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ABSTRACT 

This paper discusses modularization as a mechanism for improving 

the flexibility and comprehensibility of a system while allowing the 

shortening of its development time. The effectiveness of a "modulariza­

tion" is dependent upon the criteria used in dividing the system into 

modules. Two system design problems are presented, and for each, both 

a conventional and unconventional decomposition are described. It is 

shown that the unconventional decompositions have distinct advantages 

for the goals outlined. The criteria used in arriving at the decomposi­

tions are discussed. The unconventional decomposition, if implemented 

with the conventional assumption that a module consists of one or more 

subroutines, will be less efficient in most cases. An alternative ap­

proach to implementation which does not have this effect is sketched. 



INTRODUCTION 

If programmers sang hymns, some of the most popular would be hymns 

in praise of modular programming. A lucid statement of this philosophy 

is to be found in a new textbook on the design of system programs which 

we quote below: 

"A well-defined segmentation of the project effort en­
sures system modularity. Each task forms a separate, dis­
tinct program module. At implementation time each module 
and its inputs and outputs are well-defined, there is no con­
fusion in the intended interface with other system modules. 
At checkout time the integrity of the module is tested inde­
pendently; there are few scheduling problems in synchronizing 
the completion of several tasks before checkout can begin. 
Finally, the system is maintained in modular fashion; system 
errors and deficiencies can be traced to specific system mod­
ules, thus limiting the scope of detailed error searching." 
[1, paragraph 10.23]* 

I must begin by saying that I am in complete agreement with this 

statement though I might not agree with some possible interpretations. 

Note, however, that nothing is said about the criteria to use in dividing 

the system into modules. Because the decision to divide a system into 

n modules of a given size does not determine the decomposition, this 

paper will discuss that issue and, by means of examples, suggest the 

type of criteria that should be used in decomposing thg system into 

modules. 

A BRIEF STATUS REPORT 

The major progress in the area of modular programming has been the 

development of coding techniques and assemblers which (1) allow one 
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module to be written with little knowledge of the code used in another 

module and, (2) allow modules to be reassembled and replaced without 

reassembly of the whole system. This facility is extremely valuable 

for the production of large pieces of code, but its use has not re­

sulted in the expected benefits. In fact, the systems most often used 

as examples of the problems involved in producing large systems are 

themselves highly modularized programs which make use of the sophisticated 

coding and assembly techniques mentioned above. 

EXPECTED BENEFITS OF MODULAR PROGRAMMING 

The expected benefits of modular programming fall into three classes: 

(1) managerial -- development time could be shortened because separate 

groups would work on each module with little need for communication 

(and little regret afterward that there had not been more communication); 

(2) product flexibility — it was hoped that it would be possible to 

make quite drastic changes or improvements in one module without changing 

others; (3) comprehensibility -- it was hoped that the system could be 

studied a module at a time with the result that the whole system could 

be better designed because it was better understood. 

WHAT IS A "MODULARIZATION"? 

In the sequel I give several partial system descriptions called 

"modularizations". In this context "module" is best considered to be 

a work assignment unit rather than a subprogram. The modularizations 

are intended to describe the design decisions which must be made before 



the work on independent modules can begin. Although quite different 

decisions are made in each alternative, in all cases the intention is 

to describe all "system level" decisions (i.e., decisions which affect 

more than one module). 

EXAMPLE SYSTEM 1: A KWTC INDEX PRODUCTION SYSTEM 

For those who may not know what a KWIC index is the following descrip­

tion will suffice for this paper. The KWIC index system accepts an or-' 

dered set of lines, each line is an ordered set of words, and each word 

is an ordered set of characters. Any line may be "circularly shifted" 

by repeatedly removing the first word and adding It to the end of the 

line. The KWIC index system outputs a listing of all circular shifts 

of all lines in alphabetical order. This is a small system. Except 

under extreme circumstances (huge data base, no supporting software), 

such a system could be produced by a good programmer within a week or 

two. Consequently it is a poor example in that none of the reasons 

motivating modular programming are important for this system. Because 

it is impractical to treat a large system thoroughly, we shall go through 

the exercise of treating this problem as if it were a large project. 

We give two modularizations. One, we feel, typifies current projects; 

the other has been used successfully in an undergraduate class project. 

