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ABSTRACT 

A special microprogram controlled process designed for efficient 

interpretation of the LISP language is described. The processor has 

a fairly large, fast scratchpad memory and uses two cache memories: 

for the LISP program and data being interpreted; and for the LISP 

interpreter. Several special purpose registers, small function 

units, and general byte manipulation capabilities are present. 

The approach taken has been to avoid unorthodox implementation 

schemes and employs little in the way of unusually new (and untried) 

hardware. Such a conservative approach should enable an implementa

tion in a reasonable length of time. 

One of the places where efficiency in list processing (and in 

most programming applications) can be enhanced is in the ratio of in

struction fetches to data fetches. To that end two unusual features 

were required: writable (up-datable) microcode and recursive control 

of microcode. With them, it is possible to implement the language 

interpreter as close as possible to the real hardware machine. Such 

a machine could also be a "shell" language processor. However, this 

was not a goal of the design, but a by-product. 

The microprogrammed processes include a storage-compacting 

garbage-collector, which can be made to operate incrementally in 

parallel with user-program execution. This option avoids interruptions 

in LISP execution for garbage collection. 
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P.LISP DESIGN PHILOSOPHY 

In considering a LISP processor for C.ai* two goals were observed 

in addition to the constraints imposed by the design of the large, over

all memory resource and operating system of C.ai. These were: the pro

cessor should be implementable in an obvious fashion ; and the speed-up in 

processing of LISP may be borne by a loss in generality of the processor's 

order code. Although these seem to be either contradictory, or unrelated, 

the trade-off involved covers the spectrum between a conventional LISP 

system on a conventional computer and a hard-wired read-eval-print loop. 

We hope that the following design will lead to a single processor which 

employs little in the way of unusually new (and untried) hardware, pro

vides a speed-up in the range of 1.5 orders of magnitude over conventional 

LISP systems, and is not as strictly bound to doing LISP as one might 

expect. The processor is micro-programmable, with numerous register trans

fers, byte manipulations, and arithmetic and logical functions (which has 

been left relatively openended in the design). 

In most machines, even those that make extensive use of microprogram

ming, the mapping from the hardware functions to the order code retains a 

level of generality unnecessary in C.ai (since different processors are 

dedicated to different specialized languages or tasks). Hence, the best 

and cheapest place to begin designing our processor is at the microprogram

ming level. To that end, two features are necessary for LISP which are 

not usually available: writable (up-datable) micro-code, and recursive 

control of micro-code. 
* 
It is assumed the reader is familiar with both the C.ai computer (Bell, et 
al, 1971) and the LISP language (McCartney, et al, 1962); see Appendix 7 
for a brief description of C.ai. 
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Some implications of such a machine might be that it could also serve 

as a basis for a processor suited to string manipulation languages and to 

'•shell" languages of manifold capabilities. This, however, was not a goal 

of the design, but rather a by-product, resulting from these facts: 

The hardware and memory configurations of most computers, 
and by extension, many assumptions inherent in existing pro
gramming languages, are essentially the same. 

The capabilities required by a processor to evaluate 
LISP expressions are powerful enough to handle a large 
number of other programming language expressions and con
trol structures. 



P.LISP: STRUCTURE OF THE PROCESSOR 

The first characteristic of the processor is the use of a dual cache 

system, one of them as the front end of Mp ('Primary Memory" in the PMS 

Notation, see Bell and Newell, 1971) for the program being interpreted and 

the other to hold the (most frequently used) microcode of the interpreter. 

The trade-off between cost and speed here has been discussed in Bell, et 

al, 1971. 

All elementary data items (words) contain local type information 

permitting data dependent operation. This characteristic is even forced 

upon microcode words. This is one of the few truly fixed features of the 

system, the others being: 

1. Microcode word interpretation is hardwired and a mixed 
interpretation of bits in the microword is used: some 
bits are direct control functions and some are encoded. 
The distinction is itself dependent on the micro-opera
tion code. 

2. Microcode addressing is via a microprogram counter con
taining the displacement in the microcode addressing 
space. (See Appendix 1.) 

The PMS Diagram of the processor is shown in Figures 1 and 2. 

