
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-101

ON THE CRITERIA TO BE USED
IN DECOMPOSING SYSTEMS INTO MODULES

D. L. Parnas

Department of Computer Science
Carnegie-MelIon University

Pittsburgh, Pa#

August, 1971

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F44620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. This document has been
approved for public release and sale; its distribution is
unlimited.

ON THE CRITERIA TO BE USED IN DECOMPOSING SYSTEMS INTO MODULES

D. L. Parnas
Department of Computer Science

Carnegie-MelIon University
Pittsburgh, Pa.

ABSTRACT

This paper discusses modularization as a mechanism for improving

the flexibility and comprehensibility of a system while allowing the

shortening of its development time. The effectiveness of a "modulariza­

tion" is dependent upon the criteria used in dividing the system into

modules. Two system design problems are presented, and for each, both

a conventional and unconventional decomposition are described. It is

shown that the unconventional decompositions have distinct advantages

for the goals outlined. The criteria used in arriving at the decomposi­

tions are discussed. The unconventional decomposition, if implemented

with the conventional assumption that a module consists of one or more

subroutines, will be less efficient in most cases. An alternative ap­

proach to implementation which does not have this effect is sketched.

INTRODUCTION

If programmers sang hymns, some of the most popular would be hymns

in praise of modular programming. A lucid statement of this philosophy

is to be found in a new textbook on the design of system programs which

we quote below:

"A well-defined segmentation of the project effort en­
sures system modularity. Each task forms a separate, dis­
tinct program module. At implementation time each module
and its inputs and outputs are well-defined, there is no con­
fusion in the intended interface with other system modules.
At checkout time the integrity of the module is tested inde­
pendently; there are few scheduling problems in synchronizing
the completion of several tasks before checkout can begin.
Finally, the system is maintained in modular fashion; system
errors and deficiencies can be traced to specific system mod­
ules, thus limiting the scope of detailed error searching."
[1, paragraph 10.23]*

I must begin by saying that I am in complete agreement with this

statement though I might not agree with some possible interpretations.

Note, however, that nothing is said about the criteria to use in dividing

the system into modules. Because the decision to divide a system into

n modules of a given size does not determine the decomposition, this

paper will discuss that issue and, by means of examples, suggest the

type of criteria that should be used in decomposing thg system into

modules.

A BRIEF STATUS REPORT

The major progress in the area of modular programming has been the

development of coding techniques and assemblers which (1) allow one

Reprinted by permission of Prentice-Hall.

module to be written with little knowledge of the code used in another

module and, (2) allow modules to be reassembled and replaced without

reassembly of the whole system. This facility is extremely valuable

for the production of large pieces of code, but its use has not re­

sulted in the expected benefits. In fact, the systems most often used

as examples of the problems involved in producing large systems are

themselves highly modularized programs which make use of the sophisticated

coding and assembly techniques mentioned above.

EXPECTED BENEFITS OF MODULAR PROGRAMMING

The expected benefits of modular programming fall into three classes:

(1) managerial -- development time could be shortened because separate

groups would work on each module with little need for communication

(and little regret afterward that there had not been more communication);

(2) product flexibility — it was hoped that it would be possible to

make quite drastic changes or improvements in one module without changing

others; (3) comprehensibility -- it was hoped that the system could be

studied a module at a time with the result that the whole system could

be better designed because it was better understood.

WHAT IS A "MODULARIZATION"?

In the sequel I give several partial system descriptions called

"modularizations". In this context "module" is best considered to be

a work assignment unit rather than a subprogram. The modularizations

are intended to describe the design decisions which must be made before

the work on independent modules can begin. Although quite different

decisions are made in each alternative, in all cases the intention is

to describe all "system level" decisions (i.e., decisions which affect

more than one module).

