7

G r a d e s and Grading Policies

You w.ll h a v e the following opportunities to EARN points:

* P r o g r a m t n i n g Problems

2 at 3 6 points
4 at 26 points
6 a t 16 points

• E x a m s

Midterm (mean about 55-66)
Final (mean about 116-126)

•Rec i t a t i on

Recitation performance

wBasic paints far semester

6 0
8 8
5 8

2 8 8

108
2 8 6
3 8 8

5 8

558 points

Yau m a y e a r n bonus paints for turning the 20 and 3 6 point problems in ear ly:

1 point for each two days

(upto a ceiling of twen ty p e r c e n t of the value of the problem!)

You will h a v e the following opportunities to LOSE points:

-Chea t ing : all credit for the thing on which you w e r e cheating

• T u r n i n g problems in late:

1 point for each two days

•Comput ing too much:

one point for each dollar more than the limit
used in each month

T h e final g r a d e will be assigned on the basis of the following scale

475-556 A
3 6 0 - 4 7 4 B
250-359 C
288 -249 D
0 0 0 - 2 0 0 R

8

Policy Statement on Cheating and Course Help

W i t h r e g a r d to homework, quizzes, and exams, cheating wil! not be tolerated. Anyone
caugh t chea t ing on a prohlnm will receive zero credit for the problem. Anyone caught
chea t ing on an e x a m will recieve zero credit for the exam. It is recognized that
s t u d e n t B can cheat from student A without A's knowledge. In such a case, A must
p r o v e his innocence. Protect your hard work from parasites!

W h e n you come la an exam, do NOT sit next to the people you have studied with.
Your a r g u m e n t that your answer is just like your friend's because you study together
wil l be m u c h more convincing if you don't sit together during an exam.

Some s tuden t s will find themselves unable to complete a problem on time or at
all. Such s i tua t ions allow the student- three choices; first, copy someone else's
project a n d hope he is not caught; second, give up and put the course; third, see
y o u r i n s t ruc to r . The second implies an R or a withdrawal, if possible. We intend
t ha t the first case will also imply an R. Hence, the student 's logical choice should
be the th i rd a l t e rna t ive (it can't be worse). Your instructor 's door is a lways open,
and t h e r e s u l t s of a visit may prove beneficial.

Pos tponemen t s of due dates a re possible. If you turn in your assignments late
w i t h o u t discussing the situation with your instructor, your grade will be decreased
by an a p p r o p r i a t e number of points (see above).

You m a y discuss all problems (NOT exams!) unless otherwise specified by your
i n s t r u c t o r . S tudent discussion is fruitful and encouraged, but all programs must be
w r i t t e n by the individual student. That is, you may talk with anyone (including your
i n s t r u c t o r) about assigned problems, but the actual writing of the program must be
done by you.

Computers and Computing

The programming language taught in this course is PLAGO (FORTRAN conversion will
be ava i l ab le at the end of the semester for those who want it). PLAGO runs on CMU's
I B M 3 6 0 model 6 7 . Unfortunately, computer time is a scarce resource and it is not
possible to provide each student with an unlimited amount of computer time.
T h e r e f o r e , each student in 1 5 1 0 6 will be expected to plan his time so that he can
l ive within two kinds of restr ict ions:

1) A limit on the number of programs run each day. This will be enforced by the
3 6 0 : after you have used up your limit, it won't run any more of your programs.

2) A limit on the dollar value of your computer usage each month. This will be
enforced by your instructor: you lose one point for every extra dollar each
month. The cost of each program is printed at the end of each job, so YOU can
keep t r ack of your usage. The exact limits will be announced at the first
l ec tu re . The cost limit will be generous - most students should require only 75
per-cent of the allotment.

Note that these are upper limits and you are NOT guaranteed to be able to get this
much s e r v i c e . You are competing with many other users for a resource that is in
short supply. Indeed, there will be times (especially the day before a problem is
due) when the system can't give as much service as is requested.

If you are excited about computing and want to work on extra problems of
personal interest , see your instructor. We will try to make arrangements for you to
use one of the less congested computers on the campus.

What is a "Solution" to a Problem?

A solution to a programming problem is a working, documented program. It must:

1) get the right answer, even on special cases and with bizarre sets of
data we might construct.

2) be reasonably efficient (don't go overboard on this point!)

3) include program documentation, i.e. your working plans for the problem.

This documentation should contain:

1) About a page of understandable English prose explaining the
organization of your program, what the important var iables arc
used for, and the representation of the data (e.g. "X is a FIXED
ar ray of length 10 which contains the x coordinates of the
input").

IB

2) A list of the procedures you will use. with a short
description of what each does and how they a r e related.

3 . A flow chart or s t ructured description (as done often in
lecture) for each such procedure.

T h e credi t for the problem will be split between the program and the
d o c u m e n t a t i o n a s follows

If the p rob lem The program The documentation
is wor th . . . is worth... is worth...

3 8 2 8 18
2 8 15 5
18 CO

2 i

11

P r o g r a m m i n g Problems - How to keep these from ruining
your weekends and your health

Each semes te r , 15-108 students a r e required to wr i te a number ol p rograms .
T h e s e a s s i g n m e n t s differ from ordinary homework problems in that they requ i re
comple te , runn ing , and correct programs as solutions. You can't tu rn in slipshod,
p a r t i a l l y complete p rog rams and expect much partial credit. This semester , your
p r o g r a m s a r e to he wr i t t en in PLAGO - a dialect of PL/I. The programming problems
a r e i m p o r t a n t . Much of wha t you will learn from 15-188 will be a direct consequence
of the expe r i ences you have a s you wri te and debug solutions for them. Sadly enough,
h o w e v e r , s t uden t s complain about the difficulty of the problems and that they have to
spend m a n y hour s finding and debugging solutions. My answer to this complaint is
q u i t e s imple:

Your approach is probably wrong.

(Tha t ' s not v e r y comforting, but it's still my reply.) With ve ry few exceptions, the
a n a l y s i s r equ i r ed to solve the problems is simple, if you a re willing to analyze the
p r o b l e m sys temat ica l ly and completely. There is no need to spend vast amounts of
t ime . If, howeve r , you do spend lots of time solving the problems, see your
r ec i t a t ion ins t ruc to r and explain your difficulty. He might have some suggestions.

Despi te r u m o r s to the contrary, these programming assignments a re intended to
force you to do the following:

(1) Find or unders tand an algorithm which solves the problem.

(2) Rep re sen t the algorithm as a PLAGO program.

(3) Debug the program.

(4) Convince yourself that the program solves the problem.

I t e m s (1) and (4) a re the most important issues in the above process, in the
course , and in essential ly all of programming - and for which I can't give you
a l g o r i t h m s . I t ems (2) and (3) can be handled in a fairly mechanical w a y and will
p r e s e n t only minor difficulties after you've wri t ten and run a few programs.

So, it would seem that the obvious thing to do is to spend enough time to find a
comple te and correct algorithm so that the remaining items require only minor
a t t en t ion . An hour or two of thought about the problem BEFORE writ ing any PLAGO
s t a t e m e n t s will probably save you several hours of the total time spent finding a
solut ion. Do this and your tenure as a student of 15-108 will only be a minor hassle
- w h o k n o w s , you might even like it!

12

How to Attack a Programming Assignment

Imag ine that you have been assigned a problem - not a keypunching exercise, but
a r e a l p r o g r a m m i n g problem. How can the problem be salved? Whole books have beer,
w r i t t e n to help a n s w e r this question. One ol the best is the small volume by George
Po lya ent i t led "How to Solve It". I recommend it as a general aid to analyzing the
p r o g r a m m i n g problems. More spccilically, I can offer several suggestions and refer
you to the p r o g r a m s in a later part of this guide, guide.

Th ings to do:

(1) M a k e s u r e that you undersiand what the problem asks.

Usual ly, the problems are posed fairly well. Hence, understanding what a
problem asks isn't difficult. However, be certain that you really
u n d e r s t a n d the problem sta tement before proceeding to the next step.

(2) Find and unders tand an algorithm which solves the problem.

This is the most important part of the whole process! It involves, among
o ther things, finding an appropriate data s t ruc ture and control s t ruc tu re
for the problem.

{3} Cast your algorithm in a step-by-step way using the ideas of s t ruc tured
p rogramming .

This tends to clarify your ideas and will frequently point out difficulties
wi th your original algorithm. Never fee) too proud to wr i t e a flowchart or
a sequence of s t ructured s tatements . The stepwise refinement technique due
to Dijkstra and Wir th is particularly appropriate to this step.

(4) W r i t e a PLAGO program which is equivalent to your flowchart or s t ruc tured
s t a t e m e n t s .

Th i s s tep can be performed in a fairly mechanical way - it's easy. It is
somet imes helpful to wr i te several drafts of the program. Embellish your
code wi th lots of informative comments. These comments a r e exceedingly
useful! Comments help you to understand the mess you've created if you
cont rac t mononucleosis and must put the program aside for awhile. Your
final draft should be complete (including system control cards). This
rea l ly means that if you a r e lucky enough to have a gir! friend who is
willing to punch your cards for you, she should never have to ask yau what
c h a r a c t e r s to punch.

(5) Go to the third floor of Science Hall and punch or mark your cards.

This is another easy step. Examine your cards carefully before you submit
them to m a k e sure that they exactly represent your final draft. This quick
check can sometimes save you several submittals.

13

(6) R u n y o u r program.

I t j t doesn't run correctly, correct it and run it again. Don't, however ,
just change the program "randomly". Think about what went wrong and how
changes will affect the program. Repeat this process until you a r c
convinced that your program behaves as it should {see the comments below).
M a k e s u r e that you have considered all the special cases and not just the
ones which our data gives you!

One final impor t an t point: TRY TO START WORKING ON A PROBLEM AS SOON AFTER I T IS
ASSIGNED AS POSSIBLE, AND DON'T BE AFRAID TO WORK ON TWO PROBLEMS AT ONCE! ! ! ! ! !
! I T h e r e a r e a lmost a l w a y s two problems pending at the same time.

T h i n g s not to do:

(1) Don't t r y wri t ing a PLAGO program from scratch. It's almost certain to be
w r o n g . Do so at your own risk. It has been my experience that r ega rd les s
of the size or complexity of the problem, a set of s t ructured s ta tements or
f lowchar ts is helpful. Should you decide to ignore this warning, expect
the following things to happen:

(a) Your program will contain more syntactic and logical e r r o r s than the
corresponding result had you followed the steps above.

(b) You can expect to make many changes in the program before it finally
r u n s correct ly - if it ever runs correctly.

(c) You can expect to spend lots of time at the computation center
submit t ing programs and waiting for output. The computation center is
v e r y dull, and, frankly, isn't a v e r y pleasant place to be.

(d) Your program will be difficult to understand, not only by someone
else, but also by you.

(e) Your p rogram will tend to be longer than the corresponding p rogram
produced by the steps above. It will also tend to cost more to run .

