NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-103

C,ai -~ A LISP Processor for C.al
by

M. Barbacci
H. Goldberg
M. Knudsen

Computer Science Department
Carnegie~Mellon University
Pittsburgh, Pennsylvania

August 9, 1971

This work was supported by the Advanced Research Projects Agency
of the 0ffice of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for publie release and sale; its
distribution is unlimited.

ii.

ABSTRACT

A special microprogram controlled process designed for efficient
interpretation of the LISP language is described, The processor has
a fairly large, fast scratchpad memory and uses two cache memories:
for the LISP program and data being interpreted; and for the LISP
interpreter. Several special purpose registers, small function
units, and generdal byte manipulation capabilities are present,

The approach taken has been to avoid unorthodox implementation
schemes and employs little in the way of unusually new (and untried)
hardware. Such a conservative approach should enable an implementa-
tion in a reasonable length of time,

One of the places where efficlency in list processing (and in
most programming applications) can be enhanced is in the ratio of in-
struction fetches tc data fetches. Te that end two unusual features
were required:; writable (up-datable) microcode and recursive control
of microcode. With them, it is possible to implement the language
interpreter as close as possible to the real hardware machine, Such
a machine could also be a "shell" language processor. However, this
was not a goal of the design, but a by-product.

The microprogrammed processes include a storage-compacting
garbage-collector, which can be made to operate incrementally in
parallel with user-program execution., This option avoids interruptions

in LISP execution for garbage collection,.

iii.

TAELE OF CONTENTS

Page
Abstracth . . . o e e e e e e e e e e e e e e i
P.LISP Deslgn Phililosophy. i i i i i i e e e e e e e e e e i e i 1
P.LISP: Structure of the Processgor 3
o I 5
The LISP Worldt e e e i e e e e e e e e e e &
Functions of the P.LISP Operating System, OS.LISP......... 6
Garbage Collectlon - Special Methods. 3
Parallel Garbage Collectior 7
Compact-List Structhure @i i e e e e e e e e e o]
8pecial Hardware/Microprogrammed Speed-Up Features 9
Extensions to LISE i i e e e e 11
Performance Consgiderations i 13
Flgures 1-B . . e 15
Annotated Bibliegraphy o¢f Compacting Garbage Cellection 1e
Appendix 1 - Micrccode Addressing.. ®. 20
Appendix 2 - Byte Transfers e 22
Appendix 3 - M{LOCAL). o . . i i e e e e e e e e e e 26
Appendlix 4 - Some Data Primitives and Micreoprogrammed 31
Routines
Appendix 5 - Desgcription of Microcommands.. _........_. 37
Appendix 6 - Garbage Collection Techniques............0.cu.o.. 40

Appendix 7 - Absgtract of C.ail Designeen 57

P.LISP DESIGN PHILOSOPHY

In considering a LISP processor for C.aif two goals were observed
in addition to the constraints imposed by rhe design of the large, over-
all memory resource and operating system of C.,ai., These were: the pro-
cessor should be implementable in an obvious fashion; and the speed-up in
processing of LISP may be borne by a loss in generality of the processor's
order code. Although these seem to be either contradictory, or unrelated,
the trade-off involved covers the spectrum between a conventional LISP
system on a conventional computer and a hard-wired read-eval-print loop.
We hope that the following design will lead to a single processor which
employs little in the way of unusually new (and untried) hardware, pro-
vides a speed-up in the range of 1.5 orders of magnitude over conventional
LISP systems, and is not as strictly bound to doing LISP as one might
expect. The processor is micro-programmable, with numerous register trans-
fers, byte manipulations, and arithmetic and logical functions (which has
been left relatively openended in the design).

In most machines, even those that make extensive use of microprogram-
ming, the mapping from the hardware functions to the order code retains a
level of generality unnecessary in C.ai (since different procegsors are
dedicated to differént specialized languages or tasks). Hence, the best
and cheapest place to begin designing our processor is at the microprogram-
ming level. To that end, two features are necessary for LISP which are
not usually available: writable (up-datable) micro-code, and recursive

control of micro-code.

x
It is assumed the reader is familiar with both the C.ai computer (Bell, et

al, 1971) and the LISP language (McCarthey, et al, 1962); see Appendix 7
for a brief description of C.ai,

Some implications of such a machine might be that it could also serve
as a basis for a processor suited to string manipulation languages and to
"shell" languages of manifold capabilities. This, however, was not a goal
of the design, but rather a by-product, resulting from these facts:

The hardware and memory configurations of most computers,
and by extension, many assumptions inherent in existing pro-
gramming languages, are essentially the same,

The capabilities required by a processor to evaluate
LISP expressions are powerful enough to handle a large

number of other programming language expressions and con-
trol structures,

P.LISP: STRUCTURE OF THE PROCESSOR

The first characteristic of the processor is the use of a dual cache
system, one of them as the front end of Mp ('Primary Memory' in the PMS
Notation, see Bell and Newell, 1971) for the program being interpreted and
the other to hold the (most frequently used) microcode of the interpreter,
The trade-off between cost and speed here has been discussed in Bell, et
al, 1971,

All elementary data items (words) contain local type information
permitting data dependent operation., This characteristic is even forced
upon microcode words, This is one of the few truly fixed features of the
system, the others being:

1. Microcode word interpretation is hardwired and a mixed

interpretation of bits in the microword is used: some
bits are direct control functions and some are encoded.
The distinction is itself dependent on the micro-opera-
tion code,

2, Microcode addressing is via a microprogram counter con-

taining the displacement in the microcode addressing

space. (See Appendix 1.)

The PMS Diagram of the processor is shown in Figures 1 and 2.
BUSSES

To achieve parallelism, two data transfer busses are provided, L(1l)
and L(2), controlled by K(1) and K(2). In order to provide the most gen-
eral byte manipulation capabilities (i.e., a string of contiguous bits
located anywhere inside a word) a pair of byte transfer matrix-like switches

are provided for each bus, These are described in Appendix 2. The busses,

their controllers and switches are identical. However, for economic rea-
sons one of the busses might not have the byte manipulation matrices,
forcing us to use the other one for this kind of operation with the sub-

sequent loss of generality,
ALU

The Arithmetic Logic Unit operates asynchronously with the rest of
the processor, Its operation is independent of the microprogram speed
and is invoked by selecting two operands from the local memory to be load-
ed into busses L(3) and L(4) and by selecting a function via K(3), After
this is done, the micro processor proceeds in parallel while the selected
function is being carried out. The output of the ALU may be transferred
to the local memory via S(5) and any of the busses, and this transfer is
done after a 'safe' number of microcode steps have taken place. Unfortu-
nately this requires a minimum of two microsteps for even the simplest
operation,

Each bus latches under the control of a microcommand. The reason
for this is obvious in the case of the ALU busses L(3) and L(4) and may
become clear when we consider some of the specialized registers in the local

memory and their asynchronous operation,

PROCESSOR STATE

This is the set of registers used as scratchpad by the microprocessor.
Some are full-word registers holding temporary data, Some are dedicated
to frequently used data and some others are actually very speéialized units

(e.g., SAV CONTROL REGISTER) as described in Appendix 3,

P.LISP: ISP

The main criterion for specialized list processor design is to minimize
the ratio: instruction fetches/data fetches. According to this criterion,

the machine has two basic modes:

Plex Mode - This corresponds to our intuitive concept of a micropro-
grammed language, i.e., the execution of microcoded routines selected by the

OF Code field in the macroinstruction.

Lisp Mode - This is equivalent to the EVAL function in LISP, where
the interpretation of the input string is carried out by successive (pos-
sibly recursive)} invocations of more primitive operations, without the
overhead of instruction fetches and interpretation. In other words, we

place the interpreter mechanism directly in the hardware.

The idea then is to provide a set of microroutines that implement
enough primitives for plex processing and provide them with the possibility
of calling each other using the stack mechanism; in other words, the micro-
code 1s recursive,

A set of microroutines, written in a register transfer language, can
be found in Appendix 4, together with a detailed description of some of
the data primitives that may be useful for our purposes. Appendix 5 pre-
sents the microcommands in detail,

Although the register transfer language and the microcode selected

are not in a cne-to-one relationship, the mapping is direct. For instance,

the RT language does not show parallelism, which is achieved in the processor,

THE LISP WORLD

FUNCTIONS OF THE P.LISP OPERATING SYSTEM, OS.LISP

1. Acts as lisson between the LISP interpreter {microcoded
EVAL) and AMOS (A Minimal Operating System, see C.ai,
Bell et al, 1971},

2. BHandles multiprogramming of P,LISP {swapping, paging,
relocation, memory allocation, etc., in cooperation
and/or contention with AMOS).

