NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C8=71-106

C.ai(P.L*)} -- An L* Processor for C,ai

D. McCracken
G. Roberteon

Department of Computer Scilence
Carnegle-Mellon University
Pitteburgh, Pa, 15213

October 11, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution iz unlimited.

TARLE OF CONTENTS

ACKNOWLEDGMENTS. & .+ 4 & ¢ &+ o 2 s o = « o =

ABSTRACT L) - - L] - - L] L] . L] - L] - L] [] - - -

INTRODUCTION. + o ¢ ¢ o & o o o« ¢ o o o
DESIGN CONSTRAINTS FOR AN 1* PROCESSOR,
OVERVIEW OF P,L¥*., . . & & & o ¢ o o o

PC.L*HARDWARE-orooo------

Instruction Control. . . . « +« « « &

Stack Control. « v + & o o =« o & & o

Possibilities for other Special Hardware.
Ck AND CONTROL OF P.L*. . . « « « « & &

THE L* KERNEL FOR P.1%, + « & &+ & & o &

Type SysStem. + « o o o o o o o = »
Operand Communication. . . « + « o« »
Process Prefixes. « « o ¢ o ¢ 4 & « &
Special Working Cells.
The Code and Data CacheS. « « « o« o &
Increased Complexity of Kernel Code.

Performance. « + « « ¢« « o + o o o &

REFERENCES- LI I N I e * & & = & & . &

Appendix 1 - ISP DESCRIPTION OF Pec.L*, ., . .

Appendix 2 - CONTROL FLOW DIAGRAMS.

Appendix 3 - CODING COMPARISONS WITH L*(G),

12
14
15
18
19
19
20
21
22
22
23
24
Al,1
A2.1

A3.1

ACKNOWLEDGMENTS

Although this report and the basic design were principally carried
out by the listed authors, the primary idea of L* is due to Allen Newell.
A& group composed of Allen Newell, Peter Freeman, Don ¥McCracken, and George
Robertson has developed some of the concepts of L*-like kernel systems,
implemented sewveral, and experimented with their use.

Robert Chen provided some very valuable assistance during the final
stapes of the design effort, and both he and Peter Freeman contributed

generously to the editing of this report.

ABSTRACT

The results of a preliminary design study for a specialized language
processor (P.L) for L* are presented. The objective of the study is to
give an example of a specialized processor for C.ai.

The L* processor is to rum 20-30 simultaneous L* users with very
large address spaces at a speed improvement of better tham 10 times a
typical PDP-10 L* system. Its cost should be low relative to the memory
resources of C.ai.

The design presented is that of an L¥* central processor (Pc.L¥)
with a low-level instruction set (about the level of typical micro-
code), Pc,L* is time-shared by 2 mini-computer that sits teo the side,
so that each L* user sees himself as running on a base L¥ processor.
User contexts are switched by swapping processor status information in
Pc.L*,

Each L* user has compleﬁe access to the central processor status
through his address space. His machine code (microcode) can appear
anywhere in the large address space, but executes ouf of a fast cache
memory, It thus runs at microcode speeds. L¥* programs and data being
interpreted by the machine code are accessed explicitly from a second
cache memory. The initial L* kernel system will consist of ~ 1K of
machine code, with some initial data and available space.

The low-level instruction set of Pc.L* does not contain any of
the more complex instructions (such as floating point arithmetic and

byte manipulation) that usually exist on large general purpose computers.

iii

These capabilitiee are meant to be written in machine code as needed
by each L¥* user, He thus gains considerahble flexibility in the exact
nature of these higher level operations at the cost of inereased pro-
gramuing effort and somewhat reduced efficiency compared to hard-wired
implementacions,

The results of this preliminary design effort, although still un-
clear in spots, shows that & speciglized processor could run very large

L* systems on C,ai at 20-40 rimes the speed of a PDP-10,

iv

1. INTRODUCTION

Qur objective is the design of a specialized processor to run L*
systems on C.ai. We call cur processor P.L*. A thorough understanding
of. the context in which we are degigning reguireg familiarity with C.ai asg
presented in reference 1. Much of what follows, however, can be understood

with the knowledge that C.al provides a processor such as P.L* with (1} a

22
port to a primary memory of up to 2 296-bit words of 55%0ns cycle time
accessible as 74, 148, 222 or 296 bits per access, (2) transfer capability
to and frem the cutside world, and (3) transfer capability te and from large
on-site secondary and tertiary memories.

Familiarity with kernel systems (reference 2} and L*(F) on the PFDE-10
(references 2 and 3) ig essential and assumed throughout. Without attempting
to summarize these papers, it is worth noting that the essential idea of L*
ig the growth of arbitrary programming systems from a small kernel of machine
code (on present implementationsg) that permits rapid acguisition of higher-

level language facilities and system toocls.

Throughout this report we use and assume familiarity with the PMS and
ISP notations as presented in reference 4.

-2 A

2, DESIGN CONSTRAINTS FOR AN [* PROCESSOR

Several important design constraints for our L¥ processor are listed

below to provide a framework for the design,

1. The system running on an L* processor should be consistent with
L* design philozophy. This is actually a set of constraints, szuch
as a small sized L* kernel system, accessibility to the complete
L* machine as seen by its user, etc. A more complete enumeration
of the constraints iz given in reference 2.

2. The L* user's address space must be large (> 106 words), and large L#
gystems must not experience drastic performance degradation
relative to small systems.

3. L* should run much faster thap L*(G) on the PDP=10 {(at least 10
times faster).

4. A single L¥ processor must support up to 20-30 simultaneous L¥*
users in a time-sharing mode with an allocated memory of 64k -~
1024 k words,

5. An L* processor should be inexpensive and simple to construet
‘reiative to the cost (fv$lﬂ7) of the C,al large memory resources.
Subsequent L* hardware processors should be posgsible in the same
fashion as software versions are possible.

6. The L* processor should not be so complex that reliability is low.

7. The final desipgn and building of the L* proceséor system must be

done in parallel with the rest of C.ai.

-3 -

In connection with constraint 1, we had first to decide what it meant
to build an L% computer. The L* philoscophy originally addressed building
systems on 4 given powerful machine (e.g. PDP-10) which has high level
capabilities already built into the instruction set. The decision we
made was to design toward a very fast low level instruction set, and then
allow more powerful capabilities to be built along with the growth of the
rest of an L¥* system. This basic appreoach is compatible with the hardware
technology (i.e. microprogramming). For example, floating point and byte
manipulation ecapabilitiesz will have to be coded in the low-level machine
code of the L* processor.

Within this idea for growth of high-level capabilities lurks the
danger that certajn desired advanced capabilities will be very difficult
to grow or will be grossly inefficient as compared te an equivalent hardware
implementation. Of course, this dapger, if it is relatively insigqificant as
we suspect, is favorably balanced by the freedom of the user to specify
the high level operations himself.

We will not state the effect each of the constraints had on the
design of the L* processor, but many such effects will be cbvious as we

degcribe the design.

-4 -
3. OVERVIEW OF P.L*

A PMS diagram (Figure 3.1) shows the overall structure of the L*
processor and its connection to the remainder of C.ai. 1In this section we
will give only a short description of the function of each component,

Later sections will describe them in more detail.

At the heart of the system is the part we call the L* central processor
(Pc.L*), The single L* user sees Pc,L* as the processor on which he is
running.

