NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-104

A SOFTWARE LABORATORY

PRELIMINARY REPORT

K. Corbin E. Hyde

W. Corwin K. Kramer

R, Goodman E. Werme
W. Wulf

August 23, 1871
Carnegie-Melion University

Pittsburgh, Pennsylvania

This work was supported by the Advanced Research Projects Agency
of the QOffice of the Secretary of Defenge (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

ii.

ABSTRACT

This report describes the implementation of the kernel of a
simple multi-process operating system. The purpose of this system
is to create an enviromment for the construction of experimental

programming systems for educational and research uses.

INTRODUCTION

This report describes the initial design of a "software laboratory".
The objective of this syvstem is to create an enviromment within which
researchers and students may experiment with the construction of software
systems, The system accomplishes this,providing a large number of func-
tional "modules" together with a mechanism for flexibly inﬁerconnECting
them in various waya, The philosophy of the system 1s a software analog
of the hardware "mwacro-modules" of Clark [1] and “register-transfer-
modules" of Bell [2], Much of the philosophy for the approach described
below is due to Krutar [3]; key ideas were borrowed from Habermann and
Jones [4] and from many discussions with Per Brinch Han;en.

The aimilarity between many of the components of various systems
programs has often been noted, but seldom exploited. Lexical analyzers
and syntax analyzers, for example, occur in all compilers, and to some
extent in asgemblers, editors, command interpreters, etc., Yet they are
generally re-wricten for each such asystem (translator-writing-systems, or
compiler~compilers, have been the one exception to this practice.

This situation is eapecially annoying to two groups of people to whom

the present report is primarily aimed: (1) the researcher who would like
to quickly fabricate a system in order that he might pursue a gingle
aspect of it in depth, and (2} the instructor who would like to assign
programming problems on some aspect of systems programming but which only
make sense in the context of a complete system, To illustrate the point,

congider the reasearcher (or student) who would like to (Iis assigned to)

2

investigate various compiler optimization strategies on the tree-repre-
sentation of a program, To do this lexical analysis, symbol table, space
management, pdarser, trae-generation, and i/n‘functions must first be
written., None of these 18 essential to the project at hand, and col-
lectively they may be sufficliently effort-consuming to make the project
impractical.

One purpose of the project is to provide an inventory of functional
modules such as those mentioned above -- several lexical analyzers, parsers,
etc. -- and an enviromment in which they may be quickly interconnected,
Thus the researcher (or student) may quickly compose & host environment
for the particular sub-system of interest.

The system has been implemented on & minimal PDP-11 configuration in
order to make it widely available, Future reports will specify modules
and exercises suitable for intermediare and advanced software laboratory
courzes, Thie preliminary report deals exclusively with the enviromment --

its philosophy and the construction of its "kernel,"

THE PHILOSOPHY

The philosophy of the envirpmment created by the system comprises the
sequences of a particular physical model which we would like the user to
have pf that enviromment. That model is:

A (user) system is constructed from & number of components
called modules. A module {s a functional unit which receives
signala (data) aleng one of a number of input wires, cables,
or ports, performs some operations and (possibly) generates
output signals on other cables {cr porta). The cables con-
nected to a module are fitted with standard male/female con-
nectors so that the ocutput of any medule may be directed to
the ipput of any other by appropriate interconnection of their
cables. Rather than direct interconnection, a special-'batch
panel' similar to an old-fashioned telephone switchboard, is
provided to facilitate the interconnectionz. Figure I 1llus-
trates this model.

In this model modules do not know to whom or what they are connected.
They use Iinternal names to reference porte for receiving and sepding in-
formation and the actual supplier or receiver is specified externally
by the particular cabling pattern established by the user, This fact
coupled with the "standard connector" assumption permits the substitution
of a mpdule for a functicnally equivalent one (or network of ones) at

any time,

con-

Figure Y

The Physical Model

\ |

s

7

The use of the system 1s best {lluatrated by a simple example,
Suppose one wished to construct & program to read text from a papar-tape
reader and print it on the teletype, Modules exist for reading (char-
acters) from the paper tape reader (PTREAD) and writing (characters) on

the teletype (TIWRIT) -- so they can be interconnected as follows:

TTWRIT

X558)