Modularization 1 

We see the following modules; 

Module 1: Input: This module contains a single main program which 



reads the data lines from the input medium and stores them in core for 

processing by the remaining modules. In core the characters are packed 

four to a word, and an otherwise unused character is used to Indicate end 

of a word. An index is kept to show the starting address of each line. 

Module 2: Circular Shift: This module is called after the input 

module has completed its work. Rather than store all of the circular 

shiftB in core, it prepares an Index which gives the address of the first 

character of each circular shift, and the original index of the line 

in the array made up by module 1. It leaves its output in core with 

words in pairs (original line number, starting address). 

Module 3: Alphabetizing: This module takes as input the arrays 

produced by modules 1 and 2. It produces an array in the same format 

as that produced by module 2. In this case, however, the circular shifts 

are listed in another order (alphabetically). 

Module 4: Output: Using the arrays produced by module 3 and module 

1, this module produces a nicely formatted output listing all of the 

circular shifts. In a sophisticated system, the actual start of each 

line will be marked, pointers to further information may be inserted, 

the start of the circular shift may actually not be the first word In 

the line, etc., etc. 

Module 5: Master Control: This module does little more than con­

trol the sequencing among the other four modules. It may also handle 

error messages, space allocation, etc. 

It should be clear that the above does not constitute a definitive 

document. Much more information would have to be supplied before work 

could start. The defining documents would include a number of pictures 



showing core formats, pointer conventions, calling conventions, etc., 

etc. Only when all of the interfaces between the four modules had been 

specified could work really begin. 

This is a modularization in the sense meant by all proponents of 

modular programming. The system is divided into a number of relatively 

independent modules with well defined interfaces; each one is small 

enough and simple enough to be thoroughly understood and well programmed. 

Experiments on a small scale indicate that this is approximately the de­

composition which would be proposed by most programmers for the task 

specified. Figure 1 gives a picture of the structure of the system. 

Modularization 2 

We see the following modules: 

Module 1: Line Storage: This module consists of a number of func­

tions each one of which is given a precise specification in Figure 2. 

By calling these functions one may add a character to the end of the last 

word in the last line, start a new word, or start a new line. One may 

call other functions to find the kth character of the kth word in the 

jth line. Other routines in this module may be called to reveal the 

J number of lines, the number of words in a line, or the number of char-

J acters in any word. A precise definition of this module is given in 

Figure 2. The method of specification has been explained in [3]. 

Module 2: Input: This module reads the original lines from the 

input media and calls the Line Storage module- to have them stored in­

ternally. 



FIGURE 1 

STRUCTURE OF KWIC INDEX DECOMPOSITION 1 

INPUT MODULE 

In core representation of input 

CIRCULAR 
SHIFTING 

In core directory defining all circular shift 
of input lines in arbitrary order 

ALPHABETIZER 

In core directory defining circular shifts in 
alphabetical order 

OUTPUT 

Pretty Index 



Figure 2 
Definition of a "Line Storage" Module 

Introduction: This definition specifies i 
hold up to pi lines, each line consisting 
may be up to p3 characters. 

i mechanism which may be used to 
of up to p2 words, and each word 

Function WORD 
possible values: 
initial values: 
parameters: 
effect: 

Integers 
undefined 
l,w,c all integer 

call ERLWEL 
call ERLWNL 
call ERLWEW 
call ERLWNW 
call ERLWEC 
call ERLWNC 

if 1 < 1 or 1 > pi 
if 1 > LINES 
If w < 1 or w > p2 
if w > WORDS(1) 
if c < 1 or c > 
if c > CHARS(l,w) 

P3 

Function SETWRD 
possible values: 
initial values: 

none 

parameters: 
effect: 

not applicable 
l,w,c,d all integers 

call ERLSLE 
call ERLSBL 
call ERLSBL 
call ERLSWE 
call ERLSBW 
call ERLSBW 
call ERLSCE 
call ERLSBC 
if 1 -