EXAMPLE SYSTEM 1: A KWTC INDEX PRODUCTION SYSTEM

For those who may not know what a KWIC index is the following descrip­

tion will suffice for this paper. The KWIC index system accepts an or-'

dered set of lines, each line is an ordered set of words, and each word

is an ordered set of characters. Any line may be "circularly shifted"

by repeatedly removing the first word and adding It to the end of the

line. The KWIC index system outputs a listing of all circular shifts

of all lines in alphabetical order. This is a small system. Except

under extreme circumstances (huge data base, no supporting software),

such a system could be produced by a good programmer within a week or

two. Consequently it is a poor example in that none of the reasons

motivating modular programming are important for this system. Because

it is impractical to treat a large system thoroughly, we shall go through

the exercise of treating this problem as if it were a large project.

We give two modularizations. One, we feel, typifies current projects;

the other has been used successfully in an undergraduate class project.

Modularization 1

We see the following modules;

Module 1: Input: This module contains a single main program which

reads the data lines from the input medium and stores them in core for

processing by the remaining modules. In core the characters are packed

four to a word, and an otherwise unused character is used to Indicate end

of a word. An index is kept to show the starting address of each line.

Module 2: Circular Shift: This module is called after the input

module has completed its work. Rather than store all of the circular

shiftB in core, it prepares an Index which gives the address of the first

character of each circular shift, and the original index of the line

in the array made up by module 1. It leaves its output in core with

words in pairs (original line number, starting address).

Module 3: Alphabetizing: This module takes as input the arrays

produced by modules 1 and 2. It produces an array in the same format

as that produced by module 2. In this case, however, the circular shifts

are listed in another order (alphabetically).

Module 4: Output: Using the arrays produced by module 3 and module

1, this module produces a nicely formatted output listing all of the

circular shifts. In a sophisticated system, the actual start of each

line will be marked, pointers to further information may be inserted,

the start of the circular shift may actually not be the first word In

the line, etc., etc.

Module 5: Master Control: This module does little more than con­

trol the sequencing among the other four modules. It may also handle

error messages, space allocation, etc.

It should be clear that the above does not constitute a definitive

document. Much more information would have to be supplied before work

could start. The defining documents would include a number of pictures

showing core formats, pointer conventions, calling conventions, etc.,

etc. Only when all of the interfaces between the four modules had been

specified could work really begin.

This is a modularization in the sense meant by all proponents of

modular programming. The system is divided into a number of relatively

independent modules with well defined interfaces; each one is small

enough and simple enough to be thoroughly understood and well programmed.

Experiments on a small scale indicate that this is approximately the de­

composition which would be proposed by most programmers for the task

specified. Figure 1 gives a picture of the structure of the system.

Modularization 2

We see the following modules:

Module 1: Line Storage: This module consists of a number of func­

tions each one of which is given a precise specification in Figure 2.

By calling these functions one may add a character to the end of the last

word in the last line, start a new word, or start a new line. One may

call other functions to find the kth character of the kth word in the

jth line. Other routines in this module may be called to reveal the

J number of lines, the number of words in a line, or the number of char-

J acters in any word. A precise definition of this module is given in

Figure 2. The method of specification has been explained in [3].

Module 2: Input: This module reads the original lines from the

input media and calls the Line Storage module- to have them stored in­

ternally.

FIGURE 1

STRUCTURE OF KWIC INDEX DECOMPOSITION 1

INPUT MODULE

In core representation of input

CIRCULAR
SHIFTING

In core directory defining all circular shift
of input lines in arbitrary order

ALPHABETIZER

In core directory defining circular shifts in
alphabetical order

OUTPUT

Pretty Index

Figure 2
Definition of a "Line Storage" Module

Introduction: This definition specifies i
hold up to pi lines, each line consisting
may be up to p3 characters.

i mechanism which may be used to
of up to p2 words, and each word

Function WORD
possible values:
initial values:
parameters:
effect:

Integers
undefined
l,w,c all integer

call ERLWEL
call ERLWNL
call ERLWEW
call ERLWNW
call ERLWEC
call ERLWNC

if 1 < 1 or 1 > pi
if 1 > LINES
If w < 1 or w > p2
if w > WORDS(1)
if c < 1 or c >
if c > CHARS(l,w)