Suppressing the patch panel helps to clarify the diagram in more complex

examples, so let's draw this configuration as simply

¥
»
Y

PTREAD TIWRIT

Now suppose we would like to add pagination of the output., Further,
suppose we have a module (PAGER) which accepts input and}paasen it along
to 1ts output, but also leooks at each data item for a special end-of-line
(EQOL) character, countge them, and after the nth Iinserts several special
upnpaée-the-puper (Line-feed) characters. If we break the original
connections and reconnect &s shown below we will now get the desired pagi-

nation,

wf~

PTREAD [—>—&—>— PAGER [|—>—e—>-+ TTWRIT

Suppose further, now, that we would also like to get a character frequency
distribucion in the text while the princting is goilng on. If we happen to
have a module (CHRFRQ) to do this we might create the fcolliowlng configura-

tion:

CHRFRQ

— g
v

PTREAD H—+——— $PLIT (>3- PAGER p——®—>— TIWRIT

In thia configuration 'SPLIT' is a simple module which, wﬁen it recelvea
input, replicates that same input on each of two ocutput ports. We could
proceed in this way te¢ build much more complicated configurations buc
trust that the example haa served to illustrate the gemeral phileosophy.

Of course, software modules are not physical objecta; they do not
have tangible cables dangling cut of them, The patchboard does mot have
a physical existence either, Thus, the acts of connection and reconnec-
tion are not accomplished by physical acts, but rather by commands typed
on a terminal, The precise syntax of these commands is beyond the intend-
ed scope of this report, and in any case is likely to change ap more at-

tention 1s paid to the human engineering aspects of the system (which we

consider to be a crucial aspect of the whole project). Suffice it to

say that the structure of these commands is intended to reinforce the
conceptual model presented above. Thus, the commands mimic the things

one would expect to do to modules physically wired together -- for example
connections may be made or broken at any time, the complete "wiring list"
may be displayed or individual wires traced, the signals flowing along a

particular cable may be monitored, etc.

THE IMPLEMENTATION APPROACH

The system model presented in the previcus gection might be implemented

in any one of a number of ways each module could have a subroutine or
co-routine structure, for example. Rather than either of these it was
decided to construct each module as an asynchronous sequential process.
The cabling and patchboard are implemented as a "mailbox" message buffer-
ing gystem. The system is implemented in two pieces: (1) a small
"kernel” which includes space management, process management, and mesgage
handling primitives, and (2} a"user representative” which implements the
command language, tracing, loading of modules, displays, etc. The user
representative (UR} is implemented as a set of modules using the mechan-
ismg provided by the kernel, Tt is in no way different from, or more
privileged than modules asgszembled by the user. This construction philos-
ophy permits the UR to be easily modified, permits different versions of
the UR for different users, and permits the UR to be easily adapted to

various configurations and needs. A continuing aspect of this research

is the human engineering of the UR — built as a set of modules, 1t permits

this type of experimentaticn to ke done in its own environment. Finally,
the UR, being constructed from mcocdules itself, forms an advanced example

of the use of the svstem.

The kernel hags been purposely kept small and "clean" (the entire
kernel consists of less than 200 PDP-11 instructionsg. The small gize of

the kernel allows (1) the design and implementation to be iterated, and

{2) the kernel itself to be an object of atudy in a systems programming
course, and (3) & usable subset of the total system to be used on a mini-

mal (4X) PDP-11 configuration,
TMPLEMENTATION OF THE EERNEL

The kernel conaists of a small number of data structures, accessors,
and routines for manipulating the atructures. The data structures used
in the kerrel are instances of a smaller number of "classes'" of structures
fobjects, lista of objects, semaphores, and vectors}, The routines in
the kernel are constructed such that each performa an operation appropri-
ate to a class of structures on any instences of a member of that clase;
that coperation is never performed by any other routine., The immediately
preceding sentence may be interpreted as a working definition of the term
"clean" used earlier. It should be noted that this use of “clean" con-
fliets with that proposed elsewhere [7] in that it implies a strong
fuﬁctional interdependency, and some lese in efficlency; it was choaen in
favor of a (data) semantic interdependency because of the clarity and
modifiability it affords,

The foliowing description of the kernel is divided into an English
description of the data structures and their associated ﬁanipuiative
routines, and 4 Bliss wmodule which implements them. The lstter is to be

considered the authoratative definition of the kernel.

(1) Objects

An "object" is a data structure which is composed of 2" {(l <n =16}
words, two of which contain a link field (objects are frequently chained

together on lists), size field (contains n when actusl size in 2“), and

-10-

priority field (when on a list, objects are always in priority order).

