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1. | NTRODUCTI ON

Nunerical Mathematics is a very broad field. |In this paper we focus on
aspects of nunerical mathematics which are related to conputer science. |If
our focus were on nunerical mathematics as a mathematical subject, we would
cover rather different ground, for that aspect of the subject has a vast liter-
ature which we do not touch on here. The reader interested in the relation
bet ween nunerical mathematics, applied nathematics, and conputation is re-
ferred to Cohen [4].

Conput er Sci ence has strong nat henatical conponents such as autonata
t heory, conputational conplexity, nunerical mathematics, and synbolic mathe-
matics. However, nuch of conputer science is rather close to engineering in
the sense that the creations nust work in the real world. Simliarly, nunerica
mat hematics ranges fromstrongly mathenatical areas to those with a strong en-
gi neering flavor.

One of the central concerns of conputer science is algorithmc analysis
or aleorithmics (Traub [25, p. 1]). As we shall see, numerical mathematics deal s

with algorithns for continuous processes.



2.  H STORI CAL PERSPECTI VE

The roots of nunerical nmathematics are ancient dating back thousands
of years (Davis [7]). Yet nodern nunerical mathematics as a separate dis-
cipline dates back less than 25 years. The nodern discipline is distin-

gui shed by:

CD synthesis and analysis of algorithns rather than a focus on
synt hesi s al one

(2) analysis of algorithms using finite precision nunbers

Sone have dated the nodern field back to 1947. That year marked the
establishment of an Institute for Nunmerical Analysis at UCLA as well as the
publication of a paper by Von Neumann and Goldstine [27] on the error analysis
of matrix Inversion using finite precision arithnmetic. Indeed it had been
bel i eved (Householder [11], Traub [24], WIkinson [29]) that 1947 marked the
first use of the phrase "numerical analysis", but Businger [6] pointed out that
t he phrase had been used by Lagrange. Nevertheless 1947 does seemto be a
reasonabl e year to mark the begi nning of nodern nunerical mathematics, and in
1972 a joint SIAM SI GNUM Synposiumwi || cel ebrate the 25th anniversary.

Bot h numerical analysis and nunerical nmathenatics are used to denote the

di sci pline although the latter appellation seenms to be superseding the former.



3. A DEFINITION OF NUMERI CAL MATHEMATI CS

We give a forrmal definition of the discipline, as it is generally prac-
ticed today and then suggest how the scope of the field should be broadened

Nunerical mathematics is the theory and practice of the efficient calcul a-

tion and error appraisal of approxinmate solutions of continuous nathematica

probl ens «

An equi val ent nane for the subject is the Analysis of Continuous Algorithns.

Two of the words In this definition, continuous and efficient, warrant sone
anmplification. By continuous we nmean the probleminput and/or output belong to
a continuum For exanple, the solution of polynom al equations with integer

coefficients belongs to nunerical nathematics since the zeros belong to a

conti nuum The solution of diophantlne equations does not bel ong since the
input and output are integers. The distinction between these two problens is
a real one since the second problemis conbinatorial in nature and totally
different techniques are used

The adjective efficient is critical. One of the prinmary differ-
ences between mat hematics and nunerical mathenatics is that mathematics |acks
the concept of efficiency. There is elegance and sinplicity of proof, but not
ef ficiency.

Mat hemat i cs di stingui shes between constructive and non-constructive proofs.
A constructive proof nmay be used as an algorithmbut it is usually not an ef-
ficient one. For exanple, the proof of the theoremthat continuous functions
on a closed Interval may be approximated arbitrarily closely by polynomals Is
based on Bernstein polynomals. This construction is not used in nunerica
practice since it may require a polynom al of degree ten mllion to achieve
ei ght-pl ace accuracy. A best-fit polynom al of degree perhaps six would

achi eve such accuracy.



The adjective continuous serves to delineate the discipline as it is

generally practiced today. However, the algorithm c approach, long tra-
ditional in numerical mathematics, 1is useful for problems where the data
does not belong to a continuum Nurmerical mathematicians can contribute to

the study of such problens.
Before |eaving our discussion of the extent of nunerical mathematics,

we should mention some neighboring fields. Di screte mat hematics (also called

combi natorial mat hematics) deals with discrete data (such as integers). Sym

bolic mathematics deals with synbolic data. Numerical mat hematics, discrete

mat hematics, and synbolic mathematics are all subfields of the mathematics of

comput ation which consists of the intersection of mathematics and conputer

sci ence.

For the remminder of this paper, we discuss four major conponents of
numerical mathematics. They are

1. Foundati ons

2. Synthesis and Analysis of Algorithms

3. Analysis of Error

4. Prograns and Program Libraries

Ot hers m ght choose different conmponents. Many numerical mathematici ans
believe (2) and (3) conprise the field. We believe that the study of (1) pro-
vides theoretical underpinnings while (4 nmakes results achieved in nunerical

mat hematics accessible to other fields.