P3

Function SETWRD
possible values:
initial values:

none

parameters:
effect:

not applicable
l,w,c,d all integers

call ERLSLE
call ERLSBL
call ERLSBL
call ERLSWE
call ERLSBW
call ERLSBW
call ERLSCE
call ERLSBC
if 1 -

if 1 <
if 1 >
if 1 <
If w <
if w >
if w <
if c
if c

1 or 1 > pi
'LINES' +1
'LINES1

1 or w > p2
'WORDS'(1)
'WORDS'(1)
1 or c >

+ 1

<
.noteq

P3
'CHARS'(l,w)+l

= 'LINES' +1 then LINES = 'LINES' + 1
= 'WORDS'(1) +1 then WORDS(1) = w if w

CHARS(l,w) *
WORDfl.w.c) •

Function WORDS
possible values:
initial values:
parameters:
effect:

integers
0
1 an integer

call ERLWSL
call ERLWSL
call ERLWSL(MN)

if 1 < 1 or 1 >
if 1 > LINES
if 1 > LINES

The routines named are to be written by the user of the module. The call
informs the user that he has violated a restriction on the module; the sub­
routine should contain his recovery instructions [3].

d

-8-

Figure 2 cont'd.

Function LINES
possible values:
initial value:
parameters:
effect:

integers
0
none
none

Function DELWRD
possible values:
initial values:
parameters:
effect:

call ERLDLE

none
not applicable
l,w both integers

if 1 < 1 or 1 > LINES
call ERLDWE If w < 1 or w > 'WORDS'(1)
call ERLDLD If 'WORDS'(1) = 1
WORDS(1) - 'WORDS'(1) - 1
for all c WORD(l,v,c) = 'WORD' (l,v+l,c) if v i w
for all v > w or v = w CHARS(l.v) = 'CHARS'(i,v+l>

Function DELINE
possible values:
initial values:
parameters:
effect:

none
not applicable
1 an integer

if 1 < 0 or 1 > 'LINES'

w

call ERLDLL
LINES = 'LINES' - 1
if r = 1 or r > 1 then for all

(WORDS(r)
CHARS(r,w)
WORD(r,w,c)

for all c
= 'WORDS'(r+1)

•CHARS'(r+l,w)
'WORD'(r+l,w,c))

Function CHARS
possible values:
initial value:
parameters
effect:

integer
0
l,w both integers

call ERLCNL
call ERLCNW

if 1 < 1 or 1 > LINES
if w < 1 or w > WORDS(1)

Figure 3
Definition of a Circular Shifter for Line Holder

In this definition we assume that the functions of line holder have
values and define a function which allows us to deal with something like
line holder in all ways but which contains all circular shifts of the

l i n e h o l d e r . An additional feature is a facility for marking
* - to be "suppressed", though they are accessible.

lines in
certain of the lines

Function CSWORD
possible values: integers
initial values: undefined
parameters: l,w,c - 1

effect:
call ERCWNL(MN)
call ERCWNL(MN)
call ERCWNW(MN)
call ERCWNW(MN)
call ERCWNC(MN)
call ERCWNC(MN)

all integer

if 1 < 1 or 1 > p4
if 1 > CSLINES
if w < 1 or w > p2

CSWORDS(l) if w >
1 or w > p2
CSWORDS(l)

if c < 1 or c >, p3
CSCHARS(l,w) if c >
1 or c >, p3
CSCHARS(l,w)

Function CSWRDS
possible values: integers
initial values: 0
parameters:
effect:

1 an integer

call ERCWNL(MN)
call ERCWNW(MN)

if 1 < 1 or 1 > p4
if 1 > CSLINES

Function CSLNES
possible values:
initial value:
parameters:
effect:

integers
0
none
none

Function CSCHRS
possible values: integer
initial value: 0
parameters
effect:

l,w both integers

call ERCCNL(MN)
call ERCCNW(MN)

if 1 < 1 or 1 > CSLINES
if w < 1 or w > CSWORDS(l)

Function CSSTUP
possible values:
initial value:
parameters:

none
not applicable
none

effect:

-10-

Figure 3 cont'd.

call ERCNES(MN) If SUM(1,1,'LINES','WORDS'(1)) > p4
CSLINES => SUM(1,1,'LINES','WORDS'(1))
let HIP(l) =• minimum k such that SUM(l,l,k,'WORDS'(1)) .> or let HIP(l) =• minimum k such that SUM(l,l,k, WORDS
let SHI(l) = 1 - SUM(1,1,HIP(1)-1,'WORDS'(I) - 1
then for all 1 such that 1 .< or =. CSLINES

CSWORDS(l) = 'WORDS'(HIP(1))

Module 3: Circular Shifter: This module contains a number of func­

tions. CSSTUP causes the others to have defined values. The others

are intended to be the analogue of the information giving functions in

module 1. Using them one may refer to the kth character of Jth word of

the ith circular shift, as well as getting the lengths of lines and

words, etc. This is shown In Figure 3.

Module 4: Alphabetizer: This module consists principally of two

functions. One, ALPH, must be called before the other will have a de­

fined value. The second, ITH, will serve as an index. ITH(i) will give

the index of the circular shift which comes ith in the alphabetical or­

dering. Formal definitions of these functions are given in Figure 4.

Module 5: Output: This module will give the desired printing of

any circular shift. It calls upon Circular Shift functions.

Module 6: Master Control: Similar in function to the modularization

above.

Comparison of the Two Modularizations

Both schemes will work. The first is quite conventional; the second

has been used successfully in a class project [7], Both will reduce

the programming to the relatively independent programming of a number of

small, manageable, programs. We must, however, look more deeply in order

to investigate the progress we have made towards the stated goals.

I must emphasize the fact that in the two decompositions I may_ not

have changed any representations or methods. It is my intention to talk

about two different ways of cutting up what may_ be the same object. A

Figure 4
Alphabetizer for Line Holder

This module accomplishes the alphabetization of the contents of
the modules referred to above by producing a pointer function, ITH, which
gives the index of the ith line in the alphabetized sequence.

Function ITH
possible values: Integers
initial values: undefined
parameters: i an integer
effect:

call ERAIND if value of function undefined for parameter given

Function ALPHC
possible values: integers
initial value: ALPHC(l) = index of 1 In alphabet used

ALPHC(l) infinite if character not in alphabet
ALPHC(undefined) = 0

parameter: 1 an integer
effect:

call ERAABL if 1 not in alphabet being used, i.e.,
if ALPHC(1) - •

Mapping Function EQW
possible values: true, false
parameters: ll,12,wl,w2 all integers
values: EQW(ll,wl,12,w2)=for all c('WORD'(ll,wl,c)='W0RD(12,w2,c))
effect:

call ERAEBL if 11 < 1 or 11 > 'LINES'
call ERAEBL if 12 < 1 or 12 > 'LINES'
call ERAEBW if wl < 1 or wl > 'WORDS'(11)
call ERAEBW if w2 < 1 or w2 > 'WORDS'(12)

Mapping Function ALPHW
possible values: true, false
parameters: ll,12,wl,w2 all integers
values: ALPHW(ll,wl,12,w2) - I f - , 'EQW'(11,wl,12,w2) and

k = roin c such that ('WORD'(11,wl,c) -req. 'WORD'(12,w2,c))
then 'ALPH'('WORD'(11,wl,k))<'ALPHC'('WORD'(12,w2,k))
else false

effect:
call call ERAWBL if 11 < 1 or 11 > 'LINES'
call ERAWBL if 12 < 1 or 12 > 'LINES'
call ERAWBW if wl < 1 or wl > 'WORDS'(11)
call ERAWBW if w2 < 1 or w2 > 'WORDS'(12)

-13-

Flgure 4 cont'd.