Between Pc.L®* and the large C.,ai memory are a simple address trans-
lation control and two cache memories of about 2-4k words each, containing
images of parts of the large C.ai memory. One of the caches (the code cache)
is used essentially as a read-only memory to hold machine code instructions.
The second cache (the data cache) is explicitly accessed by the machine code
instructions to read and write L* data types. L#* program lists appear as
data to the progzram list interpreter executing in machine code, Students
of microprogramming may choose to think of the machine code part as micro-
code -- 1in essence it is, because it is fairly inefficient, unencoded, and
operates directly on the remaining hardware parts of the processor (e.g.,
registers). The address translation control of P,L* uses a single segment
relocation register and a segment protection register to maﬁ the 64k segments
of a single L* user's virtual address space into a particular subset of the
64k segments allocated to P.L¥ by C.ai. The operation of the caches and the
address translation control is transparent to the L* user, who sees a uniform
virtual memory containing both instructions and data.

The overall control for running multiple users on the L* processor is
with the éontrol computer, Ck. Ck has direct access to all the internal
working of Pc.L*, the two cache controllers, and the address translation mecha-

nism of P,L*. This enables it to act as a time-sharing monitor for Pc.L¥,

~ha-

| Mp)C.ai)

C.al memory port /\$

| KE{address translatiom

Pl(mini) et

[

P

_ 1 c

Mcache K{code cacl'_le).i J Mcache K(data cache} Mpk(Mp for Ck)

e e e - —- K{context swap)

— T(console) I——"

~— o

T Pe.L¥ “iT{local I/U)__B

e =

7

(link for interprocessor
communication

Figure 3.1: PMS of P.L* Overzll Structure

-5~

4. Pc.L* HARDWARE

Figure 4.1 shows a PMS diagram of Pc.L*. At this level of detail,

we see that Pc.L* consists of three parts: the local registers, the

instruction control (which handies the main flow of instruction interpre-

tation and execution), and the stack control (an adjunct for machine code

subroutine linkage which maintains a pushdown stack in

struction execution).

parallel with in-

Supplementary descriptions of Pc.L* are provided in Appendices 1 and

Z2: The ISP description in Appendix 1 is an attempt to
operation of Pc.L¥* in considerable detail, and as such
of this paper. The description's principal failing is
of representing the interaction of parailel activities

way (e.g., how the stack controller interacts with the

describe the

is the real heart
the difficulty

in a transparent

control of in-

struction execution). To display clearly the parallelism of control

flow, in Appendix 2 we have adopted a two-dimensional notation borrowed

from Register Transfer Module descriptions.

L{code bus)

L{data bus)

Kf{stack control)

Mr{local registers)

]

Kf{instruction control)

Figure 4,13 PMS of Pec,L*

-6~

INSTRUCTION CONTROL

Figure 4.2 showé tha local registers in their separate identities
and their interconnections via the functfon unit, along with the various
control connections providing for imstruction interpretation and execu-
tion control.

The local registers contain all processor status information pertinent
to a single L* user, which means that & swap of the local register con-
tents is sufficient to change the context of Pc.L* to a different L*
uger job, The loecal registers appear as the first 128 words of the L*
user's address aspace, The remainder, up to 224 words, comes via the
cache and address translation control from a part of the large C.ai
MEemnoTy .

The details of instruction execution are controlled fairly directly
from the fields of a 48-bit doubleword instruction. The wide instruction
provides direct control over the various substages of instructiomn execu-
tion at a very low level. This makes the instruction set look like a
microcode instruction set, and in fact, one way to view the L* processor
is as a flexible microcoded processor. However, we will continue to
view it as a very fast machine with a simple, low level machine code,

The choice of the particular instruction set is based on some sample
coding of small parts of the L* kernel. It is to be expected that numerous
minor additions and alterations (and possibly some major ones) would take
place before final freezing of a design.

It is crucial (for reasons of accessibility of machine code by the
L* user) that machine code have the same general format as all other

words in the L* user's address space. Thus, machine code instructions

- 6a.

L{cad

=088 | L

- ._-iy-fré) Jb'_'* ---- - L

S(sfurc)
|

S{LRsa)

['D(function unit) \ 1

+5(LRd)~=~S(LRda) ~t+—

e bus; address part)

L{code bus; data part)

(data busj address part)

{data bus; data part)

| M(TD2)

éuntrol lines

[Tt —

!)
[3
i]

-— -

~A J"‘h
!
1

A e B GV e i
th&)——¢lm*#={EE§::____”__}

K(instruction control)

m—ufﬁﬁﬁﬁfft‘

e —————

t——a M(NC2) =

‘M.stack(ST,SP,SH,5L)

‘ M(Register Array[0:1111)

Notez: Switches (5's) are labeled by the imstruction fields that control

them.

Note: The terms used in this figure are explained in Appendix 1.

Figure 4.,2: PMS for Instructiom Gontrol

are pairs of words, and the address of each word has a type aAssociated
with it just as does any other address in the user's address space,
(The type system is explained on p. 16).

Using a one instruction look-ahead scheme (2lso operating in parallel
with execution), an instruction is fetched from the code cache according
to the address in local register PC/Program Counter and read into local i
registers NCl and NCZ2 (the Next Command registers). From there (except
for the special case of a control branch) the instruction is transferred
into local registers Cl and C2 where it is executed, See Appendix 2
for the control flow of the instruction interpretation process.

The most basic part of instruction execution is the register transfer
process via the function unit. There are two inputs to the function unit,
plus the specification of which function of its two inputs it 1= to perfomrm.
One of the inputs can be any one of the local registers (selected by the
LRsa/Local-Register-source-address field), The second input is the
local register T for normal mode instructions; in an immediate mode in-
struction the second input is local register C? (i.e., the second word
of the current instruction), Output from the function unit consists of
a result with result condition bits, The condition bits reside in the
local (status) register § and can be set according to the current function
unit result. The result itself can be sent te any or all of the local
fegisters PC/Program Counter, BA/Bus Address and T/Tempnrary. In in-
structions which are not immediate-mode, the result can also be sent to

the local register selected by the LRda/Local—Register+de3tinﬂtiun-

address field.

Next 1in the instruction execution procegs come the conditional gpecial
actions. The condition bits in an instruction specify a certain function
of selected status bits in the status (8) register. If the function value is
true, all the special actions specified by the bits in the special action
field are performed. Exampleg of special actions are: interrupt Ck, and
gkip next ingtruction, etc. All of the condition bitg but one are used to select
particular status bits in the 8§ register. The remaining bit specifieg
whether one of the selected status bits = 1 is sufficient to trigger the
special actions, or all of the selected status bits must ke 1 before the

special actiong are taken,

A third part of the instruction execution consists of the external
function control; e.g. read/write/pauge functicong for memory. Read or write
operationsg use local register BA as the bus address register, and local regis-
ters TDl, SD1, TD2 and SD2 as the data registers. These coperations, resulting
in main memory accessges, are initiated after the register transfer for the
current instruction has been completed. The pause bit causes execution of
the current instruction to be delayed until an active read or Write opera-
tion, gtarted in some previous instructicn, has been completed.

There 1s one last thing that happens during instruction execution if
the local register 8T (stack top) was selected as the source or destination
of the register transfer: the stack controller is initiated. Once initiated,
the stack controller proceeds, 1in parallel with continued instruction inter-
pretation, to initiate the memory read or write operaticon and do the
stack pointer manipulation necesgary to complete the push or pop of the
gtack. The operation of the stack controller will be discussed in more

detail below.