if 1 < 
if 1 > 
if 1 < 
If w < 
if w > 
if w < 
if c 
if c 

1 or 1 > pi 
'LINES' +1 
'LINES1 

1 or w > p2 
'WORDS'(1) 
'WORDS'(1) 
1 or c > 

+ 1 

< 
.noteq 

P3 
'CHARS'(l,w)+l 

= 'LINES' +1 then LINES = 'LINES' + 1 
= 'WORDS'(1) +1 then WORDS(1) = w if w 

CHARS(l,w) * 
WORDfl.w.c) • 

Function WORDS 
possible values: 
initial values: 
parameters: 
effect: 

integers 
0 
1 an integer 

call ERLWSL 
call ERLWSL 
call ERLWSL(MN) 

if 1 < 1 or 1 > 
if 1 > LINES 
if 1 > LINES 

The routines named are to be written by the user of the module. The call 
informs the user that he has violated a restriction on the module; the sub­
routine should contain his recovery instructions [3]. 

d 
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Figure 2 cont'd. 

Function LINES 
possible values: 
initial value: 
parameters: 
effect: 

integers 
0 
none 
none 

Function DELWRD 
possible values: 
initial values: 
parameters: 
effect: 

call ERLDLE 

none 
not applicable 
l,w both integers 

if 1 < 1 or 1 > LINES 
call ERLDWE If w < 1 or w > 'WORDS'(1) 
call ERLDLD If 'WORDS'(1) = 1 
WORDS(1) - 'WORDS'(1) - 1 
for all c WORD(l,v,c) = 'WORD' (l,v+l,c) if v i w 
for all v > w or v = w CHARS(l.v) = 'CHARS'(i,v+l> 

Function DELINE 
possible values: 
initial values: 
parameters: 
effect: 

none 
not applicable 
1 an integer 

if 1 < 0 or 1 > 'LINES' 

w 

call ERLDLL 
LINES = 'LINES' - 1 
if r = 1 or r > 1 then for all 

( WORDS(r) 
CHARS(r,w) 
WORD(r,w,c) 

for all c 
= 'WORDS'(r+1) 

•CHARS'(r+l,w) 
'WORD'(r+l,w,c) ) 

Function CHARS 
possible values: 
initial value: 
parameters 
effect: 

integer 
0 
l,w both integers 

call ERLCNL 
call ERLCNW 

if 1 < 1 or 1 > LINES 
if w < 1 or w > WORDS(1) 



Figure 3 
Definition of a Circular Shifter for Line Holder 

In this definition we assume that the functions of line holder have 
values and define a function which allows us to deal with something like 
line holder in all ways but which contains all circular shifts of the 

l i n e h o l d e r . An additional feature is a facility for marking 
* - to be "suppressed", though they are accessible. 

lines in 
certain of the lines 

Function CSWORD 
possible values: integers 
initial values: undefined 
parameters: l,w,c - 1 

effect: 
call ERCWNL(MN) 
call ERCWNL(MN) 
call ERCWNW(MN) 
call ERCWNW(MN) 
call ERCWNC(MN) 
call ERCWNC(MN) 

all integer 

if 1 < 1 or 1 > p4 
if 1 > CSLINES 
if w < 1 or w > p2 

CSWORDS(l) if w > 
1 or w > p2 
CSWORDS(l) 

if c < 1 or c >, p3 
CSCHARS(l,w) if c > 
1 or c >, p3 
CSCHARS(l,w) 

Function CSWRDS 
possible values: integers 
initial values: 0 
parameters: 
effect: 

1 an integer 

call ERCWNL(MN) 
call ERCWNW(MN) 

if 1 < 1 or 1 > p4 
if 1 > CSLINES 

Function CSLNES 
possible values: 
initial value: 
parameters: 
effect: 

integers 
0 
none 
none 

Function CSCHRS 
possible values: integer 
initial value: 0 
parameters 
effect: 

l,w both integers 

call ERCCNL(MN) 
call ERCCNW(MN) 

if 1 < 1 or 1 > CSLINES 
if w < 1 or w > CSWORDS(l) 

Function CSSTUP 
possible values: 
initial value: 
parameters: 

none 
not applicable 
none 

effect: 
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Figure 3 cont'd. 

call ERCNES(MN) If SUM(1,1,'LINES','WORDS'(1)) > p4 
CSLINES => SUM(1,1,'LINES','WORDS'(1)) 
let HIP(l) =• minimum k such that SUM(l,l,k,'WORDS'(1)) .> or let HIP(l) =• minimum k such that SUM(l,l,k, WORDS 
let SHI(l) = 1 - SUM(1,1,HIP(1)-1,'WORDS'(I) - 1 
then for all 1 such that 1 .< or =. CSLINES 

CSWORDS(l) = 'WORDS'(HIP(1)) 



Module 3: Circular Shifter: This module contains a number of func­

tions. CSSTUP causes the others to have defined values. The others 

are intended to be the analogue of the information giving functions in 

module 1. Using them one may refer to the kth character of Jth word of 

the ith circular shift, as well as getting the lengths of lines and 

words, etc. This is shown In Figure 3. 