Mapping Function EQL
possible values:
parameters:
values:
effect:

call ERALEL
call ERALEL

true, false
11.12 both
EQL(11,12) *

integers
for all k ('EQW'(ll,k,12,k))

if 11 < 1 or 1 > 'LINES'
if 12 < 1 or 12 > 'LINES'

Mapping Function ALPHL
possible values:
parameters:
values:

effect:

false true,
11,12 both integers
ALPHL(11,12) - if i 'EQL'(11,12) then
(let k - min c such that 'EQW'(ll,k,12,k))
'ALPHW'(11,k,12,k) else true

call ERAALB
call ERAALB

if 11 < 1 or 11 >
if 12 < 1 or 12 >

'LINES'
'LINES'

Function ALPH
possible values:
initial values:
effect:

for all
ITH (i)

none
not applicable

I < 1 and i > ' LINES' (
is given values such that (

for all j < 1 and -, > LINES
there exists a k such that

for i >-l and < 'LINES' (that
ITH(k)
'ALPHL'(ITH(i), ITH(i+l)))

system built according to decomposition 1 could conceivably be identical

after assembly to one built according to decomposition 2. The differ­

ences between the two systems are in the way that they are divided into

modules, the definitions of those modules, the work assignments, the

interfaces, etc. The algorithms used in both cases might be identical.

I calim that the systems are substantially different even if identical

in the runnable representation. This is possible becuase the runnable

representation is used only for running; other representations are used

for changing, documenting, understanding, etc. In those other representa­

tions the two systems will not be identical.

(1) Changeability. There are a number of design decisions which

are questionable and likely to change under many circumstances. A

partial list:

1. Input format.

2. The decision to have all lines stored in core. For large

Indices it may prove Inconvenient or impractical to keep

all of the lines in core at any one time.

3. The decision to pack the characters four to a word. In

cases where we are working with small indices it may prove

undesirable to pack the characters, time will be saved by a

character per word layout. In other cases, we may pack, but

in different formats.

4. The decision to make an index for the circular shifts rather

than actually store them as such. Again, for a small index

or a large core^riting them out may be the preferable

approach.

5. The decision to alphabetize the list once, rather than

search for each item when needed, or partially alphabetize

as is done in Hoare's FIND [2]. In a number of circum­

stances it would be advantageous to distribute the computa­

tion involved in alphabetization over the time required

to produce the index.

It is by looking at changes such as these that we can see the dif­

ferences between the two modularizations. The first change is, in both

decompositions, confined to one module, but the second change would re¬

sult in changes in every module for the first decomposition. The same

is true of the third change. In the first decomposition the format of

the line storage in core must be used by all of the programs. In the

second decomposition the story is entirely different. Knowledge of the

exact way that the lines are stored is entirely hidden from all but

module 1. Any change in the manner of storage can be confined to that

module!

In fact, in some of the versions of this system there was an addi¬

tional module in the decomposition. A symbol table module as described

in [3] was used within the line storage module. This fact, where true,

was completely invisible to the rest of the system.

The fourth change is confined to the circular shift module in the

second decomposition but in the first decomposition, the alphabetizer,

and the output routines will also know of the change.

The fifth change will also prove difficult in the first decomposi¬

tion. The output module will expect the index to have been completed

before it began. The alphabetizer module in the second decomposition

was designed so that a user could not detect when the alphabetization

was actually done. No other module need be changed.

(2) Independent development. In the first modularization the inter­

faces between the modules are the fairly complex formats and table

organizations described above. These represent design decisions which

cannot be taken lightly. The table structure and organization are es­

sential to the efficiency of the various modules and must be designed

carefully. The development of those formats will be a major part of

the module development and that part must be a joint effort among the

several development groups. In the second modularization the interfaces

are more abstract, they consist primarily in the function names and the

numbers and types of the parameters. These are relatively simple deci­

sions and the independent development of modules should begin much

earlier.

(3) Comprehensibility. To understand the output module in the first

modularization, it will be necessary to understand something of the

alphabetizer, the circular shifter and the input module. There will

be aspects of the tables used by output which will only make sense be­

cause of the way that the other modules work. There will be constraints

on the structure of the tables due to the algorithms used in the other

modules. The system will only be comprehensible as a whole. It is my

subjective judgment that this is not true in the second modularization.

