
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-103

C.ai — A LISP Processor for C«ai

by

M. Barbacci
H. Goldberg
M. Knudsen

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

August 9, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-7O-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

i t

ABSTRACT

A special microprogram controlled process designed for efficient

interpretation of the LISP language is described. The processor has

a fairly large, fast scratchpad memory and uses two cache memories:

for the LISP program and data being interpreted; and for the LISP

interpreter. Several special purpose registers, small function

units, and general byte manipulation capabilities are present.

The approach taken has been to avoid unorthodox implementation

schemes and employs little in the way of unusually new (and untried)

hardware. Such a conservative approach should enable an implementa

tion in a reasonable length of time.

One of the places where efficiency in list processing (and in

most programming applications) can be enhanced is in the ratio of in

struction fetches to data fetches. To that end two unusual features

were required: writable (up-datable) microcode and recursive control

of microcode. With them, it is possible to implement the language

interpreter as close as possible to the real hardware machine. Such

a machine could also be a "shell" language processor. However, this

was not a goal of the design, but a by-product.

The microprogrammed processes include a storage-compacting

garbage-collector, which can be made to operate incrementally in

parallel with user-program execution. This option avoids interruptions

in LISP execution for garbage collection.

iii.

TABLE OF CONTENTS

Page

Abstract i

P.LISP Design Philosophy. 1

P.LISP: Structure of the Processor 3

P.LISP: ISP 5

The LISP World 6

Functions of the P.LISP Operating System, OS.LISP 6

Garbage Collection - Special Methods 6

Parallel Garbage Collection 7

Compact-List Structure 8

Special Hardware/Microprogrammed Speed-Up Features 9

Extensions to LISP 11

Performance Considerations 13

Figures 1-5 15

Annotated Bibliography of Compacting Garbage Collection 18

Appendix 1 - Microcode Addressing.. • 20

Appendix 2 - Byte Transfers 22

Appendix 3 - M(LOCAL) 29

Appendix 4 - Some Data Primitives and Microprogrammed 31

Routines

Appendix 5 - Description of Microcommands 37

Appendix 6 - Garbage Collection Techniques 40

Appendix 7 - Abstract of C.ai Design 57

P.LISP DESIGN PHILOSOPHY

In considering a LISP processor for C.ai* two goals were observed

in addition to the constraints imposed by the design of the large, over

all memory resource and operating system of C.ai. These were: the pro

cessor should be implementable in an obvious fashion ; and the speed-up in

processing of LISP may be borne by a loss in generality of the processor's

order code. Although these seem to be either contradictory, or unrelated,

the trade-off involved covers the spectrum between a conventional LISP

system on a conventional computer and a hard-wired read-eval-print loop.

We hope that the following design will lead to a single processor which

employs little in the way of unusually new (and untried) hardware, pro

vides a speed-up in the range of 1.5 orders of magnitude over conventional

LISP systems, and is not as strictly bound to doing LISP as one might

expect. The processor is micro-programmable, with numerous register trans

fers, byte manipulations, and arithmetic and logical functions (which has

been left relatively openended in the design).

In most machines, even those that make extensive use of microprogram

ming, the mapping from the hardware functions to the order code retains a

level of generality unnecessary in C.ai (since different processors are

dedicated to different specialized languages or tasks). Hence, the best

and cheapest place to begin designing our processor is at the microprogram

ming level. To that end, two features are necessary for LISP which are

not usually available: writable (up-datable) micro-code, and recursive

control of micro-code.
*
It is assumed the reader is familiar with both the C.ai computer (Bell, et
al, 1971) and the LISP language (McCartney, et al, 1962); see Appendix 7
for a brief description of C.ai.

-2-

Some implications of such a machine might be that it could also serve

as a basis for a processor suited to string manipulation languages and to

'•shell" languages of manifold capabilities. This, however, was not a goal

of the design, but rather a by-product, resulting from these facts:

The hardware and memory configurations of most computers,
and by extension, many assumptions inherent in existing pro
gramming languages, are essentially the same.

The capabilities required by a processor to evaluate
LISP expressions are powerful enough to handle a large
number of other programming language expressions and con
trol structures.

P.LISP: STRUCTURE OF THE PROCESSOR

The first characteristic of the processor is the use of a dual cache

system, one of them as the front end of Mp ('Primary Memory" in the PMS

Notation, see Bell and Newell, 1971) for the program being interpreted and

the other to hold the (most frequently used) microcode of the interpreter.

The trade-off between cost and speed here has been discussed in Bell, et

al, 1971.

All elementary data items (words) contain local type information

permitting data dependent operation. This characteristic is even forced

upon microcode words. This is one of the few truly fixed features of the

system, the others being:

1. Microcode word interpretation is hardwired and a mixed
interpretation of bits in the microword is used: some
bits are direct control functions and some are encoded.
The distinction is itself dependent on the micro-opera
tion code.

2. Microcode addressing is via a microprogram counter con
taining the displacement in the microcode addressing
space. (See Appendix 1.)

The PMS Diagram of the processor is shown in Figures 1 and 2.

BUS S ES

To achieve parallelism, two data transfer busses are provided, L(l)

and L(2), controlled by K(l) and K<2). In order to provide the most gen

eral byte manipulation capabilities (i.e., a string of contiguous bits

located anywhere inside a word) a pair of byte transfer matrix-like switches

are provided for each bus. These are described in Appendix 2. The busses,

their controllers and switches are identical. However, for economic rea

sons one of the busses might not have the byte manipulation matrices,

forcing us to use the other one for this kind of operation with the sub

sequent loss of generality.

ALU

The Arithmetic Logic Unit operates asynchronously with the rest of

the processor. Its operation is independent of the microprogram speed

and is invoked by selecting two operands from the local memory to be load

ed into busses L(3) and L(4) and by selecting a function via K(3). After

this is done, the micro processor proceeds in parallel while the selected

function is being carried out. The output of the ALU may be transferred

to the local memory via S(5) and any of the busses, and this transfer Is

done after a 'safe' number of microcode steps have taken place. Unfortu

nately this requires a minimum of two microsteps for even the simplest

operation.

Each bus latches under the control of a microcommand. The reason

for this is obvious in the case of the ALU busses L(3) and L(4) and may

become clear when we consider some of the specialized registers in the local

memory and their asynchronous operation.

PROCESSOR STATE

This is the set of registers used as scratchpad by the microprocessor.

Some are full-word registers holding temporary data. Some are dedicated

to frequently used data and some others are actually very specialized units

(e.g., SAV CONTROL REGISTER) as described in Appendix 3.

P.LISP: ISP

The main criterion for specialized list processor design is to minimize

the ratio: instruction fetches/data fetches. According to this criterion,

the machine has two basic modes:

Plex Mode - This corresponds to our intuitive concept of a micropro

grammed language, i.e., the execution of microcoded routines selected by the

OP Code field in the macroinstruction.

Lisp Mode - This is equivalent to the EVAL function in LISP, where

the interpretation of the input string is carried out by successive (pos

sibly recursive) invocations of more primitive operations, without the

overhead of instruction fetches and interpretation. In other words, we

place the interpreter mechanism directly in the hardware.

The idea then is to provide a set of microroutines that implement

enough primitives for plex processing and provide them with the possibility

of calling each other using the stack mechanism; in other words, the micro

code is recursive.

A set of microroutines, written in a register transfer language, can

be found in Appendix 4, together with a detailed description of some of

the data primitives that may be useful for our purposes. Appendix 5 pre

sents the microcommands in detail.

Although the register transfer language and the microcode selected

are not in a one-to-one relationship, the mapping is direct. For instance,

the RT language does not show parallelism, which is achieved in the processor.

THE H S P WORLD

FUNCTIONS OF THE P.LISP OPERATING SYSTEM. OS.LISP

1. Acts as liason between the LISP interpreter (microcoded
EVAL) and AMOS (A Minimal Operating System, see C.ai,
Bell et al, 1971).

2. Handles multiprogramming of P.LISP (swapping, paging,
relocation, memory allocation, etc., in cooperation
and/or contention with AMOS).

3. Provides choice of LISP version for each user, i.e., gives
options of~c^p~acting or parallel garbage collection, com
pact lists, etc., in cooperation with AMOS.

4. Handles l/o, vis-a-vis the local file system and the ARPA
network.

5. Controls allocation and "flipping" of semi-spaces, when
compacting garbage collection is used. See Appendix 6.

6. Controls alternation of user and garbage collector,
compute optimal length at time slices, and provides re
covery procedures, when parallel garbage collection is
used (see below).