BUS S ES 

To achieve parallelism, two data transfer busses are provided, L(l) 

and L(2), controlled by K(l) and K<2). In order to provide the most gen

eral byte manipulation capabilities (i.e., a string of contiguous bits 

located anywhere inside a word) a pair of byte transfer matrix-like switches 

are provided for each bus. These are described in Appendix 2. The busses, 



their controllers and switches are identical. However, for economic rea

sons one of the busses might not have the byte manipulation matrices, 

forcing us to use the other one for this kind of operation with the sub

sequent loss of generality. 

ALU 

The Arithmetic Logic Unit operates asynchronously with the rest of 

the processor. Its operation is independent of the microprogram speed 

and is invoked by selecting two operands from the local memory to be load

ed into busses L(3) and L(4) and by selecting a function via K(3). After 

this is done, the micro processor proceeds in parallel while the selected 

function is being carried out. The output of the ALU may be transferred 

to the local memory via S(5) and any of the busses, and this transfer Is 

done after a 'safe' number of microcode steps have taken place. Unfortu

nately this requires a minimum of two microsteps for even the simplest 

operation. 

Each bus latches under the control of a microcommand. The reason 

for this is obvious in the case of the ALU busses L(3) and L(4) and may 

become clear when we consider some of the specialized registers in the local 

memory and their asynchronous operation. 

PROCESSOR STATE 

This is the set of registers used as scratchpad by the microprocessor. 

Some are full-word registers holding temporary data. Some are dedicated 

to frequently used data and some others are actually very specialized units 

(e.g., SAV CONTROL REGISTER) as described in Appendix 3. 



P.LISP: ISP 

The main criterion for specialized list processor design is to minimize 

the ratio: instruction fetches/data fetches. According to this criterion, 

the machine has two basic modes: 

Plex Mode - This corresponds to our intuitive concept of a micropro

grammed language, i.e., the execution of microcoded routines selected by the 

OP Code field in the macroinstruction. 

Lisp Mode - This is equivalent to the EVAL function in LISP, where 

the interpretation of the input string is carried out by successive (pos

sibly recursive) invocations of more primitive operations, without the 

overhead of instruction fetches and interpretation. In other words, we 

place the interpreter mechanism directly in the hardware. 

The idea then is to provide a set of microroutines that implement 

enough primitives for plex processing and provide them with the possibility 

of calling each other using the stack mechanism; in other words, the micro

code is recursive. 

A set of microroutines, written in a register transfer language, can 

be found in Appendix 4, together with a detailed description of some of 

the data primitives that may be useful for our purposes. Appendix 5 pre

sents the microcommands in detail. 

Although the register transfer language and the microcode selected 

are not in a one-to-one relationship, the mapping is direct. For instance, 

the RT language does not show parallelism, which is achieved in the processor. 



THE H S P WORLD 

FUNCTIONS OF THE P.LISP OPERATING SYSTEM. OS.LISP 

1. Acts as liason between the LISP interpreter (microcoded 
EVAL) and AMOS (A Minimal Operating System, see C.ai, 
Bell et al, 1971). 

2. Handles multiprogramming of P.LISP (swapping, paging, 
relocation, memory allocation, etc., in cooperation 
and/or contention with AMOS). 

3. Provides choice of LISP version for each user, i.e., gives 
options of~c^p~acting or parallel garbage collection, com
pact lists, etc., in cooperation with AMOS. 

4. Handles l/o, vis-a-vis the local file system and the ARPA 
network. 

5. Controls allocation and "flipping" of semi-spaces, when 
compacting garbage collection is used. See Appendix 6. 

6. Controls alternation of user and garbage collector, 
compute optimal length at time slices, and provides re
covery procedures, when parallel garbage collection is 
used (see below). 

GARBAGE COLLECTION — SPECIAL METHODS 

Garbage collection procedures will be microcoded. Conventional 

garbage collection (GC) is possible, using one dedicated bit in each 

word. However, if either paging or swapping is used (which is probably 

unavoidable, with the projected number of users), storage-compacting GC 

(CGC) is preferable (Appendix 6). Fenichel and Yochelson (1969) give a 

simple recursive algorithm and several reasons for CGC: reduction of page 

faults, less core image to swap, and no time-consuming conventional 

linear sweep through large memory space. We have also adapted Cheney's 



(1970) non-recursive scheme to LISP. Both divide data memory into two 

equal "semi-spaces", which doubles the (virtual) memory required, although 

a special paging scheme we designed reduces "real" memory needs (see 

Appendix 6, sec. 2.5). Some other advantages of CGC are: 