4.  FOUNDATI ONS

W di scuss two exanpl es of foundation subjects: finite precision nunber

systenms and conputational conplexity.

a. Finite Precision Number Systens

The finite precision floating point nunbers are the nunbers used in
computation and their properties are quite different fromthe real nunbers of
mat hemati cal analysis. W give two sinple illustrations:

The famliar algebraic laws need not hold. Thus a”~ b, x +a =x+Db
may be sinultaneously true. A perceptive discussion is given by Van Wj ngaarden
[26]. Knuth [14, Vol. 2, Chapter 4] contains a wealth of material .

Anot her phenonenon is that the spacing between adjacent nunbers is not
uni form  Consider eight place nunbers. The nearest neighbor to a nunber of
size 10"°*is 10 ** distant. The nearest neighbor to a nunber of size 10°

is 10" distant. Since 10 > n, the calculation of the sine of a rounded nunber
g

of magnitude 10 is meaningless with such nunbers.

The "real nunbers" and "real analysis" nmay be viewed as a limting case
of finite precision nunbers and nunerical mathematics. In this sense nunerical
mat hemati cs nmay be regarded as "richer”. For exanple, Taylor's fornmula is a
special case of Newton's interpolation formula fromwhich it follows in the
confluent limt.

The real nunbers of analysis were introduced to sinplify mathemati cs.
They flrc &n d.t)sfir<icflon pl & &d on & firin foundati on by D&d.6lixiiclp Wj . £xstir3s$
and other analysts of the last century. The inplications of real nunbers for
real analysis took decades to develop. The inplications of finite precision
nunbers for nunerical mathematics are just beginning to be explored. Brent T3]

and Matula [16] are doing interesting work here.



b. Conputational Conplexity

We enphasi zed above the central role that efficiency plays in nunerica
mat hematics. This focus on efficiency naturally leads us to study what are

the nost efficient, that is, the optinmal processes. This area of study is

contained In conputational conplexity. Sone of the nmbst exciting current work

in nunerical mathematics lies in this area. |In March 1972, an |BM Synposi um on
Conpl exity of Conputer Computations sumarized recent progress [12]. In [22]
we suggested that optiraality theory for algebraic (or conbinatorial) pro-

cesses be called al gebraic conputational conplexity, while optinmality theory

for analytic (or continuous) processes be called anal ytic conputationa

conpl exity.

Much, but not all, of al gebraic conputational conplexity deals with al -
gorithns for problens which are of interest to nunerical mathematics. Such
problens Include the nultiplication of matrices and the eval uation of poly-
nom als. Although these processes are conbinatorial, they are very conmon
conponents of the algorithns of nunerical mathematics. A survey may be

found in Borodin [2].

Research on anal ytic conputational conplexity dates to the early sixties
and predates nost of the algebraic results. A survey may be found in Traub
[22]. The results achieved so far deal alnost exclusively with optinality of
iteration algorithnms for the calculation of fixed-points.

We cite here only one very recent result due to Kung [15]. Kung defines
a nmultiplication efficiency index for any nultivariate rational iteration which
takes into account the rate of convergence of the Iteration and the nunber of
nmultiplications or divisions per iteration step. He proves that the nultiplica-

tion efficiency is always bounded by unity.



5. SYNTHESI S AND ANALYSI S OF ALGORI THVS

This has been a core area for nunerical mathematics and will continue
to be so. It is relatively easy to invent algorithns (synthesis). The trick
is to invent good ones and prove they are good (analysis). Knuth considers
the analysis of algorithns a central one in conputer science and is witing a
seven vol unme set on this subject 114]. He is not attenpting to include the

al gorithns of numerical nathenatics.

In practically every problemarea, the best algorithmwe have today has
been introduced in the last 15 years. Sone exanples are the QR al gorithm of
Franci s and Kubl anovskaya wi th inprovenents by Parlett, Kahan, and W/I ki nson;
the algorithns of Fletcher and Powell and their co-workers on minimzation
rational extrapolation algorithns for ordinary differential equations due to
Bulirsch, Gragg, and Stoer; Golub's analysis of Househol der Transfornations
for |east squares problens, the analysis of finite elenment nmethods for partia
differential equations due to Ciarlet, Fix, Schultz, Strang, and Varga; the
efficient calculation of finite Fourier Series by the Fast-Fourier Transform
of Cool ey and Tukey. These are only a few instances of the great progress
that has been made. Even when the algorithnms are classical, as in the case
of Gaussian elimnation, it is only recently that a conplete anal ysis has
been perforned.

We |ist sone general criteria for a good al gorithm

1. The algorithm should do well when perforned in finite precision

2. It should be robust, that is, it should degrade gracefully if it
is used on a problemwhich is near the boundary of the problem

space for which the algorithmis designed.