3. Provides choice of LISP version for each user, i.e., gives
options of compacting or parallel garbage collection, com-
pact lists, etc., in cooperztion with AMOS,

4. Handles 1/0, vis-a-vis the local file system and the ARPA
network.

5. Controls allocation and "flipping"™ of semi-spaces, when
compacting garbage collection is used. See Appendix 6.

6. Contrels alternation of user and garbage collector,
campute optimal length at time slices, and providesa re-

covery procedures, when parallel garbage collection 1is
used (see below),

GARBAGE COLLECTION -- SPECIAL METHODS

Garbage collection procedures will be microcoded. Conventional
garbage collection (GC) 1s possible, using one dedicated bit in each
word. However, if eilther paging or swapping is used (which is probably

unavoidable, with the projected number of users}, storage-compacting GC

(CGC) 1s preferable (Appendix 6)., Fenichel and Yochelson {1956%) give a
gimple recursive algorithm and several reasons for CGC: reduction of page
faults, less core image to swap, and no time-consuming conventiomal

linear sweep through large memory space. We have also adapted Cheney's

{1970) non-recursive scheme to LISP. Both divide data memory into two
equal "semi-spaces", which doubles the (virtual) memory required, although
a speclal paging scheme we designed redyces "real" memory needs (see
Appendix 6, sec., 2.5). Some other advantages of CGC are:

1. Cache memory is more likely to give look-ahead, since
CDR(L) is usually the next memory word.

2. Free-storage list is a linear block of words, so any
subsequently-formed lists will likely be localized in

memory.

3. Parallel GC is made possible -- see below.
PARALLEL GARBAGE COLLECTION

Delays of a second or more (much more, with large memories) while LISP
garbage-collects may be intolerable in real-time applications such as
speech or robotice. An alternative is an incremental garbage cellector,
time-shared with the user's program so that his job runs a bit slower, but
never stops completely for more than a small time quantum, Time-slices on
the order of this quantum are alternated between user computation and data-
salvaging (garbage collection).

That is, free storage in the current semispace is alternately used
to create new S-expression (user) and to copy still-active structures
from the previously-used-up semispace (GC). If copying is complete when
current semispace runs out, then semispaces are "flipped" as in non- paral-
lel CGC (see Fenichel and Yochelson, 1969). Otherwise some special "bail-
out" procedure must be executed to finish copying from the old semispace
so 1t can be used as free storage again. Bailing-out causes a conventional

GC waiting period.

-8-

While we have a bail-out procedure, the P.LISP Operating System triles
to avold the latter situation by balancing the relative times allotted to
user computation and GC. We propose some adaptive heuristics for this in
Appendix 6.

Some LISP primitives must be slightly modified te aveld strange effects
on lists which have parts in both semispaces, not yet having been copied
over inte current semispace. Since these modifications reduce efficiency
of the system, use of the parallel-GC version of LISPF should be an option

of each user.
CMPACT-LIST STRUCTURE

With storage-compacting garbage collection, we could eliminate the
CDR field and assume the CDR of a list cell 1a the next word in memcry
(see Hansen, 1969 and Cheney, 1970). A special LINK word pointing to the
true CDR must be Inserted whenever this is not the case,

Such a scheme has two advantages -- look-ahead and seved space through
elimination of the CDR and AM2 fields (26 bits), (See Appendix 4 for cell
description.) We already have the former if CGC is used on conventional
LI8P structure. The latter advantage is realized if we can fit one compact-
list cell into a halfword; such an implementation might be a worthwhile

option.

SPECIAL HARDWARE/MICROPROGRAMMED SPEED-UP FEATURES

Property-list (PLIST) gsearch gpeeds may be increased as follows:
Frequently-referenced property names are assigned integer indices

according to their leogation in the processor's property desgcriptor table

(PDT, Appendix 3 and Fig. 3) . Attribute-value pairs which would other-
wise be kept on PLIST in conventional two-word form (Fig. 4) may, if the
attribute is in the BEDT, be reduced tc¢ the single type-PLIST word of
Fig. 5, where only the 6-bit PDT index of the attribute 1s needed. The
separate type on such cells allows conventional dotted-pair cells to be
intermixed with them in a PLIST. Retrieval of a wvalue from PLIST is as

follows: Given attribute "AttL",

fa) If Att ig type immediate integer, assume it's a PDT index,
skip to (a). (Note that the gystem refers to certain properties

(pname, fexpr, apval, etc.] directly by their fixed PDT numbers.)

(b} If Att is type atom, sgearch PDT for same atom. If found,

get Att to its table index; else go to (d).

(¢} Search PLIST, checking only cells of special type PLIST, for
PN field egual to Att. If found, return CAR of this cell;

else NIL for ‘not in PLIST".

(d) Search PLIST, checking only conventional (type-LIST) cells

in usual manner; return value found, or NIL.

-ib-

Likewisa, when puttihg a new palr on a PLIST, the POT is consulted
to determine whether a type-PLIST or conventional structure 1s added,
This can halve data-memory fetches.

Often one accesses an element in a4 complex S-expreseion whose posi-
tion in that structure is known, e.g., by "(CADDR {(CPDDDR (CAR L))}" for the
7th item in (CAR L). We can encode such a succeasion of CAR's and CDR'a
into a Boolean vector (0 for CAR, 1 for CDR}, along with & count of how
many bite are meaningful, into a atructure-sccess vector (SAV), e.g.,

Used
lype Couat Vector

SAV 8 00- - - - - - = = = - = UOFIIIIIIO

¢ 3 & 11 12 63

for the above example., Note that Nth-element access 1s & special case of
thia, LISP could now allow up to 52 A's and D's between C and R! We
provide 3 dedicated hardware register for SAV interpretation, as deecribed
in Appandix 3,

Functionecall arguments are passed to the function in the A registers,
one per register, In order of appearance in the calling expression. This

is not new, but the fact that we can work with the A registers at micro-

program apeed might glve us some gain,

-11-

EXTENSIONS TO LISP

The generality of our processor hardware, plus the writable micro-
code memory, allows extra data types (structures) and their appropriate
operations to be added at no cost (aside from writing additional microcode).

While these data structures could be used to extend LISP (as in LISP 2),
they can just as well be embedded in the conventional LISP 1.5 linguistic
framework. LISP's function-oriented syntax can easily support the predi-
cates, selectors, and constructors needed to create and use such types,

Note that such additions affect neither the syntactic elegance nor the
execution speed of LISP, in no way penalizing those who don't use them.
LISP users have often created their own specific data forms and written
LISP functions to handle them, But a sophisticated user of our P,LISP
could translate these functions into microcode, for large speed advantages.

Some data types of general interest might be strings and arrays or
pléxes (blocks of arbitrary number of contiguous storage words). String
processing is aided by our general byte-transfer operation, SNOBOL4's
variable-binding semantics are identical to LISP's. Plexes are possible
if we use storage-compacting garbage collection -- these could lead to an
extensible data-type facility akin to SNOBOLA's DATA statément. Users
might even be able to specify subfields of the plex words, e.g., L6
(Knolton, 1966) thus getting more use out of our byte-transfer operation,

Note that a "LISP compiler" in this system might generate microcode
for insertion into control meﬁory, under user commands. Of course, the
kernel LISP 1.5 code would reside in a write-protected section (from user's

viewpoint).

~-12 -~

A compact-list {(mo CDR fields; CDR of a word 1s the next storage

location) version of LISP can also be microcoded, where data atorage space
is tight.

Floating-point (real} arithmetic is important for image processing,
etc., and we would initially microcode the basic cperations. However,
hardware fleating-point is faster than microcode and should not be ruled
out at this peint. Trig, log, bhyperbolic, and other special functions can

be added where demand exiats.

-13-

PERFORMANCE CONSIDERATIONS

A basic ratio of %25 speed-up in memory fetch from cache versus core
will be assumed here, (It has been suggested by the Stanford AI processor
that a 2K cache is 95% effective for conventionmal LISP 1.6,) Our micro-
program cache should have a high hit ratio since programs are mostly
sequential and will not fragment very badly, With compacted lists, our
data-cache should have a high hit ratio as well,

The speed of the microprocessor will not (short of extremely expensive
and possibly unreliably new hardware) keep up with a 40 nsec., cache cycle
time, but will certainly fall in the range of 100 nsec. per instruction
cycle. This alone will give microprogram~implemented LISP primitives
a speed-up of x15 to x40 over good conventional systems like LISP 1.6*
(assuming a single processor).

The organization of the microprogrammed primitives, compacted lists,
parﬁllel garbage collection, and tighter property lists for atoms should
yield further speed-up. To specify, with any accuracy, a factor of in-
crease 1s rather difficult since the profile, over execution, of a typical
LISP program varies considerably from program to program. A significant
amount of processing time is spent in binding formal to actual parameters
of functions. (This is where compiled functions pay off.) But this varies,
as is indicated by a range of compiler speed-ups of x1 to x15 (in our ex-
perience). Even though we have compared our design to interpreted rather
than compiled LISP, we have left open the possibility of doing the same

sort of binding decisions that conventional LISP compilers perform,

*
LISP 1.6 is the LISP implementation on the PDP-10,

-14 -

Moreover, the user can compile some functions into microcoded routines,
Preliminary coding of some important LISP primitives indicates that
we can gain very little over LISP 1.6 (PDP-10) by trickier programming
of the evaluation algorithm (given our conventional approach). It is our
opinion that the implementation of LISP 1.6 is good, and the PDP-10 order
code is appropriate enough for LISP, so that we cannot do much better than
the order of magnitude improvement provided by the microprogramming. It
is our hope that the flexibility and reasonable simplicity of this design
will more than outweigh the factor of not having a single LISP processor
one hundred times faster. Multiple P,LISP's, of course, easily allow us

to reach the goal,

P.LISP :=
Mcache (Data and Programs)

A

Mp(lO7 word) ¢

Dalu

_g'[c-

S,
)-> Mlocal (registers)

"%hache(u-code)

data flow

control lines

Figure l: PMS diagram of P,LISP and its caches

' P (L4)
M(LOCAL) 4 .