1. Cache memory is more likely to give look-ahead, since 
CDR(L) is usually the next memory word. 

2. Free-storage list is a linear block of words, so any 
subsequently-formed lists will likely be localised in 
memory. 

3. Parallel GC is made possible — s e e below. 

PARALLEL GARBAGE COLLECTION 

Delays of a second or more (much more, with large memories) while LISP 

garbage-collects may be intolerable in real-time applications such as 

speech or robotics. An alternative is an incremental garbage collector, 

time-shared with the user's program so that his job runs a bit slower, but 

never stops completely for more than a small time quantum. Time-slices on 

the order of this quantum are alternated between user computation and data-

salvaging (garbage collection). 

That is, free storage in the current semispace is alternately used 

to create new S-expression (user) and to copy still-active structures 

from the previously-used-up semispace (GC). If copying is complete when 

current semispace runs out, then semispaces are "flipped" as in non- paral

lel CGC (see Fenichel and Yochelson, 1969). Otherwise some special "bail

out" procedure must be executed to finish copying from the old semispace 

so it can be used as free storage again. Bailing-out causes a conventional 

GC waiting period. 
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While we have a bail-out procedure, the P.LISP Operating System tries 

to avoid the latter situation by balancing the relative times allotted to 

user computation and GC. We propose- some adaptive heuristics for this in 

Appendix 6. 

Some LISP primitives must be slightly modified to avoid strange effects 

on lists which have parts in both semlspaces, not yet having been copied 

over into current semispace. Since these modifications reduce efficiency 

of the system, use of the parallel-GC version of LISP should be an option 

of each user. 

COMPACT-LIST STRUCTURE 

With storage-compacting garbage collection, we could eliminate the 

CDR field and assume the CDR of a liBt cell is the next word in memory 

(see Hansen, 1969 and Cheney, 1970). A special LINK word pointing to the 

true CDR must be inserted whenever this is not the case. 

Such a scheme has two advantages — look-ahead and saved space through 

elimination of the CDR and AM2 fields (26 bits). (See Appendix 4 for cell 

description.) We already have the former if CGC Is used on conventional 

LISP structure. The latter advantage is realized if we can fit one compact-

list cell into a halfword; such an implementation might be a worthwhile 

option. 



SPECIAL HARDWARE/MICROPROGRAMMED SPEED-UP FEATURES 

Property-list (PLIST) search speeds may be increased as follows: 

Frequently-referenced property names are assigned integer indices 

according to their location in the processor's property descriptor table 

(PDT, Appendix 3 and Fig. 3) . Attribute-value pairs which would other

wise be kept on PLIST in conventional two-word form (Fig. 4) may, if the 

attribute is in the PDT, be reduced to the single type-PLIST word of 

Fig. 5, where only the 6-bit PDT index of the attribute is needed. The 

separate type on such cells allows conventional dotted-pair cells to be 

intermixed with them in a PLIST. Retrieval of a value from PLIST is as 

follows: Given attribute "Att", 

(a) If Att is type immediate integer, assume it's a PDT index, 

skip to (c). (Note that the system refers to certain properties 

(pname, fexpr, apval, etc.) directly by their fixed PDT numbers.) 

(b) If Att is type atom, search PDT for same atom. If found, 

set Att to its table index; else go to (d) . 

(c) Search PLIST, checking only cells of special type PLIST, for 

PN field equal to Att. If found, return CAR of this cell; 

else NIL for ,fnot in PLIST". 

(d) Search PLIST, checking only conventional (type-LIST) cells 

in usual manner; return value found, or NIL. 



-10-

Likewise, when putting a new pair on a PLIST, the PDT is consulted 

to determine whether a type-PLIST or conventional structure is added. 

This can halve data-memory fetches. 

Often one accesses an element in a complex S-expression whose posi

tion in that structure is known, e.g., by "(CADDR (CDDDDR (CAR L))) M for the 

7th item in (CAR L). We can encode such a succession of CAR's and CDR's 

into a Boolean vector (0 for CAR, 1 for CDR), along with a count of how 

many bits are meaningful, into a structure-access vector (SAV), e.g., 

Type Count Vector 
Used 

SAV 00- 0001111110 

11 12 63 

for the above example. Note that Nth-element access is a special case of 

this. LISP could now allow up to 52 A's and D's between C and R: We 

provide a dedicated hardware register for SAV interpretation, as described 

in Appendix 3. 

