NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Guide ta 15-188

R. N. Chanon

Department of Computer Science
Carnegie-Mellon University

August, 1972

Contents
2. Introduction
4. Textbooks
7. Grades and Grading
8. Policy Statement on Cheating
9. Computers and Computing
9. What is a "Solution" to a Problem?
11. Programming Problems: [low to keep these from ruining your
weekends and your health.
12. tlow to Attack a Programming Assignment
15, Array Walking
18, Some Words aboul Recursion
26. Preface to the Problems
28. Computing the Greatest Common Divisor

30. Solving Quudratic Equations

d
(V5]

. A Birthday Problem

37. A Nest of Squares

40. Evaluating Arithmetic Expressions
48. A Monotone Sequence

SO, Gaussian Elimination

52, Matrix Multiplication

56. The Eight Queens Problem

57. The Towers of Hanoi

60. The Coin Problem

64, Counting Latltice Points

Introduction: Why and How this Guide Came to Be

! wraote these pages because blank expressions bother me! By that [mean, I don't
like to see a classroom filled with people who are either unwilling or unable to
answer a question and who manifest their state of mind by a sort of nebulous stare -
the blank expression. This unhappy situation is probably just as disconcerting to
students as it is to me. The reason for it, [think, relates to the nature of the
questions which 1 ask. They're meant to be non-trivial. [feel that class time is
valuable and shouldn't be wasted by simply presenting material which can be read from
a textbook. Instead, time should be spent discussing the implications and intent of
the assignment. This means answering questions and solving problems. Unfortunately,
existing course materials - textbooks and programming problems - don't seem to prompt
much inguiry as to either the implications or the intent of an assignment. Students
seem to think it's sufficient to simply read some assigned text and digest only its
content. Hopefully, this little guide will help change that attitude.

In the pages which follow, I've been critical of what seems 1o be about the best
material for an introductory course in computing. As [see il, the marketed
texibooks are abysmally bad. They tend not to proveke much inquiry into what
programming is about, and frequently address nothing more than the syntax of a
programming language. Hence, [have iried to expose same essential ideas from amid
all the verbiage.

Note, hawever, that this guide is NOT a textbook. It was written to)
specitfically accompany 15-188 at CMU. Its primary purpose is fo provoke guestions
about pregramming and problem solving; nothing mare, nothing less.

I alsa emphasize the importance of asking guestions.
ASK QUESTIONS!

Questions allow your instruciors to talk about issues which are important ta you.
They can alsa prevent him fram wasling your time while he discusses things you
already understand. This guide should prompt lots of questions.

Also included are some programming problems and their analyses. Each is
accompanied by a few sentences describing what motivated ‘me to include the problem
and what I expect you to learn from it. The texts of complete, running PLAGO
pragrams accompany them all. Understand them!

There are even a few pages of motherly advice about haw to allocate your time
while working on the problems, along with some words about how to prepare and submit
programs.

R. N. Chanon
August, 1972

Some YYords about 15-188

15-188 is offered every semesier to students of eogineering and science at CMU.
Because there are no prerequisites for 15-1883, and because both freshmen and graduaie
students take the course, the backgrounds of the students are diverse - ta say the
least. Therefore, since essentially the only information your instructor has about
you is your name, it i5 vital fhat you ask guestions about the material which you
don't understand - more about this later.

The purpose of this course is to teach you ta sulve problems using a digital
camputer. By the end of the tourse, you should be able to:

i. Recognize when a computer is an appropriate tool for solving a problem.

2. Define a problem precisely and formulate an explicit process for solving
it,

3. Write such a process as a program in the PLAGO pragramming language.
4. Determine whether a program actually does the task it was intended to do,
5. When a program does not perform as expected, alter it so that it does.

The course tries lo present a large prumber of problems and asks how a computer
might be used to help solve them. Hence, problem solving and the use of a computer
as a tool 1o help sulve problems is the real thrust of the course. The details af
creating syntactically correct PLAGD programs, punching or marking cards, and
submitting pregrams are of only ancillary interest,

The course meets three limes a week for one leclure and twae probiem
solving/question answer sessions - called recitation sessions. The lectures are
intended to present "general”, but vital information about both problem solving and
programmting. They are not to be ignored. Recitation sessions will be used by your
instructor to discuss PLAGO, problems, material from the leciures, and, in general,
anything of interest ta the course. These sessians, however, should be driven by
guestions. If you don't ask guestions, there are very fow things which an instructor
can 8o except give quizzes, read to you from ihe texibook, or present more problems.
If you don't ask questions, recitation sessions become a waste af your time. If you
don't intend to ask any guestions, you might just as well not go to class. Your
presence will just add anather warm hody o an already aver-heated classroom.

Besides class meetings, you are asked o write algorithms to solve several
problems and to represent these algorithms as PLAGO programs and te run them an CMU's
computer. They are important. Do them!

Finally, 15-188 requires that you take a final examination and a mid-lerm. See

the section which discusses grades and grading ta find out how these exams and the
rest of your performance will be evaluated.

Thot's olt T wich #n caw ghoot 15 1BAI

Textbooks: Which ta Buy and Yhat They're Good Fer
{Besides 1he abvious al caursel)

Buy These:

{1} A Short Intraduction te the Art of Programming
by E. Y¥. Dijkstra

{2) PL/l Programming in Technolagical Applications
by G. F. Graner

{3) PLAGD/368 User's Manual

{4} A Guide to 15-188
by R. M. Chanan

¥What they're good for:

The book by Dijkstra {referred to hercajier as EWD316) is the best intreduction
to programming with which [am acguainted. It addresses whal seem to be the
fundamenial issues of the discipline in a clear, eoncise and careflul way. The text
isn'l encumbered with the syntactic and semantic details of a particelar programming
lanquage. He emphasizes {le lask ol finding and developing algerithms as THE
fundamental issue in programming. [1hink 1he book is excellent!

Unfariunately, as a textbook, EWD316 can be used in the wrong way. Firsl oi
all, material is presented in such a caherent way that a student might gain a false
sense of securily about his understanding. It all loaks so easy - especially in the
first threc sections. Don't be mislead, however. The iext is somewhat like the
Bible in the sense that it is easy to read but difficuit to understand in terms of
the recal depih that is present. Even though the assignments from the book will be
short, siudy them carefully. Don't fall into the trap of feeling “cheated™ i yau
think you understand the text aiter just cne reading. The chances are, you really
don't!

Secandty, the book contains too few exercises. In the pages which loliow, thai
protlem will hopefully be remcdied.

The boak by Groner, “PL{I Programming in Technological Applicalions”, is meant
to be a source fer’informalion as to the syntax and semaniics of the pregramming
language which you will use to implement your aigerithms. 11 contains numerous
compleiely worked exampies, as well as carefully prepared summaries ol the features
of the language. The examples are related o many algorithms which are commonly used
in cngineering and scicnce. Many of the algurithms, however, are poorly developed.
The book also comtains an erormaous amound of verbiage which won't be relevani ta the
caurse. Therelore, you shoulil rely oo youor recitalion instructor 1o direct yaur
atieniion to those parts which are impertant.

Lectures

The leciures for 15-108 present information of general relevence to computing,
problem solving, and the administration of the course. In the first two categaries,
muast of the detail is omitted - rightly so - and left {0 the recitation sessions. In
particular, the larlores will 1ell you haw to go about selving the problems. You may
not believe it, but the way you approach a programming assignment can have a

tremnendous effect on the amount of time you spend on it. In the last category,

announcements of due date changes {or the pragramming problems are made. The
lectures are carefully planned 1o focus your attention on what we {eel are the
important issues. They are important. The lectures can also be inspirationsl -
indeed, there are those who believe that that's all a lecture can be.

Attend them.

Recitation Sessions

Recitation sessions should be driven by gquestions.

Enought Be advised.

The PLAGG manual descriles the dialect of PL/I in which you will write your
programs. The syntactic and semantic descriptions are clear, but the exampies of
cormplete programs which appear in 1he appendix are bad.

Do you understand what the phrase "synlax of PL/C” means? Are you going to ask
about i1?

Grades and Grading Policies

You will*have the fallowing opporiunities to EARN paints:

=Programming Problems

2 at 38 points 608
4 at 28 points 88
6 at 18 points 68

268

»Exams

Midterm (mean about 55-68) 188
Final {mean about 118-128) 208

388
=Recitation
Recitation performance 58
=Basic points for semester 958 points

You may earn bonus points for iurning the 28 and 38 point problems in early:
1 point for each two days
{upto a ceiling of twenty per-cent of the value of the problemf)

You will have the following opportunities to LOSE points:

wCheating: all credit for the thing on which you were cheating

«Turning problems in late:

1 paint for each two days

«Computing too much:

one point for each dollar more than the limit
used in each month

The final grade will be assigned on the basis of the following scale
475-558 A

368-474 B

258-359 C

2088-243 0

888-266 R '

Policy Statement on Chealing and Course Help

With regard to homework, quizzes, aml 2xams, cheating wil'! not be iolerated. Anyone
caught cheating on a prablem will reccive zera credit for the problem. Anyone caught
chealing an an exam will recieve zera credit {fuc the exam. It is recognized 1hat
student B can cheat from siudent A without A's knowledge. In such a case, A must
prove his innocence. Prateri your hard werk irom parasites!

¥hen you come 1o an exam, do NOT sit next to the people you have studied with.
Your argument that your answer is just like your friend’s because you study togeiher
will be much more convinring i yau don't sit together during an exam.

Some studenis will find themselves unable e comnplele & problem on fime ar at
all. Such silvations aliew ihe siudent- three chaices: lirst, copy sameone else'’s
prajact and hope he is nol caugli; second, give up and put the course; third, see
your instructor. The second implics an R or a withdrawal, if possihle. Ye intend
that the first case will also imply an R. Hence, the student’s logical choice should
be the third alternative (it canl be worse). Your insiructor's door is always open,
and the results of a wvisit may prove beneficial

Posiponements of due dafes are possible. [f you turn in your assignments lale
without discussing the situation with your instructer, your grade will be decreased
by an appropriate number of points {see ahove).

You may discuss all problems (NOT examsl) uniess olherwise sperified by your
instructor. Student discussion is feuitful and encouraged, but all programs must be
writien by the individual student. That is, you may ialk with anyone {including your
insirucior) about assigned prokiems, but the actual wriling of the program must be
dane by you.

Computers and Computing

The programming language taught in this course is PLAGO (FORTRAN conversion will
be available al the cnd of the scmesicr for thosc who want i), PLAGO runs on CMU's
IBM 360 model 67. Unfortunately, computer time is a scarce resource and it is not
possible to provide each student with an unlimited amount of computer time.

Therclore, cach student in 15106 will be cxpeciled o plan his umc so thal hc can
live within two kinds of restrictions:

1Y A limit on the numbcer of programs run cach day. This will bc cnforced by the
360: after vou have used up vowr limit, it won't mun any more of your programs.