~ -
\4(3}--— -
.
~
v ~
S S ¥ S(4) N -
N N . //L ~
\Kfl) MR(2) ~
/ \\\EA N/
/ i/] ‘
/ L(2) . 4 S(5)
/
/ N
L Y
L(1) 4
X
K(1)
I ~ 2K(2)
4 K(3)
M(L)———p D(1) —Pp K(4) =~
» 2 ¢
® ? ®
\
N &7
™~ K(5)

S(1} input byte-transfer matrix; S(2Z) output byte-transfer matrix; K(1)} byte-transfer controller.
$(3), sS(4) and R(2) as 5(1), 5(2), K(1).

L{1l) bus #1; L(2) bus #2.

L(3) ALU input bus #l; L(4) ALU input bus #2; 5(5) ALU output-bus selector;

K(3) ALU controller.
M(1) microprogram cache; D(1l) micro-word decoder; K(4) micro-program controller;

K(5) micro-program sequence controller (clock).

Figure 2: PMS5 diagram of P,LISP

..9'[...

17

Figure 33 Property Descriptor Table (PDT)
AM2

COR __

Thdex
o : ATO R NAME = Atom
- = T(?H NAME o whose PNAME =
R T ‘ T e name of propetrty
,/w:_ ﬁk :;", :‘:;‘ [attribute
63[_ . -
DT

Figute 4 Conventional PList pait element

TYPE UUB AML CAR AM2___ CDR

L___ ; 1 Next prop«11ist
> [LIST[. 'LIST[: [LIST,I~J~:j:;—%? element

[msrl »/ ATOM[fz IO.AIF.-—-TVAM ..
S

(as in mm
Fig, 3)

Figiute 5t Our singlesword Plist element

PN
|n,“, 0,1, -
2 |putst|1tmex VALUE oL >Next PList
A e elemant
u\'m

yields NAME in PDT

Notet Value "V" may be list, atom, or immediate atom, in elther scheme.

-18-

ANNOTATED EIBLIQGRAPHY OF COMPACTING GARBAGE COLLECTION

Cheney, C. J., "A Non-Recursive List-Compacting Algorithm", CACM 13, 11
(Mov. 1970) 677-678.

"THE" CGC algorithm of choice, where recursion is not wanted. Much
gsimpler than (4). Intended for CLS, but easily extended to SLE [Appendix
6, Sec. 2.4]1, with hints from (3).

Hansen, W, J., "Compact List Representaticon: Definition, Garbage
Collection, and System Implementation", CACM 12, 9 (Sept. 1969) 499-507.

"THE" seminal paper on CLS. All the right ideas, but refused to permit
gerieg links, thus ruling out "RPLACD" ("RN" in L*) . Algo hisg CGC
requires recursion and has inelegant "fixup table" kludge for re-
entrant lists. Predicts values of CGC even for SLS (page fault reduc-
tion, 1l/o to M.sec, etc.). Much emphasis on bit-packing 360 imple-
mentation.

Fenichel, Robert R. and Jerome C. Yochelson, "A LISP Garbage Collector
for Virtual-Memory Computer Svatems", CACM 12, 11 (Nov. 1969) ell-6l2.

"THE" CGC to use on standard LISP where recursion is o.k. Points out
inefficiency of conventicnal GC in huge [virtual] memories, a&as well as
page-fault reduction of compacting GC Also suggests calling CGC

before gpace exhauszstion, 1f "thrashing" gets bad due to gcattered nature
of active data. Uses CAR field to indicate already-copied.

Schorr, H., and W. M., Waite, "An Efficient Machine-Independent Process
for Garbage Collecticon in Varioug List Structures", CACM 10, & (Aug.
1967) R01-806. Also in Xnuth, Vol. 1, 417-419.

Of interest for being first GC requiring neither recursion nor linear
sweep of M. HNon-compacting, no good for compact ligts, and requires
one dedicated bit per word.

Rogs, Douglas T., "The AED Free-Storage Package", CACM 10, 8 (August
1967) 481-492.

A case study 1in solving a problem (storage allocation for and garbage
collecticon of various-sized blocks (plexes)) in the most complex way
possible in the B.C. (Before Compacting) era. Shows how hard plexes
are to implement without a storage-compacting garbage collector, since
free gstorage fills up with odd-sized "holesg".

Bell, C. G., P. Freeman, et al, "C.ai: A Computing Envirconment for AT
Research", Department of Computer Science, Carnegie-Mellon University,
(Hay 1971).

7.

-19-

J. McCarthy et al, "The LISP 1,5 Programmer's Manual',MIT Press,
Cambridge, Mass. (1962).

Bell, ¢. G. and A. Newell, Computer Structures: Readings and Examples,
McGraw~-Hill (1970,

Knolton, K. C., "A Programmer's Description of 16", CACM 9, 8 (Aug,
1966).

w2

APPENDIX 1

MICROCODE ADDRESSING

Microcode is atored in main memory and loaded into a particular pro-
cessor (i,e., the microprogram cache associated with it) by G.amoa*. Thus,
the microinterpreter is general purpose in the sense that data paths, micro-
words and microcommands depend only on the language we are implementing
{L*, LISP, SNOBOL, etc.). |

By having the miecrocode residing in Mp, it is possible to modify it
at will and fast (of course, some access privileges will have to be associ~
ated with given code)., It may be necessary to implement a microassembler
as the first step (later it can be bootstrapped to a4 highar level language)

to facilitate the coding of microprograms,

Mp
i
]
' puaddress
1
I
|
' ’ ‘{ ubase udisp
| P ot
LISP i
ucode . /
i
! /
]
- /
L*
ucode ' microprogram microprogram
' cache interpreter
1
Figure 1.1

*
See C.ai (Bell et al),

file:///icode

-21-

Microbase is provided by AMOS and this is the way we "assign'" a
particular language to a processor. Microdisp (displacement) is the "local"
address inside the microcode corresponding to a given language. A small
displacement is economical but restricts the size of the microprogram
(possible new and complex languages that require large pleces of micro-
code may be impossible to implement at this level); on the other hand, a

large displacement is flexible but wasteful,

=22~

APPENDIX 2

BYTE-TRANSFERS

Two methods for selecting a byte are presented; both are based on
matrix-like transfer networks, the difference being in the trade-off
between the cost (mumber of gates) vs. the number af bits in the micro-
word to control the transfer. A general shift matrix should also be
explored, The methods are based on the fact that byte transfers do not
affect the relative ordering of bits, i.e., lower order bits go to lower
order bits. A simple way to do the operation is based on a matrix-like
transfer network, where the only gates that are activated are the ones
aligned along & selected diagonal. Besides the selection of the byte, a
mask must be prepared to enable the proper gates in the output register.

A method to prepare the mask is explained later.

-23-

METHOD 1
—
o o o 8 9 e =
M |
2 B a o a A% &

N o

— — w— —— ——

B Bl BG2 B63 AB3 A62 Al AD
QUTPUT INPUT
KEGISTER REGISTER
Figure 2.1

DAf 1s selected according to the imitial bit {the ith) of the
input byte. The byte is sent via lines t0 - tk where k+l is the byte
lengeh. DB is selected according to the initial bit {the jth) of the

output byte,

=24 -

METHOD 2
T o
L o~
8 A & a 8
B0
Bl
B2
) ////
OUTPUT ' s
REGISTER
o
A
=
Ve
/7
7

B61 /// | %
B62 ‘/’ / 2
" B63 T o ‘[/

INPUT
REGISTER

A63 A62 A6l AZ Al AD

Figure 2,2

Di 1s selected according to the initial bit positions of both the input
and output bytes, according to the following rule: Given Ak and B} as initial
bit positions, the transfer is controlled by Di where i = j-k (actually they
do not need to be the initial bits, any two corresponding bit positions will
do).

The selected byte appears on the proper lines without further selection
as in Method 1.

Cost
{number of dual
input AND gates)

Diagonal Selection

Enabling mask for

-25-

COMPARISON

Method 1

4160

DAL and DB)

are given by initial
bit poaition

Given by initial and

Method 2

4096

Dk is given by
subtraction of
initial bit positions

Same as Method 1

output register final bit positions

at output byte

Table 2,1

The fields needed to specify a byte transfer (besides the reglster's
selection) are:

-- initial bit of input byte {& bits)

~= initial bit of output byte (5 bits)

-- final bit of output byte (6 bits)

The subtraction operation in Method 2 can be avoided if we encode in
the microword the diagonal number instead of the initial bit of the input
byte, but this encoding requires 7 bits (there are 127 diagonals in Method 2)
and rhis price can be too much to pay for the saving of 64 dual input AND
gates in the watrix. Our feeling is then that Method 1 provides the fastest
solution, with the smallest microword waste at a cost of 64 additional gates

(which may very well be the cost of the arithmetic unit to perform the

subtraction in Method 2).