STACK CONTROL

Figure 4.3 is a PMS diagram of the stack contreller and its related
local registers and bus connecticns.

The stack controller is started into action by the appearance of the
local register ST as the source (indicating a pop) or the destination
(indicaring a push) of 2 register transfer.

The particular format chosen for the stack is such that leecal register
ST holds the top element on the stack, but the top element also appears at
the top of the array forming the stack in main memory, This means that the
instruction control need not wait for a main memory operation for either a
push or a pop, and may continue with subsequent instructions while the
stack control takes charge of completing the stack operation. Of course,
the instruction control will have to wait if the stack control is still
completing the previous stack operation,

When the stack control is initiated, it first increments (for 2 push)
or decrements (for a pop) the main mewmory stack pointer (local reglster SP}.
It then borrows comirol of the data bus from the instruection control (which

hopefully wasn't needing it anyway just then) to write from ST intc main

L(daca st} M(5T/stack top)

M{SP/stack pointer)

]
I
}
|
!
: M(SH/stack high boundary)
{

i K{stack contxol) M(SL/stack low boundary)

M{S fstatus)

Figure 4.3: PMS for Stack Control

-10-

memory (push), or read into ST from main memory (pop).

Overflow and underflow detection are done one step ahead of the actual
error condition by comparisons of SP with the stack low boundary register
(SL) or the stack high boundary register (SH). The two conditions posted
in the status register (S) are: (1) overflow will occur on next push and
(2) underflow will occur on next pop. Thus, a stack operation can always
immediately proceed if the appropriate condition bit in S is not on, and
rechecking of the boundaries for the benefit of the next stack operation
can proceed in parallel with the current one.

An alternate stack scheme was considered briefly which had several
stack top registers, and which allowed these to exist in an "empty" state (similiar
to the Burroughs B5500. Although it is a more complicated scheme to control,
it would do better for a push-pop mixture which stays within several levels
since no main memory operétiong would be required. However, we felt that
more than just two or three stack top registers would be required to have
significant benefits for the L* kernel. Also, the scheme does not take
advantage of idle time of the data bus and the fact that the stack has a
high probability of residing in the cache. Even with these considerations,
we would not want to make a final decision on a stack algorithm without an

actual simulation of the system running typical L* programs.

-1}~

POSSIBILITIES FOR OTHER SPECIAL HARDWARE

One of the bottlenecks in the system as currently conceived, is the
high frequency of allocating and returning available space for the W cells,
mainly W, WHS and WHN. In fact, many of the kernel processes would reduce
to one or two instructions if it were not for the necessity of obtaining

inputs from and returning outputs to the operand stack W (operations which

often require allocating and deallocating cells from available spacel: To
help here, we might add special control which essentially buffers the un-
linking and linking of available space cells, allowing instruction inter-
pretation to proceed in parallel. We might also consider a mechanism which
anticipates a space-exhausted condition and allocates additional bulk
available space in parallel with program execution. (This latter would be
difficult if we allow, as In conventional L* implementations, the space
exhausted condition to be hamdled by an arbitrary L* program).

Another possibility for further specialization of hardware would be to
transfer some of the machine«coded L* kernel into hardware. This we have
avoided in order not to bind the processor to conventions that

a particular L* user might want to modify to suit his own needs,

~12-

5. Ck AND CONTROL OF P.L*

The purpose of the contrel computer is fo allow each L¥* user to gain
complete access to Pc.L*¥, To accomplish this, Ck provides the functions of
typical time~sharing monitors. It controls memory (both primary and secondary),
scheduies, swaps user contexts, communicates with other special processors and
with AMDOS (the operating system for C,ai), and handles local I/0 devices (if
any)., The PM5 diagram showing the control computer as part of the whole
P.L* system was presented in Figure 3.1, This section describes how the

components of Ck provide the specified funetions.

Primary memory management is accomplished by Ck communication with
AMDS and by Ck control of K(address translation). The address translation is done
by single segment relocation and segment protection registers which can be
set by G<, A segment is a number of contiguous 64k blocks,
obtained from AMOS., The function of shuffling which is normally provided by
a segment-oriented time-sharing monitor is accomplished by Ck by requesting
AMOS to rearrange or shuffle P,L*'s memory mapping registers, To provide
more than 128 64k blocks, Ck will make use of AMOS's swapping mechanisms.
A single user is, of course, limited to 128 blocks. A single user can
increase or decrease his allocation by requests to Ck. These requests are
honored by Ck requests to AMOS for new allocations. Thus all primary memory
management (allocation, swapping, shuffling, and segment relocatiom) is
accomplished by either communication with AMOS or by control of K(address
translation).
Secondary memory management (for file storage) is handled by Ck which
in turn communicates with AMOS to have the transfers actually performed.
Scheduling of users for P,L¥* is not difficult because all I/0 is done through

Ck ?{i.e., Ck does all interrupt handling). There are only two requirements:

-13-

(1} Ck wmust have a eclock; and (2) eommunication from Pe.l* to Ck must have the side-
effect of turning PC.L%'s run flag off. Existing scheduling algorithms shouid
work nicely, The PDP-10 DEC monitor has an adequate algorithm for scheduling
and could be used by Ck with only minor modifications.

Swapping user contexts is accomplished by Ck control of K{context swap).
The context swap contrpller will transfer the current local register array to
the primary memoxy of the current user. It will then mark the two caches
(data and code) as empty. This has the side-effect of causing the data cache
to write out any changed words not previousily written, Ck can now change the
segment relocation and protection registers. Ok now causes K{context swap) to
read in the new user's copy of the local register array., When K{data cache) and
K(context swap) have completed their work, the swap can be considered complete
and Clk can turn Pe.l#'s run flap on,

Communication with other special processors and with AMDS is provided
for by connecting Ck's bus to the C.ai inter-processor trunk_hus. Protocols
for this communication hawve not been established; buk they should be simple,

Local L/0 device handling presents no real problems, Leocal devices cam
be attached to Ck if needed. I/0 operations through Ck can be handled ip much
the same way as UUQ's on the POP-10, |

Gommunication between Pc.L* and Ck is accomplished by dedicating a
pertion (~10 words} of Mr{local registers) for a communications area. Pc.L*¥
will have the ability to interrupt Ck with the side-sffect of turning Pc,L#'s
run flag off. Ck can interrupt Pe,L¥® at any time because It can set and reset
Pc.L*'s run flag.

Considering the functions.ck wmust provide, we feel that a mini-computer

with a good interrupt structure such as the DEC PDP-11 would be adequate.

-14-

The hardware we would add to the PDP-ll ~- K{context swap), K(address tramnslation),
a clock, local 1/0, C.,al bus, Mr(local registers) -- could almost all be added
directly through the Unibus. Some hardware modification might be desirable.

For instance, the trap vectoer for communications between Pc.L* and Ck should
probably be augmented with a contrel that causes a trap through a branch table
with the contents of the first word of the communications area as an index. More

hardware to speed up critical sections can probably be shown to be worthwhile,

-15-

6. THE L¥* KERNEL FOR P,L%*

The basic approach in our design of an L* machine has been to take
an L* kernel like the ones that currently exist on the PDP=10 and PDP~1l and
implement it on a much faster, simpler processor of our own design. There was
no radical redesign of the L* kernel itself because its structure is largely
independent of the machipe on which it is to run. A principal reason for this
independence is the fact that the kernel supplies initial data types and
operations which are‘so basie that they very likely already exist on any given
computer, or can be very simply composed from existing facilities.