(f) Your understanding of programming and problem solving will tend to be
w e a k e r than had you followed the above steps - hence your grades will
tend to be lower than they could have been.

That ' s all I have 1o say about this mat ter . Be warned.

(2) Don't spend lots of time correcting and re-correcting a program that
doesn' t work . The point of diminishing re tu rns can approach quite rapidly
and you can easily was t e time in an unfruitful pursuit. Time is best spent
mak ing s u r e that your algorithms a r e correct!

14

(3) Don't wai t until the d a / before a problem is due lo s tar t solving it. You
a r e almost cer ta in not to h*vc a solution in lime. Programming ass ignments
a r e not like ord inary homework exercises. Not only must you solve the
problem, but you must also compete fur a valuable resource - computing t ime
- to demons t ra t e that your program is right. Instead, s ta r t step (1) on
the d a y the problem is announced, and finish it as soon after that as
possible.

(4) Don't t r y to run programs the day before a problem is due. The user a r ea
is mobbed by people who have neglected the problem. It is almost
impossible to get anything done under these circumstances.

T h a t ' s all the mother ly advice I wish to give about programming problems. Wr i te
be low the p h r a s e s from the above passages which you don't understand, and ask about
t hem.

15

Ar ray Walking

In addit ion to the simple variable, data may also be stored into objects known
a s ARRAYs. An a r r a y is nothing more than a name - just like one for a simple
v a r i a b l e - which identities a whole collection of simple variables. Names become
assoc ia ted w i th a r r a y data s t ruc tures by declaring them as such. Thus in PLAGO

DECLARE A(8:180) FIXED;

d e c l a r e s A to be an a r r a y of elements A{8), A(l) A(100) . A r r a y s a r e
p a r t i c u l a r l y useful because the symbols which name a r r a y elements can frequently n a m e
m o r e than just one element. Thus

A(I)

n a m e s a n e lement of A, designated by the value of I. Thus if the 101 elements of A
con ta in n u m e r i c values, the following fragment computes, respectively, the minimum
a n d m a x i m u m values contained within A.

/ • compute the max imum value in A and store it into MAXA.
c o m p u t e the minimum value in A and store it into MINA • /

/ » set MINA and MAXA to the value of an element of A * /

MINA, MAXA A(0) ;

DO I = 1 to 188;
IF A(I) < MINA THEN MINA -- A(I) ;

ELSE IF A{I) > MAXA THEN MAXA * A(I);
END ;

Th i s f r a g m e n t can be made more flexible by noting that the upper bound of the DO
s t a t e m e n t can be replaced by a variable, say N. This means that if 0 <* N <= 100
then only the first N elements of A will be examined for the maximum and the minimum.
Obviously, the lower bound, 8, can be made a variable as well (say M)!

N o w , suppose that we wish to r ea r r ange the contents of A{0) A(N) such that
t he se e l emen t s of A a r e in ascending order. There a re many w a y s of doing this. One
w a y which e v e r y beginning p rogrammer learns is a method called the SHUTTLE SORT. It
can be developed by. noting that the smallest element of A(8),„,A(N) should occupy
A(8) . ' This va lue can be found by computing the minimum of A(8),..,A(N) and
i n t e r c h a n g i n g the contents Df A(B) with the element of A where it was found. Now, w e
h a v e a s impler , but similar situation, we must find the minimum of A(1),...,A(N) and
a g a i n p e r f o r m the appropriate interchange. The process can be continued until w e
h a v e processed A(N-l) and A(N).

T h e first a t t empt at such an algorithm might be

16

DO I * 8 TO N - 1;

c o m p u t e the index of the smallest
e l emen t of A(I), A(M),..., A(N) and
s t o r e that index into J;

i n t e r c h a n g e Afl) with A(J);
END ;

T h e i n t e r c h a n g e operation is part icularly straightforward.

/ » in te rchange A(I) with A(J) • /

T E M P = A{I);
A(l) = A{J);
A(J) = TEMP;

N o w , to compute the index of the smallest element of A(I) through A(N), we wr i t e

/ * a s s ign J the value 1, as a tentat ive index / *

J = I;

DO K I . 1 TO N;
IF A<K) < A(J) THEN J K ;
END ;

W r i t e th is sor t ing program in PLAGO and run it! ! I

T h e r e a r e m a n y w a y s of sorting a sequence of values. Your recitation ins t ructor
will undoubted ly mention several others. Be certain that you unders tand the above
p r o g r a m .

Exe rc i s e s :

(1) Compute the mean, median and s tandard deviation of A{8)...A{N).

(2) Compute the sum of A(8)... A(N)

(3) Compute the grea tes t common divisor of A(3),...,A(N}.

(4) Compute the least common multiple of A(£UA(N).

(5) R e w r i t e the following programs so that data is processed from the contents of
a r r a y s r a t h e r than as input values

a) The Bi r thday Problem

b) T h e GCD Problem

0 V; V;

ARRAYS CAME IN INFINITELY FLAVORS, DEPENDING UPON THEIR DIMENSIONALITY. THUS,

THE ARRAY A ABOVE WAS A ONE-DIMENSIONAL ARRAY. A TWO-DIMENSIONAL ARRAY, B , MIGHT BE

DECLARED AS

D E C L A R E B (2 5 , 3 0) F L O A T ;

SUCH AN ARRAY CAN BE VISUALIZED AS A TWO DIMENSIONAL TABLE OF SIMPLE VARIABLES HAVING

2 5 ROWS AND 3 8 COLUMNS. THUS B(5 ,17) NAMES THE ITEM IN THE FIFTH ROW AND THE

SEVENTEENTH COLUMN. YOU SHOULD GAIN A MASTERY OF SYSTEMATICALLY STORING AND

RETRIEVING VALUES FROM SUCH ARRAYS. AS AN EXAMPLE OF SUCH A COMPUTATION, SUPPOSE

THAT THE VARIABLE N CONTAINS AN INTEGER VALUE SUCH THAT 1 < = N < = 2 5 AND THAT THE

ELEMENTS IN THE FIRST N ROWS OF THE FIRST N COLUMNS CONTAIN VALUES.

COMPUTE THE SUM OF THE ELEMENTS A(L,L), A(2,2),... , A (N , N) AND STORE THE RESULT

INTO M D S . ALSO COMPUTE THE SUM OF THE ELEMENTS A(1,N), A(2,N-1) , . . . ,A(N,1) AND

STORE THIS VALUE INTO S D S ;

CLEARLY, WE HAVE

SET M D S AND S D S TO 0;

FOR EACH ROW OF B, SAY I (I=L,2v..,N) ADD

TO M D S B(I , I) AND ADD TO S D S THE VALUE

B(I ,N+1-I) ;

HENCE THE FRAGMENT

M D S , S D S -- 0 ;

D O I * 1 T O N;

M D S = M D S +B(I,I);

S D S = S D S + B (N + 1 - I);

EXERCISES:

(1) WRITE PROGRAMS WHICH INPUT (OUTPUT) VALUES TO (FROM) VARIOUSLY DIMENSIONED

ARRAYS.

(2) WRITE PROGRAMS, WHICH TEST SQUARE ARRAYS FOR

A) SYMMETRY

B) DIAGONAL DOMINANCE

C) WHETHER OR NOT THE ARRAY IS A LATIN SQUARE OR A MAGIC SQUARE.

IB

Some Words About Recursion

In EWD316, Dijkstra devotes a chapter to discussing several w a y s of wr i t ing
p r o g r a m s which correspond to recurrence relations. Skim the chapter before you r ead
t h e t e x t below.

T h e r e a r e m a n y recurs ive definitions which ar ise in mathematics. A definition of
N-fac tor ia l can be expressed as:

8! = 1
N! = N * (N - 1)! w h e r e N is an integer g rea te r

than 0

T h e Fibonacci sequence from Chapter 1 of the book by Forsythe et al. can also be
defined r ecu r s ive ly

F = 1
1

F ; 1
2

F = F • F for N > 2
N N-l N-2

R e c u r s i v e definitions occur quite frequently in numerical analysis. One such
definit ion defines the Chebyschev polynomials of the first kind (bear with me please!)
T h e y a r e :

T (X) = 1
8

T (X) = X
1

T (X) = 2 • X * T (X) - T (X), N > 1
N N-l N-2

N o w , the obvious question is:

How can recurs ive definitions be used to wr i te programs.

T h e a n s w e r is frequently quite simple. Since PLAGO allows procedures to call
t h e m s e l v e s , r e c u r s i v e procedures can be wri t ten by following these steps:

(1) Explicitly test for the cases where a closed form result can be re tu rned and
r e t u r n the value a s appropriate.

(2) For all the remaining cases, call the procedure recursively with the
^ a p p r o p r i a t e a rguments .

T h u s the p rocedure T which computes the value of the N-th ChebyscheV polynomial at X
c a n be w r i t t e n as:

T:Y~FRecfouRE r v r N ~ i RTTTJRNS "T FLOAT T
DECLARE X FLOAT, N FIXED

IF N = 0 THEN RETURN (1 . 0 I

IF N = 1 THEN RETURN I X) F .
RETURN (2 * X * T < X , N - 1) - T (X , N - 2 > I
EKC T ,'. '"" '"" " "

S t u d y the above procedure carefully.

To help clarify some of these ideas, consider the following exercise.

On the following few pages, a r e lots of copies of the above procedure. Cut them
out, and staple them together so that you have a booklet of identical pages, each
p a g e containing just one copy of the procedure. (That's right, cut out the next
f ew pages and staple them together!) Notice that at the top of each a r e two
boxes , one labelled N and another labelled X. These boxes will contain
a p p r o p r i a t e values for N and X. Now simulate the execution of T w h e r e X equals 4
a n d N equals 4.

Do this by first wri t ing the above values in the boxes at the top of the
f irst page of your booklet. Simulate the procedure. Clearly, in order to r e t u r n
the r equ i r ed value for T, other evaluations of T must be made. Do this by
m a r k i n g the function call that will be made (just put an a r r o w under T(X,N-1))
and then t u rn to the next page where there is a new copy of T. Inser t the
a p p r o p r i a t e va lues for N and X in the boxes (N = 3, X = 4) and execute this
p rocedure . Continue this process until a procedure can be executed to
complet ion. In this case, simply wri te the value to be re turned in the upper
r igh t co rne r of the sheet; TEAR IT OUT (That's right!); and flip to the
immedia te ly preceding page and wri te the value you wrote in the corner of the
shee t tha t w a s torn out of the book beneath the marke r you left behind. That ' s
the v a l u e of the marked call! Continue evaluation by flipping to a clean copy of
T o r going back to a previous copy of T. The whole process te rminates when the
f irst page has a value in the upper right corner.

Can you think of another w a y of simulating a recursive procedure? (Hint: Consider
s t ack ing the va lues of X and N, similar to the w a y values were stacked in the

2 8

discuss ion of a r i thmet ic expressions.)