Module 4: Alphabetizer: This module consists principally of two 

functions. One, ALPH, must be called before the other will have a de­

fined value. The second, ITH, will serve as an index. ITH(i) will give 

the index of the circular shift which comes ith in the alphabetical or­

dering. Formal definitions of these functions are given in Figure 4. 

Module 5: Output: This module will give the desired printing of 

any circular shift. It calls upon Circular Shift functions. 

Module 6: Master Control: Similar in function to the modularization 

above. 

Comparison of the Two Modularizations 

Both schemes will work. The first is quite conventional; the second 

has been used successfully in a class project [7], Both will reduce 

the programming to the relatively independent programming of a number of 

small, manageable, programs. We must, however, look more deeply in order 

to investigate the progress we have made towards the stated goals. 

I must emphasize the fact that in the two decompositions I may_ not 

have changed any representations or methods. It is my intention to talk 

about two different ways of cutting up what may_ be the same object. A 



Figure 4 
Alphabetizer for Line Holder 

This module accomplishes the alphabetization of the contents of 
the modules referred to above by producing a pointer function, ITH, which 
gives the index of the ith line in the alphabetized sequence. 

Function ITH 
possible values: Integers 
initial values: undefined 
parameters: i an integer 
effect: 

call ERAIND if value of function undefined for parameter given 

Function ALPHC 
possible values: integers 
initial value: ALPHC(l) = index of 1 In alphabet used 

ALPHC(l) infinite if character not in alphabet 
ALPHC(undefined) = 0 

parameter: 1 an integer 
effect: 

call ERAABL if 1 not in alphabet being used, i.e., 
if ALPHC(1) - • 

Mapping Function EQW 
possible values: true, false 
parameters: ll,12,wl,w2 all integers 
values: EQW(ll,wl,12,w2)=for all c('WORD'(ll,wl,c)='W0RD(12,w2,c)) 
effect: 

call ERAEBL if 11 < 1 or 11 > 'LINES' 
call ERAEBL if 12 < 1 or 12 > 'LINES' 
call ERAEBW if wl < 1 or wl > 'WORDS'(11) 
call ERAEBW if w2 < 1 or w2 > 'WORDS'(12) 

Mapping Function ALPHW 
possible values: true, false 
parameters: ll,12,wl,w2 all integers 
values: ALPHW(ll,wl,12,w2) - I f - , 'EQW'(11,wl,12,w2) and 

k = roin c such that ( 'WORD'(11,wl,c) -req. 'WORD'(12,w2,c)) 
then 'ALPH'( 'WORD'(11,wl,k))<'ALPHC'( 'WORD'(12,w2,k)) 
else false 

effect: 
call call ERAWBL if 11 < 1 or 11 > 'LINES' 
call ERAWBL if 12 < 1 or 12 > 'LINES' 
call ERAWBW if wl < 1 or wl > 'WORDS'(11) 
call ERAWBW if w2 < 1 or w2 > 'WORDS'(12) 
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Flgure 4 cont'd. 

Mapping Function EQL 
possible values: 
parameters: 
values: 
effect: 

call ERALEL 
call ERALEL 

true, false 
11.12 both 
EQL(11,12) * 

integers 
for all k ('EQW'(ll,k,12,k)) 

if 11 < 1 or 1 > 'LINES' 
if 12 < 1 or 12 > 'LINES' 

Mapping Function ALPHL 
possible values: 
parameters: 
values: 

effect: 

false true, 
11,12 both integers 
ALPHL(11,12) - if i 'EQL'(11,12) then 
(let k - min c such that 'EQW'(ll,k,12,k)) 
'ALPHW'(11,k,12,k) else true 

call ERAALB 
call ERAALB 

if 11 < 1 or 11 > 
if 12 < 1 or 12 > 

'LINES' 
'LINES' 

