NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-101

ON THE CRITERIA TO BE USED
IN DECOMPCSING SYSTEMS INTO MODULES

D. L. Parnas

Department of Computer Science
Carnegie-MelIon Universgsity
FPittsburgh, Pa,

August, 1971

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F44620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. This document has been
approved for publlic release and sgale; 1its distribution 1=
unlimited.

ON THE CRITERTIA TO BE USED IN DECOMPOSING SYSTEMS INTO MODULES
D, L. Parnas
Department of Computer Science

Carnegie-Mellon University
Pittgburgh, Pa.

ABSTRACT

This paper discusses modularization as a mechanism for improving
the flexibility and comprehensibility of a system while allowing the
shortening of its development time. The effectiveness of a "modulariza-
tion'" is dependent upon the criteria used in dividing the system into
modules, Two system design problems are presented, and for each, both
a conventional and unconventional decomposgition are described. It is
shown that the unconventional decompositions have distinct advantages
for the goals gutlined. The criteria used in arriving at the decomposi-
tions are discussed. The unconventional decomposition, if implemented
with the conventional assumption that a module consists of one or more
subroutines, will be less efficient in most cases. An alternative ap-

proach to implementation which does not have this effect ig sketched,

INTRODUCTION

If programmers sang hymns, some of the most popular would be hymns
in praise of modular programming, A lucid statement of this philesophy
i8 to be found in a new textbook on the design of system programs which
we quote below:

"A well-defined segmentation of the project effort en-

sures system modularity., Each task forms a separate, dis-

tinct program module. At implementation time each module

and its inputs and outputs are well-defined, there is no con-

fusion in the intended interface with other system modules,

At checkout time the integrity of the module is tested inde-

pendently; there are few scheduling problems in synchronizing

the completion of several tasks before checkout can begin.

Finally, the system is maintained in modular fashion; system

errors and deficiencies can be traced to specific system med-

ules, thus limiting ihe scope of detailed error searching.”

[1, paragraph 10.23]

I muat begin by saying that I am in complete agreement with this
statement though I might not agree with some possible interpretations,
Note, however, that nothing is said about the criteria to use in dividing
the system into modules. Because the decision to divide a system into
n modules of a given size does not determine the decomposition, this
paper will discuss that lssue and, by means of examples, suggest the

type of criteria that should be used in decomposing the system into

modules,
A BRIEF STATUS REPORT

The major progress in the area of modular programming has been the

development of coding techniques and assemblers which (1) allow one

*
Reprinted by permission of Prentice-Hall,

module to be written with little knowledge of the code used in another
module and, (2) allow modules to be reassembled and replaced without
reagsembly of the whole system, This facility is extremely valuable

for the production of large pieces of code, but its use has not re-

sulted in the expected benefits, 1In fact, the systems most often used

as examples of the problems involved in producing large systems are
themselves highly modularized programs which make use of the sophisticated

coding and assembly techniques mentioned above.
EXPECTED BENEFITS OF MODULAR PROGRAMMING

The expected benefits of wmodular programming fall inte three classes:
(1) managerial -- development time could be shortened because separate
groups would work on each module with little need for communication
(and little regret afterward that there had not been more communication);
(2) product flexibility -~ it was hoped that it would be possible to
make quite drastic changes or improvements in one module without changing
others; (3) comprehensibility -- it was hoped that the system could be

studied a module at a time with the result that the whole system could

be better designed because it was better understcod.
WHAT IS A '"MODULARIZATION"?

In the sequel I give several partial system descriptions called
"modularizations". 1In this context "module" is best considered to be
a work assigmment unit rather than a subprogram, The modularizations

are intended to describe the design decisions which must be made before

-3-

the work on Iindependent modules can begin. Although quite different
decisions are made in each alternative, in all cases the intention is

to describe all "system level" decisions (i.e., decisiona which affect

more than one module}.
EXAMPLE SYSTEM 1: A KWIC INDEX PRODUCTION SYSTHM

For those who may not know what a8 ¥WIC index 18 the following descrip-
tion will suffice for this paper. The KWIC index system accepts an or-’
dered set of lines, each line is an ordered set of words, and each word
is an ordered set of characters, Any line may be "circularly shifted"
by repeatedly removing the firat word and adding it to the end of the
line. The KWIC index system outputs a listing of all circular shifts
of all lines in alphabetic&l order. This 1s & small system. Except
under extreme circumstances (huge data base, no supporting software),
such a system could be produced by a good programmer within a week or
two. <Consequently it is a poor example in that none of the reasons
motivating modular programming are important for this system. Because
it is {mpractical to treat a large system thoroughly, we shall go through
the exercise of treating this problem as if it were a large project,