R e c u r s i v e procedures have the property that they are usually short and concisely
r e p r e s e n t a computat ion. They also have the property of executing ra the r slowly (
t h e r e a r e notable exceptions to that observation, however, cf. The Marr iage Problem).
T h e r e f o r e , it is frequently, to your advantage to t ry to represent recurs ive
a l g o r i t h m s a s non-recurs ive ones, AFTER the recursive algorithm seems to behave
p r o p e r l y . Seve ra l of the Problems address exactly this issue.

T . . PRUChlJht t fc (X , N } * E C U R S I V E RETURNS (FLOAT >
' I F C L A ^ H X F L O A T , N F l X H U

N L
i (->j = 0 THho! RETURN (1 . 0 I . .

I F .N * I XEUlRiM (X)
^'ITUrtf* l ? * X * T C X » N - i) - T t X , N - 2) l

T . . PKUClrDURfc I Xt N } R E C U R S I V E RETURNS I FLOAT
J t C L A R E X F L U A T , N F I X E D , .

[f N = 0 THF.N KETUKN (1 . 0) , . F\J I I

If \ = 1 T h e * R t T l W N (X) X I I

KtrfUKM (?. * X * T { X . N - 1) - T (X , N - 2))

R

T . . P i t l i C t O O H C (X* N) R E C U R S I V E R E T U R N S (FLOAT)
' . • t C L « R c X F L C A T , N F l X e O , . , 1

N I . I
I F N * 0 THr.N RETURN t 1 - 0) » . . .

X L I
I F N = L THrN KfcTUftN (X I « .

f̂". TljkN (? * X * T (X , N - l I - T I X , N - 2 I

T , .

- 22

i-JL.J»RTOCTRMIRT__(„X, N) RECURSIVE RETURNS I FLUAT)
UFCLARE X FLOAT, N FIXLU - .' - N I J
IF N = 0 THEN RETURN (1.0) ^ — x r ~~i
IF N = I TH5.J RETURN (X)
RETUI\F4 (2 * X * T (X T N - 1) • T T X| N - 2)) ,

ENP T

T.. K-UJCF-OURT (XT H) RECURSIVE RETURNS T FLOAT J , .
DECLARE X FLUAT, .N .FIXED

N_F _P_IHH N _ RE J.URM (_i. 0...)., . N 1 ' 1

, . - l f ^ „ K J J ^ ^ M l ^ . . L . ^ . -) . F.« X i I

KFCTUIT.N (2 * X » T (X , N - 1) - T (X, N.-_2))

PKTIR.T-Q.URC_ (X, H) RECURSIVE RETURR4S (FLOAT)..,._
LLFCCL*KE X FLOAT, N FIXED (. K L , 1

— - N I .1
IF H - 0 THCN RETURN { 1.0) ,

v t l
IF N =~~l THEN- RETURN (X ~) , • —

"~ MfffuH'r̂ 2 * X * T F"x7~N""-" l'T-~T"~ (X» N - '?")) ",, T

http://PKtir.t-Q.URC_

J ^ C H J « J H b . „ (, J (, . _ N . .)_. . .RECURSIVE R E T U R N S J FLOAT)
D F C L A R F X F L O A T , N F I X E U

ha L
I F N = 0 THEM RETURN 1 1 . 0) , .

T c - - - — r - _ - • - - - - - „ - - K [
I F N = 1 THErJ RETURN (X) , .

RETURN I ? * X * T (X " T N ' " - ~ 1 ~) ' * • " f ' T " x T N ~ 2 T I

ENO'T

T

T'.". PROCEDURE t X» N) R E C U R S IVE R E T U R N S i FLOAT) , .
DECLARE X F L U A T , N F I X E D „

I F N = 0 THEN RETURN T 1 . 0) , . M I ' 1

— I f - N * 1 THEN RETURN _<._X.JL,. X I I

RETURN (2 * X » T (X , N - 1) - T i . X t . N j J , >_..) , .

END T , .

T . . PROCfOUR C (X , N) R E C U R S I V E R E T U R N S (FLOAT) . ,
~ " t C L ^ R t " ' x " F L C A T , N H X t O , . , ,

N I . . I
I F IH ™ 0 T H f_ jNt RET Urt J ^ l i * 0) p » _

X L
" I F " N - 1 THfcN RETURN (X) ,

HCTURNT'T*""X"V" T"1"~X.' N*-~1) " - ' t I X, N — ? J) ,

hi J13 T , .

http://Ti.Xt.NjJ

T . » P R O C E D U R E ^ ! X . N > R E C U R S I V E R E T U R N S i FLOAT)
DECLARE X F L o T f , n ' f ' i X C U 7 . ' " '

_ _ . . N I]
II- N = 0 THEN RETURN (1 . 0) J

- - - - - X 1 I
I F N = 1 THEN RETURN (X } 1

t «

RETURN t 2 * X * T (X ~ N ~ - ") ~ ^ ~ " x , " n ' " ~ Y ' ' ') ' " ") ~

END" T 7 7

FV. PROCEDURE (X , N) R E C U R S I V E R E T U R N S I FLOAT) , .
DECLARE X FLOAT t N F I X E D , . _,_

I F N « 0 T H E N _ R E T U R N . . (1 . 0) , . /SJ I * I

ULU- =_ .1 _J_HEN. RETURN.... (X . J X 1 1

RETURN < 2 * X * T t X . N - l > - T (X , . N - , _ 2 , J _ >

END . . T . . . f . . .

T . . P i tUChDURE (X , N) R E C U R S I V E R E T U R N S (FLOAT)
OtCLARE™X F L O A T 7 N F I X E D , . _ f , .

. N I . F I F N = 0 THEN RETURN (1 . 0) t - ,

IF N = 1 T HEN RETURN (X I t .

——-———^— Y~-~—^— — ^ — j — (x n — 2 y y i

L I L I '

httO' T 7.

- 25

Ĵ -T-Ĵ OCFCULJRTB̂ (.X,_N) RECURSIVE RETURNS T FLOAT) , .
DEC CARE X FLOAT, N FIXCU -_________

"IV'N = 0 THEN RETURN (1 . 0) N J

—IF"FT-"T THEW RETURN T X) X 1 1

RETURN ('RT-X™T~(~XT"N - 1 ") T (X, N - 2)) , .

ENO T , .

T.. PROCEDURE (X, N) RECURSIVE RETURNS I FLOAT)
DECLARE X FLUAT, N FIXED , .

i_JI_»..0_..R_HF;N_ RETURN..! . . . 1 . 0 .) . /\| CZZZZZD
IF N =..i_THT.N RETURN (X) , . X 1 *
RETURN I Z « X * T 1 XI N - 1 1 - T_ T X,N_-._2)....)

OND T

T.. PROCEDURE T X, N) RECURSIVE RETURNS (FLOAT)
O-CUMKE'X FLOAT, N FIXED | f

—if"i^'~o~ THEN"" RE TURN T T O ' V ' I V —
X . ^

1 THEN RETURN (X I , . IF" N"_"
RETURN (2 *~T~+~f~i"'iV ti"-'i T - " ' T ("X, N - 2)) ,

r i * « T , .

PREFACE TO THE PROBLEMS

THE PROGRAMS WHICH ACCOMPANY THE FALLOWING PROBLEMS WERE ALL RUN AS P L A G O

PROGRAMS. EACH COMPILED AND EXECUTED CORRECTLY. HOPEFULLY, THESE PROGRAMS WILL

SERVE AS MODELS AS WELL AS OBJECTS SUBJECT TO CRITICISM. SEVERAL OF THE PROBLEMS

MAKE REFERENCE TO AN INTRODUCTORY TEXT BY FORSYTHE, ORGANICK, KEENAN, AND STENBERG.

THE BOOK:

"COMPUTER SCIENCE: A FIRST COURSE"

IS ON RESERVE IN THE LIBRARY.

* * ,

BECAUSE OF THE LIMITED CHARACTER SET WHICH CAN BE PRINTED BY THE LINE PRINTER

FROM WHICH YOU WILL RECEIVE LISTINGS OF YOUR PROGRAMS, THE FOLLOWING P L / I CHARACTERS

ARE PRINTED AS INDICATED

P L / I PRINTER

N E

G T

L T

N G

N L

LE

GE

N O T

O R

C A T

ALWAYS PUNCH THE CHARACTERS APPEARING IN THE LEFT-HAND COLUMN, N E V E R THE ONES IN THE

RIGHT-HAND COLUMN.

* « «

ONE MINOR DIFFICULTY WHICH YOU MIGHT ENCOUNTER HAS TO DO WITH THE PROGRAMMING

NOTATION USED BY DIJKSTRA IN E W D 3 1 6 AND THE NOTATION REQUIRED BY P L / I . THESE

DIFFICULTIES ARISE BECAUSE, IN MANY CASES, BOTH USE THE SAME NOTATION TO MEAN

SLIGHTLY DIFFERENT THINGS. THE MOST IMPORTANT OF THESE ARE LISTED BELOW.

(1) THE ASSIGNMENT OPERATOR IN P L / I IS V AND NOT V . HOWEVER, STATEMENTS HAVING

MULTIPLE LEFT PARTS IN P L / I ARE WRITTEN WITH THE LEFT PARTS SEPARATED BY COMMAS

>
<

>=

I
II

I , J , K : 8 ; MEANS I « J » K » B ;

2 7

(2) T h e whi le clause which Dijkstra uses is of the farm

whi le fl£ da

in PL / I , i ts equivalent is

DO WHILE (&£);

(3) T h e r e p e a t s t a t emen t

r e p e a t J until M;

h a s on ly s e v e r a l messy equivalents in PL/I. One such equivalent is a form of the DO
s t a t e m e n t which uses a variable called REPEAT

1 DO REPEAT - 0, 8 BY 8 WHILE);

Another , m o r e s t ra igh t fo rward equivalent is

R * 1;
DO WHILE < R|-i<B£)c

R = 8;
END;

S t u d y both of these forms and find several of your ou situations where ei ther of the
a b o v e will fail?

(4) Di jks t ra uses begin and end to parenthesize statements. In PL/I, DO; and END;
p a r e n t h e s i z e s t a t emen t s and BEGIN; and END; delimit blocks!

Computing the Greatest Common Divisor

W h y I 've included this problem:

*-• It provides an example ot some of the difficulties and shows some of the
techniques one encounters when transforming a s t ructured description into a
runn ing p rogram.

The algori thm first described can easily be made a par t of a p rogram which
computes the GCD of a sequence of pairs of positive integers, thereby
providing a simple example of a complete program, including all the
inpu t /ou tpu t s ta tements .

