
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IC STUDY PROBLEMS

Mary Shaw (ed.)
August 31, 1971

Pittsburgh, Pa. 15213

TABLE OF CONTENTS

INTRODUCTION

Background 1
Problem Descriptions 3
Use of the Problems in the IC 6
Schedule 8
A Note to the Students 10

PRIZE PROBLEMS

Aygun, B.: The Mutation Problem 12
Berliner, H.: The Power of Heuristics 14
Gerhart, S.: Hamming Codes 17
Jones, A.: One Man's Program is Another Man's Data 20
Krutar, R.: Polynomial Manipulation with Fast

Multiplication 27
Lunde, A.: Coroutines 31
Richardson, L. and Young, R.: Area of a Region 34
Robertson, G.: A Problem in Simple Languages 39
Snyder,L.: Turing Machine Simulation Problem 44
Teitelbaum, T.: The Firing Squad Synchronization Problem . . . 58
Teitelbaum, T.: Trees, Trees, Trees 61

OTHER PROBLEMS

November, 1970, Qualifier 64
May, 1971, Qualifier 69
The Busy Beaver Problem 73
Analysis of Algorithms 77

f Simulation of a Small Computer 81

INTRODUCTION

One of the goals of the immigration course is to present an

overview of the field of Computer Science, Including introductions

to a variety of interesting problem areas. Another is to instill

in the entering student an appreciation that Computer Science includes

problems which can be studied in depth.

We have chosen a problem-oriented format to help satisfy both

of these goals, because:

1. in many cases it is easier to use a concrete example to

explain the focus of an area than to give general descriptions

and abstract proofs; and

2. one of the best ways to appreciate significant problems is

to try to solve some.

Background

In order to collect a group of worthwhile problems that can be

solved with a reasonable amount of effort, the Computer Science depart

ment sponsored an IC problem competition in the Spring of 1970. All

the graduate students in the department were asked to submit problems

touching on major aspects of Computer Science together with complete

solutions of the problems. To stimulate interest, ten prizes of $100.00

were announced.

The specifications were:

1. It should be possible for students in the IC (not just advanced

students) to do each problem within the time limit of two to

three work sessions.

2. The problem should be elegant and have an elegant solution.

3. The problem should touch on or illustrate some central concept

of Computer Science.

4. The problem should involve a non-trivial programming effort,

which should be an integral part of obtaining the solution

(not just "tacked on").

5. The problem, or the associated programming, should provide

insight into the programming language used.

6. There should be problems utilizing all types of programming

languages — algebraic languages, list languages, pattern

matching languages, etc.

7. Problems should be usable in future ICs as well as the next

one.

8. To be useful, the submitted problem should consist of:

(a) A problem statement;

(b) A discussion of the conceptual rationale behind the

problem, Including comments on how to teach the problem

in the IC, what sort of preparation is required, etc.;

(c) A worked solution.

A problem selection committee consisting of Nico Habermann,

Bob Lieberman, and Hans Berliner evaluated the problems and recommended

awards. The final list of prizes was based on those recommendations,

with an additional problem promoted from a list of alternates for a

total of eleven. A prize of $100.00 was awarded the author (or

divided between the authors) of each of the prize problems.

Problem Descriptions

The Mutation Problem

Birol Aygun

This problem is derived from problems in genetics involving

estimation of the probabilities of mutation processes. It requires

finding the most probable path from one string over a small alphabet

to another, given certain assumptions and probabilities of elementary

string transformations.

The Power of Heuristics

Hans Berliner

This problem shows the power of heuristics as a means of

controlling processes. It is cast as a Tic-Tac-Toe tournament in

which heuristic processes represent players.

Hamming Codes

Susan Gerhart

Error-detecting and -correcting codes are often used to expedite

communication over noisy channels. One of the best-known and most

elegant of these methods is due to R. W. Hamming; the problem is to

implement that method.

One Man's Program is Another Man's Data

Anita Jones

The problem is to implement a line editor allowing insertions

and deletions of lines of text and replacement of strings of symbols

at locations determined by context within a line.

Exercise in Symbolic Polynomial Manipulation

Rudy Krutar

A scheme for fast multiplication based on the identity (Ax + B) *

(Cx + D) = AC(x2 + x) + (A - B)(D - C)x + BD(x + 1) can be applied to

polynomial multiplication. The exercise is to build a polynomial

package using it.

Coroutines

Amund Lunde

The coroutine concept is a generalization of the subroutine

concept, establishing a completely symmetric relationship between

two or more routines instead of the caller-callee relationship that

obtains in subroutine calls. The problem Involves implementing

a coroutine scheme and using it to build part of a lexical scanner.

Area of a Region

Leroy Richardson and Richard Young

The problem involves implementing and comparing three very different

approaches to finding the area of a contiguous region in a two-

dimensional space composed of unit squares.

A Problem in Simple Languages

George Robertson

The problem is to write a program to test whether a given string

is a legal sentence in a simple Polish-prefix language.

Turing Machine Simulation

Larry Snyder

This problem asks students to write an interactive Turing machine

simulator that can be used to design and debug a Turing machine.

Firing Squad Synchronization Problem

Tim Teitelbaum

The firing squad problem is well known in finite-state machine theory.

The student must develop an interactive system for experimenting with

such machines and then use that system to solve the firing squad problem.

Trees. Trees, Trees

Tim Teitelbaum

LISP is designed to have data only at the terminal nodes of

trees. This problem requires the student to design and manipulate

a representation of trees with data at all nodes.

In addition to using many of these prize problems we added five

other problems for the 1971 IC:

1. The two questions from the 24-hour take-home qualifiers given

in the academic year 1970-1971. The problems are interesting,

the time constraints are reasonable, and a certain body of

local expertise exists. The questions are presented here

precisely as they were posed. They may serve as a "dry run"

for students who have not yet taken the qualifier.

2. The "Busy Beaver" problem. For two-symbol Turing machines

with some given number of states, find the machine which will,

when started on a blank tape, halt with the longest possible

continuous string of l's on the tape.

3. Analysis of algorithms as performed by Knuth. This is an

example of a significant problem that does not involve a

computer solution.

4. Simulation of a small computer. This problem was included to

teach students something about machine languages and information

flow within a computer.

Use of the Problems in the IC

For the purposes of presenting the problems, we have divided the

six-week IC into three two-week periods, with four of these problems to

be presented in each fortnight according to the following scheme:

* One problem is introduced each day of the first week. The

introduction includes:

A description of the domain of Computer Science from which

the prob lent is drawn •

Some issues that lead tO til6 problemy

The specification of the problem;

Some pointers to the implications of the problem;

References;

Some techniques that may be of value (a hint or a language

suggestion).

Reasonable questions that occur on the spot will, of course, be

answered. Each of the entering students should attend all of these

sessions.

* On the day of the second week corresponding to the day of the

initial presentation, each problem is discussed further. In this

discussion,

Students who are doing well with the problem present what

they are doing;

Students who are having trouble ask questions;

The instructor gives more background and context. For

example, he might talk about other uses of the same or

similar data structures.

These sessions will be of benefit to students who have given some

serious thought to the solution of the problems. Hopefully, this set

will include all of the entering students.

* When a student has completed the solution of a problem as defined

below, he submits It to the instructor who presented the problem. This

should be done by the end of the fortnight to prevent the problems from

dragging on forever. The instructor comments on the solution to the

student and selects the best of the submitted solutions for possible

publication.

The schedule for the problems presented in the 1971 IC is:

First fortnight

Language in programming lab: APL

M Sep 13 and 20 Teitelbaum Firing Squad Problem

T Sep 14 and 21 Parnas November (1970) qualifier

Th Sep 16 and 23 Snyder Turing Machine Simulator

F Sep 17 and 24 Gerhart Hamming Codes

Second fortnight

Language in programming lab: Algol

M Sep 27, Oct 4 Berliner Power of Heuristics

T Sep 28, Oct 5 Richardson Area of a Region

and Young

Th Sep 30, Oct 7 Selman Busy Beaver

F Oct 1 and 8 Analysis of Algorithms

r

Third fortnight

Language in programming lab: LISP

M Oct 11 and 18 Robertson Problem in Simple Languages

T Oct 12 and 19 Bell Simulation of a Small Computer

Th Oct 14 and 21 Symbolic Polynomial Manipulation

F Oct 15 and 22 May (1971) qualifier

Wednesdays are left open to provide time for extra discussion if it

is needed. Three languages (APL, Algol, and LISP) are Introduced in the

-9-

programming labs at the rate of one language each fortnight. The schedule

has been arranged so that the languages are introduced as they are needed

for problems.

Students who already know one or more of these languages will be

encouraged to learn another without formal instruction.

r

A Note to the Students

We expect that you will be able to obtain complete solutions to two

of the four problems discussed during each fortnight and to do enough

work on the other two to participate in the second week's discussions.

A complete solution to a programming problem consists of:

1. A statement of your approach to the problem and the technique

used to solve it (this isn't a term paper — two or three

pages should do it unless you really get into the problem);

2. A running program, together with -¬

3. Sufficient documentation that someone else can understand your

code. This might consist of extensive comments in the program,

a separate piece of prose, and even, if you are so inclined,

a flow chart;

4. Runs with test cases showing that the program runs properly,

together with —

5. Some kind of written explanation justifying how the data you

have used shows that the program runs. (Again, this isn't a

term paper — use common sense; rigorous proofs of programs

are not required.)

Solutions to nonprogramming problems will take a rather different form,

but should exhibit about the same level of detail.

Try to complete your problems rather than letting them go on and

on or succumbing to the temptation to add just one more feature. ("90%

coded and 70% debugged" is an absorbing state.) We hope to publish the

best of the solutions.

Please note that no grades will be given for this work, or for any

work in the IC or (at least for Computer Science graduate students) for

any course work done in the department. Your energies during the IC

should be directed toward learning new things, not rehashing old ones.

Since assignments are informal and there are no grades, there is no

penalty for doing a less than elegant solution for a new problem instead

of a polished job on a familiar one.

Here are a few guidelines for selecting which problems to work on:

1. Try to solve problems in at least two programming languages that

you have not used before (BASIC doesn't count!). If you already

know two of the three languages presented in the IC, look around

for one you don't know.

2. If you have never programmed in machine language, be sure to do

the simulation of a small computer.

3. If you have written a compiler or a parser, pick something other

than the problem in simple languages.

4. If you have never experimented with finite-state machines.or

Turing machines, try to do either the firing squad problem or

the Turing machine simulator, or both.

5. If you are already an expert programmer in a variety of languages,

work either analysis of algorithms or the May, 1971 qualifier.

These involve extensive analysis but not programming.

Mary Shaw
August, 1971

THE MUTATION PROBLEM

Birol Aygun

Motivation

This problem originates In a class of genetics problems involving

estimations of the probabilities of mutation processes. This highly

simplified and solvable version of this problem is also a very interesting

exercise in computing and has applications in some areas of artificial

intelligence, such as recognition of linear patterns.