Function-call arguments are passed to the function in the A registers, 

one per register, in order of appearance in the calling expression. This 

is not new, but the fact that we can work with the A registers at micro

program speed might give us some gain. 



EXTENSIONS TO LISP 

The generality of our processor hardware, plus the writable micro

code memory, allows extra data types (structures) and their appropriate 

operations to be added at no cost (aside from writing additional microcode). 

While these data structures could be used to extend LISP (as in LISP 2), 

they can just as well be embedded in the conventional LISP 1.5 linguistic 

framework. LISP's function-oriented syntax can easily support the predi

cates, selectors, and constructors needed to create and use such types. 

Note that such additions affect neither the syntactic elegance nor the 

execution speed of LISP, in no way penalizing those who don't use them. 

LISP users have often created their own specific data forms and written 

LISP functions to handle them. But a sophisticated user of our P.LISP 

could translate these functions into microcode, for large speed advantages. 

Some data types of general interest might be strings and arrays or 

plexes (blocks of arbitrary number of contiguous storage words). String 

processing is aided by our general byte-transfer operation. SN0B0L4's 

variable-binding semantics are identical to LISP's. Plexes are possible 

if we use storage-compacting garbage collection -- these could lead to an 

extensible data-type facility akin to SNOBOlA's DATA statement. Users 

might even be able to specify subfields of the plex words, e.g., L 6 

(Knolton, 1966) thus getting more use out of our byte-transfer operation. 

Note that a "LISP compiler" in this system might generate microcode 

for insertion into control memory, under user commands. Of course, the 

kernel LISP 1.5 code would reside in a write-protected section (from user's 

viewpoint). 
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A compact-list (no CDR fields; CDR of a word Is the next storage 

location) version of LISP can also be microcoded, where data storage space 

is tight. 

Floating-point (real) arithmetic is important for image processing, 

etc., and we would initially microcode the basic operations. However, 

hardware floating-point is faster than microcode and should not be ruled 

out at this point. Trig, log, hyperbolic, and other special functions can 

be added where demand exists. 



PERFORMANCE CONSIDERATIONS 

A basic ratio of x25 speed-up in memory fetch from cache versus core 

will be assumed here. (It has been suggested by the Stanford Al processor 

that a 2K cache is 95f effective for conventional LISP 1.6.) Our micro

program cache should have a high hit ratio since programs are mostly 

sequential and will not fragment very badly. With compacted lists, our 

data-cache should have a high hit ratio as well. 

The speed of the microprocessor will not (short of extremely expensive 

and possibly unreliably new hardware) keep up with a 40 nsec cache cycle 

time, but will certainly fall In the range of 100 nsec. per instruction 

cycle. This alone will give microprogram-implemented LISP primitives 

a speed-up of xl5 to x40 over good conventional systems like LISP 1.6* 

(assuming a single processor). 

The organization of the microprogrammed primitives, compacted lists, 

parallel garbage collection, and tighter property lists for atoms should 

yield further speed-up. To specify, with any accuracy, a factor of in

crease is rather difficult since the profile, over execution, of a typical 

LISP program varies considerably from program to program. A significant 

amount of processing time is spent in binding formal to actual parameters 

of functions. (This is where compiled functions pay off.) But this varies, 

as is indicated by a range of compiler speed-ups of xl to xl5 (in our ex

perience). Even though we have compared our design to interpreted rather 

than compiled LISP, we have left open the possibility of doing the same 

sort of binding decisions that conventional LISP compilers perform. 

*LISP 1.6 is the LISP implementation on the PDP-10. 
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Moreover, the user can compile some functions into microcoded routines. 

Preliminary coding of some important LISP primitives indicates that 

we can gain very little over LISP 1.6 (PDP-10) by trickier programming 

of the evaluation algorithm (given our conventional approach). It is our 

opinion that the implementation of LISP 1.6 is good, and the PDP-10 order 

code is appropriate enough for LISP, so that we cannot do much better than 

the order of magnitude Improvement provided by the microprogramming. It 

is our hope that the flexibility and reasonable simplicity of this design 

will more than outweigh the factor of not having a single LISP processor 

one hundred times faster. Multiple P.LISP's, of course, easily allow us 

to reach the goal. 