T h e P rob lem:

On page 3 7 of EWD316 is a program which computes the greatest common divisor of
t w o pos i t ive in tegers . Suppose we wish to extend this program so that it computes
t h e g r e a t e s t common divisor of arbi t rar i ly many pairs of positive integers. One w a y
oi doing this involves punching the sequence of pairs into data cards. We can
t e r m i n a t e the sequence by fallowing the last pair of integers by a pair of zeros .
Hence , a n algori thm which solves the problem might be.

input va lues for A and B;

whi le A is not equal to 0 do
begin

pr in t the values of A and B;

compute the GCD of A and B and
leave the resul t in GCD;

pr in t the value of GCD;

input va lues for A and B;
end ;

A PLAGO p r o g r a m which is equivalent to this description is

G . . PROCEDURE C P T I C N S (MAIN)

/ « P R I N T THE VALUES Of A SECUENCE OF P A I R S OF P O S I T I V E I N T E G E R S * /
/ * AND T H E I R " G R E A T E S T ' C O ^ W O N ^ n T l T O R S ; f H E ' T N P U T ' " w T L l " " * / "
^ * _ B E TIER? INATEO BY A P A I R OF Z E R O S _ » /

DECLARE < A , e , GCD) F I X E D _

/*_L^P.yT_ VALUES FOR A ANO _ B _ * /

GET LIST (A, B >
OC "WHILE (A NE 0 £ B NE 0)

/ • PRINT THE VALUES OF A ANO 8 */
- ~PTJ"T"~svrp"ITST~"r« A-="*T_A7~*~/~B"~-~**T"a"i v.'
/ * C C P P U T l THE GCD-CF A~AND 8 A NO LEAVE "THE RESULT IN GCO */

CC WHILE I A NE 6 I , .
DC WHILE IA GT B) _ _
ENC _ . . .__
DC WHILE (B GT A)

' " " 8 - "B " - A , •
ENO ' ..

:c = A GCC *„*_t. _
/* PRINT THE VALUE CF THE GCD CF A AND J_*/

PIT LIST (1 GCC ~ ' i GCC) _»• ~ seTTTsr n r r r r .
ENC , . _

ENC

Exerc i s e :

{1) W r i t e and run a PLAGO program which prints the values of a sequence of pairs of
pos i t ive in t ege r s and their grea tes t common divisors and their smallest common
mul t ip les . The input should be terminated by a pair of zeros. Use the program on
page 41 of EWD31G. Your solution should include the set of stepwise refinements
wh ich ted to the program.

(2) PLAGO has a special built-in function called MOD which does the following

M0D{ sel , se2) has the value of the remainder
of the division sc l / sc2

For e x a m p l e

M0D{ 2 8 , 7) equals 6;
MOD(2, 6) equals 2

If y o u a r e allowed to use only the MOD function and no other ari thmetic operations,
how would the GCD program change? Rewri te it using only the MOD function (comparisons
of v a r i a b l e s a r e still allowed, but not of more complicated expressions!)

3 8

Salving Quadratic Equations

W h y I 've included this problem:

Little mathematical background is needed to understand the problem. Hence,
the development can concentrate on programming issues.

T h e P r o b l e m

T h e equat ion

A « X * * 2 * B » X + C = B.

c a n be solved, when A is not equal to 8 by

-B + or -\/B . B - 4 - A . C

2 * A
W e w i s h to w r i t e a p rogram which will accep , as its input, values lor A, B, and C,
and p roduce , as output, the values of the root or roots of the equation. Thus, a
f i rs t descr ipt ion of the solution might be

input va lues for A, B, and C;

output values of A. B. and C;

solve A » X * » 2 + B » X + C : 8 ,
and output the values of the
roots along with the case
which w a s solved;

S e v e r a l s i tua t ions ar ise , however , in attempting to solve the equation. First, if A
is not equa l to 8, the formula applies. If not, and B is not equal to 8, then the
equa t ion is l inear in X and has a root which is -C/B. If B = 8 and C is not equal to
8 then no equation is represented. We might wish to print some kind of e r r o r message
to a c c o m p a n y this case. Finally, if A = 8 and B = 8 and C -- 8, an identity is
r e p r e s e n t e d . Again, a message might be appropriate as part of the output.

A re f inement of the third statement might be

/ » so lve A « X « 2 + B * X + C = 8 * /

if A not equal to 8 then
begin
solve the quadra t ic using the formula;
end

else if B not equal to 8 _then
" begin

31

solve the linear equation;
- e n d

ejse if C not equal to 0 then
begin
print a message saying that no

equation is represented;
end

else
begin
print a message saying that an identity

is represented (6:8);
end

T h e q u a d r a t i c formula may be evaluated by observing that if

Hence the final p rog ram is

8, there is one real root
> 0, there a r e 2 real roots

< 0, there a r e 2 complex roots

GUAD.. PROCEDURE OPTIONS! MAIN)
DECLARE (At 8 , C, DISC, SCO) FLOAT , .
/* INPUT VALUES-FO"R A» 8 ,

• • ~ n n r c ~ * / _ _ _ _ _ _ _

/ ^ T P T \̂ A L £ S 0 F ^ fl1 ̂ A ̂ i^J £ ^ /

"put" SKiplTsT i T T T T r p i 7 n - 7 T i " ~ s " 1 T " f T ^ ^ T r c " F ,7 "
/• SOLVE"A * X •* 2 + B~* X • C - 0 AND OUTPUT THE"VALUES OF THE */
/* RCCTS mil- THE CASE .WHJCH.WM SOLVED */
IF A NE 0 THEN . .

"DC,.
/• SCLVE THE QUAC RAT IC WITH THE FORMULA */'

DISC » B * « - 4 * A * C V.
IF CISC = 0 THEN
—- •- i • • i 11 —• ii « i i —*

/* THERE IS CNE REAL ROOT*/
PUT SKIP LIST f THERE IS ONE REAL ROOT WHICH ECUALS S-B/2/A),

32

IF CISC GT 0 THEN
r* Th?'RE~jft_nrwi)""'RRr"T5DoTr"*'/ ~ "*

DC, • "' "
SCO - SCRT (DISC)
PUT SKIP LIST (• THERE ARE TWO REAL ROOTS,*, (-B + SQDJ/2/A,

• AND •, -(B + SQD) / 2 / A) , .
~f~m " '

ELSE _

/•THERE ARE TWO COMPLEX ROCTS */

cc , •
'~STC™S"CRT T -'"TTfSCT"V

PUT SKIP LIST (» THERE ARE TWO COMPLEX ROOTS,1,
- B " / 2 / - t " • • * » ' SCO/2/Ai • * I • AND •,

/A, • • I») t . - B / 2 / A , • - », SQD/2/A, •
END, .

END , .
FXSF'TF" S~NE D" THEN -

PUT SKIP LIST (» THERE IS ONE REAL ROOT - LINEAR CASE », -C / B),
ELSE " ~ " " •"

IF C NE 0 THEN
PUT SKIP LIST (' / / / / NO EQUATION IS REPRESENTED / / / / •)

E^U^TKTP—LTTfn~1_"TF_"T06WTTY~0 "»'"0" "IS~ REPRESENTED • V ,

END , .

3 3

A Birthday Problem

W h y I 've included this problem:

I t s ana lys i s is s t raightforward.

T h e computat ions in the final program must be a r ranged so that overflows do
not occur at intermediate stages of computation.

T h e Prob lem:

Suppose that K persons a r c gathered in a room. What is the probability that at
l eas t t w o of the persons w e r e born on the same day of the y e a r ? (Ignore the
poss ibi l i ty of anyone being born on February 29)

T h e problem can be analyzed by noting that the answer equals
f the probability that no two ~)

1 - / persons in the room w e r e born >•
|^an the same day of the yea r J

T h e q u a n t i t y in braces is now just the number of w a y s K persons can have different
b i r t h d a y s divided by the total number of w a y s K persons can have birthdays, i.e.

3 6 5 » 3 6 4 s ... • (365 - K + 1)

365 mm K
Note : Those s tuden ts worr ied about the relevance of this problem may wish to consider
t h e solut ion to the following:

An electronic assembly contains K components, each of which will fail sometime
d u r i n g the next N time periods. The assembly will continue to operate if only
s ingle components fail in a time period, but will fail if more than one
component fails in a time period. What is the probability that the assembly
will fail? Let N be 365 to be definite!

T h e solut ion to this problem can he extended to allow it to compute a sequence of
probabi l i t i es , i.e. w e wish to print the values of N positive K's (the number of
people in the room) and for each K, the probability lhat at least two of them w e r e
bo rn on the s a m e day of the year . The values of K are to be read from data cards .
P r e c e d i n g the first value for K is a positive integer, N, corresponding to the number
of l i m e s K is to be assigned a new value, implying a new computation of the
p robab i l i ty .

T h e first s tage in the development might be

inpu t a va lue to N;

while N > B dfl
begin
input a value to K;

output the value oi K;

compute the value of the probability that
at least two people, among K, were born
on the same da / of the year. Store this
value into PROB;

output the value of PROB;

N = N - 1;
end

The detai ls of developing ail the parts of the design, except the computation of PHOB
are s t ra ight forward . They appear in the final program. However, the task of
comput ing PROB requires more analysis.

Several cases are apparent. First, if the value of K is less than 2, the
probabi l i ty of two people being barn on the same day of the year is, of course, zero.
F u r t h e r , if there arc more than 365 people in the room, the probability that at least
two w e r e born on the same day of the year is 1. In the remaining cases, the formula
can be calculated. Thus, we have

/* compute the probability for K and store it into PROB */

ji K < 2 then PROB := 8
else if K > 365 then PROB := 1

else
/* compute the formula */

The formula can now be refined as follows. We select DEN to represent the value of
the denominator and NUM to represent the value of the numerator. Both can initially
be set to 1 to get

NUM :« DEN = 1;

I » 1;

while I <= K do
begin
NUM := NUM * (366 - I);
DEN DEN » 365;
1 I + 1;
end ;

PROB := 1 - NUM / DEN;

The final program is now

B D A Y . . PROCEDURE O P T I O N S (MAIN)

/ * READ A VALUE INTO N , I N D I C A T I N G THE NUMBER OF TIMfcS A VALUE I S * /
/ * TC GE REAC I N T O K . P R I N T F AC H K ALONG WITH THE P R O B A B I L I T Y T H A T * /
/ * AT L E A S T TWC C r K P E O P L E IN A ROOM WEKt WORN LN THE SANE UAY * /
/ * CF T H E - Y E A R . * /

DECLARE I I , N , M F I X E D
DECLARE (NUM, C E N , PROB > FLOAT

/ * I N P U T A VALUE FOR N * /

GET L I S T I N) , .

0 0 WHILE I N GT 0 I , .

/ • I N P U T A VALUE F O R K * /

GET L I S T (K)

/ * OUTPUT VALUE O F K * /

PUT " S K I P " L I S T I K » • , K) , .

/ * COMPUTE THE P R O B A B I L I T Y FOR K AND STORE THE RESULY
/ * COMPUTE THE P R O B A B I L I T Y FOR K AND STORE THE R E S U L T IN P * U S * /

I F K LT 2 THEN PROB = 0 , .
E L S E I F K G t 3 6 5 THEN PRCB * I , .