34

26«

DETATIL OF CROSSPOINT

A,

Figure 2,3

-27-

CREATING A BYTE TRANSFER MASK

Two slgnals coming out of two 1/64 decoders are used to mark the
initial and final bits of the mask (they may be the game bit). The circuit
ghown in Figure 2.4 isg a two-way gimultanecus ripple propagation network.
The mask is selected by twe signals, L and R from the deccders. L[K] re-
sets all kits to the left of bit K and R[J] resets all bits to the right
of b1t J. Clearly the mask can be a sgingle bit.

If the propagation delay proves to be intolerable, some cary-lock-
ahead scheme can be provided, although it does not need to be as complex

as a full adder carry lock-ahead unit; a few OR gates will do.

MASK BITS

0) 0 T i)
M M Min
R s R S ‘ -4
/fl?\ % + o Cff“\

)
£

i i+l

C is used to set the mask to l'as (first step)
)
Rj means that bit J is the leftmost bit of the byte

L, means that bit K is the rightmast bit of the byte

(All "AND' gates can be teplaced by diodes,)

Figure 2.4

~29-

APPENDIX 3

MC{LOCAL)Y

MANW/MP~ADDRESS=-REGI STER<Ot 23>
MBR/MP~BUFFER=-REGISTER<0t 63>
UPC/MICRO=PROGHAM-COUNTER<DS 19>
TYPE<O: 3> 3= UPC<Q3 3> Z2<ALWAYS *UPC'>3%
UDISP/UDI SPLACEMENT<0s 15> 1= UPC<d4t 19>
UIR/MICRO=INSTRUCTION-REGISTER<O: 63>
STACK<Dt 63>
R1<0: 63>
ne<0t 63>
R3<02 63>
T1<0t 63>
T2<0: 63>
T3<03163>
PRI/PROPERTY=-DESCRIPTOI=-TABLEL 64)<0s 27>
TYPE<Q$ 3> 2= PDT<0$ 3> Ze<ALWAYS 'PLT'>7
PTR<03:123> 1= PDT<43 27>
ODT/0PERATOR-DESCRIPTOR-TABLEL 64)<02 19>
TYPE<0: 3> 3= 0ODI<01 3>
PTH<0: 15> t= ODT<4319> .
S5AVCR/STRUCTURE-ACCESS-VECTOR-CONTIHOL-HEGI STER<O1 63>
TYPE<Q: 3> t= SAVCH<013> Z%<ALWAYS '5AV'>)
CNTR<0$5> 8= S5AVCh<6tll>
VECTO<0Ot51> 3= SAVCH<]12363>
LASTBIT 5= VECTOLk<S1>
IANW INDI RECT=-ADDHESS=-REGI STER<QS 7>
FL16)<0:63>
AL 161<01 63>

STACK IS5 THE TOP OF THE PUSH DOWN STORE. IT WORKS
IN A FUNNY WAY: ANY TRHRANSFER T0 *STACK' IS5 AN ACTUAL PUSH
DOWN AND ANY THANSFER FHOM *STACK' IS A POP UP OPEHATION.

PDT CONTAINS POINTEKRS TO THE ATOMS THAT DESCRHRIBE A
SET OF PHOPERTIES. SOME OF THEM WILL BE PHEDEFINED BY THE
SYSTEM (SYSTEM ATOMS) AND THE REST ARE USER DEFINED.

SAVCR (FIGs 341> IS5 A SPECIAL FUNCTION ONIT. IT
CONSISTS OF A TWOo WAY MOD(64) COUNTER AND A 528 BIT SHIFT
REGISTER. THE VECTOR FIELD BEHAVES LIKE A STACK (ALTHOUGH
THE UNIT ITSELF CAN BE LOADED/ UNLOADED IN PARALLEL), THE
TOP BEING THE RIGHTMOST BIT, AND COUNTER KEEPING TRACK OF
THE DEPTH. THIS UNIT IS USED T0 HANDLE STHUCTURE ACCESS
VECTORS A5 DESCRIBED IN APPENDIX 4.

IAR I5 USED AS AN INDEX HEGISTER FOINTING TO
M(LOCAL). IS USED WHEN SCANNING TRHOUGH PDT AND ODT, AND IS
IMPLEMENTED A5 A MODC(256) COUNTER.

CNTR = 0

LAST BIT

CNTR

VECTOR

RESET Téhift left
and count-up

p—

Shift right
and count-down

Figure 3.1
Structure Accesss Vector Control Register

LCOAD BIT

_os-

-31.
APPENDIX 4

SOME VATA PRIMITIVES AND MICROPROGRAMMED HOUTINES:

DEFINITIONS OF SURFIELDS IN THE WOKDe SEE FIGe 4ol

TYPE<OL 3> t= CELL<0:3>
GC<02 1> $e CLELL<4t5>
UuuB<0s 5> t= CELL<6G1] >
AMl<0t 1> t= CELL<12113>
Chli<0t 23> t= CELL<i4r3i>
AME<0t 1> t= CELL <381 39>
CLhR<0: 23> = CELL<40t A3

UUB AHE THE UNIMPLEMENTEDR USER Bl T5.
THE ADDRESS MODES (AM1 AND AMZ) ARE DEFINED AS

FOLLOWEL
o GTOMPOINTEN (POINTS TO PROPERTY LIST)
| LISTPOINTER (POINTS TO CELL}Y
2 LITEHAL (INMEDIATE DATA)
SUBFIELDS IN A PROPERTY LIST.ELEMENT. SEE FlG. 4.2
TYPE«<Qt 3> tas CELL<0f 3>
G«<02 1> tu CElLL<425>
PN<Q1 5> te CELL<G6tll>
AM1<0s 1> t= CELL<12t13»
VL<Q2 23> t=2 GELL<1l4337>
aAMe<0r L> t= CELL<3581 30>
NP=041 83> 1= CELL<40t 63>

SUBFIELDS IN A TYPE POINTER

TYPE«<Dg: 3> t= CELL=<01 5>
GC<Us 1> 1= CELL<415>
AMZ2=08 1> te CELL«<383 39>
ADDH=(0: 23> t= CELL=402 63>

SUBFJELDS IN A STHUCTURE AGCESS VECTOH. SEE FIGe 4+ 3.

THE STHUCTUHE ACCESS VECTOR IS5 USED TC FOLLOW A PATH
OF CAR'S5 AND CDR'S BEGINNING AT A GIVEN CELL OF THE PLEX.

THE COUNTEIL CONTAINS THE NUMBER OF SIGNIFICANT BITS
IN THE VECTOHK FIELD.

INDIVIDUAL RBITS IN THE VECIOHK FIELD ARE TESTED 1D
DETERMINE WHETHER 10 TAKE THE CAHRCD) OKR THE CLH (1) OF THE
CELL

THE SUBFIELDS ARE?

TYPE<{: 3> 3= CELL=<01 3>
GC=0z 1> t= CELL<4:s5>»
COUNTEHR<(: H> t= CELL=<611l>
VECTOH<01 5> t= CELL<12363>

THE LENGTH OF THE VECTOR ALLOWYL U5 TO FOLLOW U TO
22 DIFFERENT DBRANCHES (CELLS).

w32 -

A FEW PRIMITIVESS

CHAIN® CAL21<2TYPE> # LYY =» FHHOKCHAIN
CACLI=TIYPE> = PTR) ~» CHAINI
CAE1)=<TYPE> # CELL) == BERIHOKRCHAIN
il-NIL
1na=AC1l
«» CHAINZ

CHAIN1t MAH-AL 1 3<ADDR>
MLR-MIMAR]
mi-acil
HZeMHR

CHAINZE 5AVCH-AL 2]

LOOPCHAIN? (COUNTEIL = Q) => HETUHN
CHS<TYPl> # CELL) +» EHHOKCHAIN
CVECTOR=G]L> = 1) =» CDHCHAILN
{H2=AM1l>» = INMEDIATE) => ERHORCHAIN
Ri<TYPE>+PTit
HleAM2s=HE<AM]>
Ri<ADDH>~H2<OAH>
MAH-R2<CAH>
=> CDHCHAINI

CDHCHAIN? (H2<AM2> = INMEDIATE) =-» ERARORCHAIN
Hl<TTPE>~PTH .
Hl<AMO> =R AMB>
H1=ADDl>~H2<ADDH>
MAR=KH2<CLH>

CDHCHAINL MBR+MIMAR]
COUNTEH-COUNTER=1
VECTOR=VECTOR/ 2
-» LOOPCHAIN

ERRORCHAING ERROKFLAG-1
=» KETURN

THE ARGUMENTS FOR CHAIN ARE A PLEX AND A STRUCTURFE
ACCESS VECTOR IN ALL) AND ALE2)} RESP.

ACl1l CAN B EITHER A POINTER (TYPE PTR) OR A CELL.
IF A CELLs WE 5AVE AN EXTHA MEMORY GYCLE.

THE RESULT IN i1 IS5 A POINTER TO THE DESIHED ELEMENT
WHICH IS5 ALS0 STORED IN K2 (THIS IS5 A S5IDE EFFECT). NOTE
THAT WE WILL GET THE COKHRECT ANSWER EVEN WHEN CHAINCOUNTER
15 ZERO.