The problem is also open-ended in the sense that most solutions will

not be practical for very large cases of the problem. Hence ingenuity is

required for drastic reductions in the computing time and space required.

1. Given a string M of m characters and a string N of n characters,

all chosen from a small alphabet of, say, 4 characters (A,B,C,D).

2. Two kinds of primitive mutation operations: deletion of a single

character and insertion of a single character in a string.

3. Fixed independent probabilities P D and P for a single deletion

and a single insertion respectively (i.e., PD(A) = PD(B) = PD(C) = ...

and similiarly for P).

Find

1. An algorithm to determine a sequence of mutation operations on

the string N (for the normal string) to transform it into the

string M (for the mutant string) that has the highest probability

of happening under the stated assumptions in 3. above.

-13-

2. Clearly, the solution required is not unique, i.e., there may

be more than one sequence of mutations that yield the same result

with the same maximum probability. Find an algorithm that deter

mines the class of all solutions, each of which has the same

maximum probability.

Remarks

1. The solution should be provable, i.e., that it has the maximum

probability, and, for part 2, that it has not missed any solutions.

2. Magnitude range: the strings M and N may be up to several

million characters in length. Check the practicality of your

solution for strings of that size.

Examples and Hints

M = A B B C D D A B C A D C B

N = B B D C A A B C

Example strings above

1. What does independence of deletions and insertions imply in

probability computation?

2. Are any sequences found in both M and N? What about the ordering

of such sequences?

THE POWER OF HEURISTICS

Hans Berliner

Background

The main purpose of this IC Problem is to show the power of

heruistics as a means of controlling processes. There are many processes

for which we do not know perfect controlling functions, but by having

them controlled by heuristic rules, we are able to obtain a high standard

of performance from the process. Examples of this type of activity

occur in the areas of Artificial Intelligence and Operating Systems.

For instance, in a time sharing system with virtual memory, the problem

of which page to kick out of main memory when a page fault occurs is resolved

by using heuristic rules. Usually, a rule is tried and evaluated according

to how much it improves the performance of the system. This is kept up

until the point of diminishing returns is reached. This problem is

intended to teach this method by setting up a situation in which heuristics,

represented by processes, can compete in the same environment. Then by

comparing the success of each of the processes on the same task, we can

determine the usefulness of each set of heuristic rules.

The environment In which the problem is set is Tic-Tac-Toe. We let

each heuristic process respresent a player in a Tic-Tac-Toe tournament,

and then pit processes with different degrees of "intelligence" against

one another. It is important to note that:

1. Tic-Tac-Toe can be played perfectly (so as never to lose and to

maximize winning chances) by merely resorting to a table-look-up

procedure, or to a complete tree search of all possibilities

which would, however, be rather time consuming.

2. However, the intent of this exercise is to teach how to

build heuristic models and to show that one heuristic proce

dure can have an overwhelming dominance over another procedure

with less "intelligence," even though the first does not play

perfectly.

Other things which can be learned from doing this problem are:

1. How a thoughtful problem representation can save programming

effort and execution time.

2. How an appropriate experimental design can allow ready comparison

of the different effects being studied.

3. How to use a random number generator.

Since the total task requires a significant amount of work in the

design and implementation of the program, you may find it desirable to

work in teams of 2 to 4. You will use a set of heuristic rules to define

a player in a Tic-Tac-Toe tournament. When you have defined several

such players, write a program for simulating such players in a tournament.

Be sure that each player has an equal chance of starting the game against

every other player. Each of the players in your tournament should be

at a different skill level. The skill you impart to each of your players

should be a function of the move selection routines that each particular

player has access to. For instance, the worst player In the tournament

could be one thSt plays at random. Other players may use the strategy

of the center square if it Is free, be able to defend against simple

opponent's threats, or be a compound of several such strategies. By

-16-

carefully choosing compound strategies, you can create a player

hierarchy where each player is better than the one below him. Before

you start, consider that after each move the supervisory program has

to check to see if anyone has won. Consider the effect of how the

Tic-Tac-Toe board is represented on how easy it is to perform checks

such as these. If it has been a long time since you have played Tic-

Tac-Toe, you may want to play a few games to re-acquaint yourself with

some useful strategies.

Have the program tabulate results. Then write a short critique on

the relative skills of the various players in your tournament. Why do

you think the results came out the way they did? Can you rank the

efficiency of the heuristics you used? Is there a point of diminishing

returns?

r

HAMMING CODES

S u s a n G e r h a r t

E r r o r - d e t e c t i n g and - c o r r e c t i n g c o d e s a r e u s e d t o p r o v i d e

c o m m u n i c a t i o n o v e r n o i s y c h a n n e l s i n many a p p l i c a t i o n s o f c o m p u t e r s .

One o f t h e b e s t - k n o w n and m o s t e l e g a n t c o d i n g s c h e m e s i s t h a t o r i g i n a t e d

by R.W. Hamming (s e e r e f e r e n c e s) .

C o n s i d e r t h e t r a n s m i s s i o n o f n - b i t m e s s a g e s . Hamming's m e t h o d

e n c o d e s t h e n - b i t m e s s a g e a s a n + k - b i t b i n a r y s e q u e n c e , w h e r e t h e

e x t r a k b i t s p r o v i d e f o r e r r o r d e t e c t i o n and c o r r e c t i o n i n any o f t h e

n + k p o s i t i o n s o f t h e s e q u e n c e . A d e c o d e r t h e n maps t h e n + k - b i t

s e q u e n c e i n t o a k - b i t m e s s a g e s e q u e n c e . An e r r o r i n any o n e p o s i t i o n

o f t h e t r a n s m i t t e d s e q u e n c e w i l l b e g i v e n i n t h e c h e c k s e q u e n c e .

Example: n = 4, k = 3

L e t m t m 2 m 3 m 4 b e t h e m e s s a g e t o b e t r a n s m i t t e d a s t h e s e q u e n c e

x x x 2 x 3 x 4 x 5 x 6 x ? . The f o l l o w i n g e q u a t i o n s a r e u s e d i n t h e e n c o d i n g :

x^ = © m^ © m^

x 2 = m 1 © m 3 © m 4 8 i s t h e e x c l u s i v e - o r

o r sum m o d u l o 2
x 3 - m

o p e r a t o r

x 4 = m 2 © m 3 © m 4

x 5 = m 2

X6 = m3
x 7 = m 4

Assume t h e r e c e i v e d m e s s a g e i s y y 2 y 3 y 4 y y y .

The d e c o d e r c o m p u t e s k% k 2 k 3 w h e r e

k 2 = y 2 © y 3 © y 6 © y y

k3 = yl ® y3 ® y 5 ® y7

If one and only one digit is transmitted incorrectly, say y, / x..
J J

then k1 k 2 k 3 will give the binary representation of j. k k 2 k 3 will

be 0 if no errors occur. If multiple errors occur, then the correction

will take place but give an incorrect result.

Now, to generalize the process, consider a code which requires n

information bits per message. An additional k bits are required to point

to any of the n + k bits of the encoding which might be in error. The

sufficient condition is
2 k ;» n + k + 1

A general method for the assignment of equations in the encoding is:

1. Use the positions numbered by powers of 2 for check bits.

2. Assign the bits of the original message in order to the remaining

positions.

To see how to form the equations for the check positions, group the

binary representations of the positions by occurrence of powers of 2:

0 0 1 1
0 1 1 3
1 0 1 5
1 1 1 7

0 1 0 2
0 1 1 3
1 1 0 6
1 1 1 7
1
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

1 2 3 4 5 6 7

p X X X

p X X X

p X X X

bit positions

p = check position
x = included in equations

-Im

position 1 serves as a parity check for positions 1,3,5,7 of the

encoding (and positions 1,2,4 of the message). Similarly, for positions

2 and 4.

Solution requirements

Construct a system of programs which enable the encoding of messages,

transmission of messages corrupted in one position, and decoding into

the original messages. Of course, transmission of error-free messages

should also be possible.

APL is recommended for the solution because it offers operators for

manipulation of number systems and arrays. The author's solution used

approximately 25 different APL operators in three one-line, loop-free

functions, along with a control program for testing. The absence of

loops was possible because the APL operators afforded the necessary

control flow.

References

[1] R. W. Hamming, "Error Detecting and Error Correcting Codes," Bell
System Technical Journal. Vol. XXVI, April, 1950.

[2] Herman Hellerman, Digital Computer System Principles. McGraw-Hill,
p. 322.

[3] Ralph A. Amato, "Error Detecting and Correcting Methods," Computer
Design. June, 1964.

ONE MAN'S PROGRAM IS ANOTHER MAN'S DATA

Anita Jones

This problem requires implementation of a line editor which will

allow insertion and deletion of lines of text, and replacement of

symbol strings at locations determined by context.

Implementation of the editor provides a basis for considering the

concepts and mechansims germane to string processing [1,2] (in contrast to

numerical processing):

1. The text to be edited appears as a sequence of symbols. Only

the fact that each symbol is distinguishable is important — the

information encoded in the sequence of symbols could be TT

computed to a thousand places as well as program, prose, or poetry.

2. A cursor is moved through the text to find the location at which

an editing operation is to be performed.

3. A particular location within the text is determined by context —

by the surrounding or preceding characters. (The 'carriage

return,' 'line feed' and 'blank' characters become very visible!)

A. A pattern matching mechanism must be employed to search for

variable-sized strings of symbols.

A note of realism: The editor to be implemented is a simplified version

of the line editor in a conversational PL/I - based system called CPS

(Conversational Programming System).

Solution Notes

The editor is most easily implemented in a string processing

language like SNOBOL which provides pattern recognition facilities as

well as string manipulation. However, any language which permits easy

representation of variable length strings could be used (e.g., ALGOL

extended with strings).

The Problem

Design and program the algorithm MERGE to enable an editor to

accept two input files, TEXT and MODIFY, concurrently and to output an

edited file, NEWTEXT.

TEXT is a sequential stream of lines in which two lines are separated

by a line feed character. (Refer to such an instance as LF.) With each

line of TEXT is associated an implicit line number equal to the number

of LF's that precede the line in TEXT. Line j consists of those characters

following LF[j] up to and including LF[j+l].

NEWTEXT is of the same format as TEXT. It is created by editing the

TEXT file as directed by the contents of MODIFY.

MODIFY consists of a sequential stream of INSERT, DELETE and REPLACE

commands.

MERGE processes TEXT line by line with no backtracking although

multiple scans of a single TEXT line may be necessary in the case of

REPLACE. MERGE may thus be seen as moving a cursor through the stream

of TEXT lines, possibly altering a line as the cursor passes over it.

All lines to the output side of the cursor are written on NEWTEXT.

Lines to the input side of the cursor comprise the portion of the TEXT

file which may still be subject to alteration by MERGE.

MODIFY command formats:

INSERT <num> <delim> insertion string <delim> LF

where <num> is a non negative integer referring to the line

in TEXT associated with that number.