E L S E
0 0
NUM, CEN ^ I , .
I — 1 f *

OG WHILE I I LE M i .
NUM = NUM * "(3 6 6 - I ')
DEN = CEN * 3 6 5
I = I + I »«
END f .

PROB = 1 - NUM / OEN
END , .

PUT S K I P L I S T F» P R O B " = ' , P R C S) , .
N = N - I » .
ENC

END t .

K =
P R C S
K *
PRCB
K =
P K c e
K ~

2 . 7 3 9 7 3 E - 0 3
7

5 . 6 2 3 5 7 E - 0 2
2 0

4 . 1 1 4 3 6 E - 0 1
3 0

C U N C I T I L N ' O V E R F L O W ' S I G N A L L E C IN STATEMENT 1 5

C O N D I T I O N • E R R C R ' S I G N A L L E D IN STATEMENT 1 5

C O N D I T I O N ' F I N I S H ' S I G N A L L E D IN STATEMENT 1 5 ,

3 6

Unfor tuna te ly , this PLAGO program will fail for several values of K. The reason
for this is that the finite capacity of a storage cell is exceeded during an
i n t e r m e d i a t e calculation (EYVD316, p.2G). This explains the peculiar message in the
ou tpu t . It 's not difficult to see that if K is, say, 75, the value of the
d e n o m i n a t o r exceeds 18**150, which exceeds the default magnitude of a FLOAT variable .

A much be t t e r w a y of performing the calculations would be to initialize PROB to
1 and wi th in the loop compute-.

PROB •-. PROB • (366 - I) / 365

Th i s a s s u r e s us that intermediate calculations will not lead to results which a r e
e x t r e m e l y large .

Exe rc i s e ;

(1) Modify the p rog ram using the above suggestion. Could the suggestion lead to
o t h e r k inds of difficulties?

(2) Consider the following simple problem:

Suppose you wish to compute the distance between two points in a plane. Let the
coord ina tes of the first point be represented in the variables XI and Yl and
those of the second in X2 and Y2. The formula

(XI - X2) ** 2 + (Yl - Y2) ** 2

computes the va lue we want . Now suppose that you a re guaranteed that the
d i s tance be tween the two paints will not raise the overflow condition. How can
you g u a r a n t e e that no intermediate calculation in the above formula • or a
modification of it - will raise the overflow condition?

Develop a PLAGO program which computes the distance between pairs of points. The
inpu t should contain a value for N, as the first value of the input, followed by N
g r o u p s of four values , corresponding to the coordinates of two points. The p rogram
should output the va lues of these coordinate pairs along with the distance which
s e p a r a t e s the two points.

(3) Modify the p rog ram from exercise (2) so that the value of the shortest(longest)
d i s t a n c e is pr in ted a t the end of the output.

3 7

A Nest of Squares

W h y I 've included this problem:

This problem shows haw an algurilhm can be transformed into a lower echelon
a lgor i thm just by recognizing a simple properly.

T h e P rob lem:

Suppose that a family of squares , S(8>, S{1) S(I), ... is defined so
tha t the a r e a of square S{I) equals

Suppose fu r the r that this family of squares is centered at the origin of a
two-d imens iona l coordinate sys tem with sides parallel to the X and Y axes. For
e x a m p l e :

N o w imagine that the var iables X and Y define the respective X and Y coordinates
of s o m e point. Wha t is the index of the smallest square which contains the point
(X,Y)?

For example , if A is 1, X is 4 . and Y is 3, then the index of the smallest
s q u a r e containing (4,3) is 6 3 - S(G3) is Ihe smallest square containing (4,3).
(convince yourself that this is t rue before going on)

Th i s problem can be analyzed in several ways. One w a y is to notice that since
each s q u a r e is symmet r ic about the X and Y axes, the smallest square in our family

(I • 1) * A, where A is positive and real.

Y

3 8

con ta in ing (K,Y) also contains the smallest square centered at the origin with sides
pa r a l l e l to the axes , and with (X,Y) on its boundary. Hence the area of each square
in t h e family (s tar t ing with the smallest) can be compared with the area of the
s q u a r e w i th (X.Y) on its boundary - call this square 5. The first square whose a r ea
is g r e a t e r than or equal to the area of S is the square whose index answers our
ques t ion .

M o r e concisely, we might wri te:

A S Q * a r e a of square with point (X,Y)
on its boundary;

I ^ " 8 ;
whi le a r e a of 5(1) < ASQ compute I-*-1 + 1 ;

I N D E X . . PRCCETIRF CPTICNS A I N) T.
NF.CT.LRE (X , Y * A, ASOI F I C A T , (I) FIXED

/ * GC AB SN_*E INPUT VALUES A NIC PPINT THF> * /
"GET L FST TA"7" X *, Y I T *

PUT L I S T (•; , = ' T A T ' X ' S X T ' Y = ' , Y > » .
/ * "CCMPUT^ "F HP' AKFA CF THE ALL EST SCUAPE COMA I M ^ G <X,Y> ' /

4 S 3 = 4 - MAX APS IX)T A6S (Y)) * * 2 T.
/>* R^VPUTL THC IN-HX CF TFT SMALLEST SCUAR5 CONTAINING (X , YL " /

CO I = I BY WHILF (ASC GT A * I)
i >r 7; ' " " '

J _ = _ I - I T . _ .
" / " " I CONTAINS' 'THF "VALUE W E ARE A F T C P . . . S C , P 5 INT IT * /

PTH L I S T (' I N D E X OF SMALLEST SQUAQE C C NT A I M NG <X,Y) IS I)
E'ND INDEX t .

http://nf.Ct.lRE

3 9

T h e m o r e intrepid analyst , however, might notice that there - r e infinitely m a n y
v a l u e s . o f I for which this inequality holds:

(a r ea of S) <= A • |I . 1)

Solving this for I yields

(a rea of S) / A - 1 <= I.

C lea r ly the left side can be computed. Therefore, if we can compute the value of the
sma l l e s t in tege r which is g rea te r than or equal to the left side, our question is
aga in a n s w e r e d !

T h e following program does just this. Why? Think of some other w a y s of solving
this p rob lem.

I N D E X . . PROCEDURE O P T I O N S (MAI N_> — -
[TFCUKE <X", Y , A ,~ASG> F L O A T , (I J F I X E D , .

/ * C K \ B SO^E INPUT VALUES AND PRINT THEM * /
GiET L I S T (A , X , Y) , .

_ _ _ _ _ _ _ LI ST (1 A = A . *X » ' , X, ' Y = * i Y) y . ————
/ * CONPUTE THE AREA OF THE SMALLEST SQUARE CONTAINING (X , Y J • /

I = C E I L ((4 * MAX f A 8 S 1 X) _ _ A B S _ 1 Y) _ J _ • * 2 > / A -
/ * I C O N T A I N S - T H E VALUE WE ARE A F T E R . . . S O , P R I N T I T * /

P L T L I S T (M f c n F X fiF SMALLEST SCUARF CONTAINING (X , Y) I S I)

ENU INCEX

4 0

Evaluating Arithmetic Expressions

A quiz s imilar to the following was given during a 15-100 lecture. T r y it.
Don't spend m o r e than 18 minutes.

The var iables in the following expressions have the values indicated
in the table:

A 8 C E I J K

3 4 7 3 1 18

Eva lua t e each of the following expressions:

Express ion 1:

A . B + C / I / I / I * K - B * C

Express ion 2=

A • B . C • (E t K / 5) • « (3 • 1) t (J • 2 • (C . A))

Express ion 3:

(A + B + C / I / I / I * K - 8 » C) * B + C - (E + K / 5) * * { 3 - I)

• (J - 2 « (C . A)) - K . J - E « (A - B » K « { C - E / I) - 4 « (I

+ K - C)) + (C - 5 + K / J / I - 2) « l + B - J / (C - E - J) + A *

K - B » (((((J + C) » (K - 4) / J - I) « C - l))) * E + A)

T h e r e su l t s of the quiz a re easy to describe. Almost everyone evaluated the
f i rs t express ion correct ly; about half the students evaluated the second expression
co r r ec t l y ; and no one evaluated the third expression correctly! WHY. If you examine
t h e t h r e e express ions , you should note that the only essential difference between
t h e m is their lengths. All the ari thmetic operations a re trivial. Probably the
r e a s o n s t uden t s had so much trouble with the last expression was because they didn't
h a v e a v e r y careful bookkeeping sys tem which would lell them when to perform
a r i t h m e t i c and on wha t to perform it. The methods described in your textbook I find
r a t h e r c lumsy (you m a y not). Therefore, I have wri t ten a flowchart which evaluates

a r i thmet i c express ions by scanning them from left to right without ever re-scanning
any p a c t of the expression.

The flowchart which follows - an informal but precise one - does this by
sys temat i ca l ly postponing arithmetic operations until they can be performed. This is
accomplished with the aid of an OPERATOR STACK and an OPERAND STACK.

Before you proceed, take a look at the flowchart. Pay special attention to the
comments .

Let me demonst ra te the flowchart by using it to evaluate the expression:

A * B + C- (E + K/ 5) * * (3 - I) * (J - 2 * (C + A))

w h e r e the va r i ab les have the values tabulated below

B C J E
i i

i J K

4 7 ; 3 i 2 18

The algori thm begins by inserting the symbol - to the right of the rightmost symbol
in the ar i thmet ic expression. This symbol - sometimes called a "right te rmina tor" or
" r ight t u rns t i l e " - simply signals the end of the arithmetic expression. Before
proceeding, a rm youself with a bunch of small slips of paper. Make sure that each
slip can fit inside the labelled squares on the page following the flowchart. Next,
place some kind of pointer (a pencil mark will do) beneath the leftmost symbol in the
express ion . By symbol we mean a variable name or constant or arithmetic opera tor or
pa ren thes i s .

Now, determine whether the symbol is a variable name or a constant. In the
example , the symbol is a var iable name, A. So, "push" the value of the var iable name
onto the OPERAND STACK. This amounts to simply jotting the value of A on a slip of
p a p e r and placing this slip on top of the pile (possibly empty) of slips inside the
s q u a r e labelled OPERAND STACK. Next, advance the pointer one symbol to the right and
follow the flowchart until you find the test box which inquires as to the PRECEDENCE
of the newly scanned operator. This box asks whether the precedence of the scanned
o p e r a t o r is g r ea t e r than the precedence of the operator at the top of the OPERATOR
STACK. By convention, we say that an empty stack and a left-parenthesis have lower
precedence than all the operators . Hence we copy the symbol V onto a slip of paper
and " p u s h " it onto the OPERATOR STACK. Again, move the pointer one symbol to the
r ight ; scan B; push its value onto the OPERAND STACK; move the pointer one symbol to
the r ight ; and scan V. Here, note that V has lower precedence than V (which is
the top of the OPERATOR STACK). Because of this circumstance, "pop" the top of the
OPERATOR STACK to OP, i.e. move the slip on top of the OPERATOR STACK to the s q u a r e
called OP; "pop" the top of the OPERAND STACK to ROP; and "pop" the top of the
OPERAND STACK to LOP. Next, perform the arithmetic operation "OP" on "LOP" and " R O P "
and wr i t e the result on a new slip of paper. Push this value onto the OPERAND STACK
and throw away the slips in OP, ROP, and LOP.