LINK

SIZE

PRIORITY Size

=

words

The routines for manipulating objects are:

a)

b)

c)

d)

e)

£)

8)

get (n)

release (a)

copy (a,b)

newcopy (a)

link (a,h)

delink (h)

swap (hl,h2)

allocate memory for an object of size 2" and return
its address

deallocate the space for an object whose address is
'a'. The value of 'release' is undefined,.

copy the contents of an object whose base address is
'a' into an object whose base address is 'b'; at most,
size (b) words will be copied. Return the base ad-
dress of 'b', '

create an object and make its size and contents identical
to those of 'a'; return the address of the new copy.

link the object whose base address 1s 'a' onto the
list whose header address is 'h'., The object will
be linked into the proper priority position on the
list. Return the address of 'a’,

remove the first object, that is the highest priority
one, from the list whose header address is 'h' and
return the address of this object.

delink the first object of the 'hl' chain and link
it onto the 'h2' chain; return the address of the
swapped object.

(2) The 'feasible' list, semaphores, and synchronization

A particular class of objects are called "DIB's", dynamic information

blocks.

A DIB is the name given to what has been called a 'process

-11-

description’ in other aystems, and contains relevant state information for
& process, The 'feasible' list is a chain of all the DIB's for processes

*nending ‘on a semaphore"

which are ready to run. All other processes are
and these DIB's are chained on a list associated with that particular sema-~
phore. The reader is assumed to be familiar with Dijkstra's P and V primitives

and their use for process synchronization [6].

SEMAPHORE FEASTBLE HEADER
COUNT HEADER
HEADER
LIRK LINK

-

%: [

SIZE PRICRITY

NAME

STACE REGLSTER

reserved for use of
the UR

PORT INFORMATION

M\

-}12-

The routines which manipulate semaphores and the feasible list are:

savstart gaves the context of the current process on its stack,
saves the stack pointer of the current process in its
DIB, and initiates the process whose DIB is at the top
of the "feasible' list by first retrieving its stack
pointer and then restoring its context

P (sem)

Dijkstra's synchronization primitives
V (sem)

{(3) Messages, Mailboxes, Ports, and Communication

Processes communicate by sending and receiving objects called "mesgsage "
Modules do not send messages directly to other modules but rather to '"portsi'
A port i3 a local (to the module) name for one of the cables in the model --
thus modules are not aware of which other modules.they receive messages from
nor send messages to; they are aware only of their own local port names.

The patchboard is implemented as a set of "mailboxes" -- data structuras
which contain (among other things) a (possibly empty) set'of messages,
Patchboard connections are accomplished by making the "port information"

portion of a procesd's DIB reference a particular mailbox.

A MESSAGE MATLBOX

LINK HEADER

[/ 1]]]]

MUTUAL EXCLUSION
~ SEMAPHORE

ACTIVITY
L:_’%_\ message SEMAPHORE

> body

SIZE PRIORITY

LIMIT
SEMAPHORE

-13-

The message handling primitives are:
send (m,p) A copy of the message whose base address is 'm' will
be sent to the mailbox connected to port 'p'. If
the mailbox is currently full the sendimng process is
auspended untcil space for the message becomes avail-
able.
receive (p) BReturn the address of a message in the meilbox con-
nected to port 'p', The message is removed from the
mailbox., I1f no messages are currently in the meilbox
the process is suspended until & message 1ls sent to 1it.
The primitives and data structures for the kernel described above
are defined precisely by the following Bliss module. This module was
built for, and tested om, the PDP-10, but is identical to the PDP-11

version with three exceptions:

1. The full 36-bit PDP-10 word is used.
Z. i/o for tracing and error reporting use PDP-10 menitor facilities.
3. The system function 'createprocess' will be somewhat different

on the PDP-11.

Sample output from the tracing faciiity has been sppended.