That is, almost all computers of interest to us ("general purpose
computers") have add instructions, logical operations, move instructions to
manipulate simple list structures, etc.

The simple, low.level nature of the facilities in our L* processor
(with a very few exceptions, such as a stack mechanism} are a result of the
fact that L* is not a single specific language system, but a base from which
it should be possible to grow many different systems. Thus, we have nothing
on which to base an a priori selection of more powerful facilities to be built
into the hardware. Instead, we are willing to grow more advanced facilities as
needed, from within the system, in the form of sequences 6f the given low-level
facilities, That is, we will add new "instructions" to our machine by writing
"microprograms' for them.

The L¥ kernel for our L% machine is not exactly like any of the L#
systems on the PDP-10 or FDP-1], since we were able to remove some constraints
forced by those machines. Thus, for example,we are able to have a unique
changeable type for each symbol. This type scheme was used in L*(F), but was

abandened on going to L¥(G) in favor of a more rigid but far less space-costly

scheme.

~16-

We will proceed by enumerating and briefly describing a few of the more

important ways the L* kernel was adapted to run on the above L* processor.

TYPE SYSTEM

24

The L* user sees a uniform virtual address space of up to 2 24 bit
waordg. Each address has a separate tCype associated with it, which c¢an be
changed at will. The tvypes are repregsented by small integers from the get
{1,3,5,...,511}, giving a maximum of 256 types. These small integers are
called type indexes because they are used to index into a type table which
containg a Uoubleword entry (head of a list) for each type currently in use.
The type index is actually stored (shifted right one binary position) in the
high order 8 bits of a physical 32-bit word, although this fact is transparent
to the user. To the L* user, the tvpes appear to be "abstract” entities
since they are not stored anywhere in the memory space he sees. The limit
on the number of types impeosed by the 8-bit type field may eventually be a
problem, for example, 1f we go from a simple type system to a hierarchical
one. Whereas the simple type scheme allows 256 different types, a four-
level hierarchical scheme might allow only, =ay, four alternatives at each of

four levels.

OPERAND COMMUNICATION

Kernel procesgssgses are written to deal directly with the L* operand
stack (list) W. In the PDE-10 and PDP-11 versions of L*, W was used to
communicate operands only in the context of the interpretation of a program
list. For execution of kernel processes from machine code (e.g., other kernel
processes or compilled code), operand communication through W was toc slow,

s0 general registers were used instead. This was implemented by kernel

-17-

machine code routines called prefixes which transferred process inputs from W
to general registers and outputs from the registers back to W when in the
context of program list interpretation. In the C.ai L* kernel we are committing
ourselves to the belief that we can now afford to use W for operand communication
not only in program list context, but also in the low-level machine code context.
This decision provides a considerable reduction in complexity since it
rempves the legical need for process prefixes. A disadvantage of the decision
is that some special kernel processes which for one reason or another cannot
use W for operand communication must have special conventions, effectively
making them noneaccessible from program list context. Two prime examples are
'C/L and E/L which are used for allocating and returning available space for the

working lists (including W itself),

PROCESS PREFIXES

In the section above on types we explained why process prefixes are no
longer logically required. Nevertheless, we do have process prefixecs
because many of the kernel processes do such a small amount of processing
(e.z., "add two numbers") that a very large percentage of the machine code for
the procesees 1s used for the manipulation of W to obtaiﬁ inputs and store
outputs., By defining several prefixes, we have subroutinized the operand
communication. We have not, however, gone all the way to a scheme where 'all
the inputs are transferred to registers, because that loses enough efficiency
to outweigh itsbenefits (we think). The definition of the prefix routines is as
follows:

The prefix routines receive a nonestandard input (in some
register) which is the address of the main part of the process to be

executed (i.e., the part divorced from manipulation of W),

PO1:

Pl0:

Pll:

Pl2:

P20z

P2l:

P22:

P1:

-18-

Prefix routine for nc inputs and 1 output.
Operation: Push W, then branch to main part of process (process stem).
For 1 imput and no outputs,

Operation: Pop input W{0) intc local register R1l, return working
cell to available space, then branch to process them.

For 1 input and 1 output,

Operation: Mothing. (Possibly Pll will be non-existent).
For 1 input and 2 outputs.

Operation: Same as POl.

For 2 inputs and no output,

Operation: Pop W(0) into Rl, W(l) into R2, return both working
cells to available space, then branch te stem.

For Z inputs and 1 output.

Operation: Pop W(l) into RZ (leaving W(0} in W), return cell
to available space, then branch to stem.

For 2 inputs and 2 outputs,
QOperation: Nothing. {Possibly P22 will be non-existent).
For 3 inputs, 1 output

Operation: Pop W(l) into R2, W{(2) into R3 (leaving W(0)} in W),
return two cells to available space, then branch to stem.

SPECTAL WORKING CELLS

Some selected W cells plus some temporary working cells have very

special status by wvirtue of residing in the local register array. These cells

are the ones that can be directly addressed in the register transfer operations

of the machine code. However, in order not to let this fact limit accessibility

to these cells, we map the 128 local registemsinto the first 128 locations in

the main address space. This allows the L* user to access them via the data bus

in the same way as all the non-special cells residing in main memory.

-19-

THE CODE AND DATA CACHES

The speed of cache operation is so critical that we are virtually
forced to hardwire the cache algorithm, thus depriving the L* user con-
trol over its operation. However, the L* user must be aware of the caches
since their performance can drastically affect execution speed.

The code cache is the more critical of the two caches since accesses
are made every instruction cycle. We would hope to choose a size for the
code cache that would virtually ensure that all active code can reside in
the cache at once. We are tacitly assuming (without real justification as
vet) that it will not be necessary for L* users to compile many high-level
programs into machine code, since such a strategy would be heavily penal-
ized, The code cache size should be large enough to hold the entire L¥*
kernel (~1 K of 48 bit words), plus a reasonable amount of extra space
(like a factor of 4) for additional primitives coded by the L* user.

Since the two independent caches both hold images from the same ad-
dress space, there is the commonly known problem of double images. That
is, a user may have altered in the data cache a section of code whose old
version is still held in the code cache. This is not.actually a serious
problem since it should happen relatively infrequently, and in any case
any inconsistency will last only to the end of the user's current time
slice, We have decided against a solution at the hardware level, so it

will be a case of "user beware.,'"

-20-

INCREASED COMPLEXITY OF KERNEL CODE

In our quest for increased speed we have been forced to design an
instruction set processor which operates ar a lower level and has more
direct control over the memory than a machine 1ike the PDP-10, We also
have been forced to include in the design operations which proceed in
parallel with instruction interpretation, such as the stack control and
m&in memory read/write operations. A result of all this 1s that in
comparison with conventional L* systems, machine code instructions are
larger and more complex, and a great deal of thought must be given to
synchronizing the parallel operations and cptimizing the degree of over-
lap. Thus, we will probably end up with a kernel which i3 not nearly
as simple and easily understandable as conventional versions, and this
runs counter to the L* design philosophy. It remains to be seen just

how serious the consequences of this will be.

PERFORMANCE

In order to get a rough estimate of speed and code density for our
L* processor, we selected six interesting sections frém the L* kernel.
We compared the coding for these with the equivalent PDP-10 code taken
from version 21 of the L*(G) kernmel, The details of these comparisons
are presented in Appendix 3.