3. The hypot heses under which the al gorithmworks should be easily
verifiable. For exanple, since the symmetry of a matrix is easily
verified, an eigenvalue algorithmwhich converges for any synmetric
matrix is desirable. On the other hand, it is hard to verify a

hypothesis on the positivity of a second derivative over an interval

A.  The algorithm should be efficient by sonme appropriate neasure.

5. The al gorithm should al ways work for a reasonable "large" class

of probl ens.

Such algorithnms are natural candidates for inplenmentation as conputer
routines.

In certain areas we are now at the stage where we have excellent algorithms
neeting these specifications. A mjor recent achi evenent has been to design
such algorithnms for such areas as systens of |inear algebraic equations,
al gebrai c ei genval ues, and polynonial zeros. Elsewhere we have a |ong way
to go. Exanples are nost non-linear problens, nost nultivariate problens such
as constrained and unconstrai ned optinization, partial differential equations,
ordinary differential equations. For sone problens we may never find al gorithms
satisfying our five criteria. GCentleman [8] has surveyed nunerical algorithns
and sel ected areas for which good algorithnms do or do not exist.

Al nost wi t hout exception algorithns have been created for sequentia
machi nes. Only recently have al gorithnms been designed for parallel and
vector machines. A survey of work on parallel algorithms may be found in

M ranker [17].



6. ANALYSIS OF ERRCR

An inportant elenent in nunmerical mathematics is the appraisal of error.
We consi der both nmat hematical and nachi ne-ai ded error anal ysis.

Al t hough mat hemati cal error analysis began with the cel ebrated paper by
Von Neumann and Gol dstine [27] published in 1947, it was not until the md
to late fifties that activity really picked up. Extensive bibliographies nay
be found in Rail [20].

One of the nobst inportant ideas in mathematical error analysis is that
of backward error analysis proposed by Gvens [10] and brilliantly exploited
by WIkinson [28] to analyze the rounding error of algebraic processes. In
backward error analysis we ask what problemhave we solved exactly and how
far is this problemfromthe one we set out to solve? This nmay be contrasted

with forward error analysis where we ask by how nuch the cal cul ated answer

differs fromthe true answer. Backward analysis is often easier to perform
and the answers are often nmore useful. Using backward anal ysis, W]IKkinson
[30] was able to give a conplete a priori analysis of the solution of a

systemof linear algebraic equations by Gaussian elimnation with pivoting.

We turn to machi ne-aided error analysis. A dreamhas been autonatic
error analysis —let the conmputer do the work. Papers in machine-aided error
analysis first appeared in the md to late fifties. An annotated bibliography
is given by Bright [5] and extensive references appear in Rail [20].

Special arithnetics are tools used in nachine-aided error anal ysis.

The purpose of a special arithmetic is to enable us to appraise the error
at the sanme time that we performthe calculation. Exanples are significance
arithnetic (Ashenhurst [1]) and range arithmetic (More [18]). There are

some serious problens. For exanple, a difficulty with range arithnetic is
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that the intervals in which the answers are guaranteed to lie increase greatly
in size as the conputation proceeds.
Work has started on systens for automatic error analysis. P. Richnman
has been studying the Iinitations, design and inplenentation of a system
for conmputing nunerical results to within any desired tolerance. H's basic

tool is variable-precision range arithnetic.
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7. PROGRAMS AND PROGRAM LI BRARI ES

Al gorithns may be specified in various ways. One node is by a computer
program This has a nunber of advantages. It is the nature of a program
that all details nust be spelled out conpletely. Wen the programis run
one may verify that the algorithmperfornms as required. The publication of
algorithnms as progranms nmay be viewed as a neans of getting frontier results to
consunmers of nunerical mathematics In a useful way. Indeed the creators of
the scientific progranm ng | anguage Al gol [19] were well aware of the use-
ful ness of progranms as a nmediumof information di ssem nation

Ref ereed prograns are published in BIT, the Communications of the ACM
t he Comput er Journal and Numerische Mathemati k. Those in the latter journa
are of exceptionally high quality and will appear in a Handbook of Automatic
Conputing. There are a number of difficulties. The progranms have been witten
in Al gol and hence are not imediately useable by Fortran programers. There
are often a nunber of programs purporting to solve the sane problemand a

selection of a particular programnust still be nade.

This leads us to conputer programlibraries. Conceptually, this is a
fine idea. |In practice, however, these libraries are often inadequate because
the [ atest and best algorithms are not used and the prograns are not carefully
tested, certified, and docunented. Wen users find their local library routines
cannot be trusted, they start to wite their owmm. But a great deal has been
learned in the |last decade and the user who wites his own routine is generally
not aware of the latest techniques.

A number of recent projects have been ained at the construction of high
quality portable libraries. Exanples are the Bell Laboratories Library One

project (Gentleman and Traub [9], Traub [23]), the Argonne Laboratories-
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Stanford-Texas joint project on the WIkinson matri x codes, and the 1MSL pro-
gramlibrary [13]. A collection of recent papers on mathematical software nmay

be found in the proceedings of a Purdue conference edited by Rice [21].
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