GARBAGE COLLECTION — SPECIAL METHODS

Garbage collection procedures will be microcoded. Conventional

garbage collection (GC) is possible, using one dedicated bit in each

word. However, if either paging or swapping is used (which is probably

unavoidable, with the projected number of users), storage-compacting GC

(CGC) is preferable (Appendix 6). Fenichel and Yochelson (1969) give a

simple recursive algorithm and several reasons for CGC: reduction of page

faults, less core image to swap, and no time-consuming conventional

linear sweep through large memory space. We have also adapted Cheney's

(1970) non-recursive scheme to LISP. Both divide data memory into two

equal "semi-spaces", which doubles the (virtual) memory required, although

a special paging scheme we designed reduces "real" memory needs (see

Appendix 6, sec. 2.5). Some other advantages of CGC are:

1. Cache memory is more likely to give look-ahead, since
CDR(L) is usually the next memory word.

2. Free-storage list is a linear block of words, so any
subsequently-formed lists will likely be localised in
memory.

3. Parallel GC is made possible — s e e below.

PARALLEL GARBAGE COLLECTION

Delays of a second or more (much more, with large memories) while LISP

garbage-collects may be intolerable in real-time applications such as

speech or robotics. An alternative is an incremental garbage collector,

time-shared with the user's program so that his job runs a bit slower, but

never stops completely for more than a small time quantum. Time-slices on

the order of this quantum are alternated between user computation and data-

salvaging (garbage collection).

That is, free storage in the current semispace is alternately used

to create new S-expression (user) and to copy still-active structures

from the previously-used-up semispace (GC). If copying is complete when

current semispace runs out, then semispaces are "flipped" as in non- paral

lel CGC (see Fenichel and Yochelson, 1969). Otherwise some special "bail

out" procedure must be executed to finish copying from the old semispace

so it can be used as free storage again. Bailing-out causes a conventional

GC waiting period.

-8-

While we have a bail-out procedure, the P.LISP Operating System tries

to avoid the latter situation by balancing the relative times allotted to

user computation and GC. We propose- some adaptive heuristics for this in

Appendix 6.

Some LISP primitives must be slightly modified to avoid strange effects

on lists which have parts in both semlspaces, not yet having been copied

over into current semispace. Since these modifications reduce efficiency

of the system, use of the parallel-GC version of LISP should be an option

of each user.

COMPACT-LIST STRUCTURE

With storage-compacting garbage collection, we could eliminate the

CDR field and assume the CDR of a liBt cell is the next word in memory

(see Hansen, 1969 and Cheney, 1970). A special LINK word pointing to the

true CDR must be inserted whenever this is not the case.

Such a scheme has two advantages — look-ahead and saved space through

elimination of the CDR and AM2 fields (26 bits). (See Appendix 4 for cell

description.) We already have the former if CGC Is used on conventional

LISP structure. The latter advantage is realized if we can fit one compact-

list cell into a halfword; such an implementation might be a worthwhile

option.

SPECIAL HARDWARE/MICROPROGRAMMED SPEED-UP FEATURES

Property-list (PLIST) search speeds may be increased as follows:

Frequently-referenced property names are assigned integer indices

according to their location in the processor's property descriptor table

(PDT, Appendix 3 and Fig. 3) . Attribute-value pairs which would other

wise be kept on PLIST in conventional two-word form (Fig. 4) may, if the

attribute is in the PDT, be reduced to the single type-PLIST word of

Fig. 5, where only the 6-bit PDT index of the attribute is needed. The

separate type on such cells allows conventional dotted-pair cells to be

intermixed with them in a PLIST. Retrieval of a value from PLIST is as

follows: Given attribute "Att",

(a) If Att is type immediate integer, assume it's a PDT index,

skip to (c). (Note that the system refers to certain properties

(pname, fexpr, apval, etc.) directly by their fixed PDT numbers.)

(b) If Att is type atom, search PDT for same atom. If found,

set Att to its table index; else go to (d) .

(c) Search PLIST, checking only cells of special type PLIST, for

PN field equal to Att. If found, return CAR of this cell;

else NIL for ,fnot in PLIST".

(d) Search PLIST, checking only conventional (type-LIST) cells

in usual manner; return value found, or NIL.

-10-

Likewise, when putting a new pair on a PLIST, the PDT is consulted

to determine whether a type-PLIST or conventional structure is added.

This can halve data-memory fetches.

Often one accesses an element in a complex S-expression whose posi

tion in that structure is known, e.g., by "(CADDR (CDDDDR (CAR L))) M for the

7th item in (CAR L). We can encode such a succession of CAR's and CDR's

into a Boolean vector (0 for CAR, 1 for CDR), along with a count of how

many bits are meaningful, into a structure-access vector (SAV), e.g.,

Type Count Vector
Used

SAV 00- 0001111110

11 12 63

for the above example. Note that Nth-element access is a special case of

this. LISP could now allow up to 52 A's and D's between C and R: We

provide a dedicated hardware register for SAV interpretation, as described

in Appendix 3.

Function-call arguments are passed to the function in the A registers,

one per register, in order of appearance in the calling expression. This

is not new, but the fact that we can work with the A registers at micro

program speed might give us some gain.

EXTENSIONS TO LISP

The generality of our processor hardware, plus the writable micro

code memory, allows extra data types (structures) and their appropriate

operations to be added at no cost (aside from writing additional microcode).

While these data structures could be used to extend LISP (as in LISP 2),

they can just as well be embedded in the conventional LISP 1.5 linguistic

framework. LISP's function-oriented syntax can easily support the predi

cates, selectors, and constructors needed to create and use such types.

Note that such additions affect neither the syntactic elegance nor the

execution speed of LISP, in no way penalizing those who don't use them.

LISP users have often created their own specific data forms and written

LISP functions to handle them. But a sophisticated user of our P.LISP

could translate these functions into microcode, for large speed advantages.

Some data types of general interest might be strings and arrays or

plexes (blocks of arbitrary number of contiguous storage words). String

processing is aided by our general byte-transfer operation. SN0B0L4's

variable-binding semantics are identical to LISP's. Plexes are possible

if we use storage-compacting garbage collection -- these could lead to an

extensible data-type facility akin to SNOBOlA's DATA statement. Users

might even be able to specify subfields of the plex words, e.g., L 6

(Knolton, 1966) thus getting more use out of our byte-transfer operation.

Note that a "LISP compiler" in this system might generate microcode

for insertion into control memory, under user commands. Of course, the

kernel LISP 1.5 code would reside in a write-protected section (from user's

viewpoint).

-12-

A compact-list (no CDR fields; CDR of a word Is the next storage

location) version of LISP can also be microcoded, where data storage space

is tight.

Floating-point (real) arithmetic is important for image processing,

etc., and we would initially microcode the basic operations. However,

hardware floating-point is faster than microcode and should not be ruled

out at this point. Trig, log, hyperbolic, and other special functions can

be added where demand exists.

PERFORMANCE CONSIDERATIONS

A basic ratio of x25 speed-up in memory fetch from cache versus core

will be assumed here. (It has been suggested by the Stanford Al processor

that a 2K cache is 95f effective for conventional LISP 1.6.) Our micro

program cache should have a high hit ratio since programs are mostly

sequential and will not fragment very badly. With compacted lists, our

data-cache should have a high hit ratio as well.

The speed of the microprocessor will not (short of extremely expensive

and possibly unreliably new hardware) keep up with a 40 nsec cache cycle

time, but will certainly fall In the range of 100 nsec. per instruction

cycle. This alone will give microprogram-implemented LISP primitives

a speed-up of xl5 to x40 over good conventional systems like LISP 1.6*

(assuming a single processor).

The organization of the microprogrammed primitives, compacted lists,

parallel garbage collection, and tighter property lists for atoms should

yield further speed-up. To specify, with any accuracy, a factor of in

crease is rather difficult since the profile, over execution, of a typical

LISP program varies considerably from program to program. A significant

amount of processing time is spent in binding formal to actual parameters

of functions. (This is where compiled functions pay off.) But this varies,

as is indicated by a range of compiler speed-ups of xl to xl5 (in our ex

perience). Even though we have compared our design to interpreted rather

than compiled LISP, we have left open the possibility of doing the same

sort of binding decisions that conventional LISP compilers perform.

*LISP 1.6 is the LISP implementation on the PDP-10.

-14-

Moreover, the user can compile some functions into microcoded routines.

Preliminary coding of some important LISP primitives indicates that

we can gain very little over LISP 1.6 (PDP-10) by trickier programming

of the evaluation algorithm (given our conventional approach). It is our

opinion that the implementation of LISP 1.6 is good, and the PDP-10 order

code is appropriate enough for LISP, so that we cannot do much better than

the order of magnitude Improvement provided by the microprogramming. It

is our hope that the flexibility and reasonable simplicity of this design

will more than outweigh the factor of not having a single LISP processor

one hundred times faster. Multiple P.LISP's, of course, easily allow us

to reach the goal.

Figure 1: PMS diagram of P.LISP and its caches

M(LOCAL)

S(2)

•>L(3)

• (L4)
*

S(3)
\

S(4)
1

•L(/).

A

I -,K(1)

/ > K (2)

M(l) > D(l) ^ K(4) " > K (3)

' \ I AT'
N K(5)

I
D(ALU)

K(2) X

V

5(5)

J
I

S(l) input byte-transfer matrix; S(2) output byte-transfer matrix; K(l) byte-transfer controller.
S(3), S(4) and K(2) as S(l), S(2), K(l).
L(l) bus #1; L(2) bus #2.
L(3) ALU input bus #1; L(4) ALU input bus #2; S(5) ALU output-bus selector;
K(3) ALU controller.
M(l) microprogram cache; D(l) micro-word decoder; K(4) micro-program controller;
K(5) micro-program sequence controller (clock).