To summarize the results of the comparisons, we found (somewhat
surprisingly) that code density for the Pc.L* is roughly comparable to
that for L*(G) on the PDP-10. Code density on a PDP-11 is twice that of

a PDP-10, Execution speed for Pc.Ll¥* is between 40 and 75 times faster

-21-

than L*(G) under ideal cache conditions, Under worat conditions (i.e.,
no hits in either cache), execution speed for Pc.l* degrades to around
10 times faster tham L*(G). We believe that, with good organization of

data and code, close to ideal cache conditions can be maintained,

29-

REFERENCES

Bell, C, G., et al., "C.ai: A Computing Environment for AI Research."

Carnpegie-Mellon University, Gomputer Scilence Pepartment, .
April, 1971,

Newell, A., P. Freeman, D, McCracken, and G. Robertson, "The Kernel
Approach to Building Software Systems,' to appear in the Computer Secience
Research Review, Carnegie-Mellon University, 1971,

Newell, A., D. McCracken, G. Robertson, and L, DeBenedetti, "L*(F)
Reference Manual," Garnegie~Mellon University, Computer Science Department,
Jan. 1971.

Bell, C.G, and A. Newell, Gomputer Structures, McGraw-Hill, 1971,

al.1

Appendix 1 - ISP DESCRIPTION OF Pc.L¥

The coperaticn of the twe caches is not described in the ISP.

A reference to maln memory using PC (e.g. M[PC]) 18 to be understood

as a reference teo the code cache, and a reference uging BA or SP 1is

actually a reference t6 the data cache.

IZT ©F §7 TASIETHST TES0T IEENE D] 4] =3 (Lzi oLl
183 =3 [sL}¥1

HSa =: Lht18T

451 =3 LELIET

183 =3 {ZL14T

ZoNa =3 [LL18T

LONA = (01191

rga k! =t (6141

Lox =12 {g)at

Zosa =1 [£187

zara =3 (91 et

$383 =1 (6181

{dl3 = [H1]

L3 =t tE181

51 =: (2181

T I5TJSTEST TE50T 241 =3 [L141

~ T 1535655 1507 Vgl = (081
< LITPURSH RST §5UI% <liin»Isd
ficpansyg UbTo 0T3S <L£:i02HE
I53AI6I §BEIS <LE: (IS

g6T Y5TIT <LEIQ»ISA

7 JI9IZTBET pueltnl JXOR CLETOPIINT

T 15531531 §OCEESS JE5N <lEC»LOND

7 15571651 PUTHIOS <LE LT

T I535TG31 pUTUUSS <{£i0>101

7 ISTSTGSY ©38] TOQUAT <LEs4> 2083

7 ISHETBERT IO S4K] <LEZO>ZALI

T IS73TE5Y ©Yed TOQUAT <LESC>1LU53

t ISI5IBST vyeq Bd1Y CLEIQ»LOLT
TINZUT GAY XITIGAOST <LEIG>1A
ISTETHEY SNTEIS <LEIQ»S8T

I1350N55 HIBCIT SPOSSIDTT <LE 10»Ddaa
I5ISTH5Y ES3APPY =g <LE:0>YHa
SHTAT AX0EST KITPHTIT SATIDBIID [L0988€83n91dUH o T =@ <LEIOD(SLTLLLILIDIN

s5vds I3TSTHST TEOOT SRTIDIIIS
ATIIC ISISTLSI TESOT
TvINYY XZICEST ZITWTIT SHATY

CLEO>LLTL 0T8T
<tETO>LLbireIvd
<E9IC>{LO988ERIQ) AR

5303% 33 puE dp

Al,.3

TeusTs

TY55 TTULT® I8 FX3U

BYGYTT TIUT FYSTIOSS J7I JUSIAINS
3T§EY B5di7 ISISTIAISTUY FUSIAND
BTGET S8%7 TESTAE TUSTIOD

X550 SUTIRSY ISQETY

TOQEAE SUTINSY ISULTYH

RS0 3TTINGI FJUSIIOS

TOQUAE SUTINGT JUSIIOS

Y5835 EIEE »T IO TOGUAS
g5%35 TIEP T IO IYSU

EISISTESY
Ayessadny

SABYETEAT
RUSTHREYE

<LefB>[eF)UT
CLEfB>I[8E£1ET
CLEFB>ILEIYT

<hetg>{oL)et

SLE:@>»[SE)ET
<LEig>Inglal
CSLESE>[EEYYT
<LEsg>[ZE181
CLECB>ILEYHET
<lEsg>loelnd
<le:gr[aZ)HT
<be:8>[BE)IHT
<LETB>(L2181
CLEEB>[OEYHET
<LESH»{GZ1H1
<LEz8>[nZ1NT
<LEfg>lECYINT
<LEfg>»(zeldt
<LEsg>»[LZ181
<LETGE>[37T141
<LE*e>[6llyt
<LE*B>iuLidl
<LE*B>{LLINYT
<it-g>f9lld1l

<ie-g>151
<Lf+8>HE51
<Le:g2d52
CLESB>L52
CLEEOZON2
<Le*g>LONH3
<lLEFg>ZOI
<LEsE>LO4
<lE:B>ZASE
<LEG>TILA
CLEsB>LOST
<LEG>LALE
<LEIG>LT
<LE-8>51
<LE:8>2da
<LE:@>YET

(LI I IO | | S /DO N 1 Y O Y (|
*E B4 ar P4 At aF A M ST PF OBF BN 4y NT FE RF O HE gy SR BT PR WP WY

t

LI T 1 O IO | OO I O | IO
W4 A wE an BE ME AR BE B g gy g R pe Re Ba

515
<ET:0>S"¢CA
CEZTO>N'SH

SETFOPS"ITATIAN
<EZOXNTLIGIM
CETEO>5TILIN
<EZTLO>N'ISIN
CEZ+*0>5°LLASA
<ECIO>N"IIJSA
<EZI>S5 *NHA
<ECEOAN "KHA
<EZC>S "SHe
LETFO>H"SHN
<ET Q>SS "KXEM
<EZI0>K 'HXh
<LETE0>E "S XN
CETIODH'SXAM
CEZIU5 "M
CETFUDN ‘A
<EC:CrEl
<EZ:0>TL
<ECT20>id
<EE:(0>EE
<€T:({>Z%
<ET:0>Ld

CELE0>18
<t ¢ O>HS
<EE1C>dS
€EZ 218
<ETEIHZON
<ETEO>LON
CETL0>ED
<EZE0>LO
<ET 3 0>20S
<ETEI0>ZAL
<E£Z-0>L0QE
<ET:O>LAL
<ETEOML
<EZ0>8
<t&i0>2d
<EZ:o>Nd

Al.4

USTISNITSUY FUSTIONS IO
ITONS5T JIOR GOTIONRY

a5 SUSTIICUSS
dsa IR0 U0 ROTJISDUA J5EIS
US0y IX5T U5 RG1IISES YOPIS
SE5I5638 UT U5TIFISIS SITIR BIED
3536538 UT USTITISAS PE5Y BIED
F33Teq750TAANY ICES5361d