Function ALPH 
possible values: 
initial values: 
effect: 

for all 
ITH (i) 

none 
not applicable 

I < 1 and i > ' LINES' ( 
is given values such that ( 

for all j < 1 and -, > LINES 
there exists a k such that 

for i >-l and < 'LINES' (that 
ITH(k) 
'ALPHL'( ITH(i), ITH(i+l))) 



system built according to decomposition 1 could conceivably be identical 

after assembly to one built according to decomposition 2. The differ­

ences between the two systems are in the way that they are divided into 

modules, the definitions of those modules, the work assignments, the 

interfaces, etc. The algorithms used in both cases might be identical. 

I calim that the systems are substantially different even if identical 

in the runnable representation. This is possible becuase the runnable 

representation is used only for running; other representations are used 

for changing, documenting, understanding, etc. In those other representa­

tions the two systems will not be identical. 

(1) Changeability. There are a number of design decisions which 

are questionable and likely to change under many circumstances. A 

partial list: 

1. Input format. 

2. The decision to have all lines stored in core. For large 

Indices it may prove Inconvenient or impractical to keep 

all of the lines in core at any one time. 

3. The decision to pack the characters four to a word. In 

cases where we are working with small indices it may prove 

undesirable to pack the characters, time will be saved by a 

character per word layout. In other cases, we may pack, but 

in different formats. 

4. The decision to make an index for the circular shifts rather 

than actually store them as such. Again, for a small index 

or a large core^riting them out may be the preferable 

approach. 



5. The decision to alphabetize the list once, rather than 

search for each item when needed, or partially alphabetize 

as is done in Hoare's FIND [2]. In a number of circum­

stances it would be advantageous to distribute the computa­

tion involved in alphabetization over the time required 

to produce the index. 

It is by looking at changes such as these that we can see the dif­

ferences between the two modularizations. The first change is, in both 

decompositions, confined to one module, but the second change would re¬ 

sult in changes in every module for the first decomposition. The same 

is true of the third change. In the first decomposition the format of 

the line storage in core must be used by all of the programs. In the 

second decomposition the story is entirely different. Knowledge of the 

exact way that the lines are stored is entirely hidden from all but 

module 1. Any change in the manner of storage can be confined to that 

module! 

In fact, in some of the versions of this system there was an addi¬ 

tional module in the decomposition. A symbol table module as described 

in [3] was used within the line storage module. This fact, where true, 

was completely invisible to the rest of the system. 

The fourth change is confined to the circular shift module in the 

second decomposition but in the first decomposition, the alphabetizer, 

and the output routines will also know of the change. 

The fifth change will also prove difficult in the first decomposi¬ 

tion. The output module will expect the index to have been completed 



before it began. The alphabetizer module in the second decomposition 

was designed so that a user could not detect when the alphabetization 

was actually done. No other module need be changed. 

(2) Independent development. In the first modularization the inter­

faces between the modules are the fairly complex formats and table 

organizations described above. These represent design decisions which 

cannot be taken lightly. The table structure and organization are es­

sential to the efficiency of the various modules and must be designed 

carefully. The development of those formats will be a major part of 

the module development and that part must be a joint effort among the 

several development groups. In the second modularization the interfaces 

are more abstract, they consist primarily in the function names and the 

numbers and types of the parameters. These are relatively simple deci­

sions and the independent development of modules should begin much 

earlier. 

(3) Comprehensibility. To understand the output module in the first 

modularization, it will be necessary to understand something of the 

alphabetizer, the circular shifter and the input module. There will 

be aspects of the tables used by output which will only make sense be­

cause of the way that the other modules work. There will be constraints 

on the structure of the tables due to the algorithms used in the other 

modules. The system will only be comprehensible as a whole. It is my 

subjective judgment that this is not true in the second modularization. 



The Criteria 

Many readers will now see what criteria were used in each decomposi­

tion. In the first decomposition the criterion used was make each 

'major step' in the processing a module. One might say that to get the 

first decomposition one makes a flowchart. Figure 1 Is a flowchart. 

This is the most common approach to decomposition or modularization. 