2) A limit on the dollar value of vour computer usage each month. This will be
cnlorced by vour insitruclor: you losc onc poinl for cvery cxlra dollar cach
month. The cost of each program is printed at the end of each job. so YOU can
keep track of your usage. The cxacl limits will be anncunced at the [irst
lecture. The cost limit will be generous - most students should require only 73

per-cent of the allotment.

Note that these are upper limits and vou are NOT gunaranteed to be able to get this
much scrvice. You arc compecting willlh many otlher uscrs {or a rcsource thal is in
short supply. Tndeed, there will be times (especially the dayv before a problem is

duc) when the system can't give as mwuch scrvice as i1s rcquesicd.

If yvou are excited about computing and want to work on extra problems of
personal interest, see vour instructer. We will try to make arrangements for vou to
use one of the less congested computers on the campus.

Whal i1s a "Solution" to a Problcm?

A solution to a programming problem is a working, documented program. It must:

1) get the night answer, cven on special cascs and with bizarre scts ol

data wc might construct.
2) bc rcasonably cllicient {don't go ovcrboard on this point!)
3) include program documentation, i.e. vour working plans for the problem.

This docwmentation should contain:

1) Aboul a pagce ol undcrsiandablc English prosc cxplaining the
organization of vour program, what the important variables arc
uscd for, and the represcentation of the data (c.g. "X 1s a FIXED
arrav of length 10 which contains the x coordinates of the

mput").

18

2) A list of the procedures you will use, with a short
description af what each does and how they are related.

3. A flow chart or structured description (as done often in
lecture) for each such procedure.

The eredit for the prablem will be split between the program and the
documentation as follows

If the problem The program The documentation

is weorth... is worth.. is worth...
38 20 ' 18
28 15 5 |
18 a8 2 |

11

Programming Problems - Haw ta keep these {rom ruining
your weekends and your health

Each semester, 15-188 students are required o write 3 number of programs.
These assignments differ from ordinary homewerk problems in that they require
complecte, running, and carrect programs as solutions. You can't turn in slipshad,
partially complete programs and expect much partial credit. This semester, your
programs are to be written in PLAGD - a dialect of PL/I. The programmming problems
are important. Much of what you will learn fram 15-188 will be a direct consequence
of the experiences you have as you write and debug solutions for them. Sadly enaugh,
however, students camglain about the dilficslly of the problems and that they have 1o
spend many hours finding and debugging solutions. My answer to this complaint is
fuite simple:

Your approach is probably wreang,

(That's not very comforting, but it's stll my reply) With very few exceptions, tha
analysis required to solve the problems is simple, if you are willing to analyze the
problem systematically and completely. There is no need to spend vast amounts of
time. [f, however, you do spend lots of time solving the problems, see your
recitation instructor and explain your difficulty. He might have some suggesiions.

Nespite rumors to the contracy, these pragramming assignments are intended ta
force you te do the following:

{1) Find or understand an algorithm which salves the problem.
(?) Represent the algurithm. as a PLAGD pragram.

(3} Debug the program.

{4) Convince yourself that the program solves the problem.

Items (1) and {4) are the most impartan issues in the above process, in the
course, and in essentially all of programming - and for which I can’t give you
algorithms. Itcms (2) and (3) can be handicd in a fairly mechanical way and will
present only minor difficulties after you've written and run a few programs.

So, it would seem that the obvious thing to do is to spend enough time to find a
comyplete and correct algarithm so that the remaining ilems require only minor
attention. An hour or two of thought about the problem BEFORE writing any PLAGO

statements will probably save you several hours of the total time spent finding a
salution. Do this and your tenure as a student af 15-188 will only be a minor hassle

- who knows, you might even like it}

12

How ta Attack a Programming Assignment

Irﬁ'iiginn that you have been assigned a problem - nat a keypunching exercise, but
a rcal programming problem. How can the problem be salved? Whale books have been
wrillen 1o help answer this question. One of the best is the small volume by Gearge
Polya entitled "How to Solve It". I rccommend it as a general aid to anatyzing the
programming problems. More spetilically, I can offer several suggestions and refer
you to the programs in a later part of 1his guide. guide.

Things o do:
{1) Make sure that you undersiand what the problem asks.

Usually, the problems are posed fairly well. Hence, understanding what a
problem asks isn't difficult. However, be certain that you reaily
understand the problem staternent belfore procecding to the next step.

(2) Find and understand an algorithm which salves the problem.

This is the most importani part of the whole process! It involves, among
other things, finding an appropriate data structure and control structure
for the problem.

(3) Cast your algorithm in a step-by-step way using the ideas of structured
programming.

This tends to clarify your ideas and will frequently point out difficulties
with your original algorithm. Never feel too proud to write a flawchart or
a sequence of structured statements. The stepwise refinement technigue due
te Dijkstra and Wirth is particularly appropriate 1o this step.

(4) Write a PLAGO program which is equivalent to your flawchart or structured
statements.

This step can be performed in a fairly mechanical way - it's easy. It is
sometimes helpful to write several drafts of the program. Embellish your
code with lats of informative comments. These comments are exceedingly
usefull Comments help you 1o understand the mess you've created if you
tontract mono-nucleosis and must put the program aside for awhile. Your
final draft should be complete (including system ventral cards). This

really means that if you are lucky enough to have a gi! friend wha is
willing to punch your cards for you, she should never have ta ask vou what
characters to punch,

(5) Go to the third floor of Science Hali and punch or mark your cards.
This is annther easy step. Examine your cards carefully before you submit

them to make sure that they exactly represent your final draft. This guick
check can sometimes save you several submittals.

13

{6} Run your program.

“I# it doesn’t run correcily, correct it and run il again. Dar’i, however,

just change the program “randomly”. Think about what went wrong and how
changes will alfect the program. Repeat this process uniil you are

convinced that your progrom behaves as it should {see the comments belows).
Make sure that you have censidered ali the special cases and nat jusi the
anes which our daia gives youl

Une final impartant point: TRY TO START WORKING ON A PROBLEM AS SOON AFTER IT IS

11 There are almaost always twa problems pending at the same time.

Things not to da:

{1) Don't try writing a PLAGE program from scraich. [t's almost certain to be
wrang. Do so at your awn risk. It has been my experience that regardless
of the size or complexity of the probiem, a sel of siructured statemenis or
flawcharts is helpful. Shouid you decide 1o ignore this warning, expect
the following things 1o happen:

{a} Your program will contain more syntactic and logical errors than the
correspanding resuit had you foliowed the steps above.

{b} You can expect to make many changes in the program before it finally
runs correctly - if it ever runs correctly.

{c} You can expect te spend lois of time at the computation center
submitling programs and wailing for outpui. The computation center is
very dull, and, frankly, isn't a very pleasant place to be.

{d) Your program will be difficult 1o urdersiand, not only by someone
eise, but alsa by you.

(e} Your program will tead (o be longer than the corresponding program
produced by the steps above. It will also tend to cosi mere to run.

{f} Your understanding of programming zad prablem solving will tend 1o be
weaker ihan had you followed the above sieps - hence your grades will
fend 1o be lawer thar they could have bern

That's all [have 1a say about this matler. Be warned.

{2) Don't spend lots of time correcting and re-correcting a program that
docsa't work. The point of diminishing rcturns can approach guite rapidly
and you can easily waste time in an uniruitful pursuit. Time is best spent
making sure that your algorithms are correct!

14

(3) Don"t wait until the day belore a problem is due 1o star! salving it. You
....arg almnst certain nat lo have a solulion in lime, Pragramming assignments
are not like ardinary homework exercises. Not only must you solve the
probjem, but you musi alsa compete lor a valuable resource - computing time

- to demonstrale that your program is right. Instead, start step (1) on
the day the problemt is announced, and finish it as soon after that as
possible.

{(4) Don't try ta run programs the day before a problem is due. The vser area
is mobbed by people who have neglected the problem. 1t is almost
impossible (o get anything dane under these circumstances.

That's all the motherly advice I wish to give about programming problems. Write
below the phrases from the above passages which you dun't understand, and ask about
them.

15

Array YWalking

In additian to the simple variable, data may alsa be stored inta sbjects known
as ARRAYs. An array is nothing more than a name - jusi like one {or a simgle
variable - which identilies a whole colleclion of simple variables. MNames become
associaled with array data siructures by declaring them as such. Thus in PLAGD

DECLARE A[{@:188) FIXED;

declares A to be an array of elements A(@), Afl), .. , A{18B) . Arcays are _
particularly useful because the symbaois which name array elemenis can ireguently name
more ihan just ane element. Thus

Adl)

names an element af A, designated by the value of I Thus il the 181 elements af A
contain nusneric values, the {ollowing iragmeni computes, respectively, the minimum
and maximum values coatained within A.

J* compuie the maximum vaiue in A and store it into MAXA.
compute the minimum vaiue in A and store it into MINA »f

/» set MINA and MAXA ta the value of an element of A «/
MINA, MAXA = A(B) ;

DO 1 -1 ta i66; |
IF A{l) < MINA THEN MINA = A{D) ;

ELSE IF A{l) > MAXA THEN MAXA = A{I)
END ;

This {ragment can be made more ilexibie by nating thai the upper bound of the DO
statement can be replaced by s veriable, say N. This means that if 8 <z N <: 188

then only the first N elements oi A will be examined for the maximum and the minimum.
Obviousiy, the lower bound, B, can be made a variable as well (say M}

Now, suppose that we wish o rcarrange the conlents af A{B)... A{N) such that
these elemenis of A are in ascending order. There arz many ways of deing 1his. One
way which every beginning programmer learns is a method called the SHUTTLE SORT. It
can be developed by, noting that the smallest element of - A{8),.-,A{N} should accupy
A(9).- This value can be found by compuling the minimum of A{8},-A{N} and
interchanging the contents of A{B} with ihe elemeni of A where it was found. Naw, we
have a simpler, but similar siluation. we muost find the minimum of A{l),..A{N} and
again perform the appropriate interchange. The process can be cantinued uniil we
have processed A{M-1) and A{N}

The first attempt at such an algorithm might be

16

D01:-8TAaN -1

l:ﬂr‘l;l-l;tllﬂ the index af the smallast
element of A(D), A{l+1),., A(N} and
siore 1hal ndex inio I;

interehange A{L) with A{J)
END ;

The interchange operation is particularly straightiorward.

fe interchange A{T) with A{J) wf

TEMP = A{l)
ALY = A(TY
A(T) = TEMP;

Now, io compute the index of the smallest element af A{I} through A{M), we write

/» assign J the value 1, as a ientative index fe

J:=0

DG K:=1+1TDN;

IF A{KR) < A{J) THEN J = K ;
END ;

¥rite this sarting program in PLAGD and run it! ! !

There are many ways of sarling s seguence of values. Your recilatian instructor
will utidoubtedly mentian saveral others. Be certain that you uoderstand the above
program.