W h a t we h a v e just done has been to compute the product of A and B, with the
r e s u l t n o w on the OPERAND STACK. Now compare the precedence of the scanned symbol
w i t h t h e precedence of the symbol at the top of the OPERATOR STACK. Again since the
OPERATOR STACK is empty, simply push the V onto the OPERATOR STACK.

T h e Table which follows is a sequence of "snapshots" describing the process by
w h i c h t h e express ion is evaluated. Note particularly how parenthesized
s u b - e x p r e s s i o n s a r e handled! Observe that when the flowchart stops that the value of
the exp re s s ion is the single value left in the OPERAND STACK! Don't let yourself get
bogged down. The flowchart is s t ra ightforward but somewhat tedious. It might be
helpful for you to look at the flowchart again before proceeding.

Snapsho t s of the Evaluation Process for

A » B + C - (E + K / 5) « { 3 - I) . (J - 2 « (C . A))

w h e r e

A B C E I J K

3 4 7 3 I IB

No te tha t the top of the OPERAND STACK and the top
of the OPERATOR STACK is a lways the leftmost symbol
in the a p p r o p r i a t e column.

Scanned LOP OP ROP OPERAND
Symbo l i STACK

3

3

B 4 3

12

7 12

12

19

19

3 19

3 19

OPERATOR
STACK

(-

{ -

+ (

*«

C

IB /

mm

10 3 13

10 3 13

5 10 3 19

3 IS

2 3 19

19

5 19

I 5 19

I
' 5 19

5 19

3 5 19

i 3 5 19
i
| 1 3 5 19
| 5 19
i

! 2 5 19

2 5 19

19

25 19

25 19

2 25 19

2 25 19

2 2 25 19

2 2 25 19

2 2 25 19

7 2 2 25 19

)

* (*

/ • (-

/ . < -

+ (-

+ f -

(•

mm

(* * *

{ mm •

" (* * i j
[- (mm

! (• • -

(* *

(* •

- (• -

- (• -

m • (m •
i

! (• - (. -

< . - { * -

7 2 2 25 19

3 7 2 2 25 19 • (m - (-

2 2 25 19 ! { « - («

10 2 2 25 19 » - (• -

m

/

5

)

)

4 4

t-

2 . 18

2 8

25 - -18

13 -458

2 25 13

2 8 2 25 19

25 13

-18 25 19

-18 25 19

19

-458 19

4 6 3

- (*

{ * ~

(* '

It should be clear that the flowchart doesn't behave properly for expressions
con ta in ing u n a r y V and '-' sign. Fix the flowchart to handle this case.

Modify the algorithm so that some special path and exit a r e followed in the
e v e n t t ha t the express ion is discovered to be syntactically incorrect.

/ * — - 1 5

s t a r t J

a p p e n d -I t o t h e r i ^ h t o f t h e e x p r e s s i o n

J .

p o s i t i o n p o i n t e r t o t h e l e f t m o s t s y m b o l

p o p t r
OPERAr
t o ROF

>p o f
10 STACK
»

O P E R A !
t o LOI

>P o f
JD STACK
>

e v a l u a t e LOP O P R O P ,
p u s h v a l u e o f r e s u l t
o n t o OPERAND S T A C K ,
t h r o w a w a y c o n t e n t s o f
LOP O P ROP

e v a l u a t e LOP O P D0P,
p u s h v a l u e o f t h e r e s u l t
o n t o O P E R A S S T A C K , t h r o w !
a w a y c o n t e n t s o f L ^ p n p n o p \

p o p t o p o f O P E ^ A T O ? !
M STACK t o nP [

a d v a n c e p o i n t e r o n e
^ s y m b o l t o t h e r ; f _ _ h t _ j

\t

© 4 6

OPERATOR STACK n o t e m p t y ?) ^ T

p o p t o p o f OPERATOR
STACK t o O P

p o p t o p o f OPERAND
STACK t o ROP

p o p t o p o f OPERAND
S T A ^ K t o LOP

3L

^ S T O P)

e v a l u a t e LOP n p R O P ,
p u s h v a l u e o f r e s u l t o n t o
t h e O P F R A N n STACK a n d
t h r o w a w a y t h e c o n t e n t s o f
LOP O P ROP

4 7

EXPRESSION

LOP OP no P

OPERATOR STACK OPERAND STACK

4 8

A Monotone Sequence

W h y I 've included this problem:

Algori thms which solve this problem seem not to be immediately obvious, but
can be developed in a step-wise way . I think that 's a good proper ty for a
p rog ramming problem to have.

T h e problem has some interesting generalizations.

T h e problem:

P u t s imply, it you have a l i n e a r . a r r a y A, containing N different real values,
find the length of the longest monotone increasing subsequence. The book by Forsythe
ct al . d iscusses this problem on pages 191-199. Read and understand that mater ia l
be fo re going on.

W r i t e s t r uc tu r ed s ta tements which correspond to the flowchart on page 199.

N o w s tudy the PLAGO program on the next page.

R e w r i t e it so that it computes the length of the longest monotone DECREASING
s e q u e n c e . Follow the notation and suggestions of exercise 4 on page 198.

Modify the program again so that it not only produces the length of the longest
m o n o t o n e increasing sequence, but also produces an instance of such a sequence.
E x e r c i s e 4 on page 198 suggests a w a y of doing this. Create the subsequence by
p u t t i n g it into the first MAXINC elements of an a r r a y called MS.

M a k e s u r e you can prove the results in exercises 2 and 3 on page 198.

Can you think of other, more or less efficient, algorithms which solve the
p r o b l e m ?

49

P A I N . . PROCEDURE C P T I O N S (MAIN)
DECLARE (A (5 0) , N) F I X E D

/ » COMPUTE THE LENGTH OF THE LCNG6ST MONOTONE I N C R E A S I N G SEQUENCE * /
/ * IN A (1) . . . A (N) * /

M C N S E Q . . PRCCECURE (A, N) RETURNS (F I X E D)
CECLARE < J » K« A (N) , 8 (N) , N , MAXINC I F I X E O

/ * SET LENGTH CF LONGEST I N I T I A L SEQUENCE TO 1 * /

*AXINC = I
CO J = 1 TO N
B (J) - 1 . .

DC K = I TO J - 1 » .

/ * I F A (K) I S L E S S THAN A (J) AND THE LENGTH OF THE LCNGEST • /
/ * MCNC TONE I N C R E A S I N G SFCUENCE ENDING WITH A (K) EQUALS * /
/ * CR I S GREATER THAN THE LCNGEST SEQUENCE CURRENTLY ENDING * /
/ * WITH A (J) , THEN LENGTHEN I H € SEQUENCE ENDING WITH A < J > * /

I F A (K) LT A (J) THfcN
I F e (J) LT 8 (K) + I THEN

B I J) » B (K) • 1 t .
E N C t .

I F MAXINC LT B (J) THEN KAXINC = B I J) » .
END , .

RETURN (VAX INC) » .
ENO MCNSEC

DC WHILE (1) t .
GFT L I S T (Nt (A d) DO I * 1 TO N))
PUT L I S T (• THE S E Q U E N C E S (A(I) DU I - 1 TO N) ,
• HAS A LCNGtiST MCNGTONIC I N C R E A S I N G SUBSEQUENCE UH L t N 0 T H ^ »

MCNSEQ (A f N))
END
END PAIN » .

5 8

Gaussian Elimination

W h y I 've included this problem;

Gaussian Elimination is a well known and important technique lor solving
s y s t e m s of simultaneous linear equations. - e v e r y student of -15488 should
k n o w it.

A Gaussian Elimination program in PLAGO requires that you know how to
sys temat ica l ly operate on the rows and columns of an a r r ay . These
techniques you should know.

T h e Problem:

Both the problem of solving sets of linear equations and the method of Gaussian
El iminat ion a r e discussed in the book by Forsythe, et al. (pp. 333-349).

R e a d and unders tand that material before proceeding.

W r i t e s t ruc tu red s ta tements corresponding to the flowchart on page 343 .

Compare y o u r s t ruc tured s ta tements with the body of the procedure, GAUSS, whose
t e x t follows.

GAUSS does not perform the partial pivoting operations described in the
f lowchar t on page 349. Change the program so that it docs perform this kind of
p ivot ing .

It has been suggested that elimination could be performed so that all
coefficients both below and ABOVE the main diagonal a r e eliminated. This would mean
t h a t the e n t i r e "back solution" process could be removed. Rewri te part of the
p r o g r a m to do this. Compare the number of arithmetic operations required by both
me thods . Tha t ' s right, compare them. Which method is more efficient? Can you think
of a n y o the r reason why one method is bet ter than the other?

M A I N . . PROCECURE O P T I O N S ! MAIN) , .
O E C L A R E i A (2 5 I _ 2 5) . C < 2 5) , X (2 5) . E P S , T E M P , MULP) F L O A T ,

I N , I , J » kV L , L I) F I X E D

/ • I N P U T E P S , N , A , AND C * /

GET L I S T < E P S . N , ((A U , J) OC J - 1 TO N
C t l l DO I = 1 TO N) I , . J

P U T L I S T (((A U , J | DO J - I TO N > , • / • ,
C I I I ' D O I « 1 TO N I I , .

51

E L IM . .
DO 1 = I T& N - i ,.

CC J = I + 1 TC N ,.
IF A3SI MM)) LE EPS THEN

CC, .
DC L = I + 1 8Y 1 WHILE (A8S(A(I - I I) Lt EPS I L Lt N >
IF A8SI A(L,I)) GF EPS THEN

DC i .
CC LI = t TC N ,.
TEMP = AlI,LI) ,.
Alt,LI) = AIL,LI)
MLiLl) = TtWP ,.
END , .

TE*p=C(I)f> Cfl) ~ C(L) »• C(L) = TEMP FNC ». ENC , . IF ARSI Midi) Lf EPS THEN DC,.
PUT SKIP LIST I •SINGULAR SYSTEM////*)
STOP ,.
END , .

ENO MULP - A(J,I) / All,I) ,. DC K = I t 1 TG N i.
AIJ.K) = A(J,«) - MULP * A<I,K) , .
END

c«j) = cu) - c m * mulp ,.
6NC ,. ENC EL IM

IF A6S(4(N,N>1 LE EPS THEN
CC ,.
PUT SKIP LIST t 'SINGULAR SYSTEM////') , .
STOP
END , .