Figure 2: PMS diagram of P.LISP

-17-

Figure 3. Property Descriptor Table <PDT)
AM2 . CDR

63

ATOM"
=s 0 NAME

PDT

NAME » Atom
whose PNAME «
name of property
/attribute

Figute 4. Conventional PLlst pair eUment

TYPE tMB_ AMI CAR AM2.. CDJL T r TYPE U U B _ A M I C A R A M 2 _ .. C D *

l ^ f W S T [- (L I S T) j - 3 ^ N e : L m : r l l 9 t

f L I S T) ; ' ^ A T O M | NAJffi J O , 1,2 [V A L U E |

(8 % It,
Pig. 3)

Figure 5i Our slngle-wotd pU*t element

PN
m i

PLISTlUffiExl Z VALUE
/\ v /

itytt

Syields NAME In PDT

>Next PLlat
element

Notet Value »V'» may be Hat, atom, or Immediate atom, in either scheme.

ANNOTATED BIBLIOGRAPHY OF COMPACTING GARBAGE COLLECTION

1. Cheney, C. J., "A Non-Recursive List-Compacting Algorithm", CACM 13, 11
(Nov. 1970) 677-678.

"THE 1 1 CGC algorithm of choice, where recursion is not wanted. Much
simpler than (4). Intended for CLS, but easily extended to SLS [Appendix
6, Sec. 2.4], with hints from (3).

2 . Hansen, W, J., "Compact List Representation: Definition, Garbage
Collection, and System Implementation", CACM 12, 9 (Sept. 1969) 499-507.

"THE" seminal paper on CLS. All the right ideas, but refused to permit
series links, thus ruling out "RPLACD" ("RN" in L *) . Also his CGC
requires recursion and has inelegant "fixup table" kludge for re
entrant lists. Predicts values of CGC even for SLS (page fault reduc
tion, l/o to M.sec, etc.) . Much emphasis on bit-packing 360 imple
mentation .

3. Fenichel, Robert R. and Jerome C. Yochelson, "A LISP Garbage Collector
for Virtual-Memory Computer Systems", CACM 12, 11 (Nov. 1969) 611-612.

"THE" CGC to use on standard LISP where recursion is o.k. Points out
inefficiency of conventional GC in huge [virtual] memories, as well as
page-fault reduction of compacting GC Also suggests calling CGC
before space exhaustion, if "thrashing" gets bad due to scattered nature
of active data. Uses CAR field to indicate already-copied.

4. Schorr, H., and W. M. Waite, "An Efficient Machine-Independent Process
for Garbage Collection in Various List Structures", CACM 10, 8 (Aug.
1967) 501-506. Also in Knuth, Vol. 1, 417-419.

Of interest for being first GC requiring neither recursion nor linear
sweep of M. Non-compacting, no good for compact lists, and requires
one dedicated bit per word.

5. Ross, Douglas T., "The AED Free-Storage Package", CACM 10, 8 (August
1967) 481-492.

A case study in solving a problem (storage allocation for and garbage
collection of various-sized blocks (plexes)) in the most complex way
possible in the B.C. (Before Compacting) era. Shows how hard plexes
are to implement without a storage-compacting garbage collector, since
free storage fills up with odd-sized "holes".

6. Bell, C. G., P. Freeman, et al, "C.ai: A Computing Environment for AI
Research", Department of Computer Science, Carnegie-Mellon University,
(Hay 1971) .

-19-

7. J. McCarthy et al, "The LISP 1.5 Programmer's Manual",MIT Press,
Cambridge, Ma7aT-(1962).

8. Bell, C. G. and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill (1970).

9. Knolton, K. C., "A Programmer's Description of L6", CACM 9, 8 (Aug.
1966).

APPENDIX 1

MICROCODE ADDRESSING

Microcode Is stored in main memory and loaded into a particular pro

cessor (i.e., the microprogram cache associated with it) by C.amos*. Thus,

the microinterpreter is general purpose in the sense that data paths, micro-

words and microcommands depend only on the language we are implementing

(L*, LISP, SNOBOL, etc.).

By having the microcode residing in Mp, it is possible to modify it

at will and fast (of course, some access privileges will have to be associ

ated with given code). It may be necessary to implement a microassembler

as the first step (later it can be bootstrapped to a higher level language)

to facilitate the coding of microprograms.

Mp

LISP
ucode

L*
u,code

l

I

I

^address

u.base u4isp

microprogram
cache

microprogram
interpreter

microprogram
cache

microprogram
interpreter

Figure 1.1

*See C.ai (Bell et al).

file:///icode

-21-

Microbase Is provided by AMOS and this Is the way we "assign" a

particular language to a processor. Microdisp (displacement) is the "local

address inside the microcode corresponding to a given language. A small

displacement is economical but restricts the size of the microprogram

(possible new and complex languages that require large pieces of micro

code may be impossible to implement at this level); on the other hand, a

large displacement is flexible but wasteful.

-22-

APPENDIX 2

BYTE-TRANSFERS

Two methods for selecting a byte are presented; both are based on

matrix-like transfer networks, the difference being in the trade-off

between the cost (number of gates) vs. the number of bits in the micro-

word to control the transfer. A general shift matrix should also be

explored. The methods are based on the fact that byte transfers do not

affect the relative ordering of bits, i.e., lower order bits go to lower

order bits. A simple way to do the operation is based on a matrix-like

transfer network, where the only gates that are activated are the ones

aligned along a selected diagonal. Besides the selection of the byte, a

mask must be prepared to enable the proper gates in the output register.

A method to prepare the mask is explained later.

-23-

METHOD 1

o <-I
to pa
Q Q

i - l N i»)
VO VO VO
n n n
a n Q

tO

i f) 4 \ C »"H O

a 3 3 a 2

ti

t62
t63

BO Bl Bo 2 B63 A63 A62 Al AO

OUTPUT
REGISTER

INPUT
REGISTER

Figure 2.1

DAi is selected according to the initial bit (the i t h) of the

input byte. The byte is sent via lines tO - tk where k+l is the byte

length. DBj is selected according to the initial bit (the j t h) of the

output byte.

-24-

METHOD 2

A63 A62 A61

Figure 2.2
Dl is selected according to the initial bit positions of both the input

and output bytes, according to the following rule: Given Ak and Bj as initial
bit positions, the transfer is controlled by Di where i = j-k (actually they
do not need to be the initial bits, any two corresponding bit positions will
do).

The selected byte appears on the proper lines without further selection
as in Method 1.

-25-
COMPARISON

Cost
(number of dual
input AND gates)

Method 1

4160

Method 2

4096

Diagonal Selection DAi and DBj
are given by initial
bit position

Dk is given by
subtraction of
initial bit positions

Enabling mask for Given by initial and Same as Method 1
output register final bit positions

at output byte

Table 2.1

The fields needed to specify a byte transfer (besides the register's

selection) are:

-- initial bit of input byte (6 bits)

— initial bit of output byte (6 bits)

— final bit of output byte (6 bits)

The subtraction operation in Method 2 can be avoided if we encode in

the microword the diagonal number instead of the initial bit of the input

byte, but this encoding requires 7 bits (there are 127 diagonals in Method 2)

and this price can be too much to pay for the saving of 64 dual input AND

gates in the matrix. Our feeling is then that Method 1 provides the fastest

solution, with the smallest microword waste at a cost of 64 additional gates

(which may very well be the cost of the arithmetic unit to perform the

subtraction in Method 2).

DETAIL OF CROSSPOINT

Figure 2.3

-27-

CREATING A BYTE TRANSFER MASK

Two signals coming out of two l/64 decoders are used to mark the

initial and final bits of the mask (they may be the same bit) . The circuit

shown in Figure 2.4 is a two-way simultaneous ripple propagation network.

The mask is selected by two signals, L and R from the decoders. L[K] re¬

sets all bits to the left of bit K and R[J] resets all bits to the right

of bit J. Clearly the mask can be a single bit.

If the propagation delay proves to be intolerable, some cary-look-

ahead scheme can be provided, although it does not need to be as complex

as a full adder carry look-ahead unit; a few OR gates will do.

MASK BITS

Ji-1

C is used to set the mask to 1's (first step) o
R means that bit J is the leftmost bit of the byte

means that bit K is the rightmost bit of the byte

(All 'AND' gates can be replaced by diodes.)