Exerrises:

{1) Compute 1the mean, median and standard deviation of A{B).A{N).
52} Compuie the sum of A{B). AN}

{3} Compute the greatest common divisar of A{Z),..A{N}

{4) Compute the leasi commen multiple of A{E)-.A{N).

{S) Rewrile the foltowing programs so that daja is processed from the contenis of
arrays rather than as input values

a} The Birthday Problem

b) The GCO Probiem

17

« X %

Arrays came in infinitely flavors, depending upon their dimensionality. Thus,
the array A ahove was a one-dimensional array. A two-dimensional array, B, might be

decluared as

DECLARE B(25,30) FLOAT ;

Such an array can be visualized as a two dimensional table of simple variables having
25 rows and 38 columns. Thus B(5,17) names the itemm in the fifth row and the
seventeenth column. You should gain a mastery of svstematically storing and
retrieving valuoes from such arrays. As an example of such a computation, suppose
that the variable N contains an integer value such that 1<=N<=235 and that the
elements in the first N rows of the first N columns contain values.

Compute the sum of the elements A(LI}, A(2,2),.., A(N,N) and store the result
into MDS. Also compute the sum of the elements A(LN), A(Z,N-1),..,A(N,1) and
store this value into SDS;

Clearly, we have
Set MDS and SDS to O,
For each row of B, say 1 (i=1,2...N) add
to MDS B(LI) and add to SDS the value
B(I,N+1-I);
Hence the fragment
MDS, SDS - 0 ;
DO1*1TON;
MDS = MDS +B(LI)
SDS =SDS + B(N+ 1 -1}

Exercises:

(1) Write programs which input (output) values to (from) variously dimensioned

arrays.
(2) Write programs, which test square arrays for
1) symmetry
b) diagonal dominance

¢) whether or not the array is a Latin Square or a magic square.

B8

Some Words Ahout Recursion

In EWD3I16, Dijksira devates a chapter to discussing several ways ot writing
programs which correspond fo recurrence relations. Skim the chapter before you read
the text below,

There are many recursive definitions which arise in mathematics. A definition of
N-tactorial can be expressed as:

a1
Nl z N « (N - 1}! where N is an integer greaier
than 8

The Fibonacci sequance {rom Chapter 1 of the book by Farsythe el al. can alsa be
defined cecursively

R
1
F -1
2

F :F + F for N > 2

Recursive definitians octor quite frequently in numerical analysis, Dne such
definition defines the Chebyschev polynomials of the iirst kind (bear with me please!)
They are:

T =1
@
T 0 = X
1

TH)=2aXaT H)-T (HN>I
N N-1 N-2

Now, the obvious question is
How tan recursive definitions be used to wrile programs.

The answer js lrequently guite simplie. Since PLAGO allows procedures to call
{hemselves, recursive procedures can be written by iollowing ilwse sleps:

{1) Explicitly test for the cases where a closed {orm result can be returned and
return the value as appropriate.

18

(2) For all the remaining cases, cail the procedure recursively with the
.. Bppropriate arguments.

Thus the procedure T which computes the value of the N-th Chebyschev polynomial at X
can be written as:

“T.. PROCEDURE X, N)
_ DECLARE X FLOAT, N F

! —y
e 1]
=z
L]

O THEN RETURN (1.0) 5.

L]

IF N 1 THEN RETURN { X) .

RETURN (2 * X * T { X, N~ 1) =T Xy N=21 1 »e
ENE T 4.

Study the above procedure carefully.
To help clarify same of these ideas, consider the following exercise.

On the following few pages, are Iots of copies of the above procedure. Cut them

out, and staple them together so that you have a bouklet of identical pages, each
page containing just one copy of the procedure. {That's right, cut out the next

few pages and staple them together!} Notice that at the top of each are iwao

boxes, one labelled N and anaother labelled X. These boxes will contain

appropriate values for N and X. Now simulate the execution of T where X eguals 4
and N equals 4.

Do this by first writing the above values in the boxes at the top of the
{first page of your booklet. Simulate the procedure. Clearly, in order to return
the reguired value for T, other evaluations of T must be made. Do this by
marking the junction call that will be made (just put an arrew under T(X,N-1))
and then turn to the next page where there is a new copy of T. Insert the
appropriate values far N and X in the boxes (N = 3, X = 4) and execute this
procedure. Continue this pracess until a procedure can be executed to
completion. In this case, simply write the value to be returned in the upper
right corner of the sheet; TEAR IT OUT (That's rightl}; and flip to the
immediately preceding page and write the value you wrote in the corner of the
sheet that was torn out of the book beneath the marker you left behind. That's
the value of the marked call! Continue evaluation by flipping to a clean copy oi
T or going back to a previous copy of T. The whole process terminates when the
first page has a value in the upper right carner.

Can you think of another way of simulating a recursive procedure? (Hint: Consider
stacking the values of X and N, similar to the way values were stacked in the

28

discussion of arithmetic expressions.)

Recursive pracedures have the property that they are usvally short and concisely
represent a computation. They also have the property of cxecuting rather slowly (
there are notable exceptions to that observation, however, cf. The Marriage Prablem).
Therefare, it is frequently, to your advantage to try to represent recursive
algorithms as non-recursive ones, AFTER the recursive algorithm seems ta behave
properly. Several of the Problems address exactly this issue.

Teo PRUCKDURE (Xy N) RECURSIVE RETURNS (FLUAT) te
'”“'CL»\:“'- X FLU—\f. N FIXEU ve
N

x 1

RETURW (2 # X T { Xe N =1 3} =T ({ Xy N=21)) o

O THEN RETURN (1.0) 4.

Tl

IF N I Thizoy RETURN [X) 4.

SENDOT .,

W iR ey s e e Shasee s e s eSS emmm e se—— — —— S —— e

Teo PRUCHDURE { Xy N) RECURSIVE RETURNS { FLOAT) .
DECLARE X FLUAT, N FIXED 4.

O THEN RETUKN (1.0) 4. N :
I THEN RETURN { X) 4a) O I

AETURM 2 % X %2 T X N =11V =T [X¢ge N=2 1} } o

(F W

| A

DTV e

—— m— — —— — ——

Tea PRUCEDURLE | Xo N) RECURSIVE RETURNS (FLOAY } .

tF o= 0 TREN RETURN (10) ve x |

[F N I THEN RETURN (£) v

VETURN (2 % X # T { Xy N =1) =T (Xy N=2 1)) y.

Fal) Fose

_22 -

T.s PROCEDLRE (X, N_) RECLRSIVE RETURNS (FLOAT } .
.. DECLARE X FLUAT, N FIXED 4. " o

e e .. N

I N = 0 THEN RETURN (1.0) 4.
X L1

RETURN (2 = X & r'(_i';_ﬂ"'_""‘l““')""_—-T-u-t-—x—'---ﬁ.:. 5y

|

— e . — e mram

LF N =1 THEW RETURN T X) .

"Tes PAOCEDURE (X» N } RECURSIVE RETURNS { FLOAT) .
DEGLARE X FLUAT, N FIXED 4.

CIF N_= O THEN RETURN_(1.0) 4. N -1

o IFN.=_LTHEN RETURN (X) 4. X [—1

k[' IUNN (2 ¥ X % T__(X, N - =|.) —__'_I_'__'__!__-!_1“_[‘!___—_“_2____)____)_g.

L:ND. T ve

—— — p— S R M S S Gy e N mm—

Tas PRUCEDURE_{ Xy N _) RECURSIVE _RETURNS (FLODAT) 4._

DECL-PE X FLCAT: N FIXED 4. N e
TIF i = 0 THEN RETURN (La0) »e x' :j :

TUF TN =71 THEN RETURN (X) ».

TRETURN (2 % X ® T (Xy H = L) =T (Xy N=20) »a

.'N'.} I ?am

http://PKtir.t-Q.URC_

Toe PROCEDURE (X¢ N) RECURSIVE RETURNS. { FLOAT) ,..
. WECLARE X FLLAT, N FIXED .
- e e o N
I+ N = 0 THEWd RCTURN { 1.0) va

] S O

TF N> T Thied RETURN T X7 v

RETURN [2 = X ®# T (Xs N —= 1) =17

END' T 4.

T o1, PROCEDURE { Xe N) RECURSIVE RETURNS { FLOAT) .
DECLARE X FLUAT, N FIXED 4. e e i

O THEN RETURN { 1.0) +» N . [——]
[F N = 1 THEN RETURN & X) »a. . X]

1f N

RETURM (2 * X % T (Xy N~ 1) - T L Xe N=-2)) ve

_END T 4.

T.eo. PROCFDURC { X, i) RGCUASIVE _RETURNS { FLUAT) ,.

GeCLARE X FLGAT! .N FIXED 35 N :
TIFR 20 THEN RETUAN (14070 4a « : | |

TF R T THEN RETURN (X) 4.

PETURN (2 # X ® T UG R =T 177 (Xa N= 211 4.

http://Ti.Xt.NjJ

_24 -

T.. PRUCEDURE (Xy N) RECURSIVE RETURNS (FLOAT) ,.
DECLARE X FLUAT, N FIXCU ,. REETY
N

x4

RETURN 2 & X * T (Xy N -1) =T { Xs N =277,

[N =0 THEN RETURN (1.0) .

IF' N =1 THEW RETURN € X) ,.

'““'f?l“vihtfdbké'f”i.'N'):RECURSIVE'RETURNS (- FLOAT } 4.
DECLARE X FLUAT, N FIXED . I

IF N = 0 THEN_RETURN (1.0) 4o N l:
IF. N = L THEN RETURN { X) so. . X [

RETURN (2 % X * T { Xo N =1) =~ T (Xe N~ 2V) sy ___

T.. PRUCEDURC (Xy N)} RECURSIVE RETURNS (FLOAT) ,..

o IF'N = 0 THEN RETURN (1.0} se

CTTTTTTAEN =TT THEN RETURN (X) e

RETURN (2 # K *# T { Xs N =T 1V < T O Xe N=2101 71 4

FD T 4o

-25 -

To. PRUCEDURE [Xo_N) RECURSIVE RCTURNS (FLUAT) ve
DFCLARE X FLUAT, N FIXED 4. ' C— —
e N
S Ib N = 0 THEN RETURN (1.0) 4.

S —— x —1

IF N = 1 THEWd RETURN (X) 4.

REFURN [2 * X * T (X, N -1) < T (Xs NZ275)

" Tee PRUCEDURE (Xy N) RECURSIVE RETURNS { FLOAT } ,.
DECLARE X FLUAT, N FIXED s — e —

_IF_N_= O_VHEN RETURN { 1.0) .. . N [-]

CIE N =_1_THEN RETURN { X_) oe X [——1
RETURN (2 % X & T (Xp N~ 1)= T 0 Xo N~ 20} yo
. END T RLE

Tee PRUCEDURE (Xy W) RECURSIVE_RETURNS (FLDAT) ,.