The Criteria

Many readers will now see what criteria were used in each decomposi­

tion. In the first decomposition the criterion used was make each

'major step' in the processing a module. One might say that to get the

first decomposition one makes a flowchart. Figure 1 Is a flowchart.

This is the most common approach to decomposition or modularization.

It is an outgrowth of all programmer training which teaches us that we

should begin with a rough flowchart and move from there to a detailed

implementation. The flowchart was a useful abstraction for systems with

on the order of 5,000-10,000 instructions, but as we move beyond that it

does not appear to be sufficient; something additional is needed.

The second decomposition was made using "information hiding" [4]

as a criteria. The modules no longer correspond to steps in the pro­

cessing. The line storage module, for example, is used in almost every

action by the system. Alphabetization may or may not correspond to a

phase in the processing according to the method used. Similarly,

circular shift might, in some circumstances, not make any table at all

but calculate each character as demanded. Every module in the second

decomposition is characterized by its knowledge of a design decision

which it hides from all others. Its interface or definition was chosen

to reveal as little as possible about its inner workings.

Improvement in Circular Shift Module

To illustrate the impact of such a criterion let us take a closer

look at the definition of the circular shifter module from the second

decomposition. Hindsight now suggests that this definition reveals more

information than necessary. While we have carefully hidden the method

of storing or calculating the list of circular shifts, we have indicated

an order to that list. Programs could be effectively written if we

specified only (1) that the 'lines' indicated in circular shift's defini­

tion will all exist in the "table", (2) that no one of them would be

included twice and (3) that a function existed which would allow us to

identify the original line given the "shift". By prescribing the order

for the shifts we have given more information than necessary and so un­

necessarily restricted the class of systems that we can build without

changing the definitions. For example, we have not allowed for a system

in which the circular shifts were "produced" in alphabetical order, alph

is empty, and 1TH simply returns its argument as a value. Our failure

to do this in constructing the systems with the second decomposition

must clearly be classified as a design error.

Efficiency and Implementation

If we are not careful the second decomposition will prove to be

much less efficient. If each of the "functions" is actually implemented

as a procedure with an elaborate calling sequence there will be a great

deal of such calling due to the repeated switching between modules. The

first decomposition will not suffer from this problem because there is

relatively infrequent transfer of control between modules.

To save the procedure call overhead yet gain the advantages that

we have seen above we must implement these modules in an unusual way.

In many cases the routines will be best inserted into the code by an

assembler; in other cases, highly specialized and efficient transfers

would be inserted. To successfully and efficiently make use of the

second type of decomposition will require a tool by means of which pro­

grams may be written as if the functions were subroutines but assembled

by whatever implementation is appropriate. If such a technique is used,

the separation between modules may not be clear in the final code. For

that reason additional, program modification, features would also be

useful. In other words, the other representations of the program (which

were mentioned earlier) must be maintained in the machine together with

a machine supported mapping between them.

A SECOND EXAMPLE: A MARKOV ALGORITHM TRANSLATOR

Although the first example makes most of the points of this paper

it will be useful to look briefly at a somewhat different example.

This one is a translator intended to execute Markov Algorithms. Markov

Algorithms have been described in numerous places; the description of

them as a programming language is best found In Galler and Perils [6].

For those who are not familiar with them, Markov Algorithms might be

described as a poor man's SNOBOL. The only memory in the machine is a

character string (always expandable if needed). The algorithm is

described by a set of rules. Each rule consists of a pattern to be

matched and a substitution part specifying a string to be used to re­

place the matched wtring. The sequencing rule is that the first rule

which can be applied (its pattern matches) is applied at the leftmost

part of the register where it will match. When the substitution is

complete, the first applicable rule again applies (i.e., there is no

memory of the last rule to be applied or the last change made).

Conventional Modularizations

There are two conventional modularizations of this type of translator.

They are:

1. Interpretor

Input module; Reads the input, parsing it into rules and storing a

direct representation of the rule in core.

Interpretor: Attempts to apply each rule to the register. It ac­

cesses the data structure storing the rules, uses the pattern to look

for a match, and if a match is found, then uses the substitution to

change the register.