Figure 1: PMS diagram of P.LISP and its caches 
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Figure 2: PMS diagram of P.LISP 
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Figure 3. Property Descriptor Table <PDT) 
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APPENDIX 1 

MICROCODE ADDRESSING 

Microcode Is stored in main memory and loaded into a particular pro

cessor (i.e., the microprogram cache associated with it) by C.amos*. Thus, 

the microinterpreter is general purpose in the sense that data paths, micro-

words and microcommands depend only on the language we are implementing 

(L*, LISP, SNOBOL, etc.). 

By having the microcode residing in Mp, it is possible to modify it 

at will and fast (of course, some access privileges will have to be associ

ated with given code). It may be necessary to implement a microassembler 

as the first step (later it can be bootstrapped to a higher level language) 

to facilitate the coding of microprograms. 

Mp 

LISP 
ucode 

L* 
u,code 

l 

I 

I 

^address 

u.base u4isp 

microprogram 
cache 

microprogram 
interpreter 

microprogram 
cache 

microprogram 
interpreter 

Figure 1.1 

*See C.ai (Bell et al). 

file:///icode
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Microbase Is provided by AMOS and this Is the way we "assign" a 

particular language to a processor. Microdisp (displacement) is the "local 

address inside the microcode corresponding to a given language. A small 

displacement is economical but restricts the size of the microprogram 

(possible new and complex languages that require large pieces of micro

code may be impossible to implement at this level); on the other hand, a 

large displacement is flexible but wasteful. 
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APPENDIX 2 

BYTE-TRANSFERS 

Two methods for selecting a byte are presented; both are based on 

matrix-like transfer networks, the difference being in the trade-off 

between the cost (number of gates) vs. the number of bits in the micro-

word to control the transfer. A general shift matrix should also be 

explored. The methods are based on the fact that byte transfers do not 

affect the relative ordering of bits, i.e., lower order bits go to lower 

order bits. A simple way to do the operation is based on a matrix-like 

transfer network, where the only gates that are activated are the ones 

aligned along a selected diagonal. Besides the selection of the byte, a 

mask must be prepared to enable the proper gates in the output register. 

A method to prepare the mask is explained later. 
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METHOD 1 

o <-I 
to pa 
Q Q 

i - l N i») 
VO VO VO 
n n n 
a n Q 

tO 

i f ) 4 \ C »"H O 

a 3 3 a 2 

ti 

t62 
t63 

BO Bl Bo 2 B63 A63 A62 Al AO 

OUTPUT 
REGISTER 

INPUT 
REGISTER 

Figure 2.1 

DAi is selected according to the initial bit (the i t h ) of the 

input byte. The byte is sent via lines tO - tk where k+l is the byte 

length. DBj is selected according to the initial bit (the j t h) of the 

output byte. 
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METHOD 2 

A63 A62 A61 

Figure 2.2 
Dl is selected according to the initial bit positions of both the input 

and output bytes, according to the following rule: Given Ak and Bj as initial 
bit positions, the transfer is controlled by Di where i = j-k (actually they 
do not need to be the initial bits, any two corresponding bit positions will 
do). 

The selected byte appears on the proper lines without further selection 
as in Method 1. 
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COMPARISON 

Cost 
(number of dual 
input AND gates) 

Method 1 

4160 

Method 2 

4096 

Diagonal Selection DAi and DBj 
are given by initial 
bit position 

Dk is given by 
subtraction of 
initial bit positions 

Enabling mask for Given by initial and Same as Method 1 
output register final bit positions 

at output byte 

Table 2.1 

The fields needed to specify a byte transfer (besides the register's 

selection) are: 

-- initial bit of input byte (6 bits) 

— initial bit of output byte (6 bits) 

— final bit of output byte (6 bits) 

The subtraction operation in Method 2 can be avoided if we encode in 

the microword the diagonal number instead of the initial bit of the input 

byte, but this encoding requires 7 bits (there are 127 diagonals in Method 2) 

and this price can be too much to pay for the saving of 64 dual input AND 

gates in the matrix. Our feeling is then that Method 1 provides the fastest 

solution, with the smallest microword waste at a cost of 64 additional gates 

(which may very well be the cost of the arithmetic unit to perform the 

subtraction in Method 2). 