Figure 2.4

A P P E N D I X 3

MCLOCAL)

M A R / M P - A D D R E S S - REGI S T E H < O l 2 3 >
M B R / M P - B U F F E R - R E G I S T E R < 0 * 6 3 >
U P C / M I C R O - P R O G R A M - C O U N T E R < O t 1 9 >

T Y P E < 0 : 3 > 1= U P C < 0 : 3 > %<ALWAYS «UPC*>%
U D I S P / U D I S P L A C E M E N T < O l 1 S > I » U P C < 4 . 1 9 >

U I R / M I C R O - I N S T R U C T I O N - R E G I S T E R < O t 6 3 >
S T A C K < 0 t 6 3 >
H K 0 l 6 3 >
R 2 < 0 . 6 3 >
K 3 < 0 ! 6 3 >
T K O ! 6 3 >
T 2 < o : 6 3 >
T 3 < 0 * 6 3 >
P D T / P R O P E R T Y - D E S C R I P T 0 R - T A B L E C 6 4] < 0 * 2 7 >

T Y P E < 0 . 3 > : = P D T < 0 I 3 > %<ALWAYS • P D T ' > %
P T R « 0 : 2 3 > :=» P D T < 4 » 2 7 >

ODT/O PE HATO R - D E S G R I P T O H - T A B L E E 6 4 3 < 0 1 1 9 >
T Y P E < 0 : 3 > 0 D T < 0 : 3 >
P T R < 0 : 1 5 > ! = 0 D T < 4 : 1 9 >

S A V C H / S T R U C T U H E - A C C E S S - V E C T 0 R - C 0 N T R 0 L - R E G I S T E R < 0 t 6 3 >
T Y P E < 0 . 3 > . = S A V C H < 0 : 3 > Z<ALWAYS ' S A V > %
C N T H < 0 l 5 > : = S A V C R < 6 » 1 1 >
V E C T O H < 0 « S l > i = S A V U R < 1 2 l 6 3 >

L A S T H I T : = V E U T 0 H < 5 1 >
I A R / I N D I R E G T - A D D R E S S - R E G I S T E R < 0 . 7>
F C 1 6 3 < 0 » 6 3 >
AC 1 6 D < 0 l 6 3 >

STACK I S THE TOP OF THE PUSH DOWN S T O R E . I T WORKS
IN A FUNNY WAY1 ANY TRANSFER TO * STACK 1 I S AN AGTUAL PUSH
DOWN AND ANY TRANSFER FROM * STACK' I S A POP UP O P E R A T I O N .

PDT C O N T A I N S P O I N T E R S TO THE ATOMS THAT D E S C R I B E A
SET OF P R O P E R T I E S . SOME OF THEM WILL BE P R E D E F I N E D BY THE
SYSTEM C SYSTEM ATOMS) AND THE REST ARE USER D E F I N E D .

SAVCR (F I G . 3 . 1) I S A S P E C I A L FUNCTION U N I T . I T
C O N S I S T S OF A TWO WAY M 0 D C 6 4) COUNTER AND A 5 2 B I T S H I F T
R E G I S T E R . THE VECTOR F I E L D BEHAVES L I K E A STACK CALTHOUGH
THE U N I T I T S E L F CAN BE L O A D E D / UNLOADED I N P A R A L L E L) * THE
TOP B E I N G THE RIGHTMOST B I T * AND COUNTER K E E P I N G TRACK OF
THE D E P T H . T H I S U N I T I S USED TO HANDLE STRUCTURE A C C E S S
VECTORS A S D E S C R I B E D IN A P P E N D I X 4 .

I A R I S USED A S AN INDEX R E G I S T E R P O I N T I N G TO
M C L O C A L) . I S U S E D WHEN SCANNING THROUGH PDT AND OUT* AND I S
IMPLEMENTED A S A M 0 D C 2 5 6) COUNTER.

1 LAST BIT

CNTR

RESET
OH H
O

VECTOR

Shift left
and count-up

fToAD BIT

i

©
i

Shift right
and count-down

Figure 3.1
Structure Accesss Vector Control Register

A P P E N D I X 4

SOME DATA P R I M I T I V E S AND MICHOPROGRAMMED R O U T I N E S l

D E F I N I T I O N S OF S U I 3 F I E L D S IN THE WORD. SEE F I G . 4 . 1

TYPE<Ot 3>
G C < O l l >
U U B < 0 . 5 >
A M 1 < 0 * 1 >
C A H < O t 2 3 >
A M 2 < 0 t 1>
C D H < 0 . 2 3 >

1= C E L L < 0 : 3 >
I » C E L L < 4 ! 5 >
I * C E L L < 6 t 1 1 >
l « C E L L < 1 2 . 1 3 >
I a C E L L < . 4 t 3 7 >
t » C E L L < 3 8 l 3 9 >
1= C E L L < 4 0 t 6 3 >

UUB ARE THE UN IMPLEMEN TED USER B I T S .
THE A D D R E S S MODES (AMI AND AM2) ARE D E F I N E D A S

FOLLOWS*
0
1
2

ATOMPOINTER C P O I N T S TO PROPERTY L I S T)
L I S T P O I N T E R (P O I N T S TO C E L L)
L I T E R A L (I N M E D I A T E DATA)

S U B F I E L D S I N A PROPERTY L I S T . E L E M E N T . SEE F I G . 4 . 2

T Y P E < 0 * 3 >
G C < 0 : 1 >
P N < 0 : 5 >
A M 1 < 0 » 1 >
V L < 0 * 2 3 >
A M 2 < 0 t 1 >
N P < O i 2 3 >

» C E L L < 0 I 3 >
= C E L L < 4 : 5 >
= C E L L < 6 * l i >
a C E L L < 1 2 l 1 3 >
= C E L L < 1 4 | 3 7 >
= C E L L < 3 8 » 3 9 >
= C E L L < 4 0 » 6 3 >

S U B F I E L D S I N A TYPE P O I N T E R

T Y P E < 0 1 3 >
G C < O t 1 >
A M 2 < 0 : 1 >
A D D R < O l 2 3 >

t = C E L L < 0 : S >
1= C E L L < 4 1 5 >
1= C E L L < 3 8 * 3 9 >
t » C E L L < 4 0 l 6 3 >

S U B F I E L D S I N A STRUCTURE A C C E S S VECTOR. SEE F I G . 4 . 3 .

THE STRUCTURE A C C E S S VECTOR I S USED TO FOLLOW A PATH
OF C A R ' S AND CDR* S B E G I N N I N G AT A GIVEN CELL OF THE P L E X .

THE COUNTER C O N T A I N S THE NUMBER OF S I G N I F I C A N T B I T S
IN THE VECTOR F I E L D .

I N D I V I D U A L B I T S I N THE VECTOR F I E L D ARE TESTED TO
DETERMINE WHETHER TO TAKE THE' CARCO) OR THE CDR (1) OF THE
CELL .

THE S U B F I E L D S A R E :

T Y P E < 0 . 3 >
G C < O t 1 >
C 0 U N T E H < 0 . 5 >
VECTOH<Ut 5 1 >

1= C E L L < 0 l 3 >
1= C E L L < 4 : 5 >
»= C E L L < 6 : 1 1 >
! » C E L L < 1 2 : 6 3 >

THE LENGTH OF THE VECTOR ALLOWS US TO FOLLOW UP TO
5 2 D I F F E R E N T BRANCHES (C E L L S) .

-32-

A FEW P R I M I T I V E S t

CHAINI C A C 2 3 < T Y P E > » S A V) - > ERRORCHAIN
< A C 1 3 < T Y P E > = P T H) - > C H A I N i
(A t 1 3 < T Y P E > # CELL) - > ERRORCHAIN
H l - N I L
R 2 - A C 13
- > C H A I N 2

CHAIN 1 f MAH-At 1 3<ADDR>
MDH-MCMAH3
H l - A C 1 3
R 2 - M B R

C H A I N S * S A V C R - A C 2 3
LOOPCHAIN* < COUNTER = 0) - > RETURN

(R 2 < T Y P E > # CELL) - > ERR0RCHA1N
CVECT0R<!31> = 1) - > CDRCHAIN
< H 2 < A M l > a I N M E D I A T E) - > ERRORUHAIN
R K T Y P E > - P T R
R l < A M 2 > - R 2 < A M l >
R t < A U D R > - R 2 < C A R >
MAH-R2<CAR>
- > CDRCHAIN1

CDRCHAIN J <H2<AM2> » I N M E D I A T E) - > ERRORCHAIN
R 1 < T Y P E > - P T R
R l < A M 2 > - R 2 < A M 2 >
H 1 < A D D R > ~ R 2 < A D D R >
MAH~H2<CDR>

CDRCHAIN I t MBR-MCMAR3
C O U N T E R - C O U N T E R - 1
V E C T O R - V E C T O R / 2
- > LOOPCHAIN

ERRORCHAIN* ERRQRKLAG-1
- > RETURN

THE ARGUMENTS FOR CHAIN ARE A PLEX AND A STRUCTURE
A C C E S S VECTOR I N AC 13 AND AC 2 3 R E S P .

AC 13 CAN BE E I T H E R A P O I N T E R CTYPE P T H) OR A CELL*
I F A CELL* WE SAVE AN EXTRA MEMORY CYCLE.

THE RESULT I N R l I S A P O I N T E R TO THE D E S I R E D ELEMENT
WHICH I S ALSO STORED I N R 2 (T H I S I S A S I D E E F F E C T) • NOTE
THAT WE WILL GET THE CORRECT ANSWER EVEN WHEN CHAINCOUNTER
I S Z E R O .