DECLARE X FLOATy N FIXED e N :j

TIF W= 0 THEN RETURN { 1.07) 4. %

TTTENTETL THEN RETURN (X) e

PETURN (2 ® X 2T 4 Xy N =1) =T U Xe N=72 11 »a

Fisl) T 4.

Preface to the Problems

The programs which accompany the fallowing problems were all run as PLAGO
programs. Each compiled and executed correctly. Hopefully, these programs will
serve as models as well as objects subject to criticism. Several of the problems
make reference to an introductory text by Forsythe, Organick, Keenan, and Stenberg.

The book:

"Computer Scienee: A First Course”

is on reserve in the library.

Because of the limited character set which can be printed by the line printer
from which vou will receive listings of your programs, the following PL/I characters
are printed as indicated

PL/I Printer

NE
GT
LT
NG
NL
<= LE
>= GE
NOT
I OR
i CAT

Always punch the characters appearing in the left-hand column, NEVER the ones in the
right-hand column.

« «

One minor difficulty which you might encounter has to de with the programming
notation used by Dijkstra in EWD316 and the notation required by PL/I. These
difficulties arise because, in many cases, both use the same notation to mean
slightly ditferent things. The most important of these are listed below.

(1) The assignment operator in PL/I is V and not V. However, statements having
multiple left parts in PL/I are written with the left parts separated by commas

LJ, K: 8 means I «J » K » B;

27

{2) The while clause which Dijkstra uses is of the form
while B do -

in PL/I.Hi-txs equivalent is
DO WHILE (B€)

(3) The repeat statement
repeat of until B€:

has uvnly several messy equivalents in PL/L. ODne such equivalent is a form of the DO
statement which uses a variabie called REPEAT

1 DO REPEAT - 8, 8 BY 8 WHILE (~BE)
Another, more straightforward egquivalent is

R=1
10 WHILE { R} @Be):

R =8
END;

Study both of these farms and find several of your ou situations where either of the
above will fail?

(4} Dijkstra uses begin and end to parenthesize statemenis. In PL/I, DO; and END;
parenthesize statements and BEGIN; and ENI; delimit blocks!

28

Computing the Greatest Comman Divisor
Yhy ['ve included this problem:

It pravides an example of some of the ditficulties and shows some of the
techniques ane encounters when transforming 8 structured description inte a
running program.

The algarithm first describied can sasily be made a part of a pregram which
compuies the GCD of a sequence of pairs of positive integers, thereby
providing a simple example of a complete program, including all the
input/output statements.

The Problem:

On page 37 of EWD315 is a program which computes the greatest common divisor of
two positive integers. Suppose we wish to extend this program so that it computes
the greatest comman divisar of arbitrarily many poirs of positive integers. Dne way
of doing this invelves punching the sequence of pairs into data cards. We can
terminate the sequence by {ollowing the last pair of inlegers by a pair of zeros.
Hence, an algorithm which solves the problem might be.

input values for A and B;

while A is not eqgual to B do
begin

print the values of A and B;

compute the GCD of A and B and
leave the result in GCD;

print the value af GCD;
input values for A and B

end ;

A PLAGD pragram which is equivalent to this description is

Ge. PRCCEDURE CPTICNS (MAIN) ,.

_/% PRINT VHE VALLES OF A SECUENCE OF PAIRS OF POSITIVE INTEGERS %/

/% AND THEIR GREATEST COWMNUON DIVISORS. THE INPUT WILL /7
/* BE TERFINATED BY A PAIR OF ZERODS */

CECLARE (A, By GCD) FIXED ,.

/% INPUT VALUES FOR A AND B $/

29

GET LIST (Ay B) 9o
DC WHILE (A NE O € B NE O) ,.

/% Pnfﬁt_rﬁe VALLES OF A AND B */

TUTBUT SKIP LIST (VA = 7, 8, v /7 8 = 'y B) s

7% CCMPUTE TFE GCD GF A AND B AND LEAVE TRE RESULT IN GCD */

EC WHILE ¢ A NE B) 4.

DC WHILE (A GT B) 4o
TR TS A - ,.

ENC .

BB - A e

/% PRINT THE VALLE CF THE GCD CF A AND B »/

PLT LIST (* 6CC = 'y GCE) +o
TTGEYT LIST (A, B ,e

ENC 4.)
ENE se

Exercise:

{1} Write and run a PLAGO program which prints the values of a sequence of pairs of
positive intcgers and their grealest common divisors and their smallest common
multiples. The input should be terminated by a pair of zeros. Use the program on
page 41 of EWD316. Your solution should include the set of stepwise refinements
which led to the program.

(2) PLAGO has a special built-in function called MOD which does the following

MOD{ sel, se2) has the value of the remainder
of the division sel/sc2

For example

MDD 28, 7) equals &;
MOI{ 2, 6) equals 2

If you are allowed io use only the MOD function and no other arithmetic operations,
how would the GCD program change? Rewrite it using only the MOD function (comparisons
of variahles are still allowed, but not of more complicated expressions!)

38

Solving Quadratic Equations
Why l've\ included this problem:

Little mathematical background is nceded ta understand the prablem. Hence,
the development can concentrate on programming issues.

The Problem

The equation
AsXs22+BuaX+C:-8

can be solved, when A is not equal to B by

—B+nr-VB-B-—4-A:E

2 A
We wish to write a program which will accep , as its input, values for A, B, and C,
and produce, as output, the values of the roat ar roots of the equation. Thus, a
first description of the solution might be

input values for A, B, and G;
output values of A, B, and G;

solve A w X sn 2+ B X +(C:8,
and output the values of the
roots along with the case
which was solved;

Several situations arise, hawever, in attempting to solve the equation. First, if A

is not equal to B, the formula applies. If not, and B is not equal to 8, then the
equation is linear in X and has a root which is -C/B. 1f B - 8 and C is not equal to

B then no eguation is represented. YWe might wish to print some kind of error message
to accompany this case. Finally, if A: B8 and B = 8 and C = 8, an identity is
represented. Again, a message might be appropriate as part of the output.

A refinement cf the third statement might he
/o solve A e X en 2 + B X+ L =8 »/

if A not equal ta 8 then
solve the gquadratic using the formula;
end
else if B not equal 10 8 then
begin

31

solve the linear equation;
glse if C not equal to B thep

print & message saying that no
equation is represented;

end

tlse

print a message saying that an identity
is represented (B-8),

end

The guadratic formula may be evaluated by ‘ubserving that if

= 8, there is ona real root
B=H-4s A#C{ >8, there are 2 real roots
< B, there are 2 complex roats

Hence the final program is

CUAC.. PRGCECURE OPTIONSI MAIN) 4.
‘DECLARE (Ay B, C, DISCy S£0) FLOAT ,.

/¥ YNPUT VALUES FOR™A, 8y ANE € %/ ~ " T T

7% CUYTPUY VALUES OF A, B, AND C #/ 7"

TPUTTSRIPTLIST UV R s Ay VB = ey 7 CE N, ¢ T, T

Je SELVE A % X7#% 2 + B # X F 'C'= 0 AND OUTPUT THE VALUES OF THE */
/* RCCYS WITH THE CASE WHICH WAS SCLVED o */

IF A NE_ O THEN

6, " e U R P VRS U S U

/% SCLVE THE QUACRATIC 'WITH THE FORMULA #*/ "

DISC = B * 8 = & ¥ A % C 40
IF DISC = O THEN

/* THERE IS CNE REAL ROCGY =/

PUT SKIP LIST {' THERE IS ONE REAL ROOT WHICH EQUALS *,-2/2/4),.

32

IF CISC GT O THEN
7% THERE ARE TwWO REAL RGCTS %/~ 77 T e T

B, e e e e
SCD = SCRT (DISC) ,.
PUT SKIP LIST (¥ THERE ARE TWO REAL ROOTS,', (-8 + SQD)/2/A,
" ANC 'y =(B + SQD) / 2 / A) ..
R TR 3000 L 2 B) e e o
ELSE

/* T+ERE ARE TWO COMPLEX ROCTS #/

CC .

SO SCRT T = BISCy) [~ " s e
PUT SKIP LIST (' THERE ARE TWO COMPLEX ROOTS,',

<B/2/8, t+%, SCD/2/A, *¥ T Y, VTAND W,

—B/2/8y * - 'y SQC/2/Ay ' % ') .

ENCy . o
END .
TTELSE IF 8 NE O YHENT T T T tmmmrmem ot o o

PUT SKIP LISY (' THERE IS CNE REAL ROOQOT ~ LINEAR CASE %y, =C / Bls.
- ELSE " - e SO Stedibbh :
IF C NE O _?_H'EN)
PUT SKIP LIST (*//// NO EQUATION IS REPRESENTED ////')
ELSE o e e
T SKTFLTST (v TRE TOERTTTV 0 = 6 15 REPRESENTED *) +.
END e

33

A Birthday Problem
Y¥hy I',vf included this prablem:
Its analysis is straightforward.

The camputatians in the final program must be arranged sa that overilows do
not occur at infermediate stages o} computation.

The Probiem:

Suppose that K persons are gathered in a room. What is the probability that at
least 1wp of the persons were born on the same day of the year? {Ignore ihe
possibility of anysne being born on February 29)

The protilem can be analyzed by noiing that the answer eguals

the prsbability 1thal no two
1 - {persons in the room were born
an the same day of the year

The guanlity in braces is now just the number of ways K persons can have different
birthdays divided by the total number of ways K persons can have hirihdays, ie.

365 » 369 = .. w (365 - K + 1)

365 ws K
Note: Those siudents worried about the relevance of this problem may wish to consider
the solution to the foilowing:

An electronic assembly conlaing K componemis, each ot which will {ail sometime
during the next N time perinds. The assembly will continue to operate if only
single components fail in a time periad, but will fail if more than ene
companent fails in a time period. What is the probability that the assembly
will {ail? Let N be 365 1o be delinitel

The sclution to this problem can be extended 1o allow it to compute a sequence of
prababilities, i.e. we wish to print the values of N positive K's {the nomber of
peapie in the room} and for each K, the probabilily thal at least two of them were
born on the same day of the yzar. The values of K are to be read fram data cards.
Preceding the first value for X is a positive integer, N, corresponding fo the number
uf times K is ta be assigned a new value, implying a new computation of the
prababidity. ’ :

The first stage in the development might be

input a value to N;

while N > B

begin
Input a value to K,

output the wvalue oi K:

compute the value of the probability that
al lcast two people, among K, wcre born
on the same da/ of the vear. Store this
value into PRORB;

output the value of PROE;

N=N-1,
end

The details of developing ail the parts of the design, except the computation of PHOB
are straightforward, They appear in the final program. However, the task of
compuling PROB recquircs more analysis.