<tL>S
<PL>S
<6>5
<t>§
<L>5
<9>5
<438
<8>S
<E>S
<Z>8
<i>5
<{(>S

LI T < T T LT T | O SO [[|
a% &% g8 B9 ep 40 R S0 A4 4P g B

aqoss3senbea sngT1o13u00 "y oRYS
gos/AsSngTTO0IJUOD Y OE]S
JuT/393nduod” 1033u0073dnI1 83U
0InI/M0TJIAa0 3 T0SSI” 3 TUL_ UOT JOUN]T
uinjsoatiebsuT3nsea " jTUun " UHOToUL]
dinjsoat3Tsod 3 ThuSed” 3 TUN LOT JUL]
Zinj/030z731nsea"3TunTuoOTIoOUN]
UOGS/A0T F1BpUNT j0B3S

AOS/ROT3IIBA0 jOELS
dimpssssaboadur " ay3tan"eyep
diarsss»aboad ur pesa~ejep

uny

JETIST ISTSTHSY sNielS

http://PI.PI

Instryction Format

instruction_word_1/i1< 723> := C1
instruction_word_2/i2¢):23> :=x C2
mode/m = 11<0> ngrmal of inmediate mode
irmediate_mode/inode = {(mode=1)
read_vwrite_pause/rwp<d:ui> = 11<3: 7>
pause_bitsp t= rcwp<id>
read_bit/rd 1= Twp<si>
write_symbol_bit/vrs 1= CWup<2>
write_type_bit/wrt t= rwp<i>

read_write_single_donble_bit/rwsd := Tup<u>

function_unit_function/fuf<f:3> = i1<8: 11>

i

parallel _destinaticn/pd<d: > i1<123 15>

PC_destipation/PCd := pd<O>

BA_Adestipation/tAd := pdL1>

T_destinations/T4 1= pd<2>

Local_Register_destination/LRd := pd<3>
set_function_unit_ctesult_conditions/sfurc += 11<16>
Local_Register_source_address/IRsa<0:6> = L1<€17:23>

local .Register_destination_address/LRda<d:6> 1= i2<0:6>

condition_bits/c<0:8> = 12<7:15>
conditions_pmodes/cmode ¥ c<0>»
condition_zero/cz 1= c<1i>
condition_positivescp 1= <>
condition_negativesen = c<3>»
condition_averflow/co 1= c<i>»
special_actioun_bits/sa<0: 7> ix i2<€16323>
special action_skip/sas 1= sadi>
special_action_tun_off/saro := sa»
special_ action_ipterruopt_ccotrol computec/saint := sa<d2>

irprediate_data/id<2: 23> = J2<0:23>

special Action Conditions

special_action_condition_0U/sach
special_action_condition_1/sac?
svecial _action_condition/sac

Fupction Upit Fupcticon Cefinition

x1 fu x2 = |

(fuf=0}
{fuf=1}
{fuf=23
{fuf=3)
{fuf=4)
{(fuf=5)
{fuf=4)
(fuf=7T)
{fn f=12}
(Fuf=9}
(fuf=10}
{fuf=11)
{fuf=12)
(fuf=13)
}

Functiop Unit Besult Caliculation

fu_resultsfur<l}:i3> := (~ inode - (T fu LRILFsal<8:31>);
ipode - {id fu LR[LEsal<8:31>))

4

S T T Y R T A A I

0 ;
x1
x2
xZ
x2
~ X
Xz
x1
x1
x1
x2
X2
x2
x2

LR L R R TR R

2 (legicalt
2 flogicall
13
2
X2
X2
256 {logical}l
25% {logical}
2 -

TR T L]
LR T

=
LT |

(~cmode a ({czafurz)vicpafurplvicnafuarnlviccafurold)
{cmode A {(cz>furz) A {cp>furp} A (cn=2furn}) a {(co=furol)
{sac v sacl)

=+ W

9°1v

Function to indicate sypchrepizaticon of parallel activity

Pause_until(b) := (~ b = Pause_until(h))

Beads¥rite Functions

Pause_until({~{drig Vv dwip))
Pause_until(~(drip Vv dwip V scbe))

CWpause
bus_free_pause

[} I T

1]
o~

TLI1<153:22> =~ M{BAY<CCT7> ;
TD1<CT 214> « 2+ ID1<23> - 1
SEY1 « MIBAYCB: 41>)

read_sinqgle H

-l

read_single :

THz<15:220 +~ MIRA#T]L0:T
TD2<) 21U « 7 + ID2<23> =
STZ +~ MIDBA+1)<3231> 2

[
1]
.

read _douhile

—
L1}

MIEAR)<B=31> « L1)

(]

Write_symbol _single

[t}

write_symbol_sinale ;
MI{EA+1]1<E:31> » 35D2

write_symbol_double :

write_sywrnhol_sinqle ;
MIBA)<CS: 7> « TR1C15:22>)

2]
[}
A

write_toth_single

(1]
]
-

write both_double write_both_single :
MIPA+1]<R:31> - SD2 ;

MIBA+1]<) 27> « TD2<CT1R:22>)

Instruction lIntecpretation Progess

cun = ((C10C2 ~ NC1eN2Z2 ; PC<0:22> « PC<0:22»+1 : Next
P ~ rwpause; Next instruction_execution);
NCl1aXC2 ~ MIPCI<B8:31>aM[PC+11<R: 31> ; Next
(PCdv(sacasas)) « (NC1oNC2 « MI{PCI<B:31>aM{PC+11<8:31>
PC<G322> = PCLC:22> + 1 ; Next)

Instruction Execution Process

instruction_execution := (

rCcd - PBPC -« fur ;
3ad - BA -« fur ;
Td = T =« fur ;
~ imode - (LR4d - LRILRAaJ<B:31> + fur);
{LPsa = 12) = | Pause_until(~sch); Next
sck -« 1 ;
sun - trap(?); Next
sov = 0 ;
pop_stack ; Next
sch -« 0) ;
~imode A (LRda = 1) - (Pause_until{(~sch); Next
sctk - 1 ;
sov - trap(?); Next
sun - 0 ;
push_stack ; Next
sch « 0)
sfurc -~ ((fur=0) - (furz - 1 ; furp = 0 ; furn « Q¢);
(furzd a ~fur<d>») - (furz « ¢ ; furp « 1
{(fur=l A fur<g>) - (furz « 0 ; furp « 0 ;
): Next

~ipode - {sac =~

(saro - run = C ;
saint - {run « 0 ; int « 1))}
}; Next
rd a ~rwsd - (bus_free_pause; Next drip
rd A rwsd - {bus_free_pause; Next drip
WLS A ~WLt A ~Twsd =~ {hbus_free_pause; Next dwip
WLS A ~Wrt A rwsd - (bus_free_pause; Next dwip
wrs A wrt A ~rwsd - (bus_free_pause; Next dwip
¥CS A wrt A rwsd - (bus_free_pause; Next dvip

I I B I O |

R e e e

pop stack operation

undecflow detection

push stack operatica

gverflow detection

g 1v

furn = 0):
furn ~ 1)

WwE WA Mg %E M Wy

read_single; Next drip = 0);
read_double; Next drip - 0);
write_symbol_single; Next dwip = 0)
write_symbol_double; Next dwip - 0)
write_both_single; Next dwip = 0);
write_both_double; Next dwip - 0);

push stack

rop_stack

(

SP - 8P » 1 ;

scbr ¢ 1 ;

rwpause ; Next

M [SPKS8: 31> «- ST ;
{sP > SH) - sgov =<-
r.cbr <- C)

sp - SpP - 1 ;

scbr o 1 ;

rwpaugse ; Next

5? - H[8P]<8:31> ;

(8P <« 3L)
scbr e 0

)

Sun e

1

1

i

i

Next

Next

A2.1

Appendix 2: CONTROL FLOW DIAGRAMS

I. Control Flow of Instruction Interpretation

-

<NCL O NC2)

ranch

\

K (NC1 O NC2 « M[Pc] O M BCH])

s(01 og2

KS(PC +« FC12)

G

pm

|

Ks(Instruction Execution)

K
pm

5T

_ Kdecision (PC-altered)
0 1 '

gbranch

K (NC1_O NG2 « M Pc] O M PCHLT) K_(PC « PCH2)

K
pm

Ksim.ple

il

pm — Kparallel merge

~
1

= K___.
sm serial merge

PC-altered $= PC-destination \/ (special-action-condition A special-action-skip)

A3.1

Appendix 3 = CODING COMPARISONS WITH L*(G)

On the following pages we display the code for six selected portions

of the L* kernel for both Pec,L* and PDP-10 L*(G).