COUNTER AND VECTOR ARE F I E L D S IN SAVCR (A P P E N D I X 3)

-33-

C O N S : C A C . 3 < T Y P E > # P T R) - > ERRORCONS
C A C 2 3 < T Y P E > # P T R) - > ERRORCONS
S T A C K - U P C + 1
- > GETCELL
R 2 < T Y P E > - C E L L
R 2 < U U B > - 0
R 2 < A M 1 > ~ A C I 3 < A M 2 >
R 2 < A M 2 > - A C 2 3 < A M 2 >
R 2 < C A R > - A C 1 3 < C D R >
R 2 < C D R > - A C 2 3 < C D R >
M A R - R 1 < C D R >
M B R - R 2
MCMAR3-MBR
- > RETURN

ERRORCONS: ERROHFLAG-1
- > RETURN

THE ARGUMENTS TO CONS ARE 2 P O I N T E R S * IN AC 13 AND
AC 2 3 R E S P . THE RESULT IN R l I S A P O I N T E R TO THE NEWLY
CREATED CELL* WHICH I S ALSO STORED I N R2 (T H I S I S A S I D E
E F F E C T)

EQJ R l - N I L
(A C 1 3 < T Y P E > # A C 2 3 < T Y P E >) - > RETURN
(A C 1 3 = A C 2 3) - > H I - T R U E
- > RETURN

RETURN: T l - S T A C K
(T 1 < T Y P E > # U P C) - > RETURN
U P C - T 1

RETURN WILL GET U S OUT OF TROUBLE BY P O P P I N G UP THE
STACK U N T I L I T F I N D S A MICROPROGRAM COUNTER. I . E . A V A L I D
RETURNING A D D R E S S * AND BY CLEANING UP THE STACK.

-34-

G E T I t I F L A G - 1
GET: C A C 1 3 < T Y P E > = P T R) - > GETO

C A C 1 3 < T Y P E > # P L) - > ERRORGET
R l - N I L
R 2 - A C 1 3
- > GET2

GETOt MAR-AC 13<ADDR>
R l - A C 1 3

G E T I I MBR-MCMAR3
R 2 - M B R
C R 2 < T Y P E > # P L) - > ERRORGET

GET2I I A R - R 2 < P N >
CI FLAG = 0) - > T l - P D T C I A R 3
CI FLAG * = !) - > T l - I A R
CAC23<CDR> » T l) - > RETURN
CR2<AM2> = I N M E D I A T E) - > ENDGET1
R 1 < T Y P E > - P T R
R 1 < A M 2 > - R 2 < A M 2 >
R 1 < A D D R > - R 2 < N P >
M A R - R 2 < N P >
- > GET 1

ERRORGET: E R R O R F L A G - 1
- > RETURN

E N D G E T M R l - N I L
- > RETURN

GET SEARCHES FOR A PROPERTY C A C 2 3) I N A PROPERTY
L I S T OF AN ATOM C A C 1 3) .

THERE ARE TWO B A S I C FLAVORS* DEPENDING ON WHETHER WE
KNOW THE INDEX OF THE PROPERTY C L E . I T S SHORT NAME OR ENTRY
P O I N T I N P D T) OR NOT* IN WHICH CASE WE REQUIRE AN EXTRA
TABLE L O O K - U P INTO P D T .

GET C H A I N S DOWN THE PROPERTY L I S T U S I N G THE N P
P O I N T E R U N T I L I T F I N D S THE END OF THE PROPERTY L I S T C THE
PROPERTY I S NOT THERE) OR A PROPERTY ELEMENT WITH THE SAME
INDEX CIN THE IMMEDIATE V E R S I O N) OR ONE WHOSE A S S O C I A T E D PDT
ENTRY I S EQUAL TO THE SECOND ARGUMENT.

R l WILL CONTAIN A P O I N T E R TO THE PL ELEMENT AND R 2
THE PL ELEMENT P R O P E R . I N CASE OF F A I L U R E TO F I N D THE
PROPERTY R l WILL CONTAIN N I L AND R 2 THE L A S T P L ELEMENT.

- 3 5 -

K U U A H S T A C K - ' G O R K '
EQUAL I t S T A C K - U P C + i

- > KU
<R1 a TRUE) - > itETURN
< A C 1 3 < T Y P E > # P T H) - > ENDEQUAL2
< A C 2 3 < T Y P E > # P T R) - > ENDEQUAL2
< A C 1 3 < A M 2 > » L I S T P O I N T E R) - > E N D E Q U A L 2
< A C 2 3 < A M 2 > # L I S T P O I N T E R) - > ENDEQUAL2
MAR-AC 13 <ADDR>
MDR-MCMAR3
H1-M13R
M A R - A C 2 3 < C D H >
MBR-MCMAR3
R2-MHR
T K T Y P E > - P T R
T 1 < A M 8 > - H 1 < A M 2 >
T i < ADJJR>-H1«:ADDH>
S T A C K - T 1
T 1 < A M 2 > - R 2 < A M 2 >
T1 < A D D R > - H y < A D D R >
S T A C K - 1 1
AC 1 3 < T Y P E > - P T R
AC 1 3 < A M 2 > - R 1 < A M 1 >
AC 1 3 < A D W l > - H l < C A R >
A C 2 3 < T Y P E > - P T R
A C 2 3 < A t < U > - R 2 < A M l >
AC U 3 < ADD]<> - Hii< CAR>
S T A C K - U P C + 1
- > EUUALl
(H i = M I L) - > ENDEQUAL3

AC 2 3 - S T A C K
AC 1 3 - S T A C K
- > EQUAL 1

ENDEQUAL2I H I - N I L
- > RETUJIN

ENDEQUAL3I T 1 - S T A C K
(T K T Y P E > o CORK) - > RETURN
- > ENDEQUAL3

•CORK' I S OUR GUARANTEE THAT WE WILL ESCAPE EQUAL
COMPLETELY* A S SOON A S ONE OF THE L E V E L S OF RECURSION F A I L S .

TYPE G.C. U . U . B

•CELL
AMI CAR AM2 CDR

0 3 11 13 37 39 63

F i g u r e 4 . 1 : LIST CELL

TYPE G.C. PROPERTY
•PL» INDEX

AMI

0 3

VALUE LIST

11 13

AM2 NEXT PROPERTY

37 39 "63

F i g u r e 4 . 2 : PROPERTY LIST ELEMENT

TYPE G.C. COUNTER
»SAV»

VECTOR

0 3 11

5

F i g u r e 4 . 3 j STRUCTURE ACCESS VECTOR

A P P E N D I X 5

D E S C R I P T I O N OF MICROCOMMANDS

COMMOM F I E L D S IN MICRO WORDS

M W / M l C R O W 0 R D < O l 6 3 >
T Y P E < 0 : 3 > 1= MW<Ot3> ALWAYS TYPE *MICROCOMMAND*
0 P < 0 » 2 > I * MW<4lG> SELECT I N T E R P R E T A T I O N .

R B S / R E L E A S E - B U S - S I G N A L < 0 l 4 > J= M W < 5 9 t 6 3 > USED TO
RELEASE AND CLEAR B U S E S

RTB1 *= R B S < 0 >
R T B 8 »= R B S < 1 >
RALU t = R B S < 2 >
R B S < 3 : 4 > U N D E F I N E D

MICROWORD TYPE 1 , S P E C I F Y 1 ALU OP A N D / O R A FULL WORD
TRANSFER A N D / O R AN I N D I R E C T FULL WORD TRANSFER (U S I N G THE
I N D I R E C T A D D R E S S R E G I S T E R) . S E E F I G . 5 * 1 .

A L U F / A L U - F I E L D < 0 : 2 1 > » = M W < 7 S 2 « >
A L U E / A L U F - E N A B L E l » A L U F < 0 >
A L U B l / A L U - B U S - l < 0 * 7 > 1= A L U F < 1 : 8 > OPERAND 1
A L U B 2 / A L U - B U S - 2 < 0 * 7 > : » A L U F < 9 l l 6 > OPERAND 2
A L U F N / A L U - F U N C T I 0 N < 0 : 4 > 1= A L U F < 1 7 : 2 1 >

T F / T R A N S F E R - F I ELD< OJ 1 7 > t= M W < 2 9 : 4 6 >
T F E / T F - E N A B L E *= T F < 0 >
T B S / T R A N S F E R - B U S - S E L E C T O R t » T F < l >
R l < 0 : 7 > T F < 2 : 9 >
R 2 < 0 t 7 > : = T F < 1 0 : 1 7 >

I T F / I N D I R E C T - T R A N S F E R - F I E L D < O t 1 0 > : = M W < 4 7 : 5 7 >
I T F E / I T F - E N A B L E : = I T F < 0 >
I T F T / 1 T - F R O M - T O »= I T F < 1 >
I T B S / I T - B U S - S E L E C T I T F < 2 >
R l < 0 * 7 > : = I T F < 3 : 1 0 >

MW<58> U N D E F I N E D

MICROWORD TYPE 2 S P E C I F Y 1 BYTE TRANSFER AND A
P O S S I B L E J U M P . S E E F I G . 5 . 2 .