<delim> is defined as the first non-blank, non-LF, non-

\ numeric character following <num>. In a single command all

instances of <delim> are the same character.

INSERT causes MERGE to:

1. Scan TEXT from current cursor position until cursor has

passed over LF [<num>].

2. Insert the delimited insertion string followed by the

carriage return and line feed characters into the TEXT

string to the output side of the cursor.

DELETE <num> <numl> LF

where <numl> is null or has a value greater than or equal to

that of <num>. <num> and <numl> are separated by 1 or more

blanks.

DELETE causes MERGE to
r

1. Scan TEXT from current cursor position until the cursor has

passed over LF[<num>].

2. Delete all characters on the input side of the cursor up

to and including LF[<numl>+l], if <numl> was specified or

up to and including LF [<num>+l], if <numl> is null.

REPLACE <num> <delim>a1 Kdelirn^ <delim>a2 <delim>02 <delira>... .LF

A REPLACE command may be used Co edit a single TEXT line. LF may

not appear in the REPLACE command except as the terminator of the command.

1. Scan TEXT from current cursor position until cursor has passed

over LF[<num>].

2. Let the first non-blank, non-numeric, non-LF character after

<num> be the delimiter.

3. Set J=l.

4. Scan the command string for the next two occurrences of <delim>

to determine the recognition string, a and the replacement

string p .

5. If LF was encountered before the recognition string and replace

ment strings were found, this command is completely processed.

6. Scanning the line, replace each occurrence of the current

recognition string with the corresponding replacement string.

7. J=J+1.

8. Go to step 4.

NB: The edited line is not yet moved to the output side of the

cursor, so that re-editing of the line may occur.

References

[1] D. J. Farber, R. E. Griswold, and I. P. Polonsky, "SNOBOL, A String
Manipulation Language," CACM, 11 (Jan, 1964), pp. 21-30.

[2] Madnlck, Stuart E., "String Processing Techniques," CACM, 10 (July, 1967),
pp. 420-424.

-24-

Example: Given the following TEXT file:

procedure cal(y.n);
value y,n; integer y,n,;

begin
y := if (y/4)* 4 - y then 1 else 0;
comment 1900 < y < 2100 causes abort;
d := n + (if n > (59 + t) then 2 - t else 0);
m ((d + 91) - (m* 3066) / 100;
d := (d + 91) - (m * 3055) / 100;
m := m - 2;
if y < 1900 v y i 2100 then begin

m :*= 0;
d := 0

end
end calendar

and these commands in the MODIFY file:

REPLACE 0 /l/lendor/)/m,d)/or/ar/nra/n,m/
REPLACE 1 #,;#,m,d;#;#,t;#
INSERT 2Zcomment

acm algorithm 398—tableless date conversion
input y the year

n day of the year
output m month of the year

d day of the month;%
REPLACE 3 ay :at :a
DELETE 4
INSERT 4 f comment the following statement Is unnecessary

if it is known that 1900 < y < 2100;
t •:- if (y/400) * 400 = y v (y/100) * 100 * y then t else 0;1

REPLACE 60- (m* 3066) / 100@* 100) / 30558@8@@
DELETE 9 12

result in the NEWTEXT file:

comment
acm algorithm 398—tableless date conversion
input y the year

n day of the year
output m month of the year

d day of the month;
begin

t := if (y/4)* 4 - y then 1 else 0;
comment the following statement is unnecessary
if it is known that 1900 < y < 2100;

t := if (y/400) * 400 = y v (y/100) * 100 * y then t else 0;
d := n + (If n > (59 + t) then 2 - t else 0);
m :=» ((d + 91) * 100) / 3055;
d := (d + 91) - (m * 3055) / 100;
m := m - 2;

end calendar

Notes
1 REPLACE 0...' uses multiple scans of line 0. The last 2 replacements

are possible only after the first has been accomplished.

•INSERT 2...' is inserting the appropriate 'carriage return' and

LF characters used in generating the format of the inserted prose, i.e.,

they are non-printing characters.

There are 2 commands used on line 4.

'INSERT 4...' Note that the 2 'blanks' preceding the word 'comment'

serve to space the prose appropriately in the NEWTEXT file.

REPLACE 6...' replaces '8' by the null string.

-26-

Example 2 :

Given the following input TEXT file:

The time has come the walrus said
To speak of many things
Of sailing ships and sealing wax
Of cabbages and kings

and these REPLACE commands in the MODIFY file:

REPLACE 2=0f sailing=SLT chips= ships=seal=whirl=
REPLACE 2 *wax*tracks*
REPLACE 3 4c4B4k4r4

The output file NEWTEXT contains the following edited lines:

The time has come the walrus said
To speak of many things
SLT chips and whirling tracks
Of Babbages and rings

POLYNOMIAL MANIPULATION WITH FAST MULTIPLICATION

R. A„ Krutar

Background

This problem is elegant in its simplicity, as is the solution.

It touches on the following central concepts of Computer Science:

representation of data structures, formula manipulation, and trade-offs

in time and space. It provides insight into the input language for

LISP. Solutions to the .-problem will use list languages and pattern

matching languages. However, the programming effort is definitely

nontrivial—the author's solution is a bit tricky, and the path to

any solution contains traps.

The Problem

Several programming languages have been designed as aids in

performing formula manipulation. Polynorainal manipulation, a special

case of formula manipulation, particularly lends itself to the building

of efficient systems. The following descrption is taken from Knutht1^.

The problem is to implement a polynomial manipulation program

which can take advantage of a fast multiplication rule that reduces

the number of multiplications required to calculate (Ax + B)(Cx f D)

from the four of the obvious approach to (he three needed in:

ACx 2 + (AC + (A - B)(D - C) + BD)x + BD
1st 1st 2nd 3rd 3rd

The trade-off is increased addition, subtraction, and shifting. Squaring

an n-th degree polynomial takes time proportional to:

log 3 , 1.57 n = n

2 . , rather than n as obtained in the obvious method. Empirical tests and

a priori estimates of execution time can be made.

Assume we split a polynomial into two parts: those terms wittt

odd exponents and those with even exponents. We may factor x from

each of the odd terms and thereby represent the polynomials as Ax + B

where A and B have only even terms and as such a re polynomials in

x-squared, which can similarly be split. We must permit a constant

as a polynomial to limit an infinite regression. A polynomial is then

a binary tree with constants at all the leaves. We here use a point

as an infix operator in a linear representation of these trees.

The first three examples are from Knuth:

x = 1 . 0

x 2 = 0 . (1 . 0)

x 3 - 3x 2 + 3x - 1 = (1 . 3) . (-3 . -1)

5 x 4 - 7x2 + 3 = 5x* - 7x 2 + 3x°

= 0 * x + [5(x) - 7 (x) + 3(x)]

= 0 * x + [-7 (x2> + [5

and this is represented as:

0 . (-7. (5 . 3))

6x 5 - 4x 3 + 2x = [6x4 - 4x 2 + 2] x + 0

= [-4 (x 2) 1 + [6 (x 2) 2 + 2 (x2)0]] x + 0

and this is represented as:

(-4 . (6 . 2)) . 0

This representation is only on paper. It must be encoded in terms of a

representation of a programming language. Fortunately, LISP uses the

point as an Infix operator to represent binary trees. However, the

point is eliminated whenever the right branch is a list or tree, e.g.,

-29¬

1 . 0 = (1 . 0)

0 „ (1 . 0) = (0 1 . 0)

(1 . 3) . (-3 . -1) = ((1 . 3) -3 . -1)

0 . (-1/2 . (1/24 . 1)) = (0 -.5 0.04166 . 1)

(-1/6 . (1/120 . 1) . 0 = ((-.16666 0.00833 . 1) . 0)

The functions needed for multiplication are: simplification

(0 . k = k when k is a constant), addition, subtraction, and multipli

cation by x. An auxiliary function is also useful. Other interesting

functions you may wish to write are: differentiation by x, substitution

of a constant or polynomial for x, synthetic division, and translation to

and from other representations (the reading and printing finctions).

Test data should either show the special capabilities of each function

or be so constructed that the correct result is obvious. In the example

below the tests of DX (differentiate by X) and SUBS (substitute for X)

generate correct values which are clearly related to the exponents of the

test data.

DX((1 1 1 1 1 . 1))

DX ((1 1 1 1 1 . 1))

VALUE = ((((16 . 8) . 4) . 2) . 1)

SUBS(10 (1 1 1 1 . 1))

SUBS (10 (1 1 1 1 . 1))

VALUE = 100010111

Hints

A constant polynomial has no odd terms and one even term. Primitives

which select the odd terms or the even terms or combine two polynomials

should take this fact into account.

-30-

Reference

[1] Knuth, D.E., "How Fast Can We Multiply?" The Art of Computer Prncrramm-tner*
Seminumerical Algorithms. Vol. 2, Sec. 4.3.3.

COROUTINES

Amund Lunde

This problem, implementing coroutines in Algol, requires knowledge

of the finer points of the language, such as own variables and switches.

It also illustrates one of the tasks of the lexical scanner of a compiler:

to Interpret the intricacies of a hardware representation. A programmer

with a fair knowledge of Algol should be able to program this problem

in the allotted time. The concept of coroutines is explained below.

The Coroutine Concept

The coroutine concept is a generalization of the subroutine concept,

establishing a completely symmetric relationship between the two (or

more) routines, instead of the caller-callee relationship of subroutine

calls. That is: when one coroutine transfers control to (or activates)

another, a "reactivation point" is set in the former immediately after

the activation-statement, and the local data are preserved. When

control returns to this routine, execution resumes at the reactivation

point using the values of the local data that existed the last time

control passed out of this routine. The reactivation point is a generalization

of the return address in a subroutine call, but is associated with

the caller rather than the callee. Hence, control can be transferred

into one coroutine from any other coroutine with which it cooperates and

not necessarily from the one into which it passed the control last time.

Coroutines are an important tool in programming, especially in

systems programming and in simulation. Nevertheless, coroutine sequencing

has not found its way into many of the higher level languages currently

in use. Examples of languages with coroutines are Sfcnula and Simula-67

(a simulation language built on Algol and its generalization), and Bliss

(a language for systems programming on the PDP-10, developed at CMU).

The purpose of this problem is to investigate how coroutine-

sequencing can be achieved to some extent for Algol procedures. The

caller-callee relationship remains to some extent, but a reactivation

point may be maintained for each procedure, and local data may be

preserved.

The Problem

Many languages, like Algol-60, contain symbols which do not exist

on a standard keypunch. Hence, "hardware representations" of these

symbols are invented that use only the characters used in, say, Fortran.

In one language (Simula-67) part of this hardware representation could be:

SYMBOL

:

:=

: -

;

NAME

colon

becomes

denotes

semicolon

dot

point

HARDWARE

.= OR .=»

..- OR .-

(between identifiers)

(not between
identifiers)

An early part of the compiler has to replace this notation by a unique

and uniform internal representation.