Scveral cases arc apparent. First, il the valuc of K is Iess than 2, the
probability of two people being barn on the same day of the vear is, of course, zero.
Further, if there arc more than 363 people in the room. the probability that at least
tlwo were born on the same day of the year is 1. In the remaining cases, the lormula
can be calculated. Thus, we have

/* compute the probability for K and store it into PROB */

jl K < 2 then PROB = 8§
glse if K > 365 then PROB = |
else
/* compute the formula */

The formula can now be refined as follows. We select DEN to represent the value of
the denominator and NUM to represent the value of the numerator. Both can initially
be set to | to get

NUM « DEN = L.

I» I

while I <= K do
begin
NUM = NUM * (366 - I
DEN DEN » 365,

1 I L
end

PROB =1 - NUM / DEN:

The final program is now

35

BCAY.. PRCCECURE OPTIONS (MAIN) ,.

/% REAC A VALUE INT(Q N,
/% TC BE REAC INTC K.
/% AT LEAST TwC GF K PEOPLE
/* CF THE-YEAR.

DECLARE (Iy Ny K) FIXED ,.
DECLARE (NULM, CEN, PROB) FLDAT ,.

/% INPUT A VALUE FOR N */

GET LIST (N } 4.
DO WHILE (N GT 0) 4.

/% INPUT A VALUE FOR K #*/
GET LIST { K } 4.

/* OUTPUT VALUE OF K %/
PUT SKIP LIST T * K = 'y K) 4.

AND STORE
AND STCRE

/* CCMPUTE THE PROBABILITY FGR K
/% CCMPUTE THE PRORBAEILITY FUR K

IF K LT 2 THEN PROB = 0 4.

THE

INDICATING THE NUMBER (JF TIMES A VALUE
PRINT FACH K ALCNG WITH THE PRGBABRILITY THAT=/
IN A RCCM WERE BURN LN THE SAME (AY

RESULY

15 */

/
¥/

THE RESULT IN PrOUB =/

ELSE IF K GT 365 THEN PRCB = 1 ,.
ELSE
0C .
NUN! DEN x 1 [
I = 1 ¢.
DC WHILE [[LE K) 4a
NUM = NUM * | 366 -« [7) ,a
DEN = CEN % 365 4.
I = I '.' .'. [I]
END ».
PROB = 1 - NUM / DEN ,.
END v - ———
PUT SKIP LIST {7+ PROB = v, PRGCB) .
N =N=-1 p -
EKC 4«
END .
K o= 2
PROE = 2.1T3973E-03
K = 7
FRCB = 5.6235TE-C2
LT _ - o0
prRCE = 4.11438E-01
K = 30
CUNCITIUN 'OVERFLCW® SIGNALLEC IN STATEMENT 15
CONDITICN "ERRCRY STIGNALLEC IN STATEMENT IS
CUNGITICN *FINISH' SIGNALLED IN STATEMENT 15,

36

Unfortunately, this PLAGD program will fail for several values of K. The reason
for this_is that the finite capacity of a storage cell is exceeded during an
intermediate calculation (EWD3IG, p.26). This explains the peculiar message in the
output. it's not difficult 1o see that it ¥ is, say, 75, the value of the
denominator exceeds 18#x150, which excerds the default magnitude of a FLOAT variable.

A much better way of performing the calculations would be to initialize PROB ta
1 and within the loop compute:

PROB := PROB = { 366 - 1) / 365

This assures us that intermediate calculations will not lead to results which are
extremely large.

Exercise:

(1) Modify the program ussing the above suggestion. Could the suggestion lead to
other kinds of difficulties?

{2) Consider the following simple problem:

Suppose you wish to compute the distance between twa poinis in a plane. Let the
coordinates of the first point be represented in the variables X1 and Y1 and
those ot the secand in X2 and Y2. The formula

(K1 - X2) = 2 + (Y] - Y2) sa 2

computes the value we wani. Now suppose that you are guaranteed that the
distance between the two points will not raise the averflow condition. How can
you guarantee that no iniermediate calculation in the above formula - or a
modification of it - will raise the overflow condition?

Develap a PLAGD program which computes the distance between pairs of points. The
input should contain a value for N, as the first value of the input, followed by N
graups af four values, correspending to the coordinates of two points. The program
should output the values of these coordinate pairs along with the distance which
separates the two poinis.

{3) Modify the program from exercisc (2) so that the value of the shortesi{longest)
distance is printed at the end of the nutput.

37

A Nest of Sgquares
Why I'vé included this problem:

This problem shaws haw an algorithm can be transformed into a lower echelon
algorithm just by recognizing a simple praperly.

The Problem:
Suppoze that a family of squares, 5(8), 5(1), .. , S{I}, .. is defined so
that the area of square 5(I) equals :
{I +1) s A, where A is positive and real.
Suppose further that this family of squares is centered at the origin of a

two-dimensional courdinate system with sides parallel to the X and Y axes. For
example:
| Y

M

b4
<

L

Now imagine that the variables X and Y define the respective X and Y coordinates
of some point. What is the index of the smailest square which contains the paint
(X.Y)?

Por example, if Ais 1, X is 4, and Y is 3, then the index of the smallest
square conlaining (4,3) is 63 - 5(63) is the smallest square containing (4.3).
{convince yourseli that this is true before going on)

This problem can be analyzed in several ways. One way is to nolice that sh:u:e
each square is symmetric abaut the X and Y axes, the smallest square in our family

38

containing (X,Y) also contains the smallest square centered at the crigin with sides
parallel to the axes, and with (XY) on its boundary. Hence the area of each square
in the family (starting with the smallest) can be compared with the area of the
square with (X.Y) on its boundary - call this square 5. The first square whose area
is greater than or equal to the area of 5 is the square whose index answers our
guestion.

More concisely, we might write:
ASQ<«area of square with point (X,Y)
on its boundary;

I <8;
while area of 5{I) < ASQ compute I<j + 1;

INDEXe« PRCCELCLRF CPTICNS (MAIN) ,.

NECLARE {Xy Yy A, ASQ) FLCAT, (1) FIXED 4.
/% GKAB STME [APUT VALUES ANC PPINT THiW */
TUGET LEST (A, X, Y b 4

PUT LIST (' = %y Ay "X = %, Xy 'Y = 'y ¥) 44

7R CUAPUTE THE TAWFEX CF THE SNALLEST SQUARE CONTAINTNG (X,Y) 5/

5S0 = 4 ~ MAX{ ARS (X), ABS (Y}) s 2 ,,

Jx £MDOUT. THE INREIX CF THE SMALLEST SQUART CUNTAINING (Xy Y

tp o= 1 BY WHILF { ASC CT A * 1) 4,
R o T e o e
=0 =Y ve .
75 T CONTAINS THE VALUT WE ARE AFTZF ean SCy PRINT IT w/

PUIT LIST (*TANDEX OF SMALLESY SQUAPE CCATAINING (X,Y) IS ',

»i /

END TNIEX 4

http://nf.Ct.lRE

33

The more intrepid analyst, however, might notice that there zre infinitely many
values.of I for which this inequality holds:

{area of S) <= A = {l + 1)
Salving this far 1 yields

(area of S} f A -1 <= 1.
Clearly the left side can be computed. Therefore, it we can compute the value of the
smallest integer which is greater than or equal to the left side, our question is

again answered!

The following program does just this. Why? Think of some other ways ol solving
this problem.

[NDEX.s. PROCECURE OPTIONS (MAIN)} . e e

CECLARE (Xe Y, A, ASQ) FLUAT, (1) FIXEC 4.
/% GRAB SOME INPUT VALUES AND PRINT THEM */
GET LIST Ay Xe ¥)} »e .
= = Y) s _
PUT LIST ('A = ', A, "X = ', X, 'Y)
/% COFPUTE THE AREA OF THE SMALLEST SCUARE CONTAINING [X,Y) */
[= CE{L ((& % MAX(ABSIX), ABS({Y))} *% 2) /A -‘1 |
/% | CONTAINS THE VALUE WE ARE AFTER.e. S50y PRINT IT ,[S . -
LT LEST (VINDEX OF SMALLEST SCUARE CONTAINING (X,Y)) +e

ENU INGEX 4

48

Evaluating Arithmelic Expressions
A guiz similar to ihe follawing was given during a 15-188 lecture. Try it
Don't spend more than 18 minutes.
The variables in the joliowing expressicns have the values indicated

in the table:

hlBiE‘E|I|J]H

slaf7| 3[1'2! 12
Evaluate each of the foillowing expressions:
Expression L

A+B+C/I/1/f1sK-BsC
Expression 2:

AxnB+C-{E+K/S)m (3 -1)u({J-2={0+A))
Expressian 3:

{A+B+C/I1/1/IwK-BuC)uB+C-{E+K/5)mm{3-1)
a{J-28(C+A))-H+J-Ea(A-BuKw{C-E/1})-=(l
e K-CI)+(C-5+K/J/1-2)ual+B-J/{C-E-J}+Aw

K-Ba{({{({J+C)a{K-8)/T-1}eC-1}))aE+A}

The results of the guiz are easy to describe. Almost evecryone evaluated the
firsi expression correcily; abaut halt the siudenis evailvated the secend expression
correctly; and no ene evaluaied the third expression correctly! WHY. Ii you examine
the three expressions, you should nole that the paly essential difference beiween
them is iheir lengths. All the arithmelic operations are irivial. Probably 1he
reason siudents had so much irouble with the lasi expression was becapse they didn't
have a very careful bookkeeping sysiem which would 1ell them when to perform
arithmetic and on what to perform it. The methads described in your texibeok 1 find
rather clumsy {you may natl. Therefore, I have wriiten a {lowchart which evaluates

41
arithmetic expressions by scanning them from left to right without ever re-scanning
any pact of the expression.
The flowchart which follows - an informal but precise one - does this by
systematically postponing arithmetic operations until they can be performed. This is

accomplished with the aid of an OPERATOR STACK and an OPERAND STACK.

Before you proceed, take a look at the flowchart. Pay special attention te the

comments.
Let me demonstrate the flowchart by using it to evaluate the expression:
A*B + C-(E K/ 5)y**(3-1)Yy*(J-2*(C_ A))

where the variables have the values tabulated below

The algorithm begins by inserting the symbol - to the right of the rightmost symbol

in the arithmetic expression. This symbol - sometimes called a "right terminator” or
"right turnstile” - simply signals the end of the arithmetic expression. Before
proceeding, arm yousclf with a bunch of small slips of paper. Make sure that each

slip can fit inside the labelled squares on the page following the flowchart. Next,

place some kind of pointer (a pencil mark will do} beneath the leftmost symbol in the
expression. By symbol we mean a variable name or constant or arithmetic eperator or

parenthesis.