We give two modularizations. One, we feel, typifies current projects:

the other has been used successfully in an undergraduate class project.

Modularization 1

We see the following modules:

Module 1: Input: This module contains a single main program which

reads the data lines from the input medium and stores them in core for
processing by the remaining modules, 1In core the characters are packed
four to a word, and an otherwise umused character is used to indicate end
of a word. 4An index is kept to show the starting address of each line.

Module 2: (Circular Shift: This module is called after the input

module has completed its work. Rather than store all of the circular
shifts in core, it prepares an index which gives the address of the first
character of each circular shift, and the original ipdex of the line

in the array made up by module 1, It leaves its output in core with
words in pairs (original line number, starting address}.

Moduie 3: Alphabetizing: Thie module takes as input the arrays

produced by moduies 1 and 2. It produces an array in the same format
as that produced by module 2. In this case, however, the circular shifts
are listed in another order {alphabetically},

Module &4: Qutput: Using the arrays produced by module 2 and module

1, this module produces a nicely formatted output listing all of the

circular shifts, 1In a sophisticated system, the actuval start of each
line will be marked, pointers to further information may be inserted,
the start of the circular shift may actually not be the first word in
the line, etc., etc.

Module 5; Master Control: This module does little more th&n con-

trol the sequencing among the other four modules., It may also handle
error messages, space allocation, ete,

It should be clear that the above does nét constitute a definitive
document. Much more information would have to be supplied before work

could start, The defining documents would include a number of pictures

b

showing core formats, pointer conventions, calling conventions, etc.,
etc. Only when all of the interfaces between the four modules had been
specified could work really begin,

This is a modularization in the sense meant by all proponents of
modular programming, The system is divided into a number of relatively
independent modules with well defined interfaces; each one is small
enough and simple enough to be thoroughly understood and well programmed,
Experiments on a small scale indicate that this is approximately the de-
composition which would be proposed by most programmers for the task

specified, Figure 1 gives a picture of the structure of the system.

Modularization 2

We see the following modules;

Module 1: Line Storage: This module consists of a number of func-

tions each one of which is given a precise specification in Figure 2,

By calling these functions one may add a character to the end of the last
word in the last line, start a new word, or start a new line. One may
call other functions to find the kth character of the kth word in the

jth line. Other routines in this module may be calied to reveal the
number of lines, the number of words in a line, or the number of char-
acters in any word. A precise definition of this module is given in
Figure 2, The method of specification has been explained in [3].

Module 2: Input: This module reads the original lines from the

input media and calls the Line Storage module- to have them stored in-

ternally.

FIGURE 1

STRUCTURE OF KWIC INDEX DECOMPOSITION 1

INPUT MODULE

In core representation of input

CIRCULAR
SHIFTING

In core directory defining all circular shift
of 1input lines 1n arbltrary order

ALPHAEETIZER

In core directory defining c¢ircular shifts in

alphabetical order

QUTPUT

Pretty Index

Figure 2
Definition of a "Line Storage' Module

Introduction: This definition specifies & mechanism which may be used to
hold up to pl lines, each line consisting of up to p2 words, and each word
may be up to p3 characters.