There may also be an output module doing appropriate printing.

2. Compiler:

Input module: Reads the input, parses it, and passes a representa­

tion of each syntactic unit as a parameter to the next module, encoder.

Encoder: This consists of routines which are passed a rule or part

of a rule and produce machine code which would enact it, e.g., they pro­

duce a machine code program for each pattern which searches for the

occurrence of that pattern. This is known as the compiled code.

Run Time Routines: Consist of a standard set of machine code rou­

tines used in every algorithm. The compiled routines link to these

routines for such functions as output, etc.

An Alternative Approach

We have used successfully the following modularization:

Rule Storage: Stores a representation of the rules in core. This

module is in many ways analagous to the Line Storage Module.

Rule Interpretation: Knows the meaning of a rule, e.g., knows how

to examine the stored rule and apply any given rule.

Register Manipulation: Consists of a set of routines which make

all manipulations on the register.

Sequencing: Chooses the next rule to be applied.

Input: Reads the input and calls rule storage and register manipula­

tion modules for the purpose of internal storage.

Output: Does necessary printing of register, last rule to apply, etc.

Discussion of Second Example

Many of the arguments from the first example could be repeated here.

For example, the separation of register manipulation from the other mod­

ules allows easier changing of the register representation. The separa­

tion of rule sequencing from rule interpretation allows one to experiment

easily with some of the other forms of Markov Algorithms described in [6].

We have chosen this example to make another point, however. This

modularization has not made a decision between interpretor and compiler.

We can switch between an interpretive translator and a compiler relatively

easily and we can also choose many points on a spectrum between the two.

Register manipulation, sequencing, input and output will remain (or may

remain) with little changes. The major change is in the rule interpreta­

tion module, which in the compiler stores a machine code program once,

but in the interpretor applies the rule when called to interpret. There

can be a great deal of code in common between the two systems. For

example, the register manipulation code is used in both versions. In

the computer it is part of the run time routines; in the interpretor it

is called by the rule interpretation module.

HIERARCHICAL STRUCTURE

We can find a program hierarchy in the sense illustrated by Dijkstra

[5] in the system defined according to decomposition 2. If a symbol

table exists, it functions without any of the other modules, hence it is

on level 1. Line storage is on level 1 if no symbol table is used or on

level 2 otherwise. Input and Circular Shifter require line storage for

their functioning. Output and Alphabetlzer will require Circular Shifter,

but since circular shifter and line holder are in some sense compatible

it would be easy to build a parameterized version of those routines

which could be used to alphabetize or print out either the original

lines or the circular shifts. In the first usage they would not require

circular shifter; in the second they would. In other words, our design

has allowed us to have a single representation for programs which may run

at either of two levels in the hierarchy.

In discussions of system structure it is easy to confuse the benefits

of a good decomposition with the benefits of a hierarchical structure.

We have a hierarchical structure if a certain relation may be

defined between the modules or programs and that relation is a

partial ordering. The relation we are concerned with is "uses" or

"depends upon". It is better to have a relation between programs since

in many cases one module depends upon only part of another module (e.g.,

Circular Shifter depends only on the output parts of the line holder

and not on the correct working of SETWORD). It is conceivable that

we could obtain the benefits that we have been discussing without such

a partial ordering, e.g., if all the modules were on the same level.

The partial ordering gives us two additional benefits. First, parts

of the system are benefited by (simplified) because they use the services
*

of lower levels. Second, we are able to cut off the upper levels and

still have a usable and useful product. For example, the symbol table

can be used in other applications, the line holder could be the basis

of a question answering system. The existence of the hierarchical

structure assures us that we can "prune" off the upper levels of the tree

and start a new tree on the old trunk. If we had designed a system in

which the "low level" modules made some use of the "high level" modules

we would not have the hierarchy, we would infd it much harder to remove

portions of the system,and "level" would not have much meaning in the

system.