Write two coroutines, "USER" and "GETSYM," to analyse the above

representation. The outputs from "GETSYM" should be integers uniquely

representing the above (and possibly other) symbols. Since we do not

•

want to write a compiler now, the "USER" may simply encode these as

strings (abbreviations of the names of the symbols) and print them

more than one to a line (say, 30 to a line if each string is of length

4).

The string of input-characters should be interpreted left to right

. so that the largest possible legal combination of characters is used

before a symbol is output, i.e.,

..- is denotes (not point denotes, colon minus, or point point minus).

is colon becomes (not point colon becomes).

A...B is A colon point B (not A point point point B or A point colon B).

Example: Input and Output

• • i
 a A B i i

 a C D (*

50 51 99 51 99 50

where: 50 - colon

51 = becomes

99 = others (one 99 for the group)

You could also encode:

50 into COL

51 into BEC

99 into OTH (for more readable output)

Note:

Students who feel they know all about Algol but want to learn Bliss,

may program the problem in Bliss, using the standard coroutine facilities.

Reference

[1] Knuth, D.E., Fundamental Algorithms, p. 190 ff., p. 226.

AREA OF A REGION

Leroy C. Richardson
Richard M. Young

Background

A region of two-dimensional space is divided into uniform square cells,

each of which is designated as being either "white" or "black." The black

cells form a connected mass, so that by stepping horizontally, vertically,

or diagonally it is possible to move from any black cell to any other,

passing only over black cells. Thus the black cells divide the set of white

cells into isolated regions; there are no separate "islands" of black cells.

We are interested in finding the area of a region of horizontally or

vertically connected white cells totally enclosed by a boundary of black

cells. For example, the area marked X:

Choose a representation, such as a two-dimensional array, In which the

basic operations available are to determine whether a cell is black or white,

and to move from a cell to any of its four neighbors. Assume that you are

given the location of a white cell in the region whose area is required.

-35-

1.) Since the area of the white region is defined to be the

number of cells in it, the most straightforward way to compute

the area is simply to go ahead and count the cells. Write a

program to do this; it will have to visit each cell in the region

at least once.

Hints

A.) Be careful not to count white cells which do not in fact

belong to the region whose area is wanted.

B.) This technique is quite straightforward and there are

many ways to write the program. Try to find a program which

is elegant and reflects the structure of the task. You may

want to write several different versions, to see how different

programming languages lend themselves most naturally to iterative

or recursive control structures.

-36-

2.) For large, sensibly-shaped regions, visiting every cell in

the region is inefficient. By making use of some very simple

algebraic properties, we can determine the area simply from

knowledge of its boundary. There is no need to examine the cells

in the interior.

Can you write a program which computes the area by visiting

only white cells adjacent to the boundary?

Hints

A.) Using (x,y) coordinates to describe the white region, we can

regard the whole area as composed of a number of columns of vertically

connected cells. Suppose the y-coordinates of the top and bottom

cells In column I are YTOP^ and YBOT^. Then we know that

where the summation ranges over all the columns composing the region.

B.) The process of tracing around the boundary of a region is known

as "edge-following" and is interesting in itself. To trace clockwise

around a region is analogous to walking around the whole of a room

while always keeping one's left hand touching the wall.

Try using this analogy if you have difficulty programming the

edge-follower. The secret is always to keep turning "as left as you can."

and clearly to the structure of the task. If you still have difficu

with the edge-follower, it may actually help to draw an elegant flow

chart first, and then encode it.

C) Once again, try writing the code so that it corresponds elegantly

-37¬

3.) One way to approach the task of finding the area is to think

of the initially given white cell as a "seed," which is "grown" to

cover all the white cells immediately adjacent to it, each of which

is then also grown outwards to cover all the white cells adjacent to

it, and so on until the whole region is filled up. The area then is

the total number of cells grown (including the original seed).

Suppose you have available a programming system which can

operate simultaneously (in a single operation) on the whole of an

array at once; i.e., in each cycle of computation the whole connected

mass of white cells already reached can be expanded outwards by one

cell in just one operation or statement in the programming language.

Can you devise a simple algorithm that takes advantage of these array

operations to find the area of the region?

We suggest using either of two approaches:

3.1) Program the algorithm in APL, which effectively provides

simultaneous operations on arrays.

3.2) Assume that you have available a computer capable of working with

arbitrarily long bit-strings as words. Assume a reasonable set of

operations for the machine: parallel logical operations, shifting,

counting the number of l's in a word, etc.

Can you devise an appropriate representation of two-dimensional

regions as bit-strings, and write an area-finding algorithm that takes

advantage of the parallelism of such a machine?

-38-

Hints

A.) How do you tell when the whole region has been covered?

What happens on subsequent cycles?

B.) "Growing" a single cell is equivalent to shifting it one

cell up, down, left, and right (if the adjacent cells are also

white) and "superimposing" the five cells. Can you generalize

this to a whole connected mass of cells?

A PROBLEM IN SIMPLE LANGUAGES

George Robertson

Motivation

Before considering a complex language such as ALGOL, it is con

venient to study a very simplified form of language which has only a

few simple syntax rules. The results of this study can then be extended

to a subset of the Algol language which can in turn form the basis

for constructing a translator for Algol-like languages.

A language consists of a set of basic symbols (usually finite)

called the alphabet and certain strings of these symbols. Its syntax

consists of rules for classifying and transforming these strings into

words. By a string we mean a finite sequence of symbols from the alphabet

which may be exhibited by writing the symbols in linear order from left

to right. We shall denote strings by Greek letters. If a and p are

strings, then "ag" shall denote the string consisting of the symbols

of a followed in order by those of p. We can define a function L,

called the length, as follows:

Dl. If a is a string, then L(a) = number of symbols in a counting

repetitions.

In other words, the function L maps strings onto the set of non-negative

integers. Two strings will be considered the same if

1. They have the same length, and

2. They have identical symbols in the same positions.

One of the more useful languages for mathematical purposes is leading

operator, or prefix, '/Polish" notation. The rules of word formation in

then 00 x P 2 . . . 0 r is a word.

The use of a leading connective structure eliminates the necessity

of parentheses, either explicit or implied by operator heirarchy.

As an example, let us consider Algol-like simple arithmetic expressions

defined by the following syntax:

<ietter> : : = A|B|C|D|E|FJG|H|I|J|K|L]M|N|OJP|Q|R|S|T|IJ|V|W|X|YJZ

<adding operator> ::= +|-

<laultiplying operator> : := * j /

<primary> ::= <letter>|«simple arithmetic expression^

<term> :: = <primary>|<term> Multiplying operator> <primary>

<simple arithmetic expression> :::- <term>|

<simple arithmetic expression <adding operator> <term>

Then, the alphabet of the simple "Polish" notation becomes:

1. A,B...,Z as letters

2. +,-,*,/ as connectives of degree 2

Examples of simple arithmetic expressions in both the Algol-like and
the Polish notations are:

this case are very simple. The symbols in the alphabet are classified

as letters and connectives and associated with each connective is a

unique positive integer, n, called the degree of the connective. The

two rules for word formation are:

Wl. A string consisting of a single letter is a word.

W2. If a is a connective of degree, n, and p^, P 2 - . . P n are words

Jl h ' " * n

Algol-like notation "Polish" notation

A. (A + B) * C/D / * + A B C D
B. A * (B + C / D) * A + B / C D
C. A * B + C / D + * A B / C D
D. A *(B + C) / D / * A + B C D

We are now in a position to define a simple language.

D2. A language^ is simple if its alphabet consists only of

letters and connectives, and if Wl and W2 are the rules of

word formation i n ^ .

We can define a function p, called the rank, which has as its

domain all strings inland its range will be the set of integers. The

definition is as follows:

D3, 1. If a is a letter, then p(a) = -1.

2. If a is a connective of degree n, then p(a) = n-1.

3. If a is the null string, then p(a) = 0.

4. If cr = CTLa2 and L(o~̂) = 1, then p(a) = p ^) + p(<T2).

Thus if a is "a a„...a ", and "a." is a letter or connective for 1 2 k i

each i, then
k

+ p(aj + ... +
i=l

p(o-) = p(ax) + p(a2) + ... + p(ak) = Z p(a.).

and we see that the rank operation p is additive.

A question that we would now like to answer is: If we are given an

arbitrary string a in language ̂ , then can we determine if a is a word in

^ b y a purely mechanistic approach? In other words, does an algorithm

exist for determining whether a string CR in^Fis a word i n ^ ? The answer

to the question is in the affirmative and is based on an important

theorem due to Rosenbloom. [1]

D4. If a is a string i n ^ , and CR » CR^, then is a head of CT

and <y is a tail of CT.

Rosenbloom's theorem can be stated as follows:

Tl. If^is a simple language, and a is a string i n ^ , then cr is

a word in^fif and only if

1. p(a) =* -1, and

2. If <j is any head of CR, and a F a, then p(a) * 0.

The proof of Rosenbloom's theorem can be found in his book along

with some suggested exercises.

The Problem

Write a LISP function called WORD which will determine whether or

not a string cr is a legal word in Polish prefix notation. The argument

to the function should be a list representing the string a, and the

value of the function should be either T or NIL.

Examples:

WORD ((+ * A B / C D)) should return the value T.

WORD ((A * B + C / D)) should return the value NIL (Rule 2).

WORD ((+ * A / B C D)) returns T.

WORD ((+ * / A - B C)) returns NIL (Rule 1).

Hints

Once you have convinced yourself that Polish prefix notation is a

simple language in the sense of definition D2, then the problem reduces

to a problem of implementing the algorithm described in Rosenbloom's

theorem. You will find that the key to the implementation involves

substituting the ranks of symbols in the input list for the symbols

themselves. Hence, a table look-up procedure of some kind is needed.

A careful examination of the LISP interpreter (both EVAL and APPLY)

will reveal that a useful table look-up procedure does exist in LISP.

Reference

[1] Rosenbloom, Paul, The Elements of Mathematical Logic. Dover, 1950,
pp. 152-157.

TURING MACHINE SIMULATION PROBLEM

Larry Snyder

Motivation

Even before the invention of modern computers, A. M. Turing [4]

described a theoretical model of a computing machine. Although very

simple in structure, the Turing machine (under a plausible set of

assumptions) has been proven to possess some very remarkable properties.

For example, a Turing machine can compute any function that can possibly

be computed. There are well defined functions which no Turing machine

(and hence no computer) can compute the solution to. Given a Turing

machine program for certain functions, there is a Turing machine program

for the same function which will run faster [1] , These and other results

will be discussed later. Our interest here is to develop a thorough under

standing of the workings of this simple machine and to develop a program

which may be used later in the Immigration Course when non-computability is

studied using the Busy Beaver Problem [2 1. In addition there are several

programming techniques which this problem is Intended to emphasize, namely,

the building of a programming model on which experiments are to be run,

gaining expertise in some conversational programming language and experience

with data structures and storage allocation.