Function WORD
possible values: integers

inittal values: undefined

parameters: l,w,c all integer

effect; %
call ERLWEL ifl1<1lorl>pl
call ERLWNL if 1 > LINES
call ERLWEW ifw<1orw:>p2
call ERLWNW i1f w > WORDS(1)
call ERLWEC ifce<lorecz>p3
call ERLWNC if ¢ > CHARS(l,w)

Function SETWRD
poeeible values; none
initial values: not applicable

parameters; l,w,c,d all integers
effect:
call ERLSLE ifl<lorlz>pl
call ERLSBL if 1 > '"LINES' +1
call FERLSBL if 1 < "LINES'
call ERLSWE if w<1lorw?>p2
call ERLSBW 1f w>» "WORDS' (1) + 1
call ERLSBW if w < "WORDS' (1)
call ERLSCE if e <1 or ¢ > p3
call ERLSBC if ¢ .nmoteq. TCHARS' (1,w)+1

if 1 = 'LINES' +1 then LINES = 'LINES' + 1
if w = "WORD5' (1) 41 then WORDS(l) = w
CHARS(1,w) = ¢

WORD(1l,w,c) = d

Function WORDS
possible values; 1integers

infeial values; 0

parameters; 1 an integer

effect;
call ERLWSL if1<lorl>opl
call ERLWSL if 1 > LINES

call ERLWSL(MN) if 1 > LINES

7 ‘
The routines named are to be written by the user of the module, The call

informs the user that he has violated a restriction on the module; the sub-
routine should contain his recovery instructions [3].

Function

Function

Function

Function

-8-

Figure 2 cont'd.

LINES

possible values: integers
initial value: 0
parameters: none
effect: none
DELWRD

possible values: none
initial values: not applicable

parameters: 1, both integers

effect:
call ERLDLE if 1< 1 or 1> LINES
call ERLDWE if w<1lor w> "WORDS' (1)
call ERLDLD if 'WORDS'(1) = 1

WORDS(1) = 'WORDS'(1l) -1
for all ¢ WORD{1l,v,c) = 'WORD'(l,v+l,c) if v 2 w
for all v > w or v = w CHARS(l,v) = 'CHARS'(1l,v+l)

DELINE
posaible values: none
initial values: not applicable
parameters; 1 an integer
effect:
call ERLDLL if 1< 0 or 1> '"LINES'
LINES = 'LINES' -1
ifr=1o0r r>1 then for all w, for all ¢
{ WORDS{(r) = 'WORDS' (r+l)
CHARS(r,w) = 'CHARS' (r+l,w)
WORD(r,w,c) = '"WORD' (r+1,w,c))

CHARS

possible values: integer

initial value: 0

parameters l,w both integers
effect:

call ERLCNL if 1< 1 or 1> LINES
call ERLCNW if w < 1 or w > WORDS(1)

-9-

Figure 3
Definition of a Circular Shifter for Line Holder

In this definition we assume that the functions of line holder have
values and define & function which allows us to deal with something like
line holder in all ways but which contains all circular shifts of the

lines in

line holder. An additional feature is a facility for marking

certain of the lines to be "suppressed', though they are accessible.

Function

Function

Function

Function

Functicon

CSWORD
possible values: integers
initial values: undefined

parameters: l,w,c all integer

effect:
call ERCWNL(MN) ifl<1lorl>ph
call ERCWNL (MN) if 1 > CSLINES
call ERCWNW (MN) ifw<1lorw>pl
call ERCWNW (MN) if w > CSWORDS(1)
call ERCWNC(MN) if e<1lorc¢>p3
call ERCWNC(MN) 1f ¢ > CSCHARS(1l,w)

CSWRDS

possible values: integers
initial values: 0

parameters: 1 an integer
effect:
call ERCWNL(MN) ifl<lorl>pa
call ERCWNW (MN) 1f 1 > CSLINES
CSLNES
possible values: integers
initial value: 0
parameters: none
effect: none
CSCHRS
possible values: integer
initial value: 0
parameters l,w both integers
effect:
call ERCCNL(MN) if 1L <1 or 1 > CSLINES
call ERCCNW (MN) 1f w< 1l or w> CSWORDS(1)
CSSTUP
possible values: none
initial value: not applicable
parameters: none

effect:

-10-

Figure 3 cont'd.