=14 -

MONLLE SL233(STACK) =
REGTH

! L2372 -~ SOFTWARE LAB

1 LR Y N Y L L LT L LT)

! RYSTEM_PARAHETFRS

RIND MEMS1ZF 24206,
PSTACKSI7E2178,
MSGLIMITE2,
HAXPORTS:Y,
MUMMATLHANXNESEA4)

! SYSTFM TRAGCING DFFINITIONS

RIND TRACE=H#777777)

FORYARD TRG,TRR,TRC,TRMC,TRL1,TRL2,TRDL,TRD2,TRS, TRSY, TRP, TRV, TRSND,
TREEC,ERROG

MACRD

TGHT= IF TRACE+{~0y THEN TRGC,N, ,RTBASEF1)Y,
TRFL = IF TRACEY(=1)THEY TRR(, AN,

TCOPY:s IF TRACE+(-2) THENM TRC(,4,,B8)8,
TNEWCDPY=]F TRAGF+(=3) THEN TRNC(.A}Y,

TLINKLI= IF TRACE*(=4) THEM TRLLI{,A, . ,H4)}%,
TLINKZ?= IF TRAGE1(~-4) THFN TRLZ2(,H}S,
TOLINKL=1F TRACE*(=5) THEN TROL(,HIS,
TOLINK231F TRACE*t=5) THEN TRD2(,RIBASEF], H) G,
TSWAPE 1F TRACE*(-6) THFEHN TRS(.F,,T)%,
TSAVST=2 IF TRACE*(-7) THEN TRSV()§,

TP= IF TRACEt(<8) THEN TRP(,8)%,

Ty= 1F TRACE+*(=9) THEN TRY(,R)}%,

TSENDeE IF TRACE+(=1p) TUEN TRSNN{,M,,PRT)S,
TRECV= [F TRACEt+{=131)} THEN TRREC(,R,.PRT}%}

tONRJECTS

STRUCTURE PABJECTLI P S,J)=
{ STRUGTURE FUR A POINTER TO AN 2BJECT
CASE o1 NF
SET
(JPORJECT+, ISP, 52
(@.PﬁBJEf‘fTi-,‘_])(.P, r 333
(F, PORJFCT+,JIC,Ps %))
TES:

MACRD BASEF=7,10,36,0%, ! NAMES OF FIELDS IN AN 68JECY
WORD(Z)21, 2eR6,07) F,

| INKE=1,0,36, 7%, -15-
S1AFF=1,2,R., 1%,

PRINAITY=1,0,6,1%,
MWORND(Z)22,0,36, (438,
MLIWKF=2,0,3/,4%,

NAL2EFE2, 8,8, 4%,

MPRINDRITY=22:0,4,1%¢

STRUCTURE VECTOR[LIISCL1M(,VECTOR+, 13¢M, 36>}
GLNRAL VECTNR SPACFC16)1

AIND VECTOR SIFE =
PLIT(L,2,4,H,16,32,64,128,25%4, 519.1b24,2ﬂ48 4094 ,8102,14384,

14?bn £B536)

GLOBAL VEGTCR MEM[CMEMSIZEII 1 ALL DBJECTS ARE IN MEM
1 SPACE MANAGEMENT

FORWARD LIMK,DELINK:COLLAPSE)
GLNBAL ROUTINE GET(N)=
! GEYT AN ORJFCT °F SIAE 2oy AMD RETURN ITS ADDRESS
BEGIM REGISTFER PRBJECT Ry
IF .4 LEQ & DR .~ GEN 16 THEN @ ELSE
REGIN .
IF ,SPAGEL,] MNEQ 2
THEN REBASFFI«DELINK(SPAREL ,M])
ELSE (RIRASEFI+GFET,nel)} coLLAPEE(.R[BAQEFJ*.QIEE[NIy eN) Y
ROLINKFEI«@] RLSTEEFYe,N3 R[PRIODRITY1ens YGET) .RERASEFJ
FND
ENM

MACRD QEPEATE WHILF 1 NO%,
RASE(B,SYs (R AND NOT(,SIZE[S]I))%,
PARTMER(BL,H?,5)= ((91 X0OR BP) EAL +SIZECS)Y®)

ROUTINE COLLAPSEC(A,N)=
! RELEASE THF SPACE FOR THE QUJECT WHOSE ADDRESS 1S ,A
HEGIM MAP PDNJECT A) REGISTER PORJECT LI TREL)
REPEAT
REGIN LCRASEFI-SPACEL M)
WHILE LLTLINKEDY MED a 00
IF PARTMFR(,LLLIVKF], ,ACRASEF I, M)
THEN (A[RASEFI*GASE(NELIMNK(,LLRASEF]Y, NY} L[LINKF]-SPACEE{N*oN‘1’33
CLSE LLBASEF & LILINKFI}
RETURN LIMKC(, ATHASEF T, L[BASFFY)
FND;
FANG