COUNTER AND VECTOR AKE FIELDS IN SAVCR (APPENDIX 3)

-33-

ConNSe (AL1]<TYPE> # PTR) -> ERROHCONS
(AL23<TYPE> # PTR) => ERRORCONS
STACK+~UPC+1
~> GETCELL
Re2«<TYPE>+«CELL
R2<UuUB>+0
R2<AM1>+A[| J<AM2>
R2<AME>«~AL 21<AM2>
R2<CAR>»~AL1J<CDR>
R2<CDR>«AL 2)<CDR~>
MAR-R1<CDR>
MEBR+~Rh2
MI{MARI+~MBR
=> RETURN

ERRORCON S EHRRORFLAG+1
=-> RETURN

THE ARGUMENTS TO CONS ARE 2 POINTERSs IN AC1] AND
AL2] RESP. THE RESULT IN Rl IS A POINTER TO THE NEUWLY
CREATED CELL, WHICH IS ALSO STORED IN R2 (THIS IS A SIDE
EFFECT)

EQs R1+-NIL
(AC11<TYPE> # AL2]<TYPE>) =-> HETUKN

(AL 11=AL2]1) -> Rl«TRUE
-> RETURN

RETURN: T1~«5TACK
(T1<TYPE> # UPC) =-> HETURN
UPC~T1

RETURN WILL GET US OUT OF TROUBLE BY POPPING UP THE
STACK UNTIL IT FINDS A MICROPROGRAM COUNTERe I.Es« A VALID
RETURNING ADDRES5Ss, AND BY CLEANING UP THE STACK.

-3 -

GETI® IFLAG-1

GET: (AL 11<TYPE> = PTRY =»> GETOD
AL 1)<TYPE> # PL} =-> ERRIRGET
HI+-H1L
Re2+~aLl]
-> GETEZ

GETO: mMaf~AL 1 1<ADDR>
Ri=AC11]

GET11: MBR-MLMAR]
Re-MBR
(R2<TYPE> # PL) ~> EHRRORGET

GET21: LAR- HE<PN> :
CIFLAG = 0 => Ti~PDTLIAR]
CIFLAG = 1} =-> Ti+~lAR
(ALRI<CDR> = T1) =-> RETURN
(R2<api» = INMEDIATE) -> ENDGETI
R1<TYPE>»+~PTR
Rl<aME2>+RE<aAME>
RI1<ADDE>+RE8<P>
MAR=R2<NP>
-> (GETI

ERRORGET? ERRORFLAG+1
=> RETURN

ENDGET1¢ Rl1-NIL
=> RETUHRN

GET SEARCHES FOR A PROPERTY (AC2]> IN A PHOPEHTY
LIST OF AN ATOM (AL1]).

THERE ARE TWO BASIC FLAVORS, DEPENDING ON WHETHER WE
KNOW THE INDEX OF THE FROPERTY (l.E. ITS SHORT WAME CR ENTRY
POINT IN PDT) OR NOT, IN WHICH CASE WE REGUIHE AN EXTRA
TABLE LOOH-UR INTO PDT.

GET CHAINS DOWN THE PROPERTY LIST UWSING THE NP
POINTER UNTIL IT FINDS THE END OF THE PROPERTY LIST (THE
PHROPERTY IS5 NDOT THERE) OR A PROPERTY ELEMENT WITH THE GSAME
INDEX (IN THE IMMEDIATE VEKRSION)Y OB ONE WHOSE ASSOCIATED FDT
ENTHY IS5 E&UAL TO THE SECOND ARGUMENT.

RI WILL CONTAIN A POINTEH TO THE PL. ELEMENT AND R2
THE PL ELEMENT PROFER. I8N CASE OF FAILURE 70 FIND THE
PROPEHTY Rl WILL CONTAIN NIL AND RE THE LAST FL ELEMENT.

-35-

ruuaLsg STACK-"CORK?®

EQUALLE STACK=UPC+1]
=> [h
(Y = THUE) => HETUKN
CACL1I1<TYPE> # PTR)Y => ENDEQUALZ
CAC21<TYPE> # PITH) ~-> ENDEQUALZ
CALL)=<AvME> # LISTPOINTER) =->ENDEGUALZ
(AC2)<aMZ> # LISTPOINTER) =»> ENDEAQUALZ2
MAR=AL 1 1<ADDI>
MBH=MLMAR]
R1+~MBIt
MAKR=AL 21 <Chil>
MBH-MIHMAN)
Ha~MBRi
T1<TYPE>=PTR
T1<AME>»«}{1<AM2>
Ti<ADDR>+H1<ADDH>
STACK+T!
T1<AMO>»HE<AME>
T1<ADDR>=2<ADDH>
STACK-T1
AL 13<TYPLE>«PTR
AL 1]<AME>+|il<cAM]>
AL11<ADDI>+1t1<CAR>
AL2)<TYPE>=PTH
AL 2)<AME> e« Hi<AM) >
AC2I<-ADDIe =< CAlIL
STNACK~UPCH 1
“> EUUALY
(H1 = NIL) =-> ENDEQUALSI

AL 21+-STNACK
AL13-STACK
-» mWUAL1
ENDEQUAL 21 Ri- NIL
«> RIETUKMN
ENDEQUAL 33 T1~STACK
(TI<TYPE> = CORK) => RETURN
«> MNDEQUALZ

'CORK' IS5 OUR GUARANIEE THAT WE WILL ESCAPE EQUAL
COMPLETELY, AS 500N AS ONE OF THE LEVELS OF RECURSION FAILS.

-36-

TYPE G.C. U.U.B
«CELL
AMI CAR AM2 CDR
0 3 5 11 13 37 39 63
Figure 4.1: LIST CELL
TYPE| G.C.| PROPERTY
PL» INDEX
AMI VALUE LIST AM2 NEXT PROPERTY
0 3 11 13 37 39 "63
Figurc 4.2: PROPERTY LIST ELEMENT
TYFE| G.C. | COUNTER VECTOR
»IAVY
0 3 11 63

Figure 4.3j STRUCTURE ACCESS VECTOR

-37-

APPENDIX 5

DESCRIPTION OF MICROCOMWMANDS

LOMMON FIELDS IN MICHOWORDLS

M /MICROWORD<2 63>

TYPE<Q1 3> 1= MW<Ot 3> ALWAYS TYPE 'MICROCOMMAND®
OP<0312> $= MU<dpo> SELECGT INTERPHETATION.
HEBS5/HELEASE~BUS~SIGNAL<Otd4> 1= MW<S593163> USED TO

RELEASE AND CLEAK BUSES

HTR1 = RBS<0>
RTBEZ = HB%«<]>
HALY 2= HHS<Z>
Hi2S5< 3t 4> UNDEFINED

MICHOWORD TYPE t , SPECIFY 1 ALU 0P AND/OR A FULL WOHD
THANSFER AND/OR AN INDIRECT FULL WORD TRHANSFER (USING THE
INDIMECT ADDHESS HEGISTEH) SEE FIGe Sele

ALUFZ/ALU-FIELD=Oz21> = MW7 24>
ALUE/ALUF-ENABLE $= ALUF<O>»
arLunl/salLu~plis-t<01 7> 1= AlLUF<13B> OPERAND 1
ALUB2/ALU-BUS-2<03T> = ALUF<2$ 16> OPERAND 2
ALUFN/ALU~FUNCTION<Ot 4> 12 ALUF<172E81>
TR/ TRANSFER-FILLLD<O1 17> 1= MW<293 46>
TFE/TF-ENABLE t= TF<O=>
TBE/THRANSFER=-BUS-SELECTOH® t= TF<]>»
Hl<@Q: 7> §= TrF<E:0>»
12<0: 7> 1= Tr<10t1?>
ITF/INDIARCT-TRANSFER-FIELD<0Os 10> 15 MW<47157>
ITFE/ITF=ENABLE t= ITF<D»>
ITFTZIT-FROM-TO te [TF<1>
ITRS/I T=DUS«SELECT 1= ITF«<2>
Ri<0s7> 1= ITF<3210>
MWesld» UNDEFINED

MICROWORD TYPE E SPECIFY 1 BYTE TRANSFER AND A
POSSIDLE JUMP. SEE FilGe 502

HTEF/BYTTE-THANSFEH=FIELD<Ot 34> $t= MW<Trd4l>
TBS t= BTF<0»
Hl<Q3: 7> 3= BTFeligy>»
IBFI/ZINITIAL=-BIT=-POSITION=-1<035> 1= BITF<91 14>
R2<017> t= BTF<15:82>
IRP2/INITIAL=-BIT=POSITION~2<0sS> 1= BTF<23128>
FBP2/FINAL-BIT-POSITION=2<(315> t= BTF<20: 34>
JEAJUMP=FIELD<Os 16> 1= MW<4B: 58
JESAJUMP=ENABLE $= JF<0>
NEAT/NEAT=UINSTHRUCTION=01 15> t= JF<lplgs