call ERCNES(MN) if smM(1,1,'LINES', 'WORDS' (1}) > ph
CSLINES = S(M(1,I,'LINES','WORDS'(1l})
let HIP(1l) = minimum k such that SUM(1l,1,k,'WORDS'{l)) .> or =,
let SHI(l) = 1 - sW4({i,1,HIP({1)-1,'"WORDS'({l) -1
then for all 1 such that 1 .< or =. CSLINES
CSWORDS(1} = '"WORDS'{HIP(1))
CSCHARS(1,w) = 'CHARS' (RIP(1l), (w+SHI{Ll))}mod 'CHWORDS' (1))
CSWORD({1,w,c} = 'WORD' (HIP(Ll),{w+SHI{1))mod 'CSWORDS'{l),c)

-11-

Module 3: Circular Shifter: This wmodule contains a number of funec-

tions. CSSTUP causes the others to have defined values. The others
are intended to be the analogue of the information giving functions in
module 1., Using them one may refer to the kth character of jth word of
the 1th circular shift, as well as getting the lengths of lines and
worda, etc. This is shown in Figure 3.

Module 4: Alphabetizer: This module consists principally of two

functions. One, ALPH, must be called before the other will have a de-
fined value. The second, ITH, will serve as an index. ITH(1) will give
the index of the circular shift which comes ith in the alphabetical or-
dering. Formal definitions of these functions are given in Figure 4,

Module 5: Qutput: This module will give the desired printing of

any circular shift. It calls upon Circular Shift functions.

Module 6; Master Control: Similar in function to the modularization

above,

Comparison of the Two Modularizations

Both schemes will work., The first is quite conventional; the second
has been used successfully in a class project [7]. Both will reduce
the programming to the relatively independent programming of a number of
small, manageable, programs. We must, however, look more deeply in order
to investigate the progress we have made towards the stated goals,

1 must emphasize the fact that in the two decompositions I may not
have changed any representations or methods. It is my intention to talk

about two different ways of cutting up what may be the same object. A

-12-

Figure 4
Alphabetizer for Line Holder

This module accomplishes the alphabetization of the contents of
the modules referred to above by producing a pointer function, ITH, which
gives the index of the ith line in the alphabetized sequence.

Function ITH
possible values: 1integers

initial values: undefined
parameters; i an integer
effect;

call ERAIND if value of function undefined for parameter given

Function ALPHC
possible values: integers
initial value: ALPHC(1) = index of 1 in alphabat used
ALPHC(1) infinite if character not in alphabet
ALPHC(undefined) = 0
parameter: 1 an integer
effect;
call ERAABL if 1 not in alphabet being used, i,e.,
if ALPHC(]l) = =

Mapping Function EJW
posgible values: true, false

parameters: 11,12 ,w1,w2 all integers
values; EQW(11,w1,12 ,w2)=for all c('WORD’ (11,wl,c)="WORD(12,wZ,c))
effect:

call ERAEBL if 11 < 1 or 11 > 'LINES'

call ERAEBL 1f 12 < 1 or 12 > 'LINES'

call ERAEBW if wl < 1 or wl > "WORDS' (11)

call ERAEBRW if w2 < 1 or wZ > "WORDS'(12)

Mapping Function ALPHW
possible values: true, false
parameters: 11,12 ,wl ,w? all integers
values: ALPEW(1),wl,12,w2) = 1f — 'EQW'(11,wl,12,w2) and
k = min ¢ such that ("WORD'(1ll,wl,c) —eq. 'WORD'(1l2,w2,c))
then 'ALPH'('WORD' (11,wl k))<'ALPHC'('WORD'(12,w2,k))
else false

effect:
call ERAWBL if 11 << 1 pr 11 > 'LINES'
call ERAWBL if 12 < 1 or 12 > 'LINES'
call ERAWRW if wl < 1 or wl > 'WORDS'(11)
call ERAWBW if w2 << 1 or w2 > 'WORDS'(12)

-13-

Figure 4 cont'd,

Mapping Function EQL
possible values: true, false

parameters: 11,12 both integers
values: EQL(11,12) = for all k ('E@'(11,k,12,k))
effect:

call ERALEL if 11 < 1 or 1 > '"LINES'

call ERALEL if 12 < 1 or 12 > 'LINES'