It is an outgrowth of all programmer training which teaches us that we 

should begin with a rough flowchart and move from there to a detailed 

implementation. The flowchart was a useful abstraction for systems with 

on the order of 5,000-10,000 instructions, but as we move beyond that it 

does not appear to be sufficient; something additional is needed. 

The second decomposition was made using "information hiding" [4] 

as a criteria. The modules no longer correspond to steps in the pro­

cessing. The line storage module, for example, is used in almost every 

action by the system. Alphabetization may or may not correspond to a 

phase in the processing according to the method used. Similarly, 

circular shift might, in some circumstances, not make any table at all 

but calculate each character as demanded. Every module in the second 

decomposition is characterized by its knowledge of a design decision 

which it hides from all others. Its interface or definition was chosen 

to reveal as little as possible about its inner workings. 

Improvement in Circular Shift Module 

To illustrate the impact of such a criterion let us take a closer 

look at the definition of the circular shifter module from the second 

decomposition. Hindsight now suggests that this definition reveals more 



information than necessary. While we have carefully hidden the method 

of storing or calculating the list of circular shifts, we have indicated 

an order to that list. Programs could be effectively written if we 

specified only (1) that the 'lines' indicated in circular shift's defini­

tion will all exist in the "table", (2) that no one of them would be 

included twice and (3) that a function existed which would allow us to 

identify the original line given the "shift". By prescribing the order 

for the shifts we have given more information than necessary and so un­

necessarily restricted the class of systems that we can build without 

changing the definitions. For example, we have not allowed for a system 

in which the circular shifts were "produced" in alphabetical order, alph 

is empty, and 1TH simply returns its argument as a value. Our failure 

to do this in constructing the systems with the second decomposition 

must clearly be classified as a design error. 

Efficiency and Implementation 

If we are not careful the second decomposition will prove to be 

much less efficient. If each of the "functions" is actually implemented 

as a procedure with an elaborate calling sequence there will be a great 

deal of such calling due to the repeated switching between modules. The 

first decomposition will not suffer from this problem because there is 

relatively infrequent transfer of control between modules. 

To save the procedure call overhead yet gain the advantages that 

we have seen above we must implement these modules in an unusual way. 

In many cases the routines will be best inserted into the code by an 

assembler; in other cases, highly specialized and efficient transfers 

would be inserted. To successfully and efficiently make use of the 



second type of decomposition will require a tool by means of which pro­

grams may be written as if the functions were subroutines but assembled 

by whatever implementation is appropriate. If such a technique is used, 

the separation between modules may not be clear in the final code. For 

that reason additional, program modification, features would also be 

useful. In other words, the other representations of the program (which 

were mentioned earlier) must be maintained in the machine together with 

a machine supported mapping between them. 

A SECOND EXAMPLE: A MARKOV ALGORITHM TRANSLATOR 

Although the first example makes most of the points of this paper 

it will be useful to look briefly at a somewhat different example. 

This one is a translator intended to execute Markov Algorithms. Markov 

Algorithms have been described in numerous places; the description of 

them as a programming language is best found In Galler and Perils [6]. 

For those who are not familiar with them, Markov Algorithms might be 

described as a poor man's SNOBOL. The only memory in the machine is a 

character string (always expandable if needed). The algorithm is 

described by a set of rules. Each rule consists of a pattern to be 

matched and a substitution part specifying a string to be used to re­

place the matched wtring. The sequencing rule is that the first rule 

which can be applied (its pattern matches) is applied at the leftmost 

part of the register where it will match. When the substitution is 

complete, the first applicable rule again applies (i.e., there is no 

memory of the last rule to be applied or the last change made). 



Conventional Modularizations 

There are two conventional modularizations of this type of translator. 

They are: 

1. Interpretor 

Input module; Reads the input, parsing it into rules and storing a 

direct representation of the rule in core. 

Interpretor: Attempts to apply each rule to the register. It ac­

cesses the data structure storing the rules, uses the pattern to look 

for a match, and if a match is found, then uses the substitution to 

change the register. 

There may also be an output module doing appropriate printing. 

2. Compiler: 

Input module: Reads the input, parses it, and passes a representa­

tion of each syntactic unit as a parameter to the next module, encoder. 