ALOBAL RNUTINE RELEASE(AYS(MAP PNRJERT h: COLLAPSE(¢,ACRASEFY, ,ALSI12EF))

w16-

b NBJECT MANIPULATTON PRIAITIVES

GLNBAL RAUTIHE COPYLA,H)=
1 CHEATE A COPY nF ORJEGY A IN H
(IFGIY MAP PQRJECT 4:93 TCoPY|
INCR] FACA 2-T% ,SILACL.BISIFEFI)=1 DO
BLUDRDE . 1) I+, ATHORDE, T
WRLBASEF]
END

GLOBAL ROUTIMNE NEWROPY{A)s
! CREATE A NEW CnPY NF & AMD RETURM ITS ADDRESS
BEGIN MAP PORJECT Ar THEWCOPY)R COPY(,ACBASEFI,GET(,ACSTZEFL)) END)

GLORAL ROUTINE LINK{A,H}0
tOLINK ORNJECT & IMTO ITS CORRECT PRIORITY POSETION IM LIST H
REGIM MAP POHJECT A3 REGISTER PORJECT Ly P} TLINKL?
Pe ATPRIORITY]) LLBASEF1s , H}
WHILE LLONPRIORITY] GE® P AMD LCLIMKF] NEC @ DO LLRASEF)«,LILINKFI,
ACLIMKF 3+ (LCLIMKE Y LLLItKF =, ALRASEFY) TLIMK2) ,AEBASEF)
£

GLOBAL RNUTINE DELTIAK(H)=
! DELINK THE FIRSY QRJECY IN H AMD RETURM TS ADDRESS
REGIN MAP PORJECT W3 REGISTER PIRJECT Ry TDLINKL)

Qe HOLTNKF Y MILINKF Yo HCMLTNKFI) TOLINK2) R
Enlg

GLAHAL ROUTINE SHAPC(F,TI={TSYAP] LINKIRELINKL,FY..T1))

! SEMAPHNRES A'D SYNCHRO-1ZATION

! ------------------------ -

STRUCTURF PSEMAPHORED])z (@, PSEMAPHORE* [342,340
MACRD COUNT=3E,
SHEADER=1%;

GLOBAL POBJECT FEASIRLEAILASTRUNG

! DIRS, SIAS, AND PROCESS STUFF

MACRDN PARTIPIS1 M, 36, (942%(P))%,
MAMEF=4,.,36,3F,
STKPTR=L1 0455, 6%3

GLARAL PARJECT RIRECTNRYG

-17-

| PRCCESS f£ANTI '"HI. ATJO'<x HOUTI1'ES

r.LOHAL ROUTINE SAVSTARTF*

I PERFCRM A CONTFXT SWAp IF TOP 14MF TEAS, LIST IS NOT RUNNING

ir .FF.ASIPLFCBASEF I *TIEQ ,LASTRUNI:BASEF2 THEN
RECIM TS8AVSTi
! RE11EtoF.R Sin LOC QF NEXT *RUNNING' PROQCEEE

! RUSH RFGISTERS R“-R'j
! LAETRUMCETKFTR> .R61 R**' FEAS IRLECETKPTR31

j POP HACZCK REGISTERS HE-REBE

IF(LASTRUN" , FEASIBLE) EQL 0 THEN ERROR({L)
FXCHJ (.FEARIHLff8TKRPTRJ)} }
FNOJ

GLOBAL ROUTIME P(S5>"
! CIJKSETRZAES » B» OPERLTION

BEG IM MAP ''SEMAPHCRE Si TPI
IF { s[COUMT].-.Sr.couMT3-1) Lf.s 0 THEN

(SwAP (FFA"I"LrC' 'ASEF3»S8CSHEADER]} 1 SAVESTART <))1
END}

GLOBAL ROUTINE V{8)»
I OIJKSTRAS «¥v» OPERATICN
CEGIK MAP PSEMAPHO®E Si TVI
IF (5CCOUNT> . SCCOUNTD*.1) LECQ 0 THEN
(SWAP (SCSHEAQER] .FEASIBLECBASEF3}I SAVSTARTO)‘
EN 01