Mapping Function ALPHL
poasible values: true, false
parameters; 11,12 both integers
values: ALPHL(11,12) = if — 'EQL'(11,12) then
(let k = min ¢ such that 'EQW'(11,k,12,k))
'ALPHW' (11,k,12,k) else true
effect;
call ERAALB if 11 < 1 or 11 > 'LINES'
call ERAALB if 12 < 1 or 12 > 'LINES'

Function ALPH
posgible values: none
initial values: not applicable
effect:
for all { - < 1 and 1 > 'LINES' (
ITH (1) is given values such that (
for all j - < 1 and — > LINES
there exists & k such that ITH(k) = j
for i >-1 and < 'LINES' (that 'ALPHL'{ITH(i), ITH(i+l)))

-14-

system built according tc decomposition 1 could conceivably be identical
after assembly to one built according to decomposition 2., The differ-
ences between the two systems are in the way that they are divided into
modules, the definitions of those modules, the work assigmments, the
interfaces, etc. The algorithma used in both cases might be identical.

I caiim that the systems are substantially different even if identical

in the runnable representstion. This i8 poesible becuase the runnable
repregentation is used only for running; other representations are used
for changing, documenting, understanding, etc. In those other repreaenta-

tions the two systems will not be identical.

(1} Chengesability. There are a number of design decisions which
are questionable and likely to change under many circumstances. A&

partial list:

1. Irput format,

2. The decision to have all lines stored in core, For large
indices it may prove inconvenient or impractical to keep
all of the lines in core at any one time,

3. The decision to pack the characters four to a word., In
cases where we are working with small indices it may prove
undesirable to pack the characters, time will be saved by a
character per word layout. In other cases, we may pack, but
in different formats.

4, The decision to make an index for the circular shifts rather
than actually store them as such, Again, for a small index

or a large core,writing them out may be the preferable

appreoach.,

-15-

5. The decigion to alphabetize the ligt once, rather than
gearch for each item when needed, or partially alphabetize
ag is done in Heoare's FIND [2]. In a number of ¢ircum-
stanceg it would be advantageous to distribute the computa-
tion inwvolwved in alphabetization over the time required

to produce the index.

It is by locking at changes such as these that we can see the dif-
ferences between the two modularizations. The first change 1s, in both
decompositions, confined to one module, but the second change would re-
sult in c¢hanges in every mcdule for the first decompesition. The same
is true of the third change. In the first decompeosgition the format of
the line storage in core must be used by all of the programs. In the
second deccomposition the story is entirely different. Knowledge of the
exact way that the lines are stored is entirely hidden from all but
module 1. Any change in the manner of storage can be confined to that
module!

In fact, in some of the wversicns of this sygstem there was an addi-
tional module in the decomposition. A symbol table module as described
in [3] was used within the line storage module. This fact, where true,
wag completely invisible to the rest of the system.

The fourth change is confined to the circular shift module in the
second decomposition but in the first decomposition, the alphabetizer,
and the output routines will also know of the change.

The fifth change will also prove difficult in the first decomposi-

ticn. The output module will expect the index to have been completed

-16-

before it began, The alphabetizer module in the second decomposition
was designed so that a user could not detect when the alphabetization

was actually done. Ho other module need be changed,

{2) Independent development. In the first modularization the inter-
faces between the modules are the fairly compleﬁ formats and table
organizations described above. These represent design decisions which
cannet be taken lightly, The table structure and organiration are es-
sential to the efficiency of the various modules and must be designed
carefully. The development of those formats will be & major part of
the module development and that part must be a joint effort among the
several development groups, In the second modularization the interfaces
are more abstract, they conslst primarily in the function nsmes and the
mumbers angd types of the parsmeters, These are relatively simple deci-
sicns and the independent developmgnt of modules should begin much

earlier.

(3) Comprehensibility. To understand the output module in the first
modularization, it will be necessary to understand something of the
alphabetizer, the circular shifter and the input module. There will
be aspects of the tables used by output which will only make sense be-
cause of the way that the other modules work., There will be constraints
on the structure of the tables due to the algorithms used in the other
modules., The system will only be comprehensible as a whole, It is my

subjective judgment that this is not true in the second modularization,

-17-

The Criteria

Many readers will now see what criteria were used in each decowposi-
tion. In the first decomposition the criterion used was make each
'‘major step' in the processing a module. Ome might say that to get the
first decomposition one makes a flowchart., Figure 1 is & flowchart,
This is the mpst common approach to decomposition or modularizaticn.