=38

MICHOWOHD TYPE 3. SPECIFY 2 PAHALLEL FULL WOKD
TRANSFERS, THE INPUT WOHDS ARE EITHER IN MCLOCAL) OR AS OUTPUT OF
AlLUs SEE FlIGe 50 3s

SALU/ STOHE-ALU<0:9> t= MW<7:116>
SALUE/ 5ALU=-ENABLE $= SALU=<0O>
TBS $= SALU<1>
Ri<037> t= SALU<Z2:9>
BIF/BUS=1-FIELD<(Qt 16> t= MW<17133>
BIFE/BIF-ENADLE t= BlF<0>
BilHI1<037> t= BilF<1t8>
BlR2<0s1T> t= BlF<9216>
B2F/BUS=2=-FIELD<0Ot 16> 8= MW<34:50>
B2FE/B2F-ENABLE t= RB2F<0>
B2R1<0217> 3= BEFe<l1:8>
B2H2<0: 7> 1= BBF<9:16>
MW<51:58> UNDEFINED

MICROWORD TYPE 4 SPECIFY JUMP ON CONDITIONS. THE
CONDITIONS FIELD IS STILL UNDEFINEDs IT MAY BE EITHER A DIHECT
BIT MASK OR A ENCODED FIELD. SEE FIGe 54,

TCF/TEST-CONDITIONS-FIELD<Q: 35> t= MW<7142>
JF/JUMP-FIELD<QOt 15> t= MW<43:58>

MICROWORD TYPE 5 SPECIFY CONDITION BITS TO BE SET
OHR RESET IN THE EXTEUNAL VWOHLDe. SEE FIGe 545

SCF/SET-CONDITIONS~-FIELD<QtS51> = MW<7:58>

MICROWORD TYPE 6 SPECIFY - A INMEDIATE BYTE
COMPARISON = AND A JUMP ON EQUAL OR NOT EQUALe SEE FIGe 5e6e

CBF/COMPARE~BYTE=-FIELD<03 18> 1= MW<T73: 85>
BS/BUS« SELECTOR ¢= CBF<0O»
R1<0:7> 2= CBF<l1:8>
IBP1<0t5S> = CBF<9: 14>
BL/BYTE~LENGTH<Qt3> t= CBF<15:14>
IBP/INMEDIATE-BIT-PATTERN<DO: 15> 2= MW<Z263141>
JF/JUMP=FIELD<0O2116> = MW<42t 56>
JC/JUMP-CONDITION $= JF<0>
JAZJUMP-ADDRESS<0: 15> = JF<it 16>

-39.

Tyik [Top [T ALY FIELD TRANSFER FIELD INDIRECT TRANSFER RBS
po1 FMBE Rl Rz FN ENABLE BUS Rl R2 ENABLH ITFT| BUS R1
: |I ELECT SELECT
; i |
|
! L | | |
c 3 6 7 15 23 28 29 30 38 46 47 48 49 57 58 6]
Figure 5,1t Microword type 1
TYPE | OP- BYTE TRANSFER FIELD JUMP FIELD RBS
ip,cl' =
2 BUS R1 1BP1 Rz 1BP2 FBPZ |[ENABLE JUMP
! SELECT ADDR
! i
i | - e 0
0 3 6 7 15 21 29 35 41 42 58 63
Figure 5.2: Microword type 2
TYPE | OP STORE ALU BUS«~1 FIELD BUS~2 FIELD RBS
Mo | = FIELD
K ENAB BUS Rl ENABLE Rl R2 ENABLE R R2
SELEG
| | —
0 3 6 7 8 16 17 25 33 34 42 50 57 63
Figure 5,3t Microword type 3
YPE oP JUMP | RBS
Y pct = TEST CONDITIONS FIELD ADDR
4
|
0 3 6 42 58 63
Figure 5.41 Microword type 4
TYPE | OP | RBS
" uct = SET CONDITIONS FIELD
5
0 3 6 58 63
Figure 5.5 Microword type 5
TYPE | OP | COMPARE BYTE FIELD BIT PATTERN JUMP FIELD ’ RBS
t pcl - !
6 BUS | R, LBPY BL JUMP JUMP !
BELECT CONDI+ ADDR ‘
TION ‘
0 3 6 7 15 21 25 41 42 58 63

Figure 5.6:

Microword type 6

40

APPENDIX 6

GARBAGE COLLECTION TECHNIQUES

OUTLINE

1.

1.1
1.2
1.3
2,

2.1
2.2
2.3
2.4
2.5
3.

3.1
3.2
3.3
3.4

ll-o

CONVENTIONAL GARBAGE COLLECTION
DESCRIPTION

ADVANTAGES

DISADVANTAGES

COMPACTING GARBAGE COLLECTION
DESCRIPTION

ADVANTAGES

DISADVANTAGES

MICROCODE TMPLEMENTATION

PAGING SCHEMES

PARALLEL GARBAGE COLLECTION

THE PROBLEM

FEATURES (ADVANTAGES AND DISADVANTAGES)
DESCRIPTION OF A PROPOSED SOLUTION
TMPLEMENTATION

OVERVIEW

Ahla

1, CONVENTIONAL GC

1.1 Description: (as in LISP 1.5)

Given pointers to main system lists (symbol tables, stack,
0BLIST, etc.), enumerate and mark all cells that can be reached from
these, by iteration on CDR's and recursion on CAR's, when latter is
sublist. fThen dtep linearly through memory, collecting all unmarked
cells into a4 new Free Storage List / FSL; marked e¢ells are ummarked
{for next time GC is called) but otherwilse untouched, thus returned

to original (pre~GC) state., (Note: "/" introduces abbreviations,)

1.2 Advantages:

1) Simple and straightforward
2) Time-honored, well understood and debugged

3) Bmbodies basic GC principle: "If you can find it, save it;
elae re-use it",

1.3 Disadvantages:

1) Recurslon requires use of stack, to potentially great depth.

2) Does nothing to cnnsolidate/localize current data; 1f you've
been working in 64K but only save 20K of "hot" lists, those
20,000 cells will still be scattered throughout the 64K
space, i.,e., your "working set" is not reduced, from either
Paging or M.Cache standpoint.

1) Requires cne dedicated marker bit in each word (P,LISP word
allows two bits, though)

4) That linear sweep through all of allocated memory (after
the find-and-mark phase) takes a while on the M-sizes we
are talking about (~ 1 M words) [Fenichel 69] -- maybe
several seconds.

5) Parallel GG is impossible,

-42-

6) lLack of consalidation makea conventional GC lees attrac-
tive for compact-liat/CL8 systeme, and ultimately useless
where random-size plexgszSP capabhility Ls desired,

2. COMPACTING GARBAGE GOLLECTION/CGC

R.B., CGC iz not confined to, nor does it imply, CLS [Hansen 6%].
We use the temm "compacted list" to mean a list of elther type which

hag been consolidated by a CGC, Sea 2,4.1,

2,] Desgeription of Compacting GC Algorithms:

{References [Cheney 70] and [Fenichel 69} will be helpful in
understanding what follows,) "GC" is an implementation-dependent
{(hence undefined at present [Fenichel 691 procedure which calls G2
oh each main syatem list (stack, object 1list, symbol tables, ete.).

"GC2" copies each list structure given by a polnter/PTR from
GC into a "mew" semi-space/SS, using a third routine "GOPYLIST",
Copylist ceopies only the top level of a list inte the new area.
Then GC2 advapces & scanning polnter SCAN through the New copied
lists, looking for yet-uncopled sublista in CAR'e, to which COPYLIST
is applied -- its result updates the CAR, HNote whenever an 0ld cell
is copiled, its CDR is changed to point to the New copled cell. See
Fig. 6.1, When SCAN catches up to REXT, GC2Z is finished. If GC
tias no more syatem lists, CGC is complete,
Hote: MHEXT is just the free-storage pointer, initialized to the

baginning of the new S5,

High

£43=

OLD s§ NEW 865
CAR AMZ CDR CAR CDR
o — -
L m—i;
il ""H
t 1
D !
_J!:Lﬂ (:
]
A .
r \ <y
Ty
_,-—'""H_F‘
’’__’_’_,_,.—'-""
{ e
i
/ re—
— |- A

'

)

?

Full of "garbage"
{inactive data) and
rovndabout CDR'a.
<AM2> = 3 flags

copled cells, whose
CDR points to NEW copy.

Figure 6,1

There are no ptrs into OLD here,
Most CDR's point to following
location,

ri—nr.SCAN = gublist Finder
~

May atill be OLD sublist pointers
in CAR Fields here,

i%—mﬁ# REXT = free-storage index

Virgin Free Storage
(contants ignoraed)

State of Semispaces with CGC Partially Completed

_44-

2.2 Advantages of CGC:

1) Reduction c¢f page {or cache) faults; three reasons:

a) Each indiwvidual 1list is localized 1in M folleowlng
a ¢GC run, so accessglng one word (say, the first)
of it brings all or mest of the entire 1list imnto
real Mp (if paging), cr the next few words into
M.Cache.

b) Reduction of total "workling set” - all active
data are cencentrated at low end of user's total
allocated (virtual) M s=pace.

¢) Free Storage List/FS8L 1s linear (in rest of al-
located M) , which increases chances that new lists
wlll be formed in contiguous blocks also.