The Problem

Choose a conversational programming language and write a program to

simulate a Turing machine. (For those who aren't familiar with Turing

machines, a good description is found in MInsky [3], reprinted at the end

of this problem description.) The program should be highly interactive and

allow you to specify machines and tapes conveniently and to monitor their

behavior. Keep in mind that you will be running experiments with your

program later during the Immigration Course. Your program should allow:

1.) Specification of the tape alphabet, the Turing machine itself

and the initial tape configuration.

2.) Specification of experiment parameters:

A.) Initial state and read head position.

B.) Maximum number of state transitions, and maximum amount of

Usage. (This is because many Turing machines never halt and

you want to prevent infinite cycling.)

3.) Tracing facilities to allow monitoring of state transitions

while the Turing machine is running.

4.) Printing of all relevant information, e.g., the tape, states,

read head position, etc.

Sample Problems

It might be helpful to prepare several Turing machines to be used

while debugging your simulator. Here are several suggestions:

1.) Addition of two integers represented in:

A.) Unary marks <e.g., the integer i is represented with

with i+1 marks). This problem is trivial.

B.) Binary. This is more challenging. Think of various

tape formats to simplify the problem.

C.) Decimal. This is quite complex.

2.) Checking for well formed parenthesis sequences, i.e., a machine

to accept sequences like ()(()) and reject ((). A solution is

in Minsky, but try it yourself before looking.

3.) Accepting a unary sequence if it has 2 1 marks, for any non-

negative i. This one is easy.

4.) A machine which prints its own description in quintuples.

This problem is reasonably difficult.

Things to Watch for

One of the important decisions you must make is how to represent the

"infinite" tape. Obviously, your representation will be finite, but be

sure it is flexible enough. Here are two possible representations (you may

think of others):

1 2 3 4 5 6
1 .) 0 | - 1 1 -2 2 -3

TAPE

The tape vector is a vector of length n. TAPE[1] is the 0 cell, all odd

numbered elements are positive cells, all even numbered elements are negative

cells, such that:

fTAPE[l] if i=0

CELL[i] =^TAPE[2i + 1] if i>0

(jAPE[2i] if i<0

This model is easily extended if additional tape is needed.

2.)
1 2 3 4
0 | 1 J 2 1 3~

n-2 . n-1 n
- 1

TAPE

The tape is a vector of length n. The non-negative cells begin at TAPE[1]

and go to some limit s<n. the negative cells begin at TAPE[n] and are

stored backwards to the limit s, such that:

CELL[i]
/TAPE[i + 1] for i>0

(TAPE[n + 1] for i<0

There are at least two other representations you might consider using.

-47-

Another thing to keep in mind is that after a tape or a machine

has been specified, it should also be easy to correct any errors in the

initial specification. Experiments are usually wrong the first time

they are stated.

Finally, one comment about the use of a conversational language.

Contrary to popular belief, it is difficult and time consuming to

compose a program at the terminal. This is especially true if you are

not very familiar with the language. Your time will be most productive

if you have your program entirely composed BEFORE you sit down at the

terminal.

Remember, this program should be as convenient as possible for

you to use.

References

[1] Blum, Manuel, "A Machine Independent Theory of the Complexity of
Recursive Functions," JACM. Vol. 14, No. 2, pp. 322-336.

[2] Lin, Shen and Tibor Rado, "Computer Studies of Turing Machine
Problems," JACM, Vol. 12, No. 2,.pp. 196-213.

[3] Minsky, Marvin, Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, 1967, pp. 117-119.

[4] Turing, Alan M., "On Computable Numbers, with an Application
to the Entscheidungsproblem," Proc. London Math. Soc.
1936, Sec. 2-42, pp. 230-265.

-48-

AMT

THIS PROGRAM SIMULATES A TURING MACHINE WITH A TWO-WAY TAPE.
FACILITIES ARE PROVIDED FOR DEFINING MACHINES, RUNNING EXPER
IMENTS AND DEBUGGING EXPERIMENTS, THE FOLLOWING COMMANDS ARE
USED TO CONTROL THE SIMULATION'.

SiXXXX INDICATES THAT A SPECIFICATION OF XXXX IS TO BE MADE
P-.XXXX INDICATES THAT THE VALUE OF XXXX IS BEING REQUESTED
N:YYYY INDICATES A NEW YYYY IS TO BE SPECIFIED
GO STARTS THE TURING MACHINE
END TERMINATES THIS PROGRAM
? PRINTS THIS DESCRIPTION AGAIN
ft IS USED FOR COMMENTS

THE FOLLOWING ARE VALID ENTRIES FOR XXXX ABOVE:
ALPHABET SPECIFIES THE TAPE ALPHABET
QUINTUPLES SPECIFIES THE STATE QUINTUPLES
TAPE SPECIFIES THE TAPE CONFIGURATION
STATE SPECIFIES THE STATE OF THE MACHINE
CELL SPECIFIES THE HEAD POSITION ON THE TAPE
TRACE SPECIFIES THE OPTION TO TRACE STATE TRANS.
TRANSITION LIMIT MAXIMUM ALLOWABLE STATE TRANSITIONS WITHOUT

INTERVENTION
STORAGE SPECIFIES THE MAXIMUM NUMBER OF TAPE CELLS

THE FOLLOWING ARE VALID ENTRIES FOR YYYY ABOVE:
MACHINE INDICATES A NEW MACHINE IS TO BE SPECIFIED
EXPERIMENT INDICATES A NEW EXPERIMENT IS TO BE SPECIFIED

WHEN AN EXPERIMENT HAS BEEN SPECIFIED, GO STARTS IT GOING.

o
ft LET'S DEFINE A TURING MACHINE TO COMPUTE
N EXCLUSIVE-OS OF TWO BINARY STRINGS. OUR
ft TAPE WILL HAVE THE FOLLOWING FORMAT:
ft <BIN STRING 1> * <BIN STRING 2> + <RESULT>
ft WITH U'S AND O'S AS MARKERS FOR PROCESSED
ft PORTIONS OF STRINGS
o

N-.MACHINE
THE ALPHABET CURRENTLY CONTAINS: 3
PLEASE ENTER TAPE ALPHABET: SINGLE CHARACTERS SEPERATED BY COMMAS
0 , 1 , n , o , + , *
ENTER STATE QUINTUPLES: STATE, READ, HEW STATE, WRITE, MOVE
SEPERATED BY COMMAS, SO THAT THE FOLLOWING DOMAINS APPLY:
STATE, NEW STATE ARE POSITIVE INTEGERS, 0 FOR HALT
READ, WRITE e I*0lLJo->-*
MOVE e L,R,-

ENTER DONE TO TERMINATE STATE ASSIGNMENT
I
1 , 1 , 2 , U , R
I
1,Q,3,U,R
I
2 , 0 , 2 , 0 , R
I
2 , 1 .2 ,1,R
I
2,*,4 ,* , I?
I
3, 0,3, O.J?
i
3 , 1 .3 , 1 ,R
I
3,* (5,* ,R
I

I

4 , 0 , b , O , R

I 1 7 o 1

I '
5 O S O R
5 0 7 O R
I * ' *

5.1,6,0,*
|
6,0,6,0,*
I
6 % 6 1 H
i *
6,
I
6,5,8.1,/?

7 , 0 , 7 , 0 , ^
I

7 , 1 . 7 . 1 .if

7 , - . 7 , - , *

7 BtB,0,L
fi 0 8 0 L 8,0, 8,0,I,

8 ,1 ,8 ,1 ,1-
j
8,0,8.O,L

I
8 , -+ , 8 , •+ , L

\ * 8 * L
I

o
ft WE MAY NOW SPECIFY AN EXPERIMENT
o

N * E XP E RI iiE NI
SPECIFY INITIAL TAPE INPUT {BEGINNING ON CELL [0])
1101*1000+
SPECIFY CELL ON WHICH READ HEAD SHOULD BE POSITIONED
D:

0
SPECIFY FIRST STATE
U:

1
SPECIFY TRACE: 0 NO TRACE, 1 TRACE
Fj:

1
SPECIFY MAXIMUM STATE TRANSITIONS
U:

5
°
ft FI£F J/I? I4KII' READY TO GO
o

GO
112UR
212 LIT1

2 02 0I?
2121J?
2*<+*I?
TRANSITION LIMIT REACHED
o

n OI/I? TURING MACHINE HAS RUN FOR FIVE TRANSITIONS AND HAS
A k}J?Q]?PhD i0 AZihOyf US 'i 0 I/O OK A!F tfOME OF THE VALUES» WE

A MAY PRINT THE CURRENT VALUE OF THE TAPE.
o
Pi TAPE
10 TAPE CELLS WERE USED
C o] D i 0 1 * 1 0 0 0 +
o
A THE [0] INDICATES THAT THE PORTION OF THE 'INFINITE1 TAPE
A WHICH HAS BEEN PRINTED BEGINS WITH THE CELL 0 .
O

P:CELL
CURRENT HEAD POSITION IS: 5
O

Pt STATE
CURRENT STATE IS: H

N NOT MUCH HAS HAPPENED, LET'S CONTINUE
o
GO
41 70*
7 0 70;?
7070*
7 0 70*
7->7->*
TRANSITION LIMIT REACHED
o

A THIS IS TOO TEDIOUS, LETS CHANGE SOME PARAMETERS

S:TRANSITIONS

SPECIFY MAXIMUM STATE TRANSITIONS
G:

100
e
Si TRACE

SPECIFY TRACE: 0 NO TRACE, 1 TRACE

0
o
GO
MACHINE HALTED
o

Pi TAPE
12 TAPE CELLS WERE USED
[0jLIJ01*OO00-f01
o
« OOPS, WE GOOFED SOMEWHERE1.
A WHERE IS THE READ HEAD?
O

P:CELL
CURRENT HEAD POSITION IS: 12
o
A LET'S PRINT OUT THE MACHINE
o
P:QUINTUPLES
STATE TRANSITION MATRICES

1 .0 3 F?
1 i' 2 •
2 0 2 0
2 l 2 1
2 4

3 0 3 0 j?
3 1 3 a I?

* 5

4 0 6 O R
4 1 7 O R
4 O 4 O R

5 0 7 O R
5 1 6 O R
5 O 5 O ii

6 B 8 1 R
6 0 6 0 R
6 1 6 1 R
6 6 -y R

7 B 8 0 L
7 0 7 0 R
7 1 7 1 R
7 -> 7 -y R

8 0 8 0 L
a 1 8 1 L
8 D 1 • R
8 O 8 O L
a -> 8 -> L
8 8 L

o
A IF WE DIDN'T KNOW WHAT WAS WRONG, WE WOULD PROBABLY RERUN
A THE EXPERIMENT WITH THE TRACE ON. HOWEVER, I HAVE REASON
A TO BELIEVE THAT THE ERROR IS IN THE FIRST QUINTUPLE OF STATE 6.
a
S:QUINTUPLES
ENTER STATE QUINTUPLES : STATE, READ, NEW STATE, WRITE, .MOVE
SEPERATED BY COMMAS, SO THAT THE FOLLOWING DOMAINS APPLY:
STATE, NEW STATE ARE POSITIVE INTEGERS. 0 FOR HALT-
READ, WRITE E SOLLIO-f*
MOVE € L,R,-'

ENTER DONE TO TERMINATE STATE ASSIGNMENT
I
6,8,8.1,L
I

DONE
o

A LET'S SEE IF THAT FIXES IT.