B T F / B Y T E - T R A N S F E R - F I E L D < O t 3 4 > 1 = M W < 7 * 4 I >
T B S : = B T F < 0 >
R l < 0 : 7 > : = B T F < U 8 >
I B P 1 / I N I T I A L - B I T - P 0 S I T I 0 N - 1 < 0 : 5 > : = B T F < 9 l 1 4 >
R 2 < 0 » 7 > . = B T F < 1 5 : 2 2 >
I B P 2 / I N I T I A L - B I T - P 0 S I T I 0 N - 2 < 0 : 5 > : = B T F < 2 3 * 2 8 >
F B P 2 / F I N A L - B I T - P O S I T I 0 N - 2 < 0 l 5> t = B T F < 2 9 l 3 4 >

J F / J U M P - F I E L D < 0 : 1 6 > : = M W < 4 2 s 5 8 >
J E / J U M P - E N A B L E *= J F < 0 >
N E X T / N E X T - U I N S T R U C T I O N < 0 : 1 5 > 1= J F < 1 1 1 6 >

MICROWORD TYPE 3 S P E C I F Y 2 PARALLEL FULL WORD
TRANSFERS* THE I N P U T WORDS ARE E I T H E R IN M (L O C A L) OR A S OUTPUT OF
A L U . S E E F I G . 5 . 3 .

S A L U / S T 0 R E - A L U < 0 : 9 > 1= M W < 7 : 1 6 >
S A L U E / S A L U - E N A B L E 1= S A L U < 0 >
T B S t = S A L U < 1 >
R l < 0 l 7 > 1= S A L U < 2 : 9 >

B t F / B U S - l - F I E L D < O l 1 6 > : » M W < 1 7 l 3 3 >
B 1 F E / B I F - E N A B L E ! » B l F < 0 >
B 1 R 1 < 0 : 7 > 1= B 1 F < 1 * 8 >
B 1 R S < 0 I 7 > 1= B 1 F < 9 : 1 6 >

B 2 F / B U S - 2 - F I E L D < 0 : 1 6 > : = M W < 3 4 ! 5 0 >
B 2 F E / B 2 F - E N A B L E *= B 2 F < 0 >
B 2 K K 0 l 7 > 1= B 2 F < 1 * 8 >
B 2 R 2 < 0 » 7 > 1= B 2 F < 9 : 1 6 >

M W < 5 1 : 5 8 > U N D E F I N E D

MICROWORD TYPE A S P E C I F Y JUMP ON C O N D I T I O N S . THE
C O N D I T I O N S F I E L D I S S T I L L U N D E F I N E D , I T MAY BE E I T H E R A D I R E C T
B I T MASK OR A ENCODED F I E L D . SEE F I G . 5 . 4 .

T C F / T E S T - C O N D I T I O N S - F I E L D < 0 : 3 5 > t = M W < 7 l 4 2 >
J F / J U M P - F I E L D < O t 1 5 > ! = M W < 4 3 ! 5 8 >

MICROWORD TYPE 5 S P E C I F Y C O N D I T I O N B I T S TO BE SET
OR RESET IN THE EXTERNAL WORLD. SEE F I G . 5 . 5 .

S C F / S E T - C O N D I T I O N S - F I E L D < 0 : 5 1 > ! = M W < 7 : 5 8 >

MICROWORD TYPE 6 S P E C I F Y A I N M E D I A T E BYTE
COMPARISON AND A JUMP ON EQUAL OR NOT EQUAL. S E E F I G . 5 . 6 .

C B F / C O M P A R E - B Y T E - F I E L D < 0 * 1 8 > : = M W < 7 : 2 5 >
B S / B U S - S E L E C T O R : » C B F < 0 >
R K 0 I 7 > : = C B F < 1 » 8 >
I B P l < 0 : 5 > : = C B F < 9 : 1 4 >
B L / B Y T E - L E N G T H < 0 : 3 > : = C B F < 1 5 » 1 8 >

I B P / INMEDI A T E - B I T - P A T T E R N < O t 15> t => M W < S 6 l 4 1 >
J F / J U M P - F I E L D < 0 : 1 6 > : = M W < 4 2 : 5 8 >

J C / J U M P - C O N D I T I O N : = J F < 0 >
J A / J U M P - A D D R E S S < 0 : 1 5 > : = J F < 1 U 6 >

TYPE ! ~6F

1

"SF.FIEU)

ENABLE Rl

-39-
TRANSFiT FIELD

F N ENABLE B U S
I (E L E C T

R.

0 3 15 23 28 29 30 38 46 47 48 49 57 58 63

Figure 5.It Microword type I

BYTE TRANSFER FIELD

BUS
SELECT

IBP1 1BP2 FBP2

JUMP FIELD

ENABLE JUMP
ADDR

RBS

0 3 15 21 29 35 41 42

Figure 5.2t Microword type 2

58 63

TYPE OP STC
= j 1
3 ENABLl

)RE ALU
riELD

BUS 1 R,
SELECT 1

BUS.

ENABLl

1 FIE I

R l

D

R 2

BUS.

ENABLl

-2 FIE1

: R X

U>

R 2

0 3 6 7 8 16 17 25 33 3t

Figure 5.3: Microword type

\ 42 50 57 63

3

TYPE OP

4
TEST CONDITIONS FIELD

JUMP
ADDR

RBS

0 3 6 42 58 63

Figure 5.4: Microword type 4

TYPE
•|iC»

OP

5
SET CONDITIONS FIELD

RBS

0 3 6 58 63

Figure 5.5: Microword type 5

TYPE OP

6

COMPA

BUS
SELECT

RE BYT

R ̂

E FIEL

1BP1

D

BL

BIT PATTERN JUMB

JUMP
CONDI
TION

FIELD

JUMP
ADDR

RBS

15 21 25 41 42

Figure 5.6: Microword type 6

58 63

7

-40-

APPENDIX 6

GARBAGE COLLECTION TECHNIQUES

OUTLINE

1. CONVENTIONAL GARBAGE COLLECTION

1.1 DESCRIPTION

1.2 ADVANTAGES

1.3 DISADVANTAGES

2. COMPACTING GARBAGE COLLECTION

2.1 DESCRIPTION

2.2 ADVANTAGES

2.3 DISADVANTAGES

2.4 MICROCODE IMPLEMENTATION

2.5 PAGING SCHEMES

3. PARALLEL GARBAGE COLLECTION

3.1 THE PROBLEM

3.2 FEATURES (ADVANTAGES AND DISADVANTAGES)

3.3 DESCRIPTION OF A PROPOSED SOLUTION

3.4 IMPLEMENTATION

4. OVERVIEW

1. CONVENTIONAL GC

1.1 Description: (as in LISP 1.5)

Given pointers to main system lists (symbol tables, stack,

OBLIST, etc.), enumerate and mark all cells that can be reached from

these, by iteration on CDR's and recursion on CAR's, when latter is

subliat. Then step linearly through memory, collecting all unmarked

cells into a new Free Storage List / FSL; marked cells are unmarked

(for next time GC is called) but otherwise untouched, thus returned

to original (pre-GC) state. (Note: "/" introduces abbreviations.)

1.2 Advantages:

1) Simple and straightforward

2) Time-honored, well understood and debugged

3) Embodies basic GC principle: "If you can find it, save it;
else re-use it".

1.3 Disadvantages:

1) Recursion requires use of stack, to potentially great depth.

2) Does nothing to consolidate/localize current data; if you've
been working in 64K but only save 20K of "hot" lists, those
20,000 cells will still be scattered throughout the 64K
space, i.e., your "working set" is not reduced, from either
Paging or M.Cache standpoint.

3) Requires one dedicated marker bit in each word (P.LISP word
allows two bits, though)

4) That linear sweep through all of allocated memory (after
the find-and-mark phase) takes a while on the M-sizes we
are talking about (~ 1 M words) [Fenichel 69] — maybe
several seconds.

5) Parallel GC is Impossible.

-42-

6) Lack of consolidation makes conventional GC less attrac
tive for compact-1ist/CLS systems, and ultimately useless
where random-size plexea/RSP capability is desired.

2. COMPACTING GARBAGE COLLECTION/CGC

N.B. CGC is not confined to, nor does it imply, CLS [Hansen 69].

We use the term "compacted list" to mean a list of either type which

has been consolidated by a CGC. See 2.4.1.

2.1 Description of Compacting GC Algorithms:

(References [Cheney 70] and [Fenichel 69J will be helpful in

understanding what follows.) "GC" is an implementation-dependent

(hence undefined at present [Fenichel 69] procedure which calls GC2

on each main system list (stack, object list, symbol tables, etc.).

"GC2" copies each list structure given by a pointer/PTR from

GC into a "new" semi-space/ss, using a third routine "COPYLIST".

Copylist copies only the top level of a list into the new area.

Then GC2 advances a scanning pointer SCAN through the New copied

lists, looking for yet-uncopied sublists in CAR's, to which COPYLIST

is applied -- its result updates the CAR. Note whenever an Old cell

is copied, its CDR is changed to point to the New copied cell. See

Fig. 6.1. When SCAN catches up to NEXT, GC2 is finished. If GC

has no more system lists, CGC is complete.

Note: NEXT is just the free-storage pointer, initialized to the

beginning of the new SS.

OLD SS
CAR AM2 CDR

Low

High

Full of "garbage"
(inactive data) and
roundabout CDR's.
<AM2> = 3 flags
copied cells, whose
CDR points to NEW copy.