2) Look-ahead schemes are profitable — good chance that (DR
(Mem [n]) = n + 1. (M.Cache is one crude form of lcok-ahead.)
3) Compacted ligte can be read out onto digk, tape, etc. and

read back in without disgturbing common sublists or re-
entrant/circular/looped structures. [Hansen 69] .

4) CBC can handle reentrant/circular/lcoped lists easily
(though so does conventional GC) .

5) CEC algorithm is simple [Cheney 70] --especlally for SLS.
Much simpler than [Schorr 67].

&) CGC naads hno recursion, stacks, or dedicated bits.
7) Works for {(and more cor less needed for) CdJLS.

8) Random-sized Plexes/RSP or Vectors are easy toc implement

because of the linear FSL, without the horrendous complexity
of AED System [Ross 67]. Includes gtrings and User-Defined
Data Types a la SNOCBOL 4.

9} PGC -- garbage c¢ollection in parallel with user-program

execution -- becomes possible. No more n-sgecond hangups
while LISP collects!

2.3 Digadvantage of CGC:

Virtual memory size mugt be doubled [Fenichel 69] [Cheney 70]

therefore address space must acquire one extra bit's worth of information

-45-

to distinguish which "semi-space'" an address is in during GC execu-

tion. But ...

1) Only two pages of '"New" semi-space need be kept in Mp,
and ~ 6 pages give best performance if special paging
scheme is used (see 2,5). Faults are l/page-size per
page and predictable (hence special scheme),

2) Linear nature of read/write sequences in New SS goes well
with M.Cache.

3) Size of M.virtual in the C.ai is such that doubling
M.virtual needed may be o.k.

4) Or let OS5.LISP (in collaboration with AMOS) keep a hunk
of Mp around which severalLISP jobs can time-share for
CGC (the physical location of this hunk changes: after
a job CGC's into it, that job's Relocation Registers
are changed to use it as working M; its old M is re-
allocated into the 'hunk' pool);

5) Or CGC onto Ms (disk, drum, etc.) directly and swap back
into same Mp space. Fine, if you can stand the time re-
quired (you only write/read active words) and the use of
recursion [Fenichel 69]; ([Cheney 70] won't work without
addressable memory.

46-

2.4 Microcoded Implementation

Note: in flow charts, box numbers correspond to comments in code

listings.
" X" = Mem[X] = M[X<CDR>]
(jgnter GC2 (Ptr); local scan; global Next :)
2| Ptr « COPYLIST (Ptr)
h

t Inmediate ATOM

l.e., = 2

3 Pre~-type (CAR (.Scan)) = ?
i.e., .Scan <AMl> = 7

\ PTR (List | PList)
fiea,=0] 1

4 CAR(.Scan) « Copylist(CAR(.Scan))

A

5| Scan +~ Scan + 1}

6 7

AT { Scan < Next? no

Figure 6.2
GC2

A

47-

(: Enter COPYLIST (Ptr); global Next :)

CLR1
1 A * 2
Is .Ptr already-copied/AC™? es Return CDR (.Ptr)
no
N
3 | Capylist « Next
i >
11, CLR2
4 (Is .Ptr AC? yes
_ CDR (.(Next-1) « CDR (.Ptr)
no -
" u5 Next +« ,Ptr
A Copy . . . Return Copylist
6 A
"Point to Copy" | CDR (.Ptr) « Next
6 Mark .Ptr as "AC"**

7 "Pre-type (CDR{ ,Next) = 7
(.Next <AM2> = 7)

PTR = List | PList
(= 0|1)

8| Ptr « CDR (.Next)
9| CDR (.Next) + MNext + 1

10 | Next + Next + 1

|

A

. ,
Test <AM2> = 3, in this version

Fx
.Ptr <AM2> « 3, in this version

Note: We don't need the GC bits 4, 5; these can be used for TYPE or UUB fields,

Figure 6,3
COPYLIST

48~

2.5 Paging Schemes for Compacting GC:

Special algorithms can take advantage of the predictable way

GC2 and COPYLIST access New S5S:

1)

2)

3)

4)

5)

SCAN and NEXT both advance linearly through New, never
point into 0ld S8,

All reads/writes in New are at locations pointed to by
Scan and Next -- no probes at "random" locations.

NEXT is write-only, no fetches.
SCAN will read (and perhaps write) every word in a page
once before running out of it -- likewise NEXT writes

every word once before reaching boundary.

Thus n-word pages cause a fault about every l/n accesses,
You can't ask for better "folding".

Treat each of the. two pointers' working sets as two ring buffers --

it requires 2 two pages in Mp per pointer. When Scan or Next crosses

a page boundary, the just-exited page is written out, and all Mp

buffer sections other than that and the just-entered one are set

up to fetch the next higher pages, once they have written out their

previous contents.

This look-ahead eliminates faults, if there are enough
buifer sections to keep up with rate-of-advance of
Next and Scan. Note since Next is write-only, it need
never fetch pages into its buffer. The algorithm must
allow for case where Scan and Next are on same page,
The ring buffer is like a caterpillar tread rolling
over Ms; see Figure 6.4,

Even if paging is not ﬁsed, the linear-advance nature of New pointers

will make good use of M.cache look-ahead capabilities --5can can use

all the look-ahead it can get.

- . _—
£l \\)
« 1
@ -0 Mﬁb \
M.pri {core)

M.eec {(drum)

Writing Fetching

Figure 6.4
Ring Buffer "“Caterpillar Tread" {See Sec. 2.5)

The best mmber of buffer sections is & function of how fast CGC
pushes Scan and Hext, page size, and time needed to swap a page in
or out. 5Size of NWext's buffer :-1/2 size of Scan's, since all
sections cdn be writing-out, i.e,, currently-active section i=s
"leading tread" in the caterpillar picture (Figure 6.4) -- nobody

ia reading in.
3. PARALLEL {COMPACTING| GARBAGE COLLECTION/PGC

3.1 The Problem:
List-processing systems which rely on cccasional garbage col-
lections/GC to recover free storage (as oppeosed to SLIP-type LP
systems using reference counts to keep track continuously of avail-

ahle space) must suspend operation entirely for a period (~ 1 second)

while the GC runs.

This is o.k. in most applications, but increasing emphasis
on real-time LP applications like robots and speech processing
suggests a demand for a LISP system that would not go to sleep every

minute or so.

-50-

The proposed solution is a Compacting GC that runs "in parallel

with user's LISP functions. Bits of GC are run in between bursts
of user's computing, in usual time-sharing time-multiplexed fashion.
No change in LISP list structure is required (except slight
address-space extension or addition of indicator bit, which is
easily fit into P.LISP machine word), although PGC will also work
for Compact List Structure/CLS.
PGC LISP runs around a 2-section ring buffer, filling current

section ("semi-space™) with computation while "simultaneously"

copying still-valid previous results from preceding section,

Features (good and bad) of Parallel GC/PGC:

A = Advantage; D = Disadvantage; R = Requirement on implementation

(A) LISP system never has to stop dead for several seconds
to GC (unless Bailing Out (3.3))}.

(A) Applicable to conventional linked-lists/SLS, also to
Compact List/CLS.

(D} Need double the (virtual) memory, for 2 semi-spaces,
as with any CGC.

(R) PGC must compact storage (i.e., use CGC).

(D) Both semi-spaces/SS's are "active" most of time (though
one usually more than other), as '"working set" is dis-
tributed over both SS's. As a consequence, "thrashing"
of pages may be serious enough that elaborate schemes to
prevent this may be worthwhile. We are currently sketch-
ing some of these, based on recent discussions with Alan
Kay of Stanford; these will be reported in a later paper.

(D) So special ring-buffer paging tricks (or M.cache advan-
tages) of non-parallel GC (sec. 2.5) are unavailable.

(A) So T no need to write special paging schemes!

(R) Address space must be well-ordered.

-51-

(R) Muat be able to tell which S5 an addr belongs to, with-
out indicator bite, ete.

(R) STACK, ALIST, etc, may need special treatment (?).

(R,D) LISP primitives need slight mod's, which add alightly
to running tima.

(R} 05.LISP (or delegates) must synchronize PGC with user pro-
gram ~=- lota of work here, though not that time-consuming.

(R) "Bail-out" procedure needed to recover from premature 58
free-storage exhaustion. (3.3)

3.3 Description of Parallel GC Proposed: (See [Fenichel 69] for notions

of "flip" and "semi-space".)

We use a slightly modified version of the CGC in Section 2.
LISP jobs run under a supervisor/Super (some or all of which may
be part of LISP interpreter) which can be in one of two modes --
User and GC. Mode at time t determines whether user's LISP code
or GC is running at t.

When current semi-space is exhausted (i.e., 'next' points to
top address of semi-space) there ave two options, ﬂeyending on
whether PGC has been completed. If it has, the supervisor simply
'flips' semi-spaces and reatarts, If not, then the storage has
run out before GC has finished copying the old semi-space, and a
special recovery procedure 'bail-out' is invoked (see 3.3.6).