Timing estimates for the code are listed to the left of each instruc-
tion (in units of microseconds). For the Pe.L* code, a second number within
parentheses indicates how much longer an instruction would be delayed if
the previous read or write operation was a cache miss.

The language used for the Pc.L* should be self-explanatory, except
perhaps for the use of square brackets. They are used to delimit immediate

cperands.,

The assumptions made in estimating timings for the Pc.L* code are:

A
(1) All instructions fetched by the instruction control are
present in the code cache.

{2) All references to the main memory stack are hits in the
data cache,

(3) A simple register transfer takes ~50 ns (e.g., move).

(4) A register transfer with a non-degenerate function-unit-
function takes ~l00Ons.

(5 A register transfer which alters PG, or a special action skip
adds ~50 ns,

{(6) A reference to the data cache takes ~50 ns if it is present
in the cache, and ~600 ns if it must be copied from main
memory,

I

11

II1

Vi

A3.2

Summary of Comparisons

(a) (b) (a) (b)
Time Estimate Time on No. of No. of
on Pc.L* PDP-10 48-bit 36-bit
L*(G)21 Pc.L¥ PDE-10
— R | —— 122 mpgtructions
Interpret=-Advance PRI NraaRe
cycle of program 1.05 12 17
list interpreter
ey u
Push W .65 8 10
Pop W .45 21 - 7 8
S (Get Symbol) .3 23 A 9
N (Get Next) .35 21 5 8
R (Raplace Symbol) 1.15 66 17 25

A3.3

I{a) Intefpret-Advance Cycle of Program List Interpreter (for Pc.L¥*)

Timing
Estimates

(usecs)

.05

. 05
.1 (.55)

.05

.05
1 (50)

.15

.2 (.55)

.05

.05

1.05 psec

(Heart of L*L Language Interpretation)

Pc.L* Instructions

Interpret:

Pause;

Pause;

Pause;

BA « WXS.S;Read

T « WIPTT.S
BA « T+TD1;Read

R1 « WXS.S

ST « PC
PC « SD1

« WXN.S-[STOP];
<. zero result> —
Skip

PC « [Exit]

BA « WXN.S5;Read Double

« SD1-[NIL]; -

<= zero result> —
Skip

PC « [Ascend]
WXS5.S « SD2

WXN.S « SDI

PC « [Interpret]

Comments
Read type index of symbol to be
interpreted into TD1.
Get base of interpreter type table.
Read interpreter intoc SD1.

Symbel to be interpreted to R1 as
input to interpreter,

Save return address on stack.
Branch to interpreter.

Skip next instruction if WXN,§ #
STOP

Go to exit from current context of
interpretation if WXN had STOP mark.
Read next program list cell.

Skip next instruction if link of
next cell is not NIL

Go to ascend if WXN.S.N=NIL.

Advance

"

Branch back to interpret cycle.

A3.4

;get symbol to interpret into Rl

;call routine to leoad type index

;get type map displacement
Jdocate tvpe map cntry

.return to interpreter

;get tvpe index from type map entry
.add base of intcrprcter tyvpc table
;get 1nterpreter from tvpe table

;get symbol to be 1nterpreted to Rl

,call intcrpreter

;get symbol in WXN to RS

itest for end-of-current-execution 1
:mark found, return to caller

;get next i WXN to RS

stest 1if WXNSN £ NIL (not end of |

list)
jend of list, ascend
:advance to

:next call on program list

Kb). Interpret-Advance Cvele (L*((3)21)

2.09 $.1.P1: MOWE RI, WXS
3.11 PUSH] MSTKP, LTI
2.77 LSH R1, -8
1.75 MOVEL RI1, TMAP (RI)
318 POPJ MSTKP,
2.71 HRRZ RIl. (RD
2.75 ADD R1, WIPTT
2.71 HRRZ R5, (RI)
2.09 MOVE RI. WXS
3.39 PUSHI MSTKP, (R3)
2,09 $§.1.P2: HRRZ. R3, WXN
1.79 CAIN R5, STOP

JRST $.1.P4
2.71 HIRZ R3, (WXN)
1.79 CAIN R5, NIL

JRST $.1.P3
2.85 HRR WXS, (WXN)
3.20 HLR WXN, (WXN)
1.47 JRST $.I.P1

42 usees

jbranch back to interpret

A3.5

Ii{a).

Pushing of W (for Pc.L*)

Pc.L* Instructions

Timing
Estimates
{(psecs)
.1 PushW:
.1 (.55) Pause;
.2 (.55) Pause;
.05
.05
.05
.05 (.45)
.05
.65 psec
.05 PopW:
o] (.55) Pause;
.05
.1
.05 (.55)
.05
.05 (.50)

45 usec

BA,T « WSPTT + [<type
index for T/L (type
list)>]; Read

BA,T1 « SD1; Read

«— SD1-[NIL];<— result
zero> — Skip

PC « [<space exhausted
code>]

BA « T; Write Symbol
SD1 « W.N
SD2 «W.S

BA « T1; Write Symbol
Double

W.N « T1

1I1(a).

Comments

Address of 1st cell on T/L av.sp.
list to SD1
Get link of lst av.sp. cell

Skip next instruction if space
not exhausted

Space exhausted-branch out to handle
condition

Unlink 1st cell

New cell gets copy of head of W

Link new cell to head of W

Yopping of W (for Pc.L*)

BA,T1 «W.N; Read
Double

W.N < sD1
W.S « 8D2

BA,T « WSPIT + [<type

- index for T/L>]; Read

BA « T1; Write Symbol

BA « T

SD1 « T1; Write Symbol

Read contents of 2nd cell on W

Copy contents of 2nd cell into
head cell

Address of lst T/L av.sp, cell
to SDI.

Link previous lst av,sp. cell to
cell to be returned.

Cell being returned becomes
1st av.sp. cell

A3.6

I1fb). Pushing of W (L*(G)21)

3.11 PushW: PUSHI MSTKP, %C.L scall routine to create T/L symbol
2,43 %C.L: HRRZ R53,WSPTT ;get current av.sp. type table
2.71 HERZ R1,STL(R5) ;get ptr. to av,sp. list for T/L
2.71 HL.RZ R4, {R1) iget link of first &v.sp. cell
1.79 CAIN R&4,NIL stest if av,sp. not exhausted

-- JRET &C.1 sjump out if exhausted

2. 71 HLRZ R&4, (R1) sget link to 2nd cell
3.29 HRRM R4, S$TL{RS) ;unlink allocated cell from av.sp. list
3,18 FOEJ MSTEP, ;return to PushW
2,86 MOVEM W, (R1) ;copy head of W into new cell
2,58 HRL. W,R1 slink new cell te head

——

~~28 psecs,

III(b)., Popping of W (L*(G)21)

2.09 PopW: HLRZ RI1,W ;get address of 2nd cell en W

2.71 MOVE W, (RD) ;eopy contents of 2pd cell into head cell
3.11 PUSHJ MSTKP,%E.L ;eall routine to erase old 2nd cell

2.43 %E.L: i -.HR;.ZH_ R:SH,I:T‘SPTT S iget current av.sp. type table

2.71 HRLZ R4, STL(RS) ;jget ptr. of av.sp. list to LB of R4

2.86 MOVEM R4, (R1) ;link av.sp. list to cell being returned
3.29 HRRM R1,5TL{R5) imake returped cell new head of av.sp. list
3.18 ‘ POPI MSTKP, sreturn from %E.L

~21 pEecs.