I MAILBOXES

STRUCTURE PMARBCXC1] = (P.PMAILBOX*,I)<9!,36>|

MACROQ MUTEXsZs; ,
ACCTIVITYs &,
LIMIT«&8>»
HHEAOE “="0J1I

GLOBAL VECTOR MAILBOvESCNUMMA4 ILHOXES)J

t MESSAGE HANDLING ROGUTINES

ROUTINF MBB (P)=
BFGIM REGISTER R»
IF ,P LSS f»> OR ,P GITR MAVPORTS THEN ERBOR (?) ELSF
IF {(R«-1FEASTRLEtPQBT { #) 1) I.8 £€1 THEM FRROR{(3) ELSF

-18-

IF LR nTiR HUMMATLBOXES THUEM £ERROR(4) ELSE
sHaltROXFST,R)
END S

GLOBAL ROUTINE SEND(M,PRT)=
! SEMD MESSAGE M TN THE nHalLiroX NAMED BY CURRENT PROCESS'S
! PORT #PRT, BLOCK THE PROCESS IF THE MAILBOX 1S FULL,
REGIN MAP PORBJECT #, PMAILRNX PRYT) TSENDS
PRT«MBR(.,PRT)}
PC(PRYCLIMITIYE PUPRTIMUTEX]))
LINK{NFWCOPY{ , MLAASEF) ,PRT[MHFANERY)]
VIPRTLACCTIVITY1)) VISFRTTMUTEXD)
ENDS

HLOBAL ROUTINE RECIEVE(PRT)=
1 GET THE FIRSY MESSAGE FROM THE MAILBOX NAMED BY THF CURRENT
1 PROCESS'S PORT#PRT AND RETURN THE ADDRESS OF THIS MESSAGE,
BEGIH NAP PMAILBOX PRT) REGISTER R)
PRT«MBR{,PRT)
PIPRTLACCTIVITYI)Y) P(PATIMUTEXD)
ReDELINK(PRTIMHEADERY })
V{PRTCLIMITIY) V(PRTLMUTEX])Y)
TYRECv) .R
EHN}

I SYSTEM (NOT KFRNEL) SUPPORT FUNCTIONS

FORWARD L0GZ2)

ROUTINE INITIALIZES
REGIM

DECR ! FROM 16 Tn & NO SPACEL,1Jeps SPACECLOG2(MEMSIZE)I=MEMCD,0>)

DECR | FROM (MEMSIFE=1) TO # DO MEM{,1)+=0}

DECR 1 FROM (NUMMAILAOXES=1) TO @ NOo MAILBOXESE, !Jvﬂl
LASTRUMe=11 FEASTHLE«Q)

END S

ROUTINE LOG2(N)=
INCR I FRO4 1 7O 16 NO
[F LSIZECLTI GEQG N THEN EXITLONP 1)

ROUTINE COMNECT(DIR,PRT MR =
REGIN MAP PORJFCT DA}
1F MATLBOXESI,.NR] EQL O THEY ‘
HATLROXESE MHa)eCORY(PLIT(D,A,1,@,0,0,MSGLINIT,), GET(3))}
DIRLPOSTL,PRT) I+ 11y
END 3

http://HAii.00xrsc.p3

-19-

wARRND CREATEPROCESSIPHAL ,NAME ,PRIOR)S
NEGEY REGIETER PAHIELT R,PI
RIRASEF J+GRET(4)]
R[ISTKPTRI«CREATE PHOC AT GETILOG2(PSTACKSIPEY) LENGTH PSTACKSEIZE THEM o}
RIFRIQRITY1+PRINA] RINAMEF Jet"dHME} LIMKERLAASEF] FEASIRLE)}
«RLAASEF] :
CRNG)

! PRIMITIVE 1/0 FUMCTIANS FQR POF=1R USE

MACHOP TTCALL=451)
MACRO OUTCIX)={(REGISTER T A+(X)) TYCALL(1,GQ)) 108,
NUTSIXIaTTCALLLI XIS,
QUTBLAYSCINCR 1 FROM 1 TO ¢2) DO QUTCLY wn)s,
CR=#158, LFs#12$, CRLF*(OUTC{CR)JQUTCILF)IS, TAB=OUTC(#11)%)
GLOBAL ROUTINE QUTN(N)=
BEGIN REGISTER R.LJ Le?}
[F (N LSS @ THEN (Ne=, N3 OUTC(®=®)))
IF (M EQL T THEN QUTC("@™) ELSE Ne,N AND #7777774
Re,N MDD Bt
TF (Me,N/BY MEQ @ THEN Le,L*DUTN(,N)}
DUTCH ,Re™p") e,
ENN)

ERROR REPORTING ROUTINES

t
.
! - Y W ap e T o U m e - -

NOTE THE FOLLOWING ERRNR NUMBERS

2. PORTY ¥ I SEAG QR RER DUT OF RANGE
3. POARAT N0T CANMECTED

!
1
!
! 1, MO PROCESSES LEFT O# FEAS, LIST
!
t
! 4, ILLEGAL MAILAOX

!