A conventional interrupt system {is unsafe. Some LISP and G
routines cannot be suspended in the middle of their operation,

When pointers are being inspected or modified, instead of interrupts,
these routines will check the system timer and 'voluntarily' return

control to the aupervisor, perhaps getting a little more than their

time slice.

_5o-

Let ug call the time guanta for LISP and &C, QU and QG,
respectively; in general QU ® QG. The supervisor alternates modes,
switching at first opportunity after current mode's time slice is
used up.

The ratio RG = QG/QU is fairly c¢ritical. If too small, the
gemi-gpace can be exhausted before GC has copied the old semi-
gpace, requiring a bail-out action; if too large, it approaches
the conventional GC, by stopping the user program for large periods
of time after each '"flipping of semi-spaces.

The supervisor can dynamically adjust RG during execution

as follows:

Let § = semi-space size (number of cells}

Let UI e number of active cells (not garbage) at start of
{i+1l)th sgemi-space flip

Let GI = S-Ul = number of recoverable (garbage) cellg

The optimal relation RG is given by:

RG - QG/QU - K * GI / UL

where K = (average time required by GC to copy an active cell
from old semi-space) / (average time required by LISP to obtain a

new cell)e

-53-

"BAIL-OUT" RECOVERY PROCEDURE FOR EXHAUSTED NEW S§S (PROPOSED):

Figure 6.5.

LD

The Situation:

Low

= already

T

copled

(i

1111

High

Y,

NEW

OLD; much by now is
Y'garbage'.

Figure 6.6.

The Bail-Out:
Finish GC Exclusively

~

Completely
>copied

%

Figure 6.7.

NEW

"Borrowed"
extra M spac

All active
data

SCAN, NEXT

Free storage

'SCAN

"/‘#

NEW

TNEXT
‘wa'

Append More M (Begged from AMOS) to NEW;

All ptrs to OLD have
been updated and
removed

s

P

SCAN, NEXT
}wnsn't needed

OLD

Now Flip SS's, Do Complete Exclusive GC; Return (De-allocate)
Borrowed Space to LMOS.

/

Now resume
" user job.

!
i) Returned to resources
)J pool

Containg no ptrs into

—54-

IMPLEMENTATION

Some of the requirements of the PGC translate into small chenges In
the compacting garbage collector and fintroduce some extra overhead in
gsome LISP primitives and on the LISP operering syatem:

LISP primitives must now recognize when.the cell accessed has been
copied into the new semi-space and if ao spend one extra memory cycle
to get 1t,

LISP 'pointer moving' primitives (RPLACA, RPLACD, NOONC, P-List
functions, etc.) must do extra work to prevent errors; for inatance,
inserting in a cell already in the new seml-space, a polnter te a lList
atill in the old one; if this is the only pointer to thar list, it may
never be copied into the new seml-space. (See Figure 6.8 for a solution,)

LISP aystem supervisor must now:

- control alternation of execution of LISP programe and PGC
and dynamically compute the 'optimal' ratio RG

- initiate recovery procedures, with posgible help from AMOS
- swapping policies should be integrated with the syatem,
for lustance, a job in I/U wait should not be swapped out.
Instead, we can run 'solid' PGC (it does not hurt to finish
earlier!
Subroutine G52 must be modified to allow for cells created by non-
pointer moving primitives like COHNS with:

- CDR fields pointing to old semi-space

- CAR fields of cells reached by SCAN peointing to new semi-
space

Thege require that GCZ test both CAR and CDR field at cell under

SCAN.

~55-

Figure 6.8
CDR(.A) +~ X.

"patch" to be added at entry to any pointer-moving primitive
P(A,X,...); pointer A,X; where intent is:

CAR(.A) + X or

"Do it" = original (non-PGC) entry label of P(A,X...)

(Enter, P(A,X,. . -D

™ Immediate ATOM s Do it

// (=2)

Pre-type CDR(X) = 17
(X<AM2> = 17)
PList
1)

List
(=0

" Which subspace does X

k\‘ point to?

N\ NEW

J

OLD

-~

Is .X already-copied?
(.S<AMZ2> = 37)

No

v

Yes X

(X<CDR> + ,X<CDR>

« CDR(.X)

Do it

(Use left dotted line if CAR(.A) « X; right for CDR]

No

A > SCAN?

Do it

i
1
|

5

CAR(.Next) « X

CDR(.Next) « NIL

Next « Next + 1

Create "fake" list
cell with X as
"sub liBt".

l

Do it

file:///cell

-56-

4. OVERVIEW OF GC AND LIST STRUCTURE OPTIONS

There are three independent (almost) Boolean features of a LISP

system:
- Compacting Garbage Collection/CGC
- Compact-List Structure/CLS
- Parallel Garbage Collection/PGC
Figure 6,9 "Karnaugh Map" Summery of Options Possible in Combination
Compacting GC/CGC Conventional (McCarthy) GC
e e N ~ o -~
r
Compact Yes - more No - PGC i:LNOt worth
Lisgs/CLS < or less Yes CLS requir it
required CGC
o
Yes - see Yes - see |Not in our | Sure -
Linked Sec. 2 Sec, 3 scheme;* LISP 1.5,
{— compact) PGC requirep 1,6
Lists/SLS CGC
~ 7
T

*
Other schemes might use, e.g., page-wise McCarthy GC. See sec, 3.2,

Parallel GC/PGC

-57-

APPENDIX 7/

The following is an abstract of the report "C.ai: A Computing
Enviromment for AI Research', obtainzsble from the Carnegie-Mellon
University Computer Scilence Department.

A computer for artificiaml intelligence research is examined. The
design is based on a large, straightforward primary memory facilicy
(about 8 millionm 74 bit words). Access to the memory is via at least
16 ports which are hardware protected; there ia dynamic assigmment of
the memory to the ports. The maximum port bandwidth is 8,600 million
bits/sec. Processors for languages (e.g., LISP) and specialized terminals
(e.g., video input/output) can be reliably connected to the system during
its operation. The approach 1s evolutionary in that high performance
proceasors, such as the Stanford AI Processor, can be connected to the
memory structure, giving an overall power of at least 100 times a PDP-10
{and 200 to 300 times a PDP-10 for list processing languages) for 10
processors -- although no'proceasors can be attached, Using this
approach we might expect 40 ~ 80 million PDP-10 operations/second.

At the same time, special language processors (P, i) can be designed
and attached. These processors give even larger power iﬁcreaaea, but
for restricted language use. Two processors, P,LISP and P,L* were
examined for the LISP and L* languages and are reported on separately

A plan for building the machine in increments over the next three
to five years ig examined, Specific schedules are proposed,

Concurrent with the operation of the wmachine, there should be re-
search into the design of hardware, software and theory of constructing

large scale computing facilities with maximum modularity.

Sceourity Classification

DOCUMENT CONTROL DATA-R&D

CSeenrite clas sification of titte, body of absiract and indexing annatation must be enteted when the averall report is clussified)
1. DHIGIMNATING ACTWVITY “atpoarate author) 28, REFPORT SECURITY CLASSIFICATION
Computer Science Department UNCLASSTFIED
Carnegie-Mellon University ‘ YT
Pittsburgh, Pa. 15213

4 REPORT TI1TLE

C.al -— A LISP Processor for C.al

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Scientific Interim

. AU THORIS) (Firsr name, middle initiaf, iast name)

M. Barbacci
H. Goldberg
M. Knudsen

 REPORT LATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

Aug., 9, 1971 61 9

Fa., CONTRACT OR GRANT NO 98, ORIGINATOR'S REPORT NUMBERI(S)

F44620-70-C-0107

h, PROJECT N0,

A0827-5

Sh. OTHER REPORT NO(S) (Any other numbers that may be assigned
thia report)

61101D

P R ITRIBYTION STATEMENT
This document has been approved for public release and sale;
its distribution is unlimited.

T, SUFPLERENTARY HNHOTES 12. SPONSORING MILITARY ACTIVITY
TECH, OTHER Alr Force Qffice of Scientific Research
1400 Wilson Boulevard (SRMA)

Arlington, Virginia 22209

A special microprogram controlled process designed for efficifent interpretation
of the LISP language is described. The processor has a fairly large, fast scratch-
pad memory and uses two cache memories: for the LISP program and data being
interpreted; and for the LISP interpreter. Several special purpeose registers,
small function units, and general byte manipulation capabilities are present.

The approach taken has been to avoid unorthodox implementation schemes and
employs little in the way of unusually new (and untried) hardware. Such a conserva-
tive approach should enable an implementation in a reasonable length of time.

One of the places where efficiency in list processing (and in most programming
applications) can be enhanced ig in the ratio of instruction fetches to data
fetches. To that end two unusual features were required: writable (up-datable)
microcode and recursive control of microcode. With them, it is possible to imple-
ment the language interpreter as clese as possible to the real hardware machine.
Such a machine could also be a "shell" language processor. However, this was not
a goal of the design, but a by-product.

The microprogrammed :processes include a storage-compacting garbage-collector,
which can be made to operate incrementally in parallel with user-program execution.
This option avoids interruptions in LISP execution for garbage collection.

DD .1473

Security Classification

Security Claasification

REY

wWORDS

LINK A LINK B

LiNnk C

ROLE

wT ROLE wT

ROLE wWT

Security Classification