Encoder: This consists of routines which are passed a rule or part 

of a rule and produce machine code which would enact it, e.g., they pro­

duce a machine code program for each pattern which searches for the 

occurrence of that pattern. This is known as the compiled code. 

Run Time Routines: Consist of a standard set of machine code rou­

tines used in every algorithm. The compiled routines link to these 

routines for such functions as output, etc. 

An Alternative Approach 

We have used successfully the following modularization: 



Rule Storage: Stores a representation of the rules in core. This 

module is in many ways analagous to the Line Storage Module. 

Rule Interpretation: Knows the meaning of a rule, e.g., knows how 

to examine the stored rule and apply any given rule. 

Register Manipulation: Consists of a set of routines which make 

all manipulations on the register. 

Sequencing: Chooses the next rule to be applied. 

Input: Reads the input and calls rule storage and register manipula­

tion modules for the purpose of internal storage. 

Output: Does necessary printing of register, last rule to apply, etc. 

Discussion of Second Example 

Many of the arguments from the first example could be repeated here. 

For example, the separation of register manipulation from the other mod­

ules allows easier changing of the register representation. The separa­

tion of rule sequencing from rule interpretation allows one to experiment 

easily with some of the other forms of Markov Algorithms described in [6]. 

We have chosen this example to make another point, however. This 

modularization has not made a decision between interpretor and compiler. 

We can switch between an interpretive translator and a compiler relatively 

easily and we can also choose many points on a spectrum between the two. 

Register manipulation, sequencing, input and output will remain (or may 

remain) with little changes. The major change is in the rule interpreta­

tion module, which in the compiler stores a machine code program once, 

but in the interpretor applies the rule when called to interpret. There 

can be a great deal of code in common between the two systems. For 



example, the register manipulation code is used in both versions. In 

the computer it is part of the run time routines; in the interpretor it 

is called by the rule interpretation module. 

HIERARCHICAL STRUCTURE 

We can find a program hierarchy in the sense illustrated by Dijkstra 

[5] in the system defined according to decomposition 2. If a symbol 

table exists, it functions without any of the other modules, hence it is 

on level 1. Line storage is on level 1 if no symbol table is used or on 

level 2 otherwise. Input and Circular Shifter require line storage for 

their functioning. Output and Alphabetlzer will require Circular Shifter, 

but since circular shifter and line holder are in some sense compatible 

it would be easy to build a parameterized version of those routines 

which could be used to alphabetize or print out either the original 

lines or the circular shifts. In the first usage they would not require 

circular shifter; in the second they would. In other words, our design 

has allowed us to have a single representation for programs which may run 

at either of two levels in the hierarchy. 

In discussions of system structure it is easy to confuse the benefits 

of a good decomposition with the benefits of a hierarchical structure. 

We have a hierarchical structure if a certain relation may be 

defined between the modules or programs and that relation is a 

partial ordering. The relation we are concerned with is "uses" or 

"depends upon". It is better to have a relation between programs since 

in many cases one module depends upon only part of another module (e.g., 



Circular Shifter depends only on the output parts of the line holder 

and not on the correct working of SETWORD). It is conceivable that 

we could obtain the benefits that we have been discussing without such 

a partial ordering, e.g., if all the modules were on the same level. 

The partial ordering gives us two additional benefits. First, parts 

of the system are benefited by (simplified) because they use the services 
* 

of lower levels. Second, we are able to cut off the upper levels and 

still have a usable and useful product. For example, the symbol table 

can be used in other applications, the line holder could be the basis 

of a question answering system. The existence of the hierarchical 

structure assures us that we can "prune" off the upper levels of the tree 

and start a new tree on the old trunk. If we had designed a system in 

which the "low level" modules made some use of the "high level" modules 

we would not have the hierarchy, we would infd it much harder to remove 

portions of the system,and "level" would not have much meaning in the 

system. 