DETAIL OF CROSSPOINT 

Figure 2.3 
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CREATING A BYTE TRANSFER MASK 

Two signals coming out of two l/64 decoders are used to mark the 

initial and final bits of the mask (they may be the same bit) . The circuit 

shown in Figure 2.4 is a two-way simultaneous ripple propagation network. 

The mask is selected by two signals, L and R from the decoders. L[K] re¬ 

sets all bits to the left of bit K and R[J] resets all bits to the right 

of bit J. Clearly the mask can be a single bit. 

If the propagation delay proves to be intolerable, some cary-look-

ahead scheme can be provided, although it does not need to be as complex 

as a full adder carry look-ahead unit; a few OR gates will do. 



MASK BITS 

Ji-1 

C is used to set the mask to 1's (first step) o 
R means that bit J is the leftmost bit of the byte 

means that bit K is the rightmost bit of the byte 

(All 'AND' gates can be replaced by diodes.) 

Figure 2.4 



A P P E N D I X 3 

MCLOCAL) 

M A R / M P - A D D R E S S - REGI S T E H < O l 2 3 > 
M B R / M P - B U F F E R - R E G I S T E R < 0 * 6 3 > 
U P C / M I C R O - P R O G R A M - C O U N T E R < O t 1 9 > 

T Y P E < 0 : 3 > 1= U P C < 0 : 3 > %<ALWAYS «UPC*>% 
U D I S P / U D I S P L A C E M E N T < O l 1 S > I » U P C < 4 . 1 9 > 

U I R / M I C R O - I N S T R U C T I O N - R E G I S T E R < O t 6 3 > 
S T A C K < 0 t 6 3 > 
H K 0 l 6 3 > 
R 2 < 0 . 6 3 > 
K 3 < 0 ! 6 3 > 
T K O ! 6 3 > 
T 2 < o : 6 3 > 
T 3 < 0 * 6 3 > 
P D T / P R O P E R T Y - D E S C R I P T 0 R - T A B L E C 6 4 ] < 0 * 2 7 > 

T Y P E < 0 . 3 > : = P D T < 0 I 3 > %<ALWAYS • P D T ' > % 
P T R « 0 : 2 3 > :=» P D T < 4 » 2 7 > 

ODT/O PE HATO R - D E S G R I P T O H - T A B L E E 6 4 3 < 0 1 1 9 > 
T Y P E < 0 : 3 > 0 D T < 0 : 3 > 
P T R < 0 : 1 5 > ! = 0 D T < 4 : 1 9 > 

S A V C H / S T R U C T U H E - A C C E S S - V E C T 0 R - C 0 N T R 0 L - R E G I S T E R < 0 t 6 3 > 
T Y P E < 0 . 3 > . = S A V C H < 0 : 3 > Z<ALWAYS ' S A V > % 
C N T H < 0 l 5 > : = S A V C R < 6 » 1 1 > 
V E C T O H < 0 « S l > i = S A V U R < 1 2 l 6 3 > 

L A S T H I T : = V E U T 0 H < 5 1 > 
I A R / I N D I R E G T - A D D R E S S - R E G I S T E R < 0 . 7> 
F C 1 6 3 < 0 » 6 3 > 
AC 1 6 D < 0 l 6 3 > 

STACK I S THE TOP OF THE PUSH DOWN S T O R E . I T WORKS 
IN A FUNNY WAY1 ANY TRANSFER TO * STACK 1 I S AN AGTUAL PUSH 
DOWN AND ANY TRANSFER FROM * STACK' I S A POP UP O P E R A T I O N . 

PDT C O N T A I N S P O I N T E R S TO THE ATOMS THAT D E S C R I B E A 
SET OF P R O P E R T I E S . SOME OF THEM WILL BE P R E D E F I N E D BY THE 
SYSTEM C SYSTEM ATOMS) AND THE REST ARE USER D E F I N E D . 

SAVCR ( F I G . 3 . 1 ) I S A S P E C I A L FUNCTION U N I T . I T 
C O N S I S T S OF A TWO WAY M 0 D C 6 4 ) COUNTER AND A 5 2 B I T S H I F T 
R E G I S T E R . THE VECTOR F I E L D BEHAVES L I K E A STACK CALTHOUGH 
THE U N I T I T S E L F CAN BE L O A D E D / UNLOADED I N P A R A L L E L ) * THE 
TOP B E I N G THE RIGHTMOST B I T * AND COUNTER K E E P I N G TRACK OF 
THE D E P T H . T H I S U N I T I S USED TO HANDLE STRUCTURE A C C E S S 
VECTORS A S D E S C R I B E D IN A P P E N D I X 4 . 