NEW SS
CAR CDR

There are no ptre into OLD here.
Most CDR's point to following
location.

t> . SCAN - sublist Finder

May still be OLD sublist pointers
/ in CAR Fields here.

< • NEXT - free-storage index

Virgin Free Storage
/ (contents ignored)

J

Figure 6.1
State of Semispaces with CGC Partially Completed

2.2 Advantages of CGC:

1) Reduction of page (or cache) faults; three reasons:

a) Each individual list is localized in M following
a CGC run, so accessing one word (say, the first)
of it brings all or most of the entire list into
real Mp (if p a g i n g) , or the next few words into
M.Cache.

b) Reduction of total "working set 1 1 — all active
data are concentrated at low end of user's total
allocated (virtual) M space.

c) Free Storage List/FSL is linear (in rest of al¬
located M) , which increases chances that new lists
will be formed in contiguous blocks also.

2) Look-ahead schemes are profitable — good chance that CDR
(Mem [n]) = n + 1. (M.Cache is one crude form of look-ahead.)

3) Compacted lists can be read out onto disk, tape, etc. and
read back in without disturbing common sublists or re¬
entrant/circular/looped structures. [Hansen 6 9] .

4) CGC can handle reentrant/circular/looped lists easily
(though so does conventional GC) .

5) CGC algorithm is simple [Cheney 70] --especially for SLS.
Much simpler than [Schorr 6 7] .

6) CGC needs no recursion, stacks, or dedicated bits.

7) Works for (and more or less needed for) CLS.

8) Random-sized Plexes/RSP or Vectors are easy to implement
because of the linear FSL, without the horrendous complexity
of AED System [Ross 6 7] . Includes Strings and User-Defined
Data Types a la SNOBOL 4.

9) PGC -- garbage collection in parallel with user-program
execution -- becomes possible. No more n-second hangups
while LISP collects!

2.3 Disadvantage of CGC:

Virtual memory size must be doubled [Fenichel 69] [Cheney 70]

therefore address space must acquire one extra bit's worth of information

-45-

to diatinguish which "semi-space" an address is in during GC execu

tion. But ...

1) Only two pages of "New" semi-space need be kept in Mp,
and ~ 6 pages give best performance if special paging
scheme is used (see 2.5). Faults are l/page-size per
page and predictable (hence special scheme).

2) Linear nature of read/write sequences in New SS goes well
with M.Cache.

3) Size of M.virtual in the C.ai is such that doubling
M.virtual needed may be o.k.

4) Or let OS.LISP (in collaboration with AMOS) keep a hunk
of Mp around which severalLISP jobs can time-share for
CGC (the physical location of this hunk changes: after
a job CGC's into it, that job's Relocation Registers
are changed to use it as working M; its old M is re
allocated into the 'hunk' pool);

5) Or CGC onto Ms (disk, drum, etc.) directly and swap back
into same Mp space. Fine, if you can stand the time re
quired (you only write/read active words) and the use of
recursion [Fenichel 69]; [Cheney 70] won't work without
addressable memory.

2.4 Microcoded Implementation

Note: in flow charts, box numbers correspond to comments in code

listings.

".X" = Mem[X] - M[X<CDH>]

Enter GC2 (Per); local scan; global Next

Ptr «- COPYLIST (Ptr)

Pre-type (CAR (.Scan))
i.e., .Scan <AMl> = ?

PTR (List | PList)
i.e., = 0 | 1

CAR(.Scan) - Copylist(CAR(.Scan))

Scan - Scan + 1

yes

Immediate ATOM
i.e., = 2

Scan < Next?

Figure 6.2
GC2

Enter COPYUST (Ptr); global Next

CLR1

(is .Ptr already-copled/AC*? ^ 3 1 - ^ R e t u r n CDR (.Ptr

no

Copyllst «- Next

>
t

Is .Ptr AC?

no

"Copy"

>
11, CLR2

yes
CDR (.(Next-1) - CDR (.Ptr)

.Next «- .Ptr c Return Copylist
CDR (.Ptr) - Next

Mark .Ptr as "AC" **

Pre-type (CDR(,Next) - ?
(.Next <AM2> = ?)

i

PTR List 1 PList
(- 0|1)

8 Ptr «- CDR (.Next)

9 CDR (.Next) «- Next + 1

10 Next «- Next + 1

3

3

Test <AM2> = 3, in this version

**.Ptr <AM2> - 3, in this version

Note: We don't need the GC bits 4, 5; these can be used for TYPE or UUB fields.

7

Figure 6.3
COPYLIST

2.5 Paging Schemes for Compacting GC:

Special algorithms can take advantage of the predictable way

GC2 and COPYLIST access New SS:

1) SCAN and NEXT both advance linearly through New, never
point into Old SS.

2) All reads/writes in New are at locations pointed to by
Scan and Next -- no probes at "random" locations.

3) NEXT is write-only, no fetches.

4) SCAN will read (and perhaps write) every word in a page
once before running out of it -- likewise NEXT writes
every word once before reaching boundary.

5) Thus n-word pages cause a fault about every l/n accesses.
You can't ask for better "folding".

Treat each of the two pointers' working sets as two ring buffers -¬

it requires 2 two pages in Mp per pointer. When Scan or Next crosses

a page boundary, the just-exited page is written out, and all Mp

buffer sections other than that and the just-entered one are set

up to fetch the next higher pages, once they have written out their

previous contents.

This look-ahead eliminates faults, if there are enough
buffer sections to keep up with rate-of-advance of
Next and Scan. Note since Next is write-only, it need
never fetch pages into its buffer. The algorithm must
allow for case where Scan and Next are on same page.
The ring buffer is like a caterpillar tread rolling
over Ms; see Figure 6.4.

Even if paging is not used, the linear-advance nature of New pointers

will make good use of M.cache look-ahead capabilities --Scan can use

all the look-ahead it can get.

SCAN

M.pri (core)

M.sec (drum)

Writing Fetching

Figure 6.4
Ring Buffer "Caterpillar Tread" (See Sec. 2.5)

The best number of buffer sections is a function of how fast CGC

pushes Scan and Next, page size, and time needed to swap a page in

or out. Size of Next's buffer ~ l/2 size of Scan's, since all

sections can be writing-out, i.e., currently-active section is

"leading tread" in the caterpillar picture (Figure 6.4) -- nobody

is reading in.

3. PARALLEL [COMPACTING] GARBAGE COLLECTION/PGC

3.1 The Problem:

List-processing systems which rely on occasional garbage col-

lections/GC to recover free storage (as opposed to SLIP-type LP

systems using reference counts to keep track continuously of avail

able space) must suspend operation entirely for a period (~ 1 second)

while the GC runs.

This is o.k. inmost applications, but increasing emphasis

on real-time LP applications like robots and speech processing

suggests a demand for a LISP system that would not go to sleep every

minute or so.

The proposed solution is a Compacting GC that runs "in parallel"

with user's LISP functions. Bits of GC are run in between bursts

of user's computing, in usual time-sharing time-multiplexed fashion.

No change in LISP list structure is required (except slight

address-space extension or addition of indicator bit, which is

easily fit into P.LISP machine word), although PGC will also work

for Compact List Structure/CLS.

PGC LISP runs around a 2-section ring buffer, filling current

section ("semi-space") with computation while "simultaneously"

copying still-valid previous results from preceding section.

3 . 2 Features (good and bad) of Parallel GC/PGC:

A = Advantage; D = Disadvantage; R = Requirement on implementation

(A) LISP system never has to stop dead for several seconds
to GC (unless Bailing Out (3 . 3)) .

(A) Applicable to conventional linked-lists/SLS, also to
Compact List/CLS.

(D) Need double the (virtual) memory, for 2 semi-spaces,
as with any CGC.

(R) PGC must compact storage (i.e., use CGC).

(D) Both semi-spaces /ss's are "active" most of time (though
one usually more than other), as "working set" is dis
tributed over both SS's. As a consequence, "thrashing"
of pages may be serious enough that elaborate schemes to
prevent this may be worthwhile. We are currently sketch
ing some of these, based on recent discussions with Alan
Kay of Stanford; these will be reported in a later paper.

(D) So special ring-buffer paging tricks (or M.cache advan
tages) of non-parallel GC (sec. 2.5) are unavailable.

(A) So 3 no need to write special paging schemes!

(R) Address space must be well-ordered.

(R) Must be able to tell which SS an addr belongs to, with
out indicator bits, etc.

(R) STACK, ALIST, etc. may need special treatment (?).

(R,D) LISP primitives need slight mod's, which add slightly
to running time.

(R) OS.LISP (or delegates) must synchronize PGC with user pro
gram — lots of work here, though not that time-consuming.

(R) "Bail-out" procedure needed to recover from premature SS
free-storage exhaustion. (3.3)

3.3 Description of Parallel GC Proposed: (See [Fenichel 69] for notions

of "flip" and "semi-space".)

We use a slightly modified version of the CGC in Section 2.

LISP jobs run under a supervisor/Super (some or all of which may

be part of LISP interpreter) which can be in one of two modes —

User and GC. Mode at time t determines whether user's LISP code

or GC is running at t.