Now, determine whether the symbol is a variable name or a constant. In the
example, the symbol is a variahle name, A. So, "push” the value of the variable name
onto the OPERAND STACK. This amounts te simply jotting the value of A on a slip of
paper and placing this slip on top of the pile (poussibly empty) of slips inside the
square labelled OPERAND STACK. Next, advance the pointer one symbol to the right and
follow the flowchart until you find the test box which inquires as to the PRECEDENCE
of the newly scanmned operator. This box asks whether the precedence of the scanned
operator is greater than the precedence of the operator at the top of the OPERATOR
STACK. By convention, we say that an empty stack and a left-parenthesis have lower
precedence than all the operators. Hence we copy the symbol V onto a slip of paper
and '"push" it onto the OPERATOR STACK. Again, move the pointer one symbol to the
right; scan B; push its value onto the OPERAND STACK; move the pointer one svmbol fo
the right; and scan V. Here, note that ¥ has lower precedence than ¥V (which is
the top of the OPERATOR STACK). Because of this circumstance, "pop" the top of the
OPERATOR STACK to OP, ie. move the slip on top of the OPERATOR STACK to the square
called OP; "pop"” the top of the OPERAND STACK to ROP; and "pop’ the tep of the
OPERAND STACK to LOP. Next, perform the arithmetic operation "OP" on '"LOP" and "ROP"
and write the result on a new slip of paper. Push this value onto the OPERAND STACK
and throw away the slips in OP, ROP, and LOP.

42

Vhat we have just done has been to compute the product of A and B, with the
resull now on the OPERAND STACK. Now compare the precedence of the scanned symbol
with the precedence of the symbal at the top of the OPERATOR STACK. Again since the
OPERATOR STACK is empty, simply push the '+’ onto the OPERATOR STACK.

The Tabie which follows is a sequence of “snapshots™ describing the process by
which the expression is cvaluated. Note particularly how parepthesized
sub-expressions are handled! Observe that when the Hlowchart stops that the value of
the expression is the single value leit in the OPERAND 5TACK! Don't let yourself get
bogged duwn, The flowchart is stroightforward but somewhat tedious. It might be
helpiul for you ta look at the flawchart again before proceeding.

Snapshats of the Evsluation Process for
A#B+C-(E+K/S)ex{3-1)mw(J-22(C+A))}

where

ALBIGiEII ,J‘}{
31417 3|12 .
Nofe that the fop of the OPERAND STACK and the top

of the OPERATOR STACK is always the lefimost symbol
i the apprapriate column.

Scanned LOP QP ROP OPERAND OPERATOR
Symbal . STACK . STACK
A 3 iE
R 3 »
B 43 .
+ 3 = 4
+ | 12 +
C- 712 *
- 12 « 7
- ! 19
{ j 19 (-
E ‘ 313 {

43

18319 w -
18 3 13 f+{-

518313 f+0-

5 319 s
2319 (.

i 19 A

!5m

l's1g .

518 e
519 e
3519 O {aw-
éssm (e
%135m i{u
isw (o
t:2513 i{u-
2519 uw -

2| 19

|
25 19 » -
25 19 {w-
2 25 19 (= -
22518 |-(a-
222519 |-{»-

i222513 e (.
22218 il:i-{i-
722219 EE{--{;-
?2225151+{t-{m-

3?2225q+{.4..

30222519 {w-{w-

18222518 = -(=-

44

) 2 w 18 225185 | -(e-
Yoo 28022519} -{=-
] 2 - 2B X513 {=-
} B2 |(n-
)1 AB2518 |-
» 25 « -18/19 -

- 458 19

- 13 . .458

- 459

It should be clear that the ‘ﬂuw:hart docsa’t behave properly for expressions
containing unary '+ and "’ sign. Fix the flowchart to handle this case.

Madify the algorithm so that some spucial path and exit are {oilowed in the
event that the expression is discovered to be syntactically incorrect.

* 45

START

append 4 to the right of the expresslon

v

position pointer to the leftmost symbol

!

F symbo)
'

-—\
is not-ij}l

T

symhol a variable T
or a constant?

symbol is (? T

i
]

F symbol

pop top of
OPERATOR
STACK to QP

b

pop tap of
OPERAND STACK
to ROP

| hon top of

OPERAND STACK
ta LOP

4

evaluate LOP OP ROP,
push valuye of result
onto OPESAND STACK,
throw away contents of

F v
f
push value nnto

OPERANR STACK [
push symbhol onto | !

OPERATOR STACK 2

F{ symbol is) ?:>lT |

i
o

precedence of scanned pop top of |
> precedence of | T OPENATOR STACK | i
top of DPERATOR STACK? to OP ! |
i :
E * o
push scanned i(if or a ¢ ;_T : i
symhol onto s a |
DPERATOR STACKH] pop top of DPEPAND : |
STACK to ROP L
i !
P
pop top of OPERAMN ;
STACK to LOP E
l | §
! evaluate LOP OPFP ROP, .o '

push value of the result ; [

onto NPERAND STACK, throw | |

away contents of LNAP AP POP i (

& |
L_ pap tap of OPERATﬂﬁ] | :
STACK to np | _Jl i
advance pointer one _%;__#_ﬁ_ s

: symhal to ;he right“mJ

LGP OP ROP

A

16

F_(OPERATOR STACK not empty‘D—lT

pop top of OPERATOR
STACK to OP

¥

pop top of OPERAND
STACK to NCP

!

pop top of OPERAMD
STACK to LOP

v

evaluate LOQP OP 0P,

push value of result onto
the OPFRAMD STACK and
throw away the contents of
| LOP 0P ROP

l

47

EXPRESSION

LOP

OP nop

QPERATOR STACK

OPERAND STACK

b e e

48

A Monotone Sequence
Why I'vé included this prabiem:
Algorithms which solve this problem seem not 1o be immediately obvious, but
can be developed in a step-wise way. [think that's a good property for a
programming problem o have.

The problem has some interesting generalizations.

The problem:

Put simply, it you have a linear.array A, containing N ditferent real values,
find the length of the longest monclone increasing subsequence. The baok by Forsythe
ct al. discusses this problem on pages 191-139. Read and understand that material
betare going on.

Write siructured statements which correspond to the {lowchart on page 199.
Now study the PLAGO program on the next page.

Rewrite it so that it compuies the length of the longest monatone DECREASING
sequence. Follow the notation and suggestions of exercise 4 on page 138.

Modify the program again so that it not only produces the length of the longest
monotone increasing sequence, but also produces an instance of such a sequence.
Exercise 4 on page 198 suggesis a way of doing this. Create the subsequence by
putiing it into the first MAXINC elements of an array called MS.

Make sure you can prove the results in exercises 2 and 3 on page 138.

Can you think of other, more or less elficient, algorithms which solve the
problem?

49

PAIN.. PROCEDURE CPTIONS {(MAIN }
DECLARE {(A(50), N) FIXED

/» COMPUTE THE LENGTH OF THE LCNG65T MONOTONE INCREASING
/* IN &A[(1l)...A(N)

MCNSEQ.. PRCCECURE (A, N) RETURNS (FIXED)
CECLARE < J» K« A(N), 8(N),N, MAXINC I FIXEO

/* SET LENGTH CF LONGEST INITIAL SEQUENCE TO 1 */

*AXINC = I
co J 1 TO N
B(J) - 1 ..
pDC K = I TC J - 1 =».

SEQUENCE

/* IF A(K) IS LE&S THAN A(J) AND THE LENGTH OF THE LCNGEST ./

/* MCNCTONE INCREASING SFCUENCE ENDING WITH A(K) EQUALS

*/

/* CR 18 GREATER THAN THE LCNGEST SEQUENCE CURRENTLY ENDING */

/* WITH A({(J), THEN LENGTHEN THE€ SEQUENCE ENDING WITH A<J-=

IF A(K) LT A(J) THEcN
IFr e(J) LT 8(K) + I THEN
BIJ} » BI{(K) e 1 t.

ENCE .
IF MAXINC LT B{J) THEN KAXINC = BIJ) =».
END ,

RETURN (VAXINC] ».
ENO MCNSEC

*/

DC WHILE { 1 1§ t©.

GFT LIST (Nt { Ad) DO I * 1 TO N })

PUT LIST (e THE SEQUENCES (aA(I) DU I - 1 TO N) ,

¢« HAS A LONGLiST MCNGTONIC TINCREASING SUBSEQUENCE UH LCNOTHe »
MCHNSEQ(A, N }) te

END

END PAIN ».

«/
*/

50

BGaussian Eliminatian
Why I['ve included this problem:

Gaussian Elimination is a well known and important technique for solving
systems of simultaneous linear equations. - every student of.15-168 should
know it.

A Gaussian Elimination program in PLAGO reguires that you know haw to
systernatically operate on the rows and columns of an array. These
fechniques you should- know.

The Problem:

Both the problem of sclving sets of linear equations and the method of Gaussian
Elimination are discussed in tha book by Parsythe, et al. (pp. 333-349)

Read and undersiand that material hefare proceeding.
¥Write structured statements corresponding 1o the flowchart on page 349

Compare your struciured statements with the body of the procedure, GAUSS, whose
text [nllows.

GAUSS daes not perform the partial pivoting operations described in the
flowchart un page 349. Change the program so that it does perform this kind of
pivoting.

It has been sugyested that elimination could be performed so that all
cvefficients both below and ABOVE the main diaganal are eliminated. This would mean
that the entire “back solution” process could be removed. Rewrite part of the
program to da this, Compare the number of arithmetic cperations required by bath
methods. That's right, compare them. Which method is more efficient? Can you think
ol any other reason why one method is better than the other?

MAIN.. PROCECURE OPTIONS(MAIN) ,.
DECLARE { A(25, 25)s CU25), X(25), EPS, TEMP, MULP) FLOAT,
{ Ny Iy Jy Ko Ly LY} FIXED 4. T

/* INPUT EPS, Ny A, AND'C x/

GET LIST { EPSs N, ({ ALILWJ) DC J =1 TO N)
C{I) 00 I = 1 TON D)) sa

?

PUT LIST (((A{T+J) DO 3 = L TO N)0/,
CLIVDO I =1 TQN) } 4

sl

ELIV..
DC I =t FG N - 1 4.
EC J =1 + 1 TC N ,.
[F ABS(A(I,I)) LE EPS THEN
CCye.
CC L =1 + 1 8Y 1 WHFILE (ABSC All,I}) Lr EPS & L Lt
IF ABS({ A(iL41)) GT EPS THEN
DCya
CCLL =1 TC N 4.
TEMP = A{I4.L1) .

B{T441) = A(L,LL) .
A(LsLLY = TEMP .
END 4.
TE"P = C(l) e
Ctr) = CLL) 4.
C(LY = TEMP ,,
ENE oo
ENG 4.
IF ARS(A{I,I)) LE EPS TFEN
DCy .
PUT SKIP LIST { *SINGULAR SYSTEM////Y) .
STUP 4.
EN'} y e

MULP = A(JeI) /7 AlLs1} e
CC ¥ = 1 ¢« 1 TO N 4.
AlJyeX) = AlJeK)Y =~ MULP * ALI,K) 4.
END .
CtJ) = CtJ} = CUT) * MULP o
ENC v
ENC ELIM ,.