ROUTINE ERRQR(N)=
BEGIN MACHOP CalLLl=z#47) CRLF; CRLF) CRLF}
GUTSE PLIT {(Ysexus v FRAR ', ' 213)
OUTNEG M)
CRLF; CRLF} €£RLFp ORLF3 CRLF}
CALLICT, #12y
EHDI

! SYSTEH”TRAC[WG RAOUTIYES AnD MACRADS
] -n—-—---—--—-—-----.‘-—-‘--—-—--;—--—-;---

-20-

MAGRO NUTHLZIENHTS(PLIT 203,
PENSCOUTP (Y Pt) JOUTS{FLASIOLEINAMEF Y)Y TABYS,
PLN(OUTP{ P *) DUTR(LASTRUIMASEF) ITAMYS,
NUTAN(Z) ={TAR)OUTN(E))T,
OUTZM2L, 42) (TALIOUTE(FLYITARIQUIN(Z2Y) %,
NUTINCAL 2207 3 e (TABIQUTN 21 JTARJOUTHLZZ) ITABIOUTMLZ3)) %)

RONTINE TRO(H,CY=(CRLFIPFNIQUTIPCIGETY Y YEQUT2NT N, . GY)

ROOTINE TRREAY=(CRLFJPFHIDQUIP(IRFL Y I FDUTINGA))

PONTINE TROCA,MWIa(CRLFIPFNIOUTPCY COPY) J0UTZNE A, (RIS

BOUTINE TRMCCAY=C(CRLFIPFEDUTROYHOPY Y JIUTINC AY Y

ROUTINF TRLET(H)S(ERIFTABIWHILE 0 FEQ 0 DO (OUTINCHIIH®, H)))
ROUTINE TRLACA,HY=(COLF IO 0UTP (rLINKe b p0UT2NE A, yHIBTALST¢L HY Y)
ROUTINE TRL2(HY=(CHLE pTAMEOUTHFOILNKR P Y ETRLST L, 1)))

ROUTIME TROL(HY=(CRLFIPFNIOQUTPOIYLLMK Y FQUTING M) I TRLETU MDY
RONTINFE TRD2(A,HIE(CRLFITARIOUTR (IDLH2M))CUTINCG, AV ITRLST(,H)))
BOUTINE TRS(F s T)=(CRILFIPFNIQUTP(ISHAP) JOUT2N(F,.T))}

RPOUTIME TRSV(CRLFJOUTP{(twunuvut 4SAVSTI " Ft t))IPLNIQUTPLY T1 1)IPFN)
ROUTINE TRPUSIR(CRLFIPFNIQUTRP(IR Y IDUTENE ,5,785<-1))3

RONTINE TRVUS)IS(OR| FIPFNIQUTRE'V))aUT2:0(,S5»®@541)))

ROUTINE TRSND(M,P)e(CRLFJPFNJOUTP(ISENDYJOUTIN(My P BRI, PYY)}
ROVTINE TYRRECIHM,PYz{CRLFIPENIOUTPEYRECY) IQUIZN(. M,.PI)

{ TEST PROGRAM FOR PNP-12 IMPLEMFNTATION
l - -

OWN T

ROUTINFE P1iNI=
HEGIN
LOGAL Lj L*GET(3)}
WHILE 1 DO
(SENDCLL 1) ICRLFJOUTNG yN) JRELEASE(RECIEVE(®) Y)
END}

INTTIALIZEC)) *
TeCREATEPROCESS(PL1),'PAY, 1Y JCONNECTL, 1,0, 2) ICOMNECTC, T,141))
TeGRFATEPROCESS(P1(2), 'PRY, 1) JCONNECT(, T,?1 1) JCOHNECT(,T,1,2))
TeCREATEPROCESS(PLI3), 'PCY, 1) ICONNECT(, T, 4s2) JCONNECT(,T+1,0))
SAVSTART ()}