I A R I S USED A S AN INDEX R E G I S T E R P O I N T I N G TO 
M C L O C A L ) . I S U S E D WHEN SCANNING THROUGH PDT AND OUT* AND I S 
IMPLEMENTED A S A M 0 D C 2 5 6 ) COUNTER. 



1 LAST BIT 

CNTR 

RESET 
OH H 
O 

VECTOR 

Shift left 
and count-up 

fToAD BIT 

i 

© 
i 

Shift right 
and count-down 

Figure 3.1 
Structure Accesss Vector Control Register 



A P P E N D I X 4 

SOME DATA P R I M I T I V E S AND MICHOPROGRAMMED R O U T I N E S l 

D E F I N I T I O N S OF S U I 3 F I E L D S IN THE WORD. SEE F I G . 4 . 1 

TYPE<Ot 3> 
G C < O l l > 
U U B < 0 . 5 > 
A M 1 < 0 * 1 > 
C A H < O t 2 3 > 
A M 2 < 0 t 1> 
C D H < 0 . 2 3 > 

1= C E L L < 0 : 3 > 
I » C E L L < 4 ! 5 > 
I * C E L L < 6 t 1 1 > 
l « C E L L < 1 2 . 1 3 > 
I a C E L L < . 4 t 3 7 > 
t » C E L L < 3 8 l 3 9 > 
1= C E L L < 4 0 t 6 3 > 

UUB ARE THE UN IMPLEMEN TED USER B I T S . 
THE A D D R E S S MODES (AMI AND AM2) ARE D E F I N E D A S 

FOLLOWS* 
0 
1 
2 

ATOMPOINTER C P O I N T S TO PROPERTY L I S T ) 
L I S T P O I N T E R ( P O I N T S TO C E L L ) 
L I T E R A L ( I N M E D I A T E DATA) 

S U B F I E L D S I N A PROPERTY L I S T . E L E M E N T . SEE F I G . 4 . 2 

T Y P E < 0 * 3 > 
G C < 0 : 1 > 
P N < 0 : 5 > 
A M 1 < 0 » 1 > 
V L < 0 * 2 3 > 
A M 2 < 0 t 1 > 
N P < O i 2 3 > 

» C E L L < 0 I 3 > 
= C E L L < 4 : 5 > 
= C E L L < 6 * l i > 
a C E L L < 1 2 l 1 3 > 
= C E L L < 1 4 | 3 7 > 
= C E L L < 3 8 » 3 9 > 
= C E L L < 4 0 » 6 3 > 

S U B F I E L D S I N A TYPE P O I N T E R 

T Y P E < 0 1 3 > 
G C < O t 1 > 
A M 2 < 0 : 1 > 
A D D R < O l 2 3 > 

t = C E L L < 0 : S > 
1= C E L L < 4 1 5 > 
1= C E L L < 3 8 * 3 9 > 
t » C E L L < 4 0 l 6 3 > 

S U B F I E L D S I N A STRUCTURE A C C E S S VECTOR. SEE F I G . 4 . 3 . 

THE STRUCTURE A C C E S S VECTOR I S USED TO FOLLOW A PATH 
OF C A R ' S AND CDR* S B E G I N N I N G AT A GIVEN CELL OF THE P L E X . 

THE COUNTER C O N T A I N S THE NUMBER OF S I G N I F I C A N T B I T S 
IN THE VECTOR F I E L D . 

I N D I V I D U A L B I T S I N THE VECTOR F I E L D ARE TESTED TO 
DETERMINE WHETHER TO TAKE THE' CARCO) OR THE CDR ( 1 ) OF THE 
CELL . 