A3.?7

Timing Iv{(a). S - Get the symbol of W(0) (Set signal cell) (for Pc.L*)
Estimates
(usecs.) Pc.L* Instructions Comments
.05 St BA «W.3; Read Double Read symbol and mext of W(0).
.1 (.55) Pause; W.S « SD2 Symbol to W(0)
.05 W5.5 « 5D1 Next to signal cell
ol PC « ST Return to caller
.3 usecs

V(a). N - Get the next of W(0) (Set signal cell) (for Pc,L¥)

.09 N: | BA « W.S; Read Read next of W{(0). W(0).N)
o1 (.55) Pause; BA « SD1; Read Read W(0).N.N

.05 W.S « SD1 W(0) «W(0).N

.05 (.59) Pause; WS.S « SDI WS.S <« W(D).N.N

. PC « ST | Return to caller

«35 psecs

A3. B

IVi{b). 8 - Get symbol of W!G;. (Set signal cell) (L*{G)21)

1.47 5: JSP RG6,P11 ;call prefix routine for 1 inmput, 7 output
- o o processes

2.09 PT11: HRRZ ERI1,W sinput W{0} to R1

3,39 PUSHF MSTKP, (RE) ;call process stem

2.71 #s: HLRZ R2,(R1} 1R2 < W(0).N

2.71 HRRZ R, (R1} soutput W{0).S in RI

2.23 HRR WS,R2 ;set signal cell = W{0).H

3.18 POPJ MSTEP, ;return to P17 prefix routine

2.23 HRR W,R] joutput from R1 into W

3.18 POPY MSTKFP, ;return to caller of process

~ 23 psecs

V{b) . N - Get next of W(0). (Set signal cell) (L*(G)21)

1.47 N: JSP R6,P11 ;eall P17 prefix routine
2.09 P11: HRRZ RI1,W

3.39 PUSHI MSTKP, (R6)

2.71 €N: HLRZ RI1,(R1) soutput W(0),N in R1 -

a.20 HLR WS, (R1) ;set signal cell = W{0}.N.N
3.18 POPJ MSTKP, jreturn to P11

2,23 HRR W,R1

3.18 POPJ MSTKE,

~ 21 psecs

VI(a). R - Replace symbol of W{0) by W{1}. (for Pc.L%}

Timing
Estimates
{usecs) Pc.L¥* Instructions Comments
.05 R: T « [%R]
.1 PC « [P2D] Branch to prefix P20
P20: Prefix for routines with 2 inputs,
no outputs
.05 BAT] « W.N; Read Double Read Znd cell on W
.05 T} « T Save T (process stem addr.)
.05 R1 «W.S W{0} input to RI1

.05 (.50} Pause; BA,TZ « SD1; Read Double Read 3rd cell on W

05 R2 « SD2 W{1) input to R2
.05 (.55} Pause; W.N « SD1 Copy contents of 3rd W
.03 W.5 « 3sD2 Call into head cell of W
.1 BA,T « WSPIT + [<T/L Locate T/L av.sp. list
type index>]; Read
.1 {.55) ©Pause; BA « T2; Write Symbol Link av,sp, list to 3rd W cell
. 05 BA « T
05 (.30} SD1 « T1; Write Symbol 2nd W cell becomes head of av.sp. list
o1 PC « TO Branch to process stem
.1 R BA « R1-+1 Input W{(0) is in RI
05 (.35} Skl « R2; Write Symbol W(1) is in R2, Do the Replace.
ol Pc « ST Return to caller

1.15 psec

A3.10

R - Replace symbol of W(0) by W(l) (L*(G)21)

1.47 R: JSP R6, P29 scall prefix routine for 2 imputs, no
' outputs

2,09 P2Q HRRZ R2, W sW(0) input to R2

~ 21 <Pop W> ;(This - is the code for P0p§ing W

displayed on a previous page)

3.73 _ PUSH MSTKP, W ;save W(1l) input on stack

~ 21 <Pop W> ; (again, the code fromlprevious page)
3.80 POP MSTKP, Rl ;saved W(1) input to Rl

2.09 HRRZ RI1, Rl ;zero link of Rl

3.01 EXCH R1, R2 ;W(0) input to R1, W(l) input to R2
1.75 JRST (R6) ;branch to process stem

3.29 % R: HRRM R2, (R1) sreplace symbol of W(0) by W(1)

3.18 POPJ MSTKP, sreturn to caller of R

~ 66 usec

Security_Classification

DOCUMENT CONTROL DATA -R&D

fSecurity clarification of fitte body of abatract and Jjndexing annofation muat be entered when the overall report Ja

classifie

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Carnegie-Mellon University UNCLASSIFIED
Department of Computer S8Science 2b. GROUP
Pittaburgh, Penngylvania 15213

3. REPORT TITLE
C.ai{(P.L*}) -- An L* Procesgsor for C.ai

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Sclentific Report

8. AUTHQOR(S] (First name, middle initial, laat nameg)

D. McCracken, G. Robertson

. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
October 11, 1871 49 4

Ba. CONTRACT OR GRANT NO. %a. ORIGINATOR'S REPORT NUMBER(S)
F44620-70-C-0107
CMU-C8-71-106
6. PROJECT NO.
sh. OTHER REPOCRT NO(S8) {Arny other numbers that may be assigned
<. thia report)

d.

t0. DISTRIBUTION STATEMENT

Thig document hasg been approved for public

releaga and sale; its distribution is
unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Air Force Qffice of Scientific Research
1400 Wilson Blvd. (SRMA)
Arlingteon, Va. 222089

13. ABSTRACT

The results of a preliminary design study for a specialized language processor
(P.[) for L* are presgented. The objective of the study is
specialized processcr for C.ai.

The

to give an example of a

L* processcr is tec run 20-30 simultaneous L¥* users with very large address
spaces at a speed improvement of better than 10 times a typical PDP-10 L¥
cogt ghould be low relatlive to the memory resources of C.al.

The design presented 1s that of an L* central processor (Pc.L*) with a low-level
instruction set (about the level of typical microcode}. Pe.L* ig time-ghared by a
mini-computer that sits to the =side, so that each L* user sees himself as running on

a base L* processor. User contexts are switched by swapplng processcor status 1informa-
tion in Pc.L*.

system. Its

The results of this preliminary deslign effort, although stilll unclear in spctes,

that a specialized processcr could run very large L* gystems on C.ai at 20-40
times the sgpeed of a PDP-10.

shows

DD ,°?.1473

Securily Classilication

Becurity Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE

wT

ROLE wWT

specialized procesasor
microcode
kerpel

context-swapping

Roge | wr

“Security Classification