IF ARS{ A{NsN)) LE EPS THEN

LG s
PUT SKIP LIST (*SINGULAR SYSTEM////') +o

STGP e
END 4.
/% PERFCAIM THE BACKSOLVING PROCESS %/

BACKSOLV..

DC I = N BY =1 10 1 .
X(1) = CUI) oe
EO 3 = N BY =1L TO I ¢ 1 4.
X(1) = X(I) = X(J) * A(Ied) e
END .

X{I) = X{(L} /7 A{l+s1) oo
ENC BACKSCLV .

PUT CATA ({ x(I} DO I = L TO N)) o
END 4.

N

T

o2

Matrix Multiplication

Why I've included this problem:

Matrix multiplication is a useful thing to knaw.
Recent work in the area of computational complexity has revealed some new
and more efficient algorithms for performing matrix multiplication.

think they are inferesting. 1 aiso think they form the basis of same good
programming exercises.

The Problem:

The product of matrix A, having M rows and N columns, and matrix B, having N
rows and P columns, is a matrix, C, having M rows and P columns, where

Con = Aey ™ Ept

J'T-I

That's all!
The procedure called, DEFN, which follows, performs exactly this computation.
Unfortunately, as M, N, and P grow large, the number af computations grows

"very” large. In pariir.ular, if M=N:P, the number of muitiplications alone eguals N

cubed! Hence, enormous amounts of time can be spent multiplying even relatively small
matrices.

QOuestion: Are there better ways of multiplying matrices.

As it turns out, it wasn't untii 1968 that any significant improvement was made
over just the definition. At that time, S. Winograd presented a methad which can

53

multiply matrices with about hali the number ol multiplications used hy the
deflinition. "He achieved this saving by noting that real muhiplicatian is
cormmutalive and that seme af the mulliplicalions could be iraded for additions. The
method is based on the fallowing ideatity:

7 LAl N/lj

Z e ”f Z (A 20 52;,1;) ~

(Afo Zf, +b£f
[ﬁ./zj
Z A 2}/! */‘}L zi]f

LN/zJ

E ;Bif"r}"“ bz}f

where X means the greaiest integer Y X.

It ¥ is even then the left side is just the ik-th element of C. Diherwise the

product
A N %Py k

must be added to 1ihr expression.

Admittedly, the expressions loak much more complicated than the criginal
definition. The savings accrue by pbserving that the last twp sums are dependent
upon § and ¥ respectively and need be cemputed just once at the beginning of the
program. Thereafter, the number of multiplications is half that reguired by the
definitian.

Compute an "operation count” ol exacily the aumber of additiens and
multiplicalions that would be required by both methods. These computations should be
functions of M, N, and P.

The procedure called WINDBRAD multiplies 1wo matrices using Winograd's method.
Study it.

< J

54

Fur what values of M, N, and P would you expect WINOGRAD ta execute maore rapidly
than DEFN? Note that M, N, and P will be larger than you might expect. Why?

Can you imagine situations where the accuracy of the results from YWINOGRAI would
be poarer than those froms DEFN?

In 1363, in a paper by Strassen, ("Gaussian Eliminatian is Not Optimal “,
Numerische Mathematik 13, pp 354-356) a method was presented which could multiply two
2 x 2 matrices uging just 7 multiplications instead of the usval 8, and which didn't
require that multiplication be commutative. His identities look just awiul. And
here they are:

C c A A B B

m 2y 12 £ 1 12

C C |T]A A B B

21 22 2 2 21 2

then

C s Q@ -0 -~ 0 + 0

11 1 2 5 7

c = @ -0

12 4 1

C : 0+« Q

21 2 3

C : =1 -0 «+ 0 +« 0

22 2 4 5 B

where

v} = (A -A) B

i 11 12 22

a ={A -A) B

2 21 22 11

a : A {B +8B)

3 22 1 2]

1| A (B +B)

4 1 12 22
Q = (A +A){(B -B)
5 1 22 2 1
11 : {A +A }(B +B)}
B 1 21 11 12
] = {A +A)Y(B +B)
7 12 22 21 22

Strassen provides no molivation or intuition as o haw he ever found these. However,
everywhere I've ever seen these things presented, the commentator has suggested a
different mnemonic device 10 help reconstruct them. Find one for yourselft These
identities can be used to maltiply matrices of any size il they are used recursively

on malirices whose elements are themselves matrices. Try writing such a program,
You'll learn much.

99

/¢ MATRIX MULTIPLICATICN BY THE STANCATL DEFINITIUN */
CEFN.. PRCCECURE (A, By Cy My Ny P) ,.

CECLARE (f, Jy Ky My Ny P) FIXED ¢
CECLARE (Al#*,%), Bi®,%), Cl*,*)) FLUAT ,.
CECLARE (T) FLCAT ,.

KEST.. CC I =1 TU M ,.

CC K =1 1C ¢ 4.
1 = 0 e
CC J = 1 TE N ,.
T =T %+ AlL¢J} %= B{JeK) 1
ENC .
C{T4K) = T 4.

ENC NEST 4.

END CEFN .

/% MATRIX MULLYIPLICATEION USING WINCGRAD'S METHOC %/
WINCGRAC,., FRCCEDURE (A, By Cy My Ny P) 4a
CECLARE { My Ny Py Iy Jy Ky N2) FIXED,

B8 FIXEL
| A(*,%), Bi#,%), Cl*,%), ALl(M), BK(P)) FLOAT ,.

/% CCMPUTE THE SUMS OF THE THINGS WE WANT TO THRGW AWAY */

N2 = 2 % FLCCR (N /7 2) »a
= 1

Lo 1 T M .
T =0 ¢
CC J =1 BY 2 TC N2 4.
T = 1T + Al{I,J) % AlIy J + 1) 4o
ENC L]
AT(L)Y = T 44
ENC v

CO J = 1 BY 2 TO N2 4.
T = T + B(JyK) %= B{J ¢ 14K) .
ENC +&

AK(K) = T 4.

ENC .

FR = { NZ.NE N) .
h(:RK.. CC l = 1 TG M e

CC K =1 TG P se
[F BB THEN T = A(LI.N)} * BIN.K) s+
ELSE T =0 re
CC J = 1 8Y 2 TC N2 ».

Pl = J + 1 se ’
T =T ¢« (A(IeJd) ¢ B{JPL,,K})=* (A(TI4dP1) + BUJsK)) 9
ENL

Cllex) = T = AR(L) - BKIK) ..
ENC WCGRK ¢ s

eNC WINCGRAL .

56

The Eight Queens Problem
Why I'vé included this probiem:
This problem has been analyzed in a step-wise way which is instructive.

Its solution can he expressed recursively.
The Prablem:

Dijkstra has devoted a chapter to the problem of the eight quesns. Read and
understand tﬁg! chapter before you proceed with the text below.

Dijkstra chose to find all the ways of paositioning eight queens on a chess board
so that no queen was attacked by any other. The program below, again by Dijkstra,
can be used to find just one solution to the problem. How can it be modified sa that
all possible solutions are found? Study the program carefully. Its data structures
are the same as the program in EWD3I16.

Exercise

Suppose the problem is generalized to consider a rather stylized chess board

consisting of N x N squares on which we wish to place N gueens so that none is under
attack. Modify the pragram 1o solve this problem. Are there any statements you can
make about the existence or non-existence of solutions for arbitrary N?

__DECLARE (I, J) FIXED se
DC I = 1 TO 8 WHILE { NGTSAFE) »o o o
TUUSAFE = ALY EBU T4)Y ECtH T~ J) e

IF SAFE THEN
" GUTSa..
00 4+ i

TTAlT)y B(I#JY, CUI-J) = Q e

X{J) =._[_’: .) [
o "iFJLT 8 THEN
CO s ,
e EARE T 4.
CALL TRYC(J + 1) 9o
TTTTEND w.
I1F_NOTSAFE THEN A(I), 81 ¢ J)o C(I = 4} =1 40
T TTEND GUTS .
END so
" ENC TRYC .

57

The Towers of Hanoi
th Tve included this prablem:

This problem can be selved by a short, natural, recursive algorithm which
you should understand.

The problem has a nice generalization which 1 like.

The Problem:

Dijkstra devotes a section of EWD316 !0 this prablem. His discussior, however,
is sumewhat more tedigus than the one which follows. Read the text below, through
the recursive solution o the problem. Then, read the section from EWD316. Finally,
examine the program which solves the generalizalion to the problem.

Suppose that three spikes are driven inta a flat board and that N ‘
doughnut-shaped discs have been arranged on one of the spikes with the smallest disc
on top io the largest disc on the bottom. The diagram illustrates the situation.

The object of the game is to transfer all the discs from the starting spike to one of

the other spikes so that they are left in the same order - smallest on top to largest

on the bottom. The discs, however, may only be moved one at a time from one spike fo
another so long as a disc never rests on another disc of smaller diamefer. That's

the game!

The prablem is to write a program that will produce a sequence of moves which
will tell a player how 1o move each disc.

58

Clearly, if we have just one disc, the sequence of moves is trivial.

Just move
the one dise (o one ol the other spikes (designated as the [mish spike).

If we have two discs, the situation is almost the same, except that the top disc
must be moved to the intermediate spike: the bottom disc to the finish spike
Mnally the dise on the intermediate spike Lo the hmish spike.

. and
This suggests that to move N discs, we should:

(1) Move N - 1 dises frem the start spike to the intermediate spike.

(2) Nove disc N from the start spike to the finish spike.

(3)y Move N - 1 discs from the' intermediate spike to the finish spike.

The following program does exactly this.

HC. PROCEDURE OPTIONS { MAIN } ».

HXNCI.. PROCEDURE"N, S, If F)} 7»

CECLARE <N, S, |, F) FIXEO ,.
7* HANCT COMPUTES"™ AND PRINTS A SEQUENCE OF MOVES WHICH TRANSFERS *
{* A PILE CF < N) DISCS FROM A START SPIKE, 8, TO A FINISH SPIKE, */

/* F, USING SPIKE, I, AS INTERMEDIATE STORAGE. g
17 N~=1 TFEN -
PUT SKIP LIST ('MOVEJIISC 1, » FROM «, 8, + TC + F) ,.
ELSE
co ,.
CALL HANOI < N - 1, S, F, |)
PUT SKIP LIST t_*HCVE DISC ', N, ' FROM SAITASJ) .
CALL HANOI (N -~T, TV S, F) " " ~ "
END , . B
ENC HANCI

CECLARE (N) FIXED
CCWHJLE (1 = 1.1
"GET "LIST (¥1
CALL HANCK N, 1,2,3)
END ,."

ENC HC

Ceould the PUT LIST statement which specifically savs to move disc one be
eliminated?

What is the minimum number of moves necessary to move N dises? Find a formula which
1 a function ol N and prove that 1t 1s correctl.

Find a non-recursive algorithm which solves this problem. Which de vou feel is the
superior? Why?

59

MAIN.. PROCECURE OPTIONS (MAIN) ,.
CECLARE (I, Ny NSPIKES, Sy F, ISN (5C))} FIXEC ,.