END
ELVUDOM

-21-

Example Trace Qutput

Below is an example of the output obtained when the full tracing
mechanism is turned on. The first line shows that a context awap from a
process named PA to one nmmed PB has occurred. ‘The subsequent lines
contain the process name (PB) and the name of a kernel primitive which
it is calling at the left; to the right values of the parametars and re-

sults of the function are printed. Thus, for axample, the line
P:PB GET 3 10130

indicates that the GET function has been called to request 23 words of

storage and that GET has returned the address 10130,

*etEaSAVST F1 Pt PA ‘s PsPB
PeFD LLrUl 7763 i
- - 7763 10130
L2 10130 0

| 7763 :
PsPB GRT 3 10130

PO BLID 10130 1~ 10060
PsF3 P f0czé 1 ' ‘
PiPD P 1ocs2 00

FIPB ICPY 10130
PSPD LLIC 7766
o 7765 10140
rLu2 10140

_ 7765 _
PtPB GET g 10140
PIPD 0L 10160
PEPB LIDK 10160 7764
L 7764 |
L2 N
7764 10160
PtPB OET 4 10140
PiPB. ITL. 10150
PIF3. LINK 10150 7763
e 7763
Lie

. | 7763 10150
PtPB EGRET 3 10140
 PiPB COPY 10130 10140

{1]

(2]

[31

(4]

{5]

[6]

{7]

-22 -

Clark, W., "Macromodular Computer Syatems,' SJCC 67,

Bell, G., gt al., "The Design, Description and Use of DEC Register
Transfer Medules (RTM}" Computer Science Depariment Report,
Carnegle-Mellon University, Oct, 1971,

Krutar, R., private communication related to his Ph.D. thesis,
carnegie-Mellon University, 1%71.

Jones, A,, and Habermann, A, W,, "Interprocess Communication
Mechanism,” Internal Memo, Computer Sclence Department, Carnegie-
Mellon University, 1970,

Wulf, et al., "Bliss Reference Manual" Computer Science Department,
Carnegie-Mellon University, revised April, 19%71.

Dijkstra, E., '"Cooperating Sequential Processes,'' Technological

University, Eindhoven, 1965,

wirthy ‘N., "Program Development by Stepwise Refinement," CACM,
Vol, 14, No. 4, (April, 1971).

: 7

Security Classification . i

" a DOCUMENT CONTROL DATA-R&D

rSecurity clasaification of tiiie, body of abatrat! and Indexing annatotion mual be entered whan the averall report {3 clasaified)

- CARIGINATING ACTI¥ITY {Cosporata auvthor} 4. REPOAT BECURAITY CLAMNSIFICATION

Computer Science Dept. UNCLASSIFIED

Carnegie-Mellon University 25, GROUP
Pittsburgh, Pa. 15213

- —
1 RAEFDAT TITLE

8 SOFTWARE LABORATORY PRELIMINARY REPORT

4. DESCAIFMTIVE NOTES [Typs of roport and Incluaive dares)

Scientific Interim

(& X I TriaeISy (Fire? nama, middle Initial, ieaf name}

Corbin, Corwin, Goodman, Hyde, Kramer, Werme, Wulf

1. REFQRT DATE 74. TOTAL NC. OF PAGKS 78, N, OF REFSE
| Au 23,1973 25)
0, TOMTRALT OF GRANT NO. 4, CRAIGINATOR'S REFOAT NUMBERI$}
F4h620=70-C=-0107
& PAQIECT MD.
] A0827-5
LB ab. SJHE“ R'EPOHT HO(E) rAny other numbers that xap be sesigrad
h . re 3]
61101D port)
=

10 ASTRIBUTION STATEMENT

This document has been approved for public release and sale; its distributiom
A is unlimited.

El 1. SUPPLEMENTARY MOTES 12, SPONACRING MILITARY ACTIVITY .

¢ TECH, OTHER Air Force Office of Scilentific Research

) 1400 Wilson Blvd., - (SRMA)

; Arlington, Va, 22209 '

ilin, ADSTRALT

This report describes the implementation of the kernel of a simple multi-
process operating system. The purpose of this system 1s to create an enviromment
for the construction of experimental programming aystems for educatiomal and
research uses,

P e p——

E} D 1 FNOURVM he ‘E 4 3

ol

Sccurity Classification

Security Clasrificetion FamE
S
14. LINK & LIMK B LK €
KEY wORNOB -
ROLEK WwT RGLE wT moLE w1

Secority Classtfication