/* PERFCSM THE BACKSOLVING PROCESS */
BACKSOLV.. DC I - N BY -1 TO I X(I) = CU) CO J - N BY -I TO I • I X(I) = X(I) - X(J) * All,J)

ENC BACKhCLV
PUT DATA ({ X(I) DO I * t TO N))
END

Matr ix Multiplication

W h y I 've included this problem:

M a t r i x multiplication is a useful thing to know.

Recent work in the a rea of computational complexity has revealed some n e w
and m o r e efficient algorithms for performing ma t r ix multiplication. I
think they a r e interesting. 1 also think they form the basis of some good
p rog ramming exercises.

T h e Problem;

T h e product of m a t r i x A, having M rows and N columns, and mat r ix B, having N
r o w s and P columns, is a matr ix , C, having M rows and P columns, where

T h e p rocedure called, DEFN, which follows, performs exactly this computation.

Unfor tuna te ly , as M, N, and P grow large, the number of computations g r o w s
" v e r y " l a rge . In par t icular , if M=N=P, the number of multiplications alone equals N
cubed! Hence, enormous amounts of time can be spent multiplying even relat ively small
m a t r i c e s .

T h a t ' s all!

Question: Are there bet ter ways of multiplying matrices.

As it t u r n s out, it wasn ' t until 1968 that any significant improvement w a s made
o v e r just the definition. At that time, S. Winograd presented a method which can

5 3

mu l t i p ly m a t r i c e s wi th about half the number of multiplications used by the
definit ion. He achieved this saving by noting that real multiplication is
c o m m u t a t i v e and that some of the multiplications could be t raded for additions. The
m e t h o d is based on the following identity:

w h e r e X m e a n s the greates t integer Y X.

If N is e v e n 1hen the left side is just the i,k-th element of C. Otherwise the
p roduc t

m u s t be added to thr expression.

Admit tedly, the expressions look much more complicated than the original
definit ion. The sav ings accrue by observing that the last two sums a r e dependent
upon I and K respect ively and need be computed just once at the beginning of the
p r o g r a m . Thereaf te r , the number of multiplications is half that required by the
defini t ion.

Compute an "operation count" of exactly the number of additions and
mul t ip l ica t ions that would be required by both methods. These computations should be
funct ions of M, N, and P.

T h e p rocedure called WINOGHAD multiplies two matr ices using Winograd's method.
S t u d y it.

5 4

For w h a t va lues of M, N, and P would you expect W1N0GRAD to execute more rap id ly
t h a n DEFN? Note that M, N, and P will be larger than you might expect. Why?

Can you imagine situations where the accuracy of the resul ts from WINOGRAD would
be p o o r e r than those from DEFN?

m m m

In 1969, in a paper by Strassen, ("Gaussian Elimination is Not Optimal ",
N u m e r i s c h c Mathemat ik 13, pp 354-356) a method was presented which could multiply two
2 x 2 m a t r i c e s using just 7 multiplications instead of the usual 8, and which didn't
r e q u i r e that multiplication be commutative. His identities look just awful. And
h e r e t h e y a r e :

t h e n

w h e r e

11
C \
12 \

C C :

21 2 2 /

11

12

21

22

0

a
Q

a
a
a
a

7

/A
n
A

\ 2 1

A\ IB B\
12 , 1 1 12
A I B B
2 2 / \ 2 1 2 2 /

Q
1

Q
5

a
3

a - a
4 1

a + a
2 3

- Q - Q + Q +
2 4 5

+ Q
7

6

(A - A) B
11 12 22

(A - A) B
21 22 11

A (B + B)
22 11 21

A (B + B)
11 12 22

(A + A) (B - B)
11 22 22 11

(A + A) (B • B)
11 21 11 12

(A + A) (B + B)
12 22 21 22

1

2

3

4

5

6

S t r a s s e n provides no motivation or intuition as to how he ever found these. However ,
e v e r y w h e r e I 've e v e r seen these things presented, the commentator has suggested a
d i f fe ren t mnemonic device to help reconstruct them. Find one for yourself! These
iden t i t i es can be used to multiply matrices of any size if they a r e used recurs ively
on m a t r i c e s whose elements a r e themselves matrices. T r y writ ing such a program.
You'll l e a r n much.

/* MATRIX MULTIPLICATION BY THE STANCATL DEFINITI UN */
HE FN*. PRGCECURF (A, B, C, M, N, P)

CECLARE (I, J, K t Mi N , P) FIXED DECLARE (A(*,*), b(*,*)f C<*,*>) FLOAT DECLARE (T) FLCAT ,.
NEST.. OC I = 1 TO M ,.

CC K = I TOP*.
T = 0
CC J = 1 TO N ,.
T = T • All.J) * B(J,K)
ENC ,.
C(I,K) = T , .

ENC NEST
ENO CEFN ,.

/* MATRIX MtLT IPLICATICN USING WINCGRAD'S METHOD */
WINCGRAC.. FKCCKDURE (A. 8 , C. M, N» P) ,.

CECLARE I M, N, P. I, J, K t N2) FIXED,
BB FIXbC ,

(A(* t *), B (* » *) » CI*,*), A I (M) , BK(P)) FLOAT
/• COMPUTE THE SUMS OF THE THINGS WE WANT TO THROW AWAY */

N2 = 2 * FLCOR (N / 2) ,.
CC I =1 TQM,.

T = 0 , .
CO J = 1 BY 2 TC N2 ,.
T = T + At I,J) * All, J • I)
£NC

ENC , .
CC K = 1 TO P «•
r = o

CO J = l BY 2 TO N2
T = T + BIJ.KI * PU • l,K)
ENC ?K(K) * T ENC , . PR = { N2.NE N) WCHK.. CC I = 1 TO M ,.
K = 1 TO P CC K = 1 TO P , •

r r- n n T L C » T - A I IF 8B THEN T = A(I,N) * BIN.K)
,Sfc T = 0 CC J = I PY 2 TC N2 ELSE
J = 1 PY 2 TC N2 ». JPi = J + I t • , ' T = T • (All,J) • BUPl.K))* (All,JPI) + B(J.K) i .

ENC T - A I (I) - BKIK)

cNC WINCGRAC

CI I.K)
em: *CRK,

5 6

The Eight Queens Problem

W h y I 've included this problem:

This problem has been analyzed in a step-wise w a y which is instruct ive.

I t s solution can be expressed recursively.

T h e Prob lem:

Dijkstra has devoted a chapter to the problem of the eight queens. Head and
u n d e r s t a n d that chapte r before you proceed with the text below.

Dijkstra chose to find all the w a y s of positioning eight queens on a chess board
so t ha t no queen w a s at tacked by any other. The program below, again by Dijkstra,
c a n be used to find just one solution to the problem. How can it be modified so that
all possible solutions a r e found? Study the program carefully. Its data s t ruc tures
a r e the s a m e a s the p rogram in EWD316.

Exe rc i se

S u p p o s e the problem is generalized to consider a ra ther stylized chess board
cons is t ing of N x N squares on which we wish to place N queens so that none is unde r
a t t a c k . Modify the p rogram to solve this problem. Are there any s ta tements you can
m a k e abou t the exis tence or non-existence of solutions for a rb i t r a ry N?

TRYC-. PROCEDURE (J >
DECLARE, l_U_J_XJFIXE_D_
DC I 3 1 TO 8 WHILE (NCTSAFE)

SAFE - A|'I) "£~8~< I + J)—£ C(I - J >
IF SAFE THEN

GUTS..
0 0 _

IF J LT 8 THEN
DO

SAFE- 0
CALL TRYCF J + 1) -r^V^--

IF M3TSAFE THEN A(I) . BU + J) , C(I_R_J> = I t_<
" END "GUTT,.
ENO , .

END TRYC , .

5 7

The Towers of Hanoi

W h y I 've included this problem:

Th i s problem can be solved by a short, natural , recursive algorithm which
you should unders tand.

The problem has a nice generalization which 1 like.

T h e Prob lem:

Dijkstra devotes a section of EWD316 to this problem. His discussion, however ,
is s o m e w h a t m o r e tedious than the one which follows. Read the text below, through
the r e c u r s i v e solution to the problem. Then, read the section from EWD316. Finally,
e x a m i n e the p rog ram which solves the generalization to the problem.

Suppose that th ree spikes a r e driven into a fiat board and that N
doughnu t - shaped discs have been ar ranged on one of the spikes with the smallest disc
on top to the la rges t disc on the bottom. The diagram illustrates the situation.

T h e object of the game is to t ransfer all the discs from the starting spike to one of
the o t h e r sp ikes so that they a r e left in the same order • smallest on tap to largest
on the bottom. The discs, however, may only be moved one at a time from one spike to
a n o t h e r so long as a disc never res ts on another disc of smaller diameter. That ' s
t he game!

T h e problem is to w r i t e a program that will produce a sequence of moves which
wil l tell a p layer haw to move each disc.

Clearly, if we have just one disc, the sequence of moves is trivial. Just move
the one disc to one of the other spikes (designated as the finish spike).

If we have two discs, the situation is almost the same, except that the top disc
mus t be moved to the intermediate spike; the bottom disc to the finish spike ; and
finally the disc on the intermediate spike to the finish spike.

This suggests that to move N discs, wc should:

(1) Move N - 1 discs from the start spike to the intermediate spike.

(2) Nove disc N from the start spike to the finish spike.

(3) Move N - 1 discs from the' intermediate spike to the finish spike.

The following program does exactly this.

H C . P R O C E D U R E O P T I O N S (MAIN) » .

H X N C I . . P R O C E D U R E " N , - S , If F) 7»
C E C L A R E <N, S , I, F) FIXEO , .

7* HANCT C O M P U T E S " AND P R I N T S A S E Q U E N C E OF MOVES WHICH T R A N S F E R S */
/* A P I L E C F < N) D I S C S FROM A START S P I K E , S , TO A F INISH S P I K E , */
/* F , U S I N G S P I K E , I, A S INTERMEDIATE S T O R A G E . " " */

1 7 N ~ = I T F E N "
P U T S K I P L I S T (' M O V E J I I S C 1, • FROM «, S , • T C •, F) ,.
ELSE

CO , .
C A L L HANOI < N - 1, S, F , I)

PUT S K I P L I S T t *HCV£ D I S C N, ' FROM S A i T A S J) ,.
C A L L HANOI (N - ~ T , T V S , F) " " ~ "

END , . _
ENC HANCI ,.

C E C L A R E (N) F IXED
C C W H J L E (1 = 1_1 _

" G E T " L I S T (¥ 1
CALL HANCK N, 1 , 2 , 3) , .
END , . "

ENC HC

Could the 'PUT LIST statement which specifically says to move disc one be
e l imina ted?

Wha t is the minimum number of moves necessary to move N discs? Find a formula which
is a function of N and prove that it is correct.

Find a non-recurs ive algorithm which solves this problem. Which do you feel is the
supe r io r? W h y ?