It is an outgrowth of all programmer tralning which teaches us that we
should begin with a rough flowchart and wmove from there to a detailed
implementation. The flowchart waa & useful abstraction for syatems with
on the ovder of 5,000-10,000 instructions, but as we move beyond that it
does not &ppear to be aufficient; scwething additiondl is needed,

The second decomposition was made using "information hiding™ (4]
gs a criterie. The modules no longer correspond te steps in the pro-
cessing. The line storage module, for exsmple, 18 used in almost every
action by the system, Alphsbetization may or may not correspond to a
phese in the processing according to the method used. Similarly,
circular shift wight, 1n some circumstances, not make any table at all
but calculate each character as demanded. Every module in the second
decomposition 1s characterized by its knowledge of a design decision
which it hides from all others., 1Its interface or definition was chosen

te reveal as little as possible about its inner workings.

Improvement in Circular Shift Module

To illustrate the impact of such a criterion let us take a closer
lock at the definition of the circular shifter module from the second

decomposition. Hindsight now suggests that this definition reveals more

-18-

information than necessary. While we have carefully hidden the method
of storing or calculating the list of circular shifts, we have indicated
an order to that list, Programs could be effectively written if we
specified only (1) that the 'lines' indicated in circular shift's defini-
tion will all exist in the "table', (2) that no one of ﬁhem would be
included twice and (3) that a function existed which would allow us to
identify the original line given the "shift". By prescribing the order
for the shifts we have given more information than necessary and so un-
necegsarily restricted the class of systems that we can build without
changing the definitions., For example, we have not allowed for a system
in which the circular shifts were "produced" in alphabetical order, alph
is empty, and ITH simply returns its argument as a value, Q(ur failure
to do this in constructing the systems with the second decomposition

must clearly be classified as a design errotr.

Efficiency and Implementation

If we are not careful the second decomposition will prove tec be
much less efficient. If each of the "functions" i1s actually implemented
ag a procedure with 2n elaborate calling sequence there will ba a great.
deal of such calling due to the repeated switching between modules. The
first decomposition will not suffer from this problem because there is
relatively infrequent transfer of control between modules,

To save the procedure call overhead yet gain the advantages that
we have seen above we must implement these modules in an upusual way.

In many cases the routines will be best inserted intu the code by an
agsembler; in other cases, highly speclalized and efficient transfers

would be inserted, To successfully and efficiently make use of the

-19-

second type of decomposition will require a tool by means of which pro-
grams may be written &8 if the functions were subroutines but assembled
by whatever implementation is appropriate. If such a technigue is used,
the separation between modules may not be clear in the final code. For
that reason additional, program modification, features would also be
useful. In other words, the other representations of the program (which
were mentioned earlier) must be maintained in the machine together with

4 machine supported mapping between them,
A SECOND EXAMPLE: A MARKOV ALGORITHM TRANSLATOR

Although the first example makes most of the points of this paper
it will be useful to look briefly at a somewhat different example.
This one is a translator intended to execute Markov Algorithms., Markov
Algorithms have been described in numerous places; the description of
them as a programming language is best found in Galler and Perlis [6].
For those who are not familiar with them, Markov Algorithms might be
described as a poor man's SNOBOL. The only memory in the machine is a
character string (always expandable if needed), The algorithm 1is
described by a set of rules, Each rule consists of a pattern to be
matched and a substitution part specifying a string to se used to re-
place the matched wtring. The sequencing rule is that the first rule
which can be applied (its pattern matches) is applied at the leftmost
part of the register where it will match. When the subétitution is
complete, the first applicable rule again applies (i.e., there is no

memory of the last rule to be applied or the last change made).

-20-

Conventional Modularizations

There are two conventional modularizations of this type of translator.

They are:

1, Interpretor

Input module: Reads the input, paréing it into rules and storing a

direct representation of the rule in core,

Interpretor: Attempts to apply each rule to the register. It ac-
cesseg the data structure storing the rules, uses the pattern to look
for a match, and if a match is found, then uses the substitution to
change the register.