Since it is conceivable that we could have a system with the type

of decomposition described shown in version 1 (important design decisions

in the interfaces) but retain a hierarchical structure, we must conclude

that hierarchical structure and "clean" decomposition are two desirable

but independent properties of a system structure.
CONCLUSION

We have tried to demonstrate by these examples that it is almost

always incorrect to begin the decomposition of a system into modules

*"lower" means "lower numbered".

- 2 4 -

on the basis of a flowchart. We propose instead that one begins with

a list of difficult design decisions or design decisions which are likely

to change. Each module is then designed to hide such a decision from

the others. Since, in most cases, design decisions transcend time of

execution, modules will not correspond to steps in the processing. To

achieve an efficient implementation we must abandon the assumption that

a module is one or more subroutines, and instead allow subroutines and

programs to be assembled collections of code from various modules.

-25-

References

1. Gauthler, Richard and Stephen Ponto, Designing Systems Programs.
(C) 1970, Prentice-Hall, Inc.

2. Hoare, C. A. R., "Proof of a Program, FIND," Comm. ACM, January 1971.

3. Parnas, D. L., A Paradigm for Software Module Specification with
Examples, Technical Report, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pa., 1971.

4. Parnas, D. L., Information Distribution Aspects of Design Methodology,
Technical Report, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., 1971. Also to be presented at the IFIP
Congress 1971, Ljubeljana, Yugoslavia.

5. Dijkstra, E. W., "The T.H.E. Multiprogramming System," CACM, May 1967.

6. Galler, B. and A. J. Perils, A View of Programming Languages, Addison
Wesley; 1970. * * i B " J L -

7. Parnas, D. L., A Course on Software Engineering, in preparation.

Securi ty C l a s s i f i c a t i o n

DOCUMENT CONTROL DATA - R & D
(Security clattlllcalion ol litis, body ol abstract and Indexing annotation muel be Timed whan the overall report la claamllled^

O R I G I N A T t M S A C T I V I T Y (Corporate author)
Department of Computer Science
Carnegie-Mellon Unversity
Pittsburgh, Pennsylvania 15213

i f , R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2b . G R O U P

5. R E P O R T T I T L f c

On the Criteria to be Used in Decomposing Systems into Modules

A. D E S C R I P T I V E N O T E S (Type of report end Inclusive date*)
Scientific Interim

fl. A U T H O R (S) (Flrei name, middle Initial, laet name)

D. L. Parnas

6- R E P O B T D A T E

August. 1971
T*, T O T At, NO. O r P A O I I

29
7b . N O . or nmri

7

mmtt-mdr • * . O R I G I N A T O R * ! R E P O R T NUMftCR(t)

b. P ROJ EC T N O .

A0827-5
c.

61101D
d.

Ob. O T H E R R E P O R T N O I f l (Any other number* that may be aeelaned
thle report)

1 0 D I S T R I B U T I O N S T A T E M E N T

This document has been approved for public
its distribution is unlimited.

: release and sale, [j
i

1 1 . S U P P L E M E N T A R Y N O T E S

TECH, OTHER

1 3. A BSTtt A C T '

1 3 . 4 P O N S O R I N O MILITARY A C T I V I T Y

Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

This paper discusses modularization as a mechanism for improving the
flexibility and comprehensibility of a system while allowing the shortening
of its development time. The effectiveness of a "modularization" is
dependent upon the criteria used in dividing the system into modules. Two
system design problems are presented, and for each, both a conventional and
unconventional decomposition are described. It is shown that the conventional
decompositions have distinct advantages for the goals outlined. The criteria
used In arriving at the decompositions are discussed. The unconventional
decomposition, if implemented with the conventional assumption that a module
consists of one or more subroutines, will be less efficient in most cases.
An alternative approach to Implementation which does not have this effect is
sketched.

DD . FN° 01V.1473
'Yoo ir i tv ClHSsifiLdtion

Security Clar i f i ca t ion
iV. " '

K I Y W O R D 1
L I N K A L I N K * ' 1 L I N K C iV. " '

K I Y W O R D 1
I t O L I * T H O L E WT H O L E

Securi ty C l a s s i f i c a t i o n