-53-

N WE'LL MANUALLY MOVE THE READ HEAD LEFT ONE CELL AND START
N THE MACHINE IN STATE 8 {THE SKIP LEFT LOOP)
e
P: CELL
CURRENT HEAD POSITION IS: 12
D

S:CELL
SPECIFY CELL ON WHICH READ HEAD SHOULD BE POSITIONED
[] :

11
o
Pi STATE
CURRENT STATE Is : O
o
3-.STATE
SPECIFY FIRST STATE
[j;

8
o
N WE SHOULD BE READY TO CONTINUE
o

FO
WHAT?
o
a SORRY ABOUT THAT
o
GO
MACHINE HALTED
o

P'.TAPE
14 TAPE CELLS WERE USED
[O]GDnn*oooo*OIOI
o
P:CELL
CURRENT HEAD POSITION IS: H
o

N THAT'S THE END OF THE EXPERIMENT
fl THANX FOR TURING WITH US I
o

END

-54-

FV3ACH1NES

6 . 0 I N T R O D U C T I O N

A Turing machine is a finite-state machine associated with an external
storage or memory medium. This medium has the form of a sequence of
squares, marked off on a linear tape. The machine is coupled to the tape
through a head, which is situated, at each moment, on some square of the
tape (Fig. 6.0-1). The head has three Junctions, all of which arc exercised
in each operation cycle of the finite-state machine. These functions are:
reading the square of the tape being "scanned," writing on the scanned
square, and moving the machine to an adjacent square (which becomes the
scanned square in the next operation cycle).

— T O P E — -

F I G . 6 . 0 - 1

It will be recalled from section 2.2 that a finite-state machine is char
acterized by an alphabet (s0 s„) of input symbols, an alphabet
(r0 rK) of output symbols, a set (g0 ?,) of internal states, and a
pair of functions

Q(t + 1) = G{Q{t), S(t))

R(t + 1) = F{Q(t),S(t))

118 TURING MACHINES SEC. 6.0

which describe the relation between input, internal state, and subsequent
behavior.

In order to attach the external tape, it is convenient to modify this
description a little. The input symbols Uo J m) will remain the same,
and it will be precisely these that may be inscribed on the tape, one symbol
per square. The input to the machine A/, at the time I, will be just that
symbol printed in the square the machine is scanning at that moment. The
resulting change in state will then be determined, as before, by the func
tion G. The output of the machine M has now the dual function of (1) writ
ing on the scanned square (perhaps changing the symbol already there)
and (2) moving the tape one way or the other.

Thus R, the response, has two components. One component of the
response is simply a symbol, from the same set (s0,,.., jm), to be printed
on the scanned square; the second component is one or the other of two
symbols '0' (meaning "Move left") and V ("Move right"), which have the
corresponding effect on the machine's position. Accordingly, it is con
venient to think of the Turing machine as described by three functions ,

Q(t + 1) = C(0(0.5(0)
R(t + 1) = /'((?(»). S(0)
D{t + 1) = D(Q(t),S(t))

where the new Function '£»' tells which way the machine will move.
In each operation cycle the machine starts in some state qj, reads the

symbol sj written on the square under the head, prints there the new sym
bol F(q„ s;), moves left or right according to £>(<?,, Sj), and then enters
the new state G^, Sj).

When a symbol is printed on the tape, the symbol previously there is
erased. Of course, one can preserve it by printing the same symbol that
was read, i.e., if F(q„ Sj) happens to be Sj. Because the machine can
move either way along the tape, it is possible for it to return to a pre
viously printed location to recover the information inscribed there. As we
will see, this makes it possible to use the tape for the storage of arbitrarily
large amounts of useful information. We will give examples shortly.

The tape is regarded as infinite in both directions. But we will make
the restriction that when the machine is started the tape must be blank,
except for some finite number of squares. With this restriction one can
think of the tape as really finite at any particular time but with the provi
sion, whenever the machine comes to an end of the finite portion, some
one will attnch another square.

Formal mathematical descriptions of Turing machines may be found
in Turing [1936], Post [1943], Klccnc [1952], Davis [1958], There are un
important technical differences in these formulations. For our purposes
it will usually be sufficient to use pictorial state diagrams. Our immediate

src. 6.0 TURING MACHINES 119

purpose is to show how Turing machines, with their unlimited tape
memory, can perform computations beyond the capacity of finite-state
machines; it is usually easier to understand the examples in terms of
diagrams than in terms of tables of functions. While it is fresh in our
minds, however, let us note that the finite-state parts of our machines can
be described nicely by sets of quintuples of the form
(old state, symbol scanned, new slate, symbol written, direction of motion)

i.e.,

OR

(q,, Sj, G{q,, Sj), F(qi,Sj), £>(?,, Sj))

qij, Stj, dij)

i.e., as quintuples in which the third, fourth, and fifth symbols are de
termined by the first and second through the three functions G, F, and D
mentioned above.*

Thus a certain Turing machine (section 6.1.1 below) would be
described by the following six quintuples:

0.
I,

<7O>
<7T>

HALT,

0,
0,
o,

R)
R)

or just
(0,
(0,
(0,

0,
1,
B,

0, 0,
1, 0,
/ / , 0,

I)
1)
-)

(I,
(1.
(I.

o,
I,

rB,

0,
I,

B,

9>.
HALT,

o,
0,
1,

R)
R)
-)

I,
o,

0.
0,
I,

I)
I)
-)

where we have reserved the symbol '//'(or 'halt') to designate a halting
state.

One more remark. When we dealt with finite-state machines and the
things they could do, wc had to regard the input data as coming from
some environment, so that the description of a computation was usually
not contained completely in the description of the machine and its initial
slate. With a Turing machine tape we have now a dosed system, for the
tape serves as environment for the finite-state machine part. Hence we can
specify a "computation" completely by giving (1) the initial state of the
machine and (2a) the contents of the tape. Of course wc have also to say
(2b) which square of the tape the scanning head sees at the start. Wc will
usually assume the machine starts in state q0.

'THE STATE DENOTED BY q,s IS DEFINED TO BE THAT ONE OF THE ?,'S GIVEN BY THE FUNCTION
s,) AND SIMILARLY FOR S I J AND FORRFY.

120 TURING MACHINES SEC. 6.1,1

6 . 1 S O M E E X A M P L E S O F T U R I N G M A C H I N E S

The remainder of this chapter shows some of the things Turing
machines can do to the information placed on their tapes, and contrasts
these processes with those obtainable from finite-state machines. (For the
comparison, one may think of a finite-state machine as a specially re
stricted kind of Turing machine which can move in only one direction.)

6 . 1 . 1 A parity counter

We will set up a machine whose output is 1 or 0 depending on whether
the number of l's in a string of Ts and O's is odd or even. The input string
is represented on the Turing machine's tape in the form

(ToToT\ I h l o l i h l o l i l i l g l o ? Jo lo io l)

where we have printed the sequence in question followed by a B. The
machine starts (in state q0) at the beginning of the sequence; the B is to
tell the machine where the sequence ends. The machine needs two states,
one for odd and one for even parity, and it changes state whenever it
encounters a 1. The associated finite-state machine is represented by
Table 6.1-1.

TABLE 6.1-1. quintuples for paritv counter

S) ti) < f y

0 0 0 0 1 1 0 1 0 1
0 I 1 0 I " i " I 0 0 t
0 . B // 0 - 1 B H 1

?0 ?1

If we trace the operation of the machine we find that it goes through
the configurations at the lop of p. 121.

The machine ends up at the former site of the terminal B which it has
replaced by the answer. The input sequence has been erased.

PROBLEM. CHANGE THE QUINTUPLES SO that the SEQUENCE IS NOT ERASED.

In this simple example the machine always moves to the right. In such
a case there is no possibility of recording information on the tape and
returning to it at a later time. Hence one could not expect it to do any
thing that could not also be done by an unaided finite-state machine (with
sequential input) and wc know already, from section 2.2, that this is true
for this computation.

THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Tim Teitelbaum

This is a problem within a problem, which combines a small piece

of the theory of finite state machines with the practice of interactive

programming and system building.

First of all, we have the firing squad problem itself as devised
, , , , , [3] by Myhill and described xn Moore :

Consider a finite (but arbitrarily long) one"dimensional array of

finite-state machines all of which are alike except the ones at each

end. The machines are called soldiers, and one of the end machines

is called a General. The machines are synchronous, and the state of

each machine at time t + 1 depends on the states of itself and of its

two neighbors at time t. The problem is to specify the states and

transitions of the soldiers in such a way that the General can cause

them to go into one particular terminal state (i.e., they fire their

guns) all at exactly the same time. At the beginning state (i.e., t = 0),

all the soldiers are assumed to be in a single state, the quiescent

state. When the General undergoes the transition into the state

labeled "fire when ready," he does not take any initiative afterwards,

and the rest is up to the soldiers. The signal can propagate down the line

no faster than one soldier per unit of time, and their problem is how

to get all coordinated and in rhythm. The tricky part of the problem

is that the same kind of soldier with a fixed number K of states is required

to be able to do this, regardless of the length n of the firing squad.

In particular, the soldier with K states should work correctly, even

when n is much larger then K. Roughly speaking, none of the soldiers
is permitted to count as high as n.

Two of the soldiers, the General and the soldier farthest from the

General, are allowed to be slightly different from the other soldiers in

being able to act without having soldiers on both sides of them, but their

structure must also be independent of n.

A convenient way of indicating a solution of this problem is to use

a piece of graph paper, with the horizontal coordinate representing the

spatial position, and the vertical coordinate representing time. Within

the (i,j) square of the graph paper a symbol may be written, indicating

the state of the ith soldier at time j. Visual examination of the pattern

of propagation of these symbols can indicate what kinds of signaling

must take place between the soldiers.
* * *

Since the solution of this problem involves considerable busy-work,

it will be convenient for you to have the aid of a computer program.

What this program does constitutes the second part of this problem and is

entirely up to you. It could only verify your candidate solutions or, at

the opposite extreme, it might (try to) generate the entire solution

for you.

Such a program, if written in an interactive programming language,

could be used to develop the solution strategy incrementally. Thus, you

could first concentrate on developing a conversational system for programming,

debugging, and editing the soldiers' rules; then you can use your system

to work on the firing squad problem per se.

Consider the task of optimizing your own total time. What is the

trade-off between time spent incorporating features in your computer

program versus effort expended directly on the design of the soldiers program?

If, after all due effort, you haven't made any progress, you may

wish to toss in the towel and refer to the solution strategy description

-60-

given in Minsk/ 2 J. (But do yourself a favor and don't give up until

desperate.)