M A I N . . PROCEDURE O P T I O N S (MAIN)
CECLARE (I , N f N S P I K E S , S , F , I S N I 5 C I) F I X E C

G E N H A N . . PROCEDURE I N , N S P I K E S , S , F)
DECLARE ' (I , N , N S , N S P I K E S , S , F , FT) F I X E D , .
I F N LE N S P I K E S - 1 THEN
DO
DC I = I T O N - 1 , .
PUT L I S T (' W O V E . D I S C » , I , • FROM • , S , • TO I S N (I J)
ENC , . '

PUT L I S T (* MOVE D I S C N» '• FROM S . • TO F)

DC I = N - I BY - 1 TO 1 , .
PUT L I S T (* MOVE 0 I S C % I , • FROM • ISNC I 1 , • TC • , F >
ENC
ENC
E L S E ~ - -

VlCRK** DC f m
FT — TSN (1) t *

p _ t S K i r _ i l T ^ 1 : M ^ F k c f _ c s : T f : f r , j m . s . T r . F ,

PUT S K I P L I S T (' M O V E L I S C • , N , FROM S , TC F) ,
I S N (l) — S , .
CALL GENHAN (N - l , N S P I K E S , F T , F) , .
I S N i l l - FT , .
ENC feCRK •
ENC GENHAN , .

C S E ? H u s r C (l N ! S p i k e s , s , f i
W H I L E 1 1 » , - . f -

j — l , .
DC I = 1 TC N S P I K E S

I f I N6 S £ i NE F T H E N " "
CC
I S N (J) ' x I
J = J + I , .
ENC , .

ENC , .
PUT S K I P L I S T I ' N V • , "fc, N S P I K E S - *7 N S P I K E S , «S= * . S ,
• F = • , F) , .
CALL G E M - A M N , N S P I K E S , S , F) , •
ENC

END MAIN , .

Suppose the problem is modified so that we allow a paramete r which specifies the
n u m b e r of sp ikes the g a m e will have. Thus the original game is a special case of of
th is m o r e gene ra l one • in that game, the number of spikes w a s equal to 3 .

W h a t is the minimum number of moves necessary to move the N discs ii you a r e
a l lowed to use NSPIKES spikes?

A p r o g r a m follows which performs this computation. Can it be shortened? How?

W h a t would a non-recursive algorithm look like?

6B

The Coin Problem

W h y I 've included this problem:

This problem has a v e r y natura l and intuitive recursive solution which can
suggest a non-recursive solution which isn't quite so intuitive. I think
you should see it.

The problem also generalizes nicely.

T h e Prob lem:

De te rmine the number of distinct w a y s an a rb i t ra ry number of cents, A, can be
"changed" in t e r m s of half dollars, quar ters , dimes, nickels and pennies. For
e x a m p l e , 16 cents can be changed in exactly six ways, as:

(1) 16 pennies
(2) 11 pennies and 2 nickels
(3) 6 pennies and 2 nickels
(4) 1 penny and 3 nickels
(5) 6 pennies and 1 dime
(6) 1 penny and 1 nickel and 1 dime

H o w can the problem be analyzed? Consider first the notation:

C

which is in te rp re ted as:

" the n u m b e r of w a y s of changing A cents with coins having maximum denomination C
c e n t s "

T h u s the original problem is to find the value represented by the symbol

s ince w e wi sh to change A cents with coins having maximum denomination 5 0 cents.

N o w obse rve .that

W h a t does this mean? Jus t this: the number of ways of changing A cents equals the
n u m b e r of w a y s of changing A cents without any half dollars plus the number of w a y s

• i changing A cents using one half dollar plus the number of w a y s using two half
do l l a r s and so on.

N o w note that each sub-problem on the right is similar to the problem wi th which
w e s t a r t e d except that there a r e fewer coin denominations to consider! Now notice
t he se equa t ions :

W h a t is the va lue of each t e rm on the right of the last equation? Jus t 1. Surprise!
In a n y case , the following prugram uses a recursive procedure to solve this problem
based on the preceding analysis . Understand it.

C H A N G E . • PROCEDURE O P T I O N S { MAIN)
CECLARE C C I N S (5) F I X E C , .

DECLARE A F I X E D
K A Y S . . F R C C E D L 8 E < N , A) RETURNS I F I X E D J i -

C E C L A P E i fit A» TOTAL» I) F I X E D
I F N = 1 THEN RETURN (1 > • •
E L S E

CC
TOTAL = WAYS (N — I t A) • «
CC I = 1 BY 1 TO FLCCR (A / C O I N S (N))

TCTAL = TOTAL + WAYS (N - • 1* A - I * C O I N S ! N)) t •
END . .

RETLRN (" T O T A L)
END

ENC WAYS

C C I N S (l) = 1 C G I N S (? > = 5 , . C O l N S C i) = 1 0 » . C O I N S ! *) = 2b
C C I N S (5) = 5 0 t -

CC WHILE 11 = 1) t.
GET " L I S T (A)
P L T L I S T f ' THE AMOUNT • , A ,

• CAN BE R E P R E S E N T E D IN % WAYS I 5 , A) f ' WAYS')
ENC

ENC CHANGE *

6 2

Which p r o g r a m would execute more efficiently for large values of A? Which
p r o g r a m .would be easier to explain to someone who had never considered the problem?

Suppose that we wish to add a third parameter to WAYS, i.e.

WAYS{ND, N, A)

w h e r e ND e lements of COINS will contain distinct coin denominations in ascending
o r d e r , such that COINS(l) a l w a y s equals 1. Thus the original problem would just be

WAYS (S, 5, A)

for s o m e a m o u n t A. This generalization allows one dollar bills, five dollar bills,
t en dollar bills, etc. to be considered in the compulation of the number of w a y s of
chang ing an amoun t A. Which of the above programs can easily be modified to handle
th is gene ra l i za t ion? Wri te a non-recursive procedure which computes WAYS(ND, N, A).
(Hint: u s e the elements of an a r r a y to behave like the controlled variables of a nest
of DO-loops)

Suppose you wished to compute not only the number of distinct ways of changing
a n a m o u n t A, but also precisely what those ways are . What problems arise when you
a t t e m p t to change the programs?

» * •

A PARTITION of a positive integer, A, is a sequence of positive integers whose sum is
A. Use the ideas of the above programs to wri te both recursive and non-recursive
p r o g r a m s which compute the partitions of A so that no computed partition is a
p e r m u t a t i o n of some other partition.

6 3

T r y s imula t ing the behavior of the program for a few simple examples. Then
o b s e r v e tha t the fallowing program also solves the problem.

CHANGE.. PPCCEOURE CPTICNS (PAIN)
wayT;.~ ppccecure f a) returns ifixec > ,.

DECLARE f A f II, 1 2 , 1 3 , 1 4 , TOTAL) FIXED
T C T A L 3 C " , . . c n ,

NEST.. CC II = 0 BY 1 TC FLOOR (A / 5.0) ..
CL 1 2 = 0 BY 1 TC FLOOR K A- 11*50 Dc P - _ c . . K Y l j °

 FLC.C« 1 1 * 5 0

DL IA = 0 BY 1 TO FLCCR '((A - II * 5 0 - 12 * 2 b - 1 3 * TCTAL = TOTAL + 1 ,. ENC NEST RETURN (TOTAL) ,-
E N C W A Y S «: - _. DECLARE (A) FIXED CC WHILE (1 = 1) GET LIST (A) ».

PLT LIST (« A = •, A, * CAN BE CHANGFC IN *, WAYS I A), • WAYS') END \ \ " " ~ ENC CHANGE ,.

1 / 2 5) , .
- 1 2 * 2 5) / 1U 1

10) / 5) ,.

6 4

Counting Lattice Points

W h y I 've included this problem:

This problem has a ve ry natura l recursive solution. I think you should see
it.

T h e Prob lem:

W e can define a lattice point in N-dimensional cartesian space as a set of N
coo rd ina t e s which a re all integers. For example, in 2-space (just a plane) (-2, 8)
is a la t t ice point but (.5, 2) is not a lattice point. The problem can now be
s t a t e d .

H o w m a n y lattice paints a re contained in an N-dimensional hypersphere of r ad ius
R. cen te red at the origin.

T h a t is, if N describes the dimension of the space and R describes the radius of the
h y p e r s p h e r e , the algori thm should produce the number of lattice points within the
h y p e r s p h e r e .

Consider first the cases which can be visualized. If N is 8, then there is
e x a c t l y one latt ice point, the origin, regardless of R.

If N is 1, then our space is just a line centered at 8, and the number of
la t t ice points is just 2 « FL00R{ R) + 1. Another way of viewing the problem would
be to count all the a n s w e r s to the zero-dimensional problems which occur at the
or ig in and to the right and left of the origin for integer I such that R**2 - I . . 2 is
g r e a t e r t han o r equal to 8. That is, count the origin just once and then count the
pa in t s on e i ther side, recognizing that this value is just twice the number to the
r ight , s ay .

If N is 2, then our space is a plane, and the hypersphere is a circle of rad ius
R, c e n t e r e d a t the origin. Thus, the lattice points a re all (u,v) such that u
s q u a r e d plus v squared is less than or equal to R squared and where u and v a r e both
i n t e g e r s . Another view regards the problem in terms of a bunch of one-dimensional
p r o b l e m s , i.e. count the number of lattice points on the x-axis and add to this
t w i c e the n u m b e r of lattice points in the upper semi-circle.

T h e th ree dimensional case is thus just a bunch of two dimensional problems.

T h e p r o g r a m which follows performs the desired computations. Study it. Note
t h a t R . . 2 is passed as a pa ramete r r a the r than just R. Why.

Find a non-recurs ive solution to this problem. Be careful!

S imula te the recurs ive s t ruc ture of this program by maintaining your own stack.

6 5

LATTICE*. PRCCECURE OPTICNS t MAIN)
POINTS.. PROCEDURE (N, RS) RETURNS (FIXED) , .

/* POINTS COMPUTES THE NUMBER OF LATTICE POINTS IN AN N-CIMENSIQNAL*/
/* HYPERSPHERE OF RADIUS SCRTI RS ~> */

DECLARE (N) FIXED, (RS t FLOAT , .
DECLARE < S) FIXEC , .
I M - 0 THEN RETURN I I) , .

ELSE
CC .

- s = " P Q T N f s ~ r - N - i , RS') T .
DO I * I BY 1 WHILE (I * I LE RS) , .

S - S +• 2 * POINTS t N - l , RS - 1 * I) , .
END , .

ENC
_ RETURN t S) , .

END POINTS, "
DECLARE (N) FIXED , (RS) FLOAT , .

"DC WHILE 1 1 = 1) , . "~
GET LIST (N, RS) , .
PUT LIST ('CIMENSION * •, N, • RADIUS SQUARED * RS,

• NUMBER CF LATTICE POINTS * «, POINTS UN), (RS))) . .
• END","." • " "

ENC LATTICE , .