GENHAN.. PRUCECURE (Ny NSPIKES, S¢ F) 4
CECLARE"{ Iy No NSs NSPIKES, Sy Fy, FT) FIXED ,.
[F N LE NSPIKES - 1 THEN
DD"
DGI=[I0N-1|Q
Eg; LEST { *MOVE DISC 'y I, ' FROM *, S, * TG ', ISN(I)) ,.
'O

PUT LIST { *MOVE DISC 'y Ny ' FROM 'y Sy " TC *y F)} 4.

BC I = N- 1 BY -1 TO 1 ;.
PUT LIST (*MOVE DISC *y I, ' FROM *, ISN(I), * TC *y F } ,.
ENC 4. T) T '
ENC 4o
ELSE
WCRX.. OC 4.
FT = ISN (1) »e
ISN(1} = F ,.
CALL GENHANT N=1, N3PTKES, S, FTY ,.
PUT SKIP LIST (* MOVE CISC 'y N 4 ' FRUM ', Sy ' TC v, F)
ISN(1) = S . ' ’ h o
CALL GENHAN (N-1, NSPIKES, FTy F) ,.
ISN({]1) = FT ,. i
ENEC WCRK ;4
ENC GENFAN , . & T 77 o
CC WHILE (1)} ,.
GET LIST (Ny NSPIKESy Sy F)} 4.
J =1 ve
DC I =1 TC NSPIKES e
IF [NE S & I NE F THEN
LC v
ISN(J)Y =1 ,.
J = J + 1l e
ENC .)
ENC s
PUT SKIP LIST (7fN= ', N, ¥ NSPIKES= ¥, NSPIKES, 'S= *, S,
‘F= " F) e
CALL GEMNRANL Ny, NSPIKESy Sy F) se
ENC .
ENDO MAIN 4.

Suppose the problem is modified soc that we allow a parameter which specifies the
numher of spikes the game will have. Thus the original game is a special case of of
this more general one - in that game, the number of spikes was equal 10 3.

VWhat is the minimum number of maves necessary to move the N discs it you are
allawed to use NSPIKES spikes?

A program follows which performs this computation. Can it be shortened? How?

What would a non-recursive algerithm look like?

68

The Coin Problem
Why I've included this problem:
This problem has a very natural and intuitive recursive solution which can
suggest a non-recursive solution which isn't guite so intvitive. I think
you should see it.
The problem also generalizes nicely.
The Problem:

Determine the number of distinct ways an arbilrary number of cents, A, can be
“changed” in terms of half dollars, quarters, dimes, nickels and pennies. For
example, 16 cents can be changed in exactly six ways, as:

(1) 16 pennies
(2} 11 pennies and 2 nickels
(3) 6 pennies and 2 nickels
(4) 1 penny and 3 nickels
(5) 6 pennies and I dime
(6) 1 penny and } nickel and 1 dime
How can the problem be analyzed? Consider lirst the notatior:
N,
A
which is interpreted as:

“the number of ways of changing A cents with coins having maximum denaomination C
cenis”

Thus the original problem is to find the value represented by the symbol

£o
N,

since we wish to change A cents with coins having maximum denomination 58 cents.
Now observe that
5 25 : 25
N2 Nyt N e Myoeso ™o Ny iz e
A — VA A-50 A -2%50 A-[Z €57

4

What does this mean? Just this: the number of ways of changing A cents equals the
number of ways of changing A cents without any half dollars plus the number of ways

61

oi changing A cents using one half dollar plus the aumber of ways using twao haif
daollars and so an.

Now note that each sub-problem on the right is similar to the preblem with which
we slarted except thal there are fewer coin denominations to cansider! Now noiice
these equations:

25 1Y /O /0
/VA = /VA f—/\’/,q-25’+ ’“/VA_,Z;;&‘J;?.{

i s £ i
/VA - /\/A * /\/,q_;o T 7‘/\{4 ';’I,ﬁ‘-'fr"”?"'

[-

5 -/ /
/‘/_A - /\/}4 = /\/A—j’ e +NAX-Z§"/":5 .

What is the value of each lecm en the right of the lasi equation? Just 1. Surprise!
In any case, ihe following prugram uses a recursive procedure to solve this problem
based an the preceding analysis. Undersiand ii.

CHANGE.. PRCCEDURE CPTICNS { MAIN) se
- CECLARE CCINS{5) FIXEC ,.
CECLARE & FIXEDC
WAYS.. FRLCEDLRE (Ny A) RETURNS { FIXEC) 4.
CECLARE (Ny Ay TOTALy I) FIXED 4.
IF A = 1 THEN RETURN (1 } 4.
ELSE
Et ’.) - - e .-
TETAL = WAYS { N = 1 &) 4a
CC 1 = 18Y 1 TD FLCCR { A/ CLINS [N)) 4.
TCTAL = TOTAL + WAYS { N - Lty A - I * CUINST N } 1 ».
END »a
RETLRN [TCTAL } s
EMD 4.
ENC WAYS ¢ao

I v+o COINS{2} = 5 4o COINS[3) = 10 ,. COINS(4) = 25 4.
50 s+

CLINS{1}
CLINS ()

hon

CC WHILE (1 =1) »e
TCETLTIST § A Y e
PLT LIST { ' THE AMOUNT ', A,
* CAN BE REPRESENTED IN 'y WAYSI S5, Ad,y ' WAYS') .

ENT 1.
EKE CHANCE .

b2

Which program would execute more efficiently for large values of A? Which
program. would he easier to explain to somrone who had never considered the problem?

Suppose that we wish to add a third paraineter 1o WAYS, ie.
WAYS(ND, N, A)

where NI} elements of COINS will contain distinct coin denominations in ascending
order, such that COINS(1) always equals 1. Thus the original problem would just be

WAYS (5, §, A)

for some ampunt A. This generalization allows one dollar bills, five dollar bills,

ten dollar bills, eic. to be considered in the compuiation ol the number of ways of
changing an amount A. Which of the above programs can easily be medified tn handle
this generalization? Weite a non-recursive procedure which computes WAYS(ND, N, A)
(Hint: use the elements of an array to behave like the confrolled variables of 4 nest
of DO-laops)

Suppose you wished to compute nol only the number ol distinct ways of changing
an amount A, but also precisely what those ways are. What problems arise when you
attempt to change the programs?

= L] =

A PARTITION of a posilive integer, A, is 8 sequence of positive inlegers whose sum is
A. Use the ideas of the above programs to write both recursive and non-recursive
programs which compute the parditions of A sa that no compuled partition is a
permutation of some other partition.

Try simulating the behavior of the program for a few simple examples. Then
observe that the following program also solves the probiem.
CHAMGE<.. PRCCEDURE CPTICNS { MAIN) 4.
WAYS. . PRCCEDUGRE (A) RETURNS (FIXEC } .
CECLARE (Ay Ile 12+ 13y [4, TOTAL) FIXED 4.
TCTAL = C 4«
NESTe- CC Il = 0 BY 1 TC FLCOR (A / 50) .
CC 12 = 0 BY 1 TC FLCCR ((A =~ I1 * 50) / 25) .
DC I3 = C BY | TO FLCOR (¢ A - 11 * 506 - 12 * 25) / 10U}
) Bl T4 =T0BY 1 TG FECCR U -~
(A - I1 * 50 - 12 % 25 - 3 =10) /7 5)
TCTAL = TOTAL + 1 . | -
ENC NEST 4. i
RETURN { TCTAL } .
END WAYS 4o - B)
CECLARE (A) FIXEC +»
CC WHILE (1 = 1) sa
GETYT LIST (A) 4.
PLT LIST (¢ A = %, A, * CAN BE CHANGEC IN ', WAYS [A),
[¢)
Ehn '.7-- B)
ENC CHANCE 4.

63

e

-

)

&4

Caunting Lattice Paints
Why ['ve included this problem:

This problem has a very nalural recursive solution. [think you should see
it.

The Problem:

¥We can define a lattice point in N-dimensional cartesian space as a set of N
coordinatles which are all integers. For example, in 2-gpace {jusi a plane) {-2, 8}
is a lattice point but {3, 2) is nat a laitice peint. The problem can now be
stated.

How manf lattice paints are contained in an N-dicmensional hypersphere of radius
A, centered at the arigin.

That is, it N describes the dimension of the space and R describes the radius of the
hypersphere, the algorithm should produce the number of lattice points within the
hypersphere.

Consider first the cases which can be visuailized. 1 N is 8, then there is
exactly one lattice paint, the arigin, regardless of R.

If N is 1, then our space is just a line centered at 8, and the number of
lattice paints is just 2 » FLOOR{ R } + 1. Another way of viewing the problem would
he to count all the answers !o the zero-dimensicnal probiems which occur at the
origin and ta the right and left of the origin for integer I such that Hes2 - Ie=2 is
greater than or equal to B. Thal is, count the origin just once and then ceunt the
points an either sids, recognizing that this value is just iwice ihe number 1o the
right, say.

it N is 2, then aur space is a plane, and the hypersphere is a circle of radius
R, centered at the origin. Thug, the lattice points are all {u,v) such that u
squared plus v squared is iess than or equal to R squared and where v and v are both
~ integers. Anather view regards the problem in {erms of a bunch of one-dimensicnat
probiems , i.e. count ihe number of jattice poinds on the x-axis and add to this
twice the numter of latlice points in the upper semi-circle.

The three dimensional case is thus just a bunch of two dimensianal prohlems.

The grogram which Inllows periorms the desired computalians. Study it. Note
that Res2 is passed as a parameler rather than just R. Why.

Find a nan-recursive solution (o this prabiemn. He carefull

Simulate the recursive struciure of this program by maintaining your pwn stack.

65

LATTVTICE.. PRCCECURE OPTICNS (MAIN) ,.

POINTS.. PRCCEDURE (N, RS} RETURNS { FIXED) . .
/* POINTS COMPUTES THE NUMBER OF LATTICE POINTS IN AN N-CIMENSIONAL#*/
T /% AYPERSPHERE OF RADIUS SCRT(RS) =/ ' o
DECLARE (N) FIXECy (RS) FLOAT ,.
CECLARE (S) FIXELC 4.
I£ N = 0 THEN RETURN [1) ,.

ELSE
CC 4. _ .
T T s =T PQINTS U N=1s RST) e
DO [= 1 8Y 1L WHILE (I * I LE RS) ,.
S = § + 2 % POINTS (N=1, RS = I * [) ,.
ENC .
ENC +e

RETURN (S) 4o
ENC POINTS,.

DECLARE { N) FIXED , (RS) FLOAT ,.
TDE WHILE 11 = 1) 4.

GET LIST (Ny RS)} 4.

“PUT LIST ('CIMENSION = *, N, ' RADIUS SQUARED = *, RS,
* NUMRER OF LATTICE PCINTS = *, POINTS ((N), (RS))) 4.
TEND . o T

ENC LATTICE .