There may also be an output module doing appropriate printing.

2. Compiler:
Input module: Reads the input, parses it, and passes a representa-

tion of each syntactic unit as a parameter to the next module, encoder,
Encoder: This consists of routines which are passed a rule or part
of a rule and produce machine code which would enact it, e.g., they pro-
duce a machine code program for each pattern which searches for the
occurrence of that pattern., This is known as the compiled code,

Run Time Routines: Consist of a standard set of machine code rou-

tines used in every algorithm. The compiled routines link to these

routines for such functions as output, etc.

An Alternative Approach

We have used successfully the following modularization:

-21-

Rule Storage: Stores & representation of the rules in core, This

module is in many ways analagous to the Line Storage Module,

Rule Interpretation: Knows the meaning of a rule, e.g., knows how

to examine the stored rule and apply any given rule,

Register Manipulation: Consists of a set of routines which make

all manipulations on the register.

Sequencing: Chooses the next rule to be applied.

Input: Reads the input and calls rule storage and register manipula-
tion modules for the purpose of internal storage,

Qutput: Does necessary printing of register, last rule to apply, etc.

Discussion of Second Example

Many of the arguments from the first example could be repeated here.
For example, the separation of register manipulation from the other mod-
ules allows easier changing of the regilster representation. The separa-
tion of rule sequencing from rule interpretation allows one to experiment
easily with some of the other forms of Markov Algorithms described in [6].

We have chosen this example to make another point, however. This
modularization has not made a decision between interpretor and compiler.
We can switch between an interpretive translator and a compiler relatively
easily and we can also choose many points on a spectrum between the two.
Register manipulation, sequencing, input and output will remain (or may
remain) with little changes. The major change is in the rule interpreta-
tion module, which in the compiler stores a machine code program once,
but in the interpretor applies the rule when called to interpret. There

can be a great deal of code in common between the two systems. For

-272-

example, the register manipulation code is used in both versions. In
the computer it is part of the run time routinee; in the interpretor it

is called by the rule interpretation module.
HIERARCHICAL STRUCTURE

We can find a program hierarchy in the sense illustrated by Dijkstra
[51 in the system defined according to decomposition 2. If a symbol
table exists, it functions without any of the other modules, hence it is
on level 1, Line storage is on level 1 if no symbol table is used or on
level 2 otherwise, Input and Circular Shifter require line storage for
their functioning. Output and Alphabetizer will require Circular Shifter,
but since circular shifter and line holder are in some sense compatible
it would be easy to build a parameterized version of those routines
which could be used to alphabetize or print out either the original
lines or the circular shifts. In the first usage they would not require
circular shifter; in the second they would, 1In other words, our design
has allowed us to have a single representation for programs which may run
at either of two levels in the hierarchy.

In discussions of system structure it is easy to confuse the benefits
of a good decomposition with the benefits of a hierarchical structure.
We have a hierarchical structure if a certain relation may be
defined between the modules or programs and that relation is a
partial ordering. The relation we are concerned with is 'uses" or
"depends upon'". It is better to have a relation between programs since

in many cases one module depends upon only part of another module (e.g.,

-23-

Circular Shifter depends only on the output parts of the line holder
and nct on the correct working of SETWORD). It is conceivable that
we could obtain the benefits that we have beepn discussing without such
a partisl ordering, e.g., if all the modules were on the séme level,
The partial ordering gives us two additional henefits. First, parts
of the system are benefited by {gimplified) because they use the services
of 1ower* levels. Second, we are able to cut off the upper levels and
st1ll have a usable and useful product. ¥For example, the aymbol table
can be vsed in other applications, the line holder could be the basils
of a question answering system. The exlstence of the hierarchical
structure assures us that we can "prune'" off the upper levels of the tree
and start a new tree on the old trunk. If we had designed a svetem tﬁ
which the '"low level' modules made some use of the "high level" modules
we would not have the hierarchy, we would infd it much harder to remove
portions of the system,and "level" would not have much meening in the
system,

Since it is concelvable that we could have a system with the type
of decomposition described shown in version 1 (important design decisions
in the interfaces) but retain & hiererchical structure, we must conclude
that hierarchical structure and "clean'" decomposition are two desirable

but independent properties of a system structure.
CONCLUSION

We have tried to demonstrate by these examples that it is almost

always incorrect to begin the decomposition of a system into medules

*
"lower" means "lower numbered".