When current semi-space is exhausted (i.e., 'next' points to

top address of semi-space) there are two options, depending on

whether PGC has been completed. If it has, the supervisor simply

'flips' semi-spaces and restarts. If not, then the storage has

run out before GC has finished copying the old semi-space, and a

special recovery procedure 'bail-out' is invoked (see 3.3.6).

A conventional interrupt system is unsafe. Some LISP and GC

routines cannot be suspended in the middle of their operation.

When pointers are being inspected or modified, instead of interrupts,

these routines will check the system timer and 'voluntarily' return

control to the supervisor, perhaps getting a little more than their

time slice.

Let us call the time quanta for LISP and GC, QU and QG,

respectively; in general QU * QG. The supervisor alternates modes,

switching at first opportunity after current mode's time slice is

used up.

The ratio RG = QG/QU is fairly critical. If too small, the

semi-space can be exhausted before GC has copied the old semi-

space, requiring a bail-out action; if too large, it approaches

the conventional GC, by stopping the user program for large periods

of time after each 'flipping1 of semi-spaces.

The supervisor can dynamically adjust RG during execution

as follows:

Let S = semi-space size (number of cells)

Let UI • number of active cells (not garbage) at start of
(i+l)th semi-space flip

Let GI = S-UI = number of recoverable (garbage) cells

The optimal relation RG is given by:

RG - QG/QU - K * GI / UI

where K = (average time required by GC to copy an active cell

from old semi-space) / (average time required by LISP to obtain a

new cell) •

"BAIL-OUT" RECOVERY PROCEDURE FOR EXHAUSTED NEW SS (PROPOSED):

Figure 6.5. The Situation:

OLD NEW
Low

High
wmm
w/h////t—

WET
I Contains no ptrs into

"garbage".
SCAN

«— NEXT

Figure 6.6. The Bail-Out: Append More M (Begged from AMOS) to NEW;
Finish GC Exclusively

^LD NEW

"Borrowed"
extra M spac

All ptrs to OLD have

' r e ^ v e d d a t e d

Figure 6.7. Now Flip SS's, Do Complete Exclusive GC; Return (De-allocate)
Borrowed Space to LMOS.

NEW OLD

^All active
data

SCAN, NEXT

>Free storage

Now resume
u^er job.

i)Returned to
,j pool

resources

IMPLEMENTATION

Some of the requirements of the PGC translate into small changes in

the compacting garbage collector and introduce some extra overhead in

some LISP primitives and on the LISP operating system:

LISP primitives must now recognize when the cell accessed has been

copied into the new semi-space and if so spend one extra memory cycle

to get it.

LISP 'pointer moving' primitives (RPLACA, RPLACD, NOONC, P-List

functions, etc.) must do extra work to prevent errors; for instance,

inserting in a cell already in the new semi-space, a pointer to a list

still in the old one; if this is the only pointer to that list, it may

never be copied into the new semi-space. (See Figure 6 . 8 for a solution.)

LISP system supervisor must now:

- control alternation of execution of LISP programs and PGC
and dynamically compute the 'optimal' ratio RG

- initiate recovery procedures, with possible help from AMOS

- swapping policies should be integrated with the system,
for instance, a job in i/o wait should not be swapped out.
Instead, we can run 'solid' PGC (it does not hurt to finish
earlier!

Subroutine GC2 must be modified to allow for cells created by non-

pointer moving primitives like CONS with:

- CDR fields pointing to old semi-space

- CAR fields of cells reached by SCAN pointing to new semi-
space

These require that GC2 test both CAR and CDR field at cell under

SCAN.

Figure 6 8 "Patch" to be added at entry to any pointer-moving primiti
P(A,X,...); pointer A,X; where intent is: CAR(.A) «- X or
CDR(.A) - X .

"Do it" - original (non-PGC) entry label of P(A,X...)

ve

(Enter, P(A,X,...))

Pre-type CDR(X)
(X<AM2> « ?)

Immediate ATOM

List
(- 0

PList
1)

. , >l •

Which subspace does X
point to?

OLD

Is .X already-copied?
(.S<AM2> = 3?)

No

(-2) Do it

NEW Do it

X *- CDR(,X)
) > (X<CDR> - .X<CDR>

I
Do it

[Use left dotted line if CAR(.A) - X; right for CDR]

(A > SCAN?>
Yes

Do It

1
CAR(.Next) - X

CDR(.Next) - NIL

Next - Next + 1

Create "fake" list
Vcell with X as
' "sublist".

V

Do it

?

file:///cell

-56-

4. OVERVIEW OF GC AND LIST STRUCTURE OPTIONS

There are three independent (almost) Boolean features of a LISP

system:

- Compacting Garbage Collection/CGC

- Compact-List Structure/CLS

- Parallel Garbage Collection/PGC

Figure 6.9 "Karnaugh Map" Summary of Options Possible in Combination

Compacting GC/CGC Conventional (McCarthy) GC

Compact
Lists/CLS {

Linked
(-i compact) /
Lists/SLS '

Yes - more
or less
required

Yes
No - PGC in
CLS require

CGC

Not worth
s it

Yes - see
Sec. 2

Yes - see
Sec. 3

Not in our
scheme;*
PGC require

CGC

Sure -
LISP 1.5,
} 1.6

Parallel GC/PGC

*Other schemes might use, e.g., page-wise McCarthy GC. See sec. 3.2.

APPENDIX 7

The following is an abstract of the report "C.ai: A Computing

Environment for Al Research", obtainable from the Carnegie-MelIon

University Computer Science Department.

A computer for artificial intelligence research is examined. The

design is based on a large, straightforward primary memory facility

(about 8 million 74 bit words). Access to the memory is via at least

16 ports which are hardware protected; there is dynamic assignment of

the memory to the ports. The maximum port bandwidth is 8,600 million

bits/sec. Processors for languages (e.g., LISP) and specialized terminals

(e.g., video input/output) can be reliably connected to the system during

its operation. The approach is evolutionary in that high performance

processors, such as the Stanford Al Processor, can be connected to the

memory structure, giving an overall power of at least 100 times a PDP-10

(and 200 to 300 times a PDP-10 for list processing languages) for 10

processors -- although no processors can be attached. Using this

approach we might expect 40 — 80 million PDP-10 operations/second.

At the same time, special language processors (P.I) can be designed

and attached. These processors give even larger power increases, but

for restricted language use. Two processors, P.LISP and P.L* were

examined for the LISP and L* languages and are reported on separately

A plan for building the machine in increments over the next three

to five years is examined. Specific schedules are proposed.

Concurrent with the operation of the machine, there should be re

search into the design of hardware, software and theory of constructing

large scale computing facilities with maximum modularity.

DOCUMENT CONTROL DATA - R & D
• f.-.-1-t/fifi- . 1,1-- .itu;,U»n of title, Innly i<t nhstrnrt nnd indnxinl* minalalinn must be entered w h e n tlie overall report Is classified)

t . OfviOlNA TlfJG i m u i T v " ' o r p o r a f e aittbttr)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

lm. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
lb. G R O U P

i R E P O m TITLf

C.ai — A LISP Processor for C.ai

4 r j e s c n i P Tl v e HOTEs (Type ol report and Inclusive dates) S c W l f i c ' ^ T n t S S i '
", M l I M O B i s l ff-'rrM name, middle initial, la ml name)

M. Barbacci
H. Goldberg
M. Knudsen

fV H E P O P T (jA TF_

Aug. 9, 1971
7a, T O T A L N O . O F P A G E S 7b. N O . O P R E F S

JL
) ftCONTRACT OR G R A N T NO

F44620-70-C-0107
h. f R CV.J f .CT NO .

A0827-5

61101D

9fl. O R I G I N A T O R ' S R E P O R T N < J M B E R (S >

9h . O T H E R R E P O R T HOW (Any other n u m b e r s f f io f may be assigned
this report)

i r<I r i j r i o n s h t : m e n t

This document has been approved for public release and sale;
its distribution is unlimited.

11 '>UF S PLI. K'rNTiKV fJO TES

TECH, OTHER

A special microprogram controlled process designed for efficient interpretation
„ J the LISP language is described. The processor has a fairly large, fast scratch
pad memory and uses two cache memories: for the LISP program and data being

A i T K S T S f i£" of "scientif le Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

interpre
small function units, and „ „ __ r r

The approach taken haŝ been to'avoid unorthodox implementation schemes and
conserva-employs little in the way of unusually new (and untried) hardware. Such a

tive approach should enable an implementation in a reasonable length of time.
One of the places where efficiency in list processing Cand in most programming

applications) can be enhanced is in the ratio of instruction fetches to data
fetches. To that end two unusual features were required: writable (up-datable)
microcode and recursive control of microcode. With them, it is possible to imple-

a goal of the design, but a by-product.
The microprogrammed.processes include a storage-compacting garbage-collector,

which can be made to operate incrementally in parallel with user-program execution.
This option avoids interruptions in LISP execution for garbage collection.

D D 1 4 7 3
SNI'IMLV C1;IK TI FTCATINN

Security CUaaittcation
t * .

K E Y H O K D I
L I N K * L I N K S L I N K C

R O L E WT R O L E W T N O . L E * T

Security C l a s s i f i c a t i o n