Since it is conceivable that we could have a system with the type 

of decomposition described shown in version 1 (important design decisions 

in the interfaces) but retain a hierarchical structure, we must conclude 

that hierarchical structure and "clean" decomposition are two desirable 

but independent properties of a system structure. 
CONCLUSION 

We have tried to demonstrate by these examples that it is almost 

always incorrect to begin the decomposition of a system into modules 

*"lower" means "lower numbered". 
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on the basis of a flowchart. We propose instead that one begins with 

a list of difficult design decisions or design decisions which are likely 

to change. Each module is then designed to hide such a decision from 

the others. Since, in most cases, design decisions transcend time of 

execution, modules will not correspond to steps in the processing. To 

achieve an efficient implementation we must abandon the assumption that 

a module is one or more subroutines, and instead allow subroutines and 

programs to be assembled collections of code from various modules. 



-25-

References 

1. Gauthler, Richard and Stephen Ponto, Designing Systems Programs. 
(C) 1970, Prentice-Hall, Inc. 

2. Hoare, C. A. R., "Proof of a Program, FIND," Comm. ACM, January 1971. 

3. Parnas, D. L., A Paradigm for Software Module Specification with 
Examples, Technical Report, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pa., 1971. 

4. Parnas, D. L., Information Distribution Aspects of Design Methodology, 
Technical Report, Department of Computer Science, Carnegie-Mellon 
University, Pittsburgh, Pa., 1971. Also to be presented at the IFIP 
Congress 1971, Ljubeljana, Yugoslavia. 

5. Dijkstra, E. W., "The T.H.E. Multiprogramming System," CACM, May 1967. 

6. Galler, B. and A. J. Perils, A View of Programming Languages, Addison 
Wesley; 1970. * * i B " J L -

7. Parnas, D. L., A Course on Software Engineering, in preparation. 



Securi ty C l a s s i f i c a t i o n 

DOCUMENT CONTROL DATA - R & D 
(Security clattlllcalion ol litis, body ol abstract and Indexing annotation muel be Timed whan the overall report la claamllled^ 

O R I G I N A T t M S A C T I V I T Y (Corporate author) 
Department of Computer Science 
Carnegie-Mellon Unversity 
Pittsburgh, Pennsylvania 15213 

i f , R E P O R T S E C U R I T Y C L A S S I F I C A T I O N 

UNCLASSIFIED 
2b . G R O U P 

5. R E P O R T T I T L f c 

On the Criteria to be Used in Decomposing Systems into Modules 

A. D E S C R I P T I V E N O T E S (Type of report end Inclusive date*) 
Scientific Interim 

fl. A U T H O R ( S ) (Flrei name, middle Initial, laet name) 

D. L. Parnas 

6- R E P O B T D A T E 

August. 1971 
T*, T O T At, NO. O r P A O I I 

29 
7b . N O . or nmri 

7 

mmtt-mdr • * . O R I G I N A T O R * ! R E P O R T NUMftCR(t) 

b. P ROJ EC T N O . 

A0827-5 
c. 

61101D 
d. 

Ob. O T H E R R E P O R T N O I f l (Any other number* that may be aeelaned 
thle report) 

1 0 D I S T R I B U T I O N S T A T E M E N T 

This document has been approved for public 
its distribution is unlimited. 

: release and sale, [ j 
i 

1 1 . S U P P L E M E N T A R Y N O T E S 

TECH, OTHER 

1 3. A BSTtt A C T ' 

1 3 . 4 P O N S O R I N O MILITARY A C T I V I T Y 

Air Force Office of Scientific Research 
1400 Wilson Boulevard 
Arlington, Virginia 22209 

This paper discusses modularization as a mechanism for improving the 
flexibility and comprehensibility of a system while allowing the shortening 
of its development time. The effectiveness of a "modularization" is 
dependent upon the criteria used in dividing the system into modules. Two 
system design problems are presented, and for each, both a conventional and 
unconventional decomposition are described. It is shown that the conventional 
decompositions have distinct advantages for the goals outlined. The criteria 
used In arriving at the decompositions are discussed. The unconventional 
decomposition, if implemented with the conventional assumption that a module 
consists of one or more subroutines, will be less efficient in most cases. 
An alternative approach to Implementation which does not have this effect is 
sketched. 

DD . FN° 01V.1473 
'Yoo ir i tv ClHSsifiLdtion 



Security Clar i f i ca t ion 
iV. " ' 

K I Y W O R D 1 
L I N K A L I N K * ' 1 L I N K C iV. " ' 

K I Y W O R D 1 
I t O L I * T H O L E WT H O L E 

Securi ty C l a s s i f i c a t i o n 