-24-

on the basis of a flowchart. We propose instead that one begins with

a list of difficult design decisions or design decisgiong which are likely
to change. Each module is then designed to hide such a decision from

the others. Since, in most cases, design decisions transcend time of
execution, modules will not correspond to steps in the processing. To
achieve an efficient implementation we must abandon the assumpticn that

a module is one or maore subroutines, and ingtead allow subroutines and

programs to be agssembled collectiong of code from varicus medules.

-25-

References

1. Gauthier, Richard and Stephen Ponte, Designing Systems Programs,
(C) 1970, Prentice-Hall, Inc.

2, Heare, C. A. R., "Proof of a Program, FIND," Comm. ACM, January 1971,

3. Parnas, D, 1., A Paradigm for Software Module Specification with
Examples, Technical Report, Department of Computer Science, Carnegle-
Mellon University, Pittsburgh, Pa., 1971,

4, Parnas, D. L., Information Distribution Aspects of Design Methodology,
Technical Report, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., 1971, Also to be presented at the IFIP
Congress 1971, Ljubeljana, Yugoslavia.

5. Dijksetra, E. W., "The T.H,E., Multiprogramming System,' CACM, May 1967.

6. Galler, B. and A. J. Perlis, A View of Programming Languages, Addison
Wealey, 1970,

7. Parnas, D. L., A Course on Software Engineering, in preparatiom.

Securty Clagsification 4

. ‘. DOCUMENT CONTROL DATA-RAD
(Securtty clanattication of t1tle, body of abatract and indening snnotation mual b sntered whon the ovarall report 1a clasaified)
1. DRIGINATING ACTIVITY (Corporals author) i8. REFORT AECUA|ITY CLASNFICATION
Department of Computer Science UNCLASSIFIED
Carnegie=Mallon Unversity 2b. GRQUP
Pittsburgh, Pennsylvania 15213 i

¥ REPOQRTY TITL K

On the Criteria to be Used in Decompesing Systems into Modules

4. RESCRIFTIVE ROGTES {Type of raport and thclueive daites)

Scientific Interim

B AUTHOR(3) (FIral name, middle inltial, iasl nama)

D, L. Pérnas

8. REFOAT DAYE A, TOTAL NO. GF PAGES Th. MO, OF MEFD

August, 1971 29 7

Ba. mezb:m-wrb B ORIGINATOR'E AEFORT HUMRBER(E)

b. FROJECT Ha.
AQ827-5

=, ob. OTHER REPQORTY NOIS (Any other numbsere that may bs sessigned [

6 1101D thia raport)

19 DISTRIBLTION STATYTEMENYT
This document has been approved for public release and sale;
its distribution 1s unlimited.

P —

11- SURFLEMENTARY HOTES 12, SRONASRING MILITARY ACTIVITY
Alr Force Qffice of Scientific Research
TECH, OTHER 1400 Wilson Boulevard
Arlington, Virginia 22209 ‘

13. ADdaTRACT

This paper discusses modularization as a mechanism for improving the
flexibility and comprehensibility of a system while allowing the shortening
of its development time, The effectiveness of a "modularization" is
dependent upon the criteria used in dividing the system into modules. Two.
system design problems are presented, and for each, both a conventional and
unconventional decomposition are described. It is shown that the conventional)
decompositions have distinct advantages for the goals outlined. The c¢riteria
used in arriving at the decompositions are discussed. The unconventional
decomposition, 1if implemented with the conventional assumption that a module
consists of one or more subroutines, will be less efficient in wost cases.

An alternative approach to implementation which does not have this effect is
sketched,

DD |FNDDPVMQ'-E &-}*3

secunty Classiftvetion

Security Classification

LINK A ' LNk 8 - LINK €

KKY WORDS
L1-1% wT ROLE wT ROLE wT

Security Classification