If, on the other hand, you have found a solution, you may wish to

consider finding solutions which optimize the time or number of states

required. An eight-state minimum time solution (2n-2) may be found in

the CMU thesis by Balzer^.

References

[1] Balzer, R. M., "Studies Concerning Minimal Time Solutions to the
Firing Squad Synchronization Problem," CMU Computer Science
Department Ph.D. thesis, 1966.

[2] Minsky, M., Computation, Finite and Infinite Machines, Prentice Hall,
p. 282.

[3] Moore, E. F., Sequential Machines, Selected Papers, Addison-Wesley,
1964, pp. 213-214.

TREES, TREES, TREES

Tim Teitelbaum

Question. Could you help me—I'm a little confused?

Answer. Sure, what's your problem?

(J. What kind of data objects are manipulated by LISP programs?

A. Trees.
2. Oh, I get it. Something like:

Abraham

Ishmael

Jacob * Esau

A. Not exactly. More like: { A (B C) (D E))

£. I don't get it. Why is that a tree?

A. Because you can think of it as being:

£. But only the terminal nodes of your tree have data on them.

A. ToughJ Those are the rules.

So a LISP tree really looks like that?

A. No. It really looks like:

NIL

NIL

NIL C E

C;. OK, Forget it.

As you can see, there is no one data type which is a tree. There are,

in fact, many species of trees, each with its own sub-species and mutations.

The subject of tree structures (and related objects like lists) is confusing

but very important. The purpose of the following problem is twofold:

1) It is a means of helping you understand and differentiate

between various tree structures.

2) It is a small (though non-trivial) exercise in the LISP programming

language.

Problem

Consider the list L of father-son pairs:

L = ((Isaac Esau) (Abraham Ishmael) (Abraham Zimram)
(Noah Ham) (Isaac Jacob) (Abraham Isaac)).

This list corresponds in a fairly obvious way to a forest of two trees —

the one given above and the other, a separate family tree:

•» Noah

, Ham

However, since the information is distributed throughout the list, L is a

fairly useless representation. This is especially true if we wish to perform

operations like:

Extract the decendants of x

Extract the linage of x

Form a list of all first cousins.

-63-

Assuming these are the types of operations desired, your problem is:

1) To specify a suitable format for representing in LISP a forest

of family trees (ie., trees with data at all nodes).

2) To program in LISP a function tree(x) to transform a list of

father-son pairs (like L above) to the format specified in part 1)

above. Note that L is not sorted in any particular order -- it's

harder this way. (It would be very educational to code tree(x)

twice: once in "pure LISP" and once using the full power of LISP

1.5, eg., the prog feature, property lists, rplaca, rplacd, etc.)

DEPARTMENT OF COMPUTER SCIENCE
GRADUATE QUALIFYING EXAMINATION

TAKE HOME EXAM
NOVEMBER 3, 1970

The four functions described on pages 3 and 4 provide a behavioral

definition of a "register" module, i.e., some object called a register

which holds a string of characters, each character being a non-negative

integer. The register may hold p L characters (pL may be quite large).

Each character comes from an alphabet containing p 2 distinct characters.

Naturally these functions can be implemented in many ways. The

main parameter of implementation is the representation of the register.

Two important criteria governing choice of implementation are:

1. Execution speed of the functions.

2. Space requirement for the register.

1. Select at least two representations of the register and for each

implement in BASIC on the PDP-10 the four functions such that there

is extensive variation in their performance with respect to the two

criteria, i.e., different representations should tend to optimize

different criteria. Make some sensible assumptions about the ranges

of p L and p 2.

*
2. Suppose you are given:

A. "Frequencies" of the use of the four functions x,. x„, x„
1 2 3

and x,, e.g., as arising in some application, i.e.,

0 s x s 1, i = 1,2,3,4

4
2 x i = 1

B. and p2»

C. "Costs" c and c representing the costs associated with use
t s

of time and space in the application.

Write a BASIC program SELECT which solves the implementation selection

problem expressed as the integer programming problem

n 4
minimize Z(I) = 2 2 (c t.. + c s.Jx.I. I i = !- •_• t lj s lj j 1

n
subject to 2 I. - 1

i=l

I • 0 or 1, i « 1,2,...n

where t^ and a are the execution times and the storage requirements,

respectively, of the j t h function in the i t h implementation. Remember:

n should be * 2.

Naturally, t^ and s„ are functions of p t and p 2 >

3. How would you alter the formulation of section 2 to take into account:

A. Space and time constraints which might be imposed by the

application?

B. Transformations of the register representation? Over the

space of implementations and for some sets (P]L, p 2, x 2,

x 3, a smaller value of Z(I) is attainable if trans-

-66-

fonnations of the register representation are added to the

set of four functions. How would you assign frequencies to

these transformations? Specify the transformation functions

in the manner in which the four basic functions are given.

No programs are required for the answers to section 3.

4. Your examination answers should include:

A. Listings of the BASIC programs for SELECT and for the four

functions in their several guises. Each should contain

sufficient comments to explain their operation. You need

not write the various error routines but you must include

their calls.

B. Specification of the costs s ± j and t ± j and how they were

arrived at. Hint: How can these be obtained from the

PDP-10 runs? You may assume:

CPU run time = $.08 per second

Core usage cost = $.01 per K or core per second of

CPU time ($.01 per Kilocore second)

C. Several representative runs using meaningful p f p 2, x , x 2 > x,

x, , c and c values. 4 s t

D. Whatever verification (formal proof, test data, etc.) you

may be able to obtain in the time available that your

programs are correct.

DEFINITION OF A REGISTER MODULE

Notation: In describing the effect of a procedure we shall describe

the value of certain functions in terms of the values which existed

before the execution of the function. We shall use the function call

enclosed in quotes, e.g., 'sin(x)' to indicate the old or original value

of the function, the unquoted version, e.g., sin(x) to indicate its value

after the function being defined is executed once.

In the following definition we leave two parameters open and refer

to them as p and p2« when integer values are supplied the definition

is complete.

Function: LENGTH

possible values: an integer 0 ̂ LENGTH ̂ p x

effect: no changes or effect on values of any other
functions

parameters: none

initial value: 0

Function: GETCHAR (I)

possible values: an integer 0 £ GETCHAR £ ? 2

parameters: I must be an integer

effect: no changes to other functions in module

if I s 0 V I > LENGTH then a subroutine call to a routine

GETERR is performed,

initial value: undefined since initial value of LENGTH = 0

Function: INSERT (I,J)

possible values: none (in BASIC terms this is a subroutine)

-68-

parameters: I must be an integer
J must be an integer

effect:

if I <0 V T> LENGTH V J <0 V J> p 2 then a subroutine call

to a routine INSERTER is performed.

else LENGTH = 'LENGTH* + 1 . If 'LENGTH1 2 p1 a subroutine

call to a function LENGER is performed.

GETCHAR (k) »

if k < I, 1GETCHAR(k)'

if k = I, J

if k > I, 'GETCHAR(k-1)'

Function: DELETE (I,J)

possible values: none

parameters: I must be an integer
J must be an integer

effect:
if I ^ 0 V J < 1 V I+J-l > LENGTH then a subroutine call

to a routine DELERR is performed.

else

LENGTH = 'LENGTH' - J.

GETCHAR(k) = if k < 1 then 'GETCHAR(k)1

if k *̂ X thou GETCHAR)

Note: Definitions are due to Professor D. L. Parnas.

QUALIFYING EXAMINATION
May 11, 1971

24 Hour Take Home Exam

A programming language L is given a rating R(L) = j if j is the largest
integer for which there is a fixed non-recursive expression in the language
L whose value is the value of A(j,n) for all integral n > 0 where A(j,n) is
the Ackerman function defined by:

A(0,n) = n+1
A(l,n) = n+2
A(2,n) = 3 + 2xn
A(3,n) - -3 + 2*3+n
A(4,n) = -3 + */(3+n)p2

Consequently R(APL) * 4.

1. What is R(Algol 60)?

2. What is R(PURE LISP)?

3. What is R(SNOBOL4)?

Justify your answers to the above.

By adding to APL an execute operator € which evaluates character strings
the following has been found:

A(0,n)
A(j,0)
A(j,n)

= n+1
= A(j-l,l) , j > 0
= A(j-l,A(j,n-l)) , n > 0

In APL:

A(5,n) = -3 + 6((n+2)p'*/V), -2'

(Recall that in APL the scope of every unary operator, such as €, is the
entire expression to its right.)

4„ The following has been hypothesized: If any programming language L
can transform strings of data into statements of the language and
repeatedly execute them R(L) = «.

Sketch a proof (or counterexample) of this proposition.

5. One can also provide a simple expression for A(j,n) by adding a new
operator £ and extending an old one (., the inner product) as follows:

2 X (n+3) = +/(n+3)P2

2 * (n+3) = X/(n+3)P2

Hal 2w[j](n+3) = w[j-l]/(n+3)P2

where w[l] = + w[2] » X w[3] - *

Then 2w[j](n+3) = 2w[j-l] w[j-l]/(itf2)P2

-3 + 2w[j](n+3) = -3 + 2w[j-l](-3 + 2w[j](n-l + 3) +3)

or A(j,n) = A(j-1, A(j,n-1))
2w[j](n+3) = w[j-l]/(n+3)P2

= w[j-l]/2 £(n+3)

(definition of p.: apb = b^a)
= 2w[j-l]. p_(n+3)

Formally: w[j] - w[j-l].o_
(inner product of w[j-l] and g)

W[j] - W[l].p_.££

j-1 times
~ •*"•£.*£. * • *

" It is now possible to give a closed non-recursive expression for A(j,n)
for every j and n.

A(j,n) - -3 + 6'2+\ ((j-l)P'.£'), 'n+3'

Using the development above as a model, write a LISP function for
A(j,n), which does not call on itself. Evaluate it for some small
arguments.

6. This suggests that by adding € and a few fixed operators to a language L
we can represent many recursive functions by non-recursive expressions.
Consider the language L whose data structure is strings of characters
over a finite alphabet Q . U § is the null character) on which are
defined functions:

(1) head(x) (first character in x)
(2) rest(x) (all but the first character in x)
(3) x-y (the string xy)

and strings obtained by

(4) subst(x,v,y) (the string obtained by substituting the string x
for the character v in the string y)

(5) and functions F defined by the primitive recursive schema:

F(u,4» = 4)
F(u,vx) = B(x,v,F(u,x))

where u is a parameter string
v is a character in Q-

and B is a given primitive recursive function.

Then by adding a few additional functions show how one may represent
F(u,vx) by

B(...(B|)...)

m times

i.e., F(u,vx) = £(mp,B<'),'t),,mp,), where m is a primitive recursive
function of the length of x, itself a function of the above type. For
each B there is a B, which may be defined in terms of the basic primi
tive recursive functions plus these added functions.

Hint:
One possible way is to add a few new operators and encode strings

as integers represented in base k, if there are k characters in the
alphabet < 2 , and to consider ordinary primitive functions over the
integers, and decode back to strings. Thus use the known results:
Over the integers, all primitive recursive functions of the form

F(u,0) = u

F(ujSx) — B(x,F(Ujx))

(S the sucCGs sor fume £i_on)

c n b 6 o b t i & d f i* OEQ Izt̂L 6 s c GTH 6 •

G(0) - 0
G(Sx) = B(B(.^(B(0)))...)

x times

by the following constructions over the non-negative integers (the
so-called Godel pairing function):

(a) Let J(u,v) = ((u+v) + u) + v
r~ 2

(b) Ex — x - [Vx]
(c) Kx = E[Vx], Lx = Ex

then (d) J(0,0) = 0, K(0) = 0, L(0) - 0
and if L(S(x)) J 0 then K(S(x)) = K(x) and L(S(x)) = S(L(x))
also (e) K(J(u,v)) = u L(J(u,v)) = v and J(K(x), L(x)) = x

(f) Then F(u,0) = u, F(u,S(x)) = B(x,F(u,x)) has a
? 3 F(0) = 0, ?<S(x)) = BX(0)

and F(u,x) = L(F(J(u,x))
and B(x) = J(S(K(x)), 0 L (S (K (x)) }»K(S(K(x)))

+ sgn L(S(K(x)))-B(L(K(x)),L(x)))
where

u X = 1 if x = 0, all u
= 0 if u = 0 and x i 0

and sgn x = 0
and [x] = the greatest integer £ x

7. What do you conjecture about classes of recursive functions in LISP
for which such iterative expressions would exist?

BUSY BEAVER PROBLEM

Background

This writeup of the Busy Beaver Problem is taken from Korfhage[1].

Turing machines are constructed to perform specific tasks

such as addition or multiplication. Part of the construction is

the tacit assumption of a standard format for the input string.

Thus one is naturally led to question the performance of the

machine on a non-standard input string. This is the Jbalting

problem: given a Turing machine and an arbitrary tape, to deter

mine whether or not the machine would eventually halt using the

given tape as input. This and the related Busy Beaver problem have

been shown to be unsolvable by any Turing machine (or algorithm).

That is, it is not possible to design an algorithm which will

solve this problem. The essential word here is "eventually."

It is easy to determine whether or not a given machine using a

given tape will halt within 1,47 9,641 or any other given number

of steps: just try to run the machine for 1,479,642 steps. But

with "eventually," we have no limit on the possible number of

steps which may occur.

There are only a finite number of Turing machines of a given

size (that is, number of states and symbols). For example, if we

allow n states (not counting the halt state), two moves, and two

symbols (0 and 1), then each block in the table describing a >

machine may be filled in 4(n + 1) ways (the extra one is for the

halt state). Since there are 2n blocks in the table, if we require

that each block be filled there are exactly N - (4(n + l)) 2 n

n-state two-symbol Turing machines. The Busy Beaver problem

(of class (n,2)) is to determine which of these machines will,

when started with a blank tape, halt with the highest possible

number of l's on its tape. This is thus a specialized halting

problem, which has been shown by Rado [2] to be unsolvable.

Nevertheless, some work has been done on this with interesting

results [3]. It is known that for two-symbol machines, the

highest possible number of l's obtainable with a halting machine of

1 state is 1, 2 states—4, and 3 states--6. Table 1 shows one of

the 3-state machines which will halt with six l's. Four other

such machines exist.

Table 1

A machine solving the three-state Busy Beaver problem

0 1
q 0 iRqx

lRqQ

qx lLq2 lRq3

q 2 ' lRq0 iLq,

For Turing machines having more than three states or operating

on more than two symbols, the maximum possible score is not known.

Nor has anyone solved the related problem of determining the

maximum number of moves or shifts which is possible in a machine

which halts. The known results are given in Table 2 , where £(n)

denotes the maximum possible score, and SH(n) denotes the maximum

possible number of shifts.

To indicate the magnitudes which must be considered in this

problem, let us look at the 100-state machines. There are 163,216100

of these, some of which will halt when started with a blank tape,

and some of which will not, It is known that one of these will
i 0 l 015000

halt with «(7!)!):)I or approximately 10 l's on the tape.

Thus the maximum number of ones attainable is at least that large,

and probably considerably larger. Yet if we use ten billion years

billion can be printed per second (somewhat faster than current

digital computers), only approximately 3.15 X 10 of these l's

could have been printed since the universe began.

Table 2

The known results in the Busy Beaver problem*

n = 1 2 3 4 5 6 7 8

Two-symbol machines
E(n) = 1 = 4 = 6 s 13 2 17 * 35 2 22,961 * 3(7.3^ - l)/2
SH(n) = 2 1 2 107
Three-symbol machines
I(n) > 12
SH(n) * 57

* These results were communicated to the author in February 1966 by

C.Y. Lee of Bell Telephone Laboratories, and are due to Lee, Tibor,

Shen Lin, Patrick Fischer, Milton Green, and David Jefferson.

Problem

The problem is to find 2(n) and SH(n) for as many two-symbol machines

as you can. Use the Turing machine simulator you built for an earlier

problem, or borrow one from a friend, or get the simulator written by

the author of the earlier problem.

References

[1] Korfhage, Robert R., Logic and Algorithms. Wiley, 1966.

[2] Rado, Tibor, "On Non-Computable Functions," Bell System Technical
Journal, 41 (1962), pp. 877-884.

of Turing Machine
196-212.

ANALYSIS OF ALGORITHMS

Background

This description of the mathematical analysis of algorithms is taken

from K n u t h W .

The general field of algorithmic analysis is an interesting

and potentially important area of mathematics and computer science

that is undergoing rapid development. The central goal in such

studies is to make quantitative assessments of the "goodness" of

various algorithms. Two general kinds of problems are usually treated:

Type A. Analysis of a particular algorithm. We Investigate

important characteristics of some algorithm, usually a frequency

analysis (how many times each part of the algorithm is likely to be

executed), or a storage analysis (how much memory it is likely to need).

For example, it is possible to predict the execution time of various

algorithms for sorting numbers into order.

Type B. Analysis of a class of algorithms. We investigate the

entire family of algorithms for solving a particular problem, and

attempt to identify one that is "best possible". Or we place bounds on

the computational complexity of the algorithms in the class. For

example, it is possible to estimate the minimum number S(n) of

comparisons necessary to sort n numbers by repeated comparison.

Type A analyses have been used since the earliest days of computer

programming; each program in Goldstine and von Neumann's classic

memoir1 j on "Planning and Coding Problems for an Electronic Computing

Instrument" is accompanied by a careful estimate of the "durations" of

each step and of the total program duration. Such analyses make it

possible to compare different algorithms for the same problem.

Type B analyses were not undertaken until somewhat later, although

certain of the problems had been studied for many years as parts of

"recreational mathematics". Hugo Steinhaus analyzed the sorting function

S(n), in connection with a weighing problerrJ-"^; and the question of

computing x with fewest multiplications was first raised by Arnold

Scholz in 1937 L . Perhaps the first true study of computational

complexity was the 1956 thesis of H. B. Demuth L J, who defined three

simple classes of automata and studied how rapidly such automata are

able to sort n numbers, using any conceivable algorithm.

It may seem that Type B analyses are far superior to Type A, since

they handle infinitely many algorithms at once; instead of analyzing

each algorithm that is invented, it is obviously better to prove once

and for all that a particular algorithm is the "best possible". But

this is only true to a limited extent, since Type B analyses are

extremely technology-dependent; very slight changes in the definition

of "best possible" can significantly affect which algorithm is best.

For example, x"*̂ cannot be calculated in fewer than 9 multiplications,

but it can be done with only 6 arithmetic operations if division is

allowed.

These are the most important points about algorithmic analysis:

1) Analysis of algorithms is an interesting activity which

contributes to our fundamental understanding of computer

science. In this case, mathematics is being applied to computer

problems, instead of applying computers to mathematical problems.

2) Analysis of algorithms relies heavily on techniques of discrete

mathematics, such as the manipulation of harmonic numbers, the

solution of difference equations, and combinatorial enumeration

-79-

theory. Most of these topics are not presently being

taught in colleges and universities, but they should form

a part of many computer scientists' education.

3) Analysis of algorithms is beginning to take shape as a

coherent discipline. Instead of using a different trick for

each problem, there are some reasonably systematic techniques

which are applied repeatedly. (Numerous examples of these

unifying principles may be found by consulting the entries

under "Analysis of algorithms" in the index to E 6 ^ .)

Furthermore, the analysis of one algorithm often applies to

other algorithms.

4) Many fascinating problems in this area are still waiting to

be solved.

Problem

Choose three or four algorithms for a single task (such as sorting or

searching a table) and compare their efficiencies for various assumptions

about the data. (Type A analysis.)

OR

Attempt a Type B analysis. The precise specification of the class of

algorithms and the measure of efficiency are extremely important.

-80-

References

[1] Knuth, Donald Mathematical Analysis of Algorithms, Computer Science
Department, Stanford University. STAN-CS-71-206.

[2] Goldstine, Herman H. and John von Neumann, "Planning and Coding Problems
for an Electronic Computing Instrument, 1 1 in John von Neumann 1 s
Collected Works, A. H. Taub, ed., 5 (Pergamon Press, 1 9 6 3) , 80-235.

[3] Steinhaus, Hugo, Mathematical Snapshots, (Oxford University Press, 1 9 5 0) ,
38-39.

[4] Scholz, Arnold, "Aufgabe 253, 1 1 Jahresbericht der deutschen Mathematiker-
Vereinigung, class II, 47 (1937), 41-42.

[5] Demuth, Howard B., Electronic Data Sorting (Ph.D. thesis, Stanford
University, 1956), 92 pp.

[6] Knuth, Donald E., The Art of Computer Programming (Addison-Wesley
Publishing Corporation: Volume 1, 1968; volume 2, 1969; volume 3,
1972) .

SIMULATION OF A SMALL COMPUTER

Motivation

It is important for every Computer Scientist to understand the

issues associated with machine language programming. You should write

a few programs in assembly language at some point, but by the end of

the IC you should at least understand what a machine language is and

how instructions are interpreted by the hardware. This knowledge will

be presumed by core courses in hardware, programming languages, and

operating systems.

This problem requires you to write a simulator for a small computer.

This is not an artificial task; simulators are often written for mini

computers in order to construct software before the machine is actually

available and to debug software using the facilities available only in

the larger machine.

The Problem

1. Obtain a description of the DEC PDP-8 from the instructor for

this problem.

2. Write a program which simulates the behavior of the PDP-8.

If you need to make simplifying assumptions, be sure to justify

them carefully.

3. Include facilities for obtaining simulated timings—the amount

of time a program would take to execute if it were really

being run on a PDP-8. See if you can make the simulator efficient

enough to attain a 50:1 simulation ratio.

-82-

4. Write three or four small programs (and debug them) to test

the simulator.