THE S U B F I E L D S A R E : 

T Y P E < 0 . 3 > 
G C < O t 1 > 
C 0 U N T E H < 0 . 5 > 
VECTOH<Ut 5 1 > 

1= C E L L < 0 l 3 > 
1= C E L L < 4 : 5 > 
»= C E L L < 6 : 1 1 > 
! » C E L L < 1 2 : 6 3 > 

THE LENGTH OF THE VECTOR ALLOWS US TO FOLLOW UP TO 
5 2 D I F F E R E N T BRANCHES ( C E L L S ) . 
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A FEW P R I M I T I V E S t 

CHAINI C A C 2 3 < T Y P E > » S A V ) - > ERRORCHAIN 
< A C 1 3 < T Y P E > = P T H ) - > C H A I N i 
( A t 1 3 < T Y P E > # CELL) - > ERRORCHAIN 
H l - N I L 
R 2 - A C 13 
- > C H A I N 2 

CHAIN 1 f MAH-At 1 3<ADDR> 
MDH-MCMAH3 
H l - A C 1 3 
R 2 - M B R 

C H A I N S * S A V C R - A C 2 3 
LOOPCHAIN* < COUNTER = 0 ) - > RETURN 

( R 2 < T Y P E > # CELL) - > ERR0RCHA1N 
CVECT0R<!31> = 1 ) - > CDRCHAIN 
< H 2 < A M l > a I N M E D I A T E ) - > ERRORUHAIN 
R K T Y P E > - P T R 
R l < A M 2 > - R 2 < A M l > 
R t < A U D R > - R 2 < C A R > 
MAH-R2<CAR> 
- > CDRCHAIN1 

CDRCHAIN J <H2<AM2> » I N M E D I A T E ) - > ERRORCHAIN 
R 1 < T Y P E > - P T R 
R l < A M 2 > - R 2 < A M 2 > 
H 1 < A D D R > ~ R 2 < A D D R > 
MAH~H2<CDR> 

CDRCHAIN I t MBR-MCMAR3 
C O U N T E R - C O U N T E R - 1 
V E C T O R - V E C T O R / 2 
- > LOOPCHAIN 

ERRORCHAIN* ERRQRKLAG-1 
- > RETURN 

THE ARGUMENTS FOR CHAIN ARE A PLEX AND A STRUCTURE 
A C C E S S VECTOR I N AC 13 AND AC 2 3 R E S P . 

AC 13 CAN BE E I T H E R A P O I N T E R CTYPE P T H ) OR A CELL* 
I F A CELL* WE SAVE AN EXTRA MEMORY CYCLE. 

THE RESULT I N R l I S A P O I N T E R TO THE D E S I R E D ELEMENT 
WHICH I S ALSO STORED I N R 2 ( T H I S I S A S I D E E F F E C T ) • NOTE 
THAT WE WILL GET THE CORRECT ANSWER EVEN WHEN CHAINCOUNTER 
I S Z E R O . 

COUNTER AND VECTOR ARE F I E L D S IN SAVCR ( A P P E N D I X 3 ) 
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C O N S : C A C . 3 < T Y P E > # P T R ) - > ERRORCONS 
C A C 2 3 < T Y P E > # P T R ) - > ERRORCONS 
S T A C K - U P C + 1 
- > GETCELL 
R 2 < T Y P E > - C E L L 
R 2 < U U B > - 0 
R 2 < A M 1 > ~ A C I 3 < A M 2 > 
R 2 < A M 2 > - A C 2 3 < A M 2 > 
R 2 < C A R > - A C 1 3 < C D R > 
R 2 < C D R > - A C 2 3 < C D R > 
M A R - R 1 < C D R > 
M B R - R 2 
MCMAR3-MBR 
- > RETURN 

ERRORCONS: ERROHFLAG-1 
- > RETURN 

THE ARGUMENTS TO CONS ARE 2 P O I N T E R S * IN AC 13 AND 
AC 2 3 R E S P . THE RESULT IN R l I S A P O I N T E R TO THE NEWLY 
CREATED CELL* WHICH I S ALSO STORED I N R2 ( T H I S I S A S I D E 
E F F E C T ) 

EQJ R l - N I L 
( A C 1 3 < T Y P E > # A C 2 3 < T Y P E > ) - > RETURN 
( A C 1 3 = A C 2 3 ) - > H I - T R U E 
- > RETURN 

RETURN: T l - S T A C K 
( T 1 < T Y P E > # U P C ) - > RETURN 
U P C - T 1 

RETURN WILL GET U S OUT OF TROUBLE BY P O P P I N G UP THE 
STACK U N T I L I T F I N D S A MICROPROGRAM COUNTER. I . E . A V A L I D 
RETURNING A D D R E S S * AND BY CLEANING UP THE STACK. 
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G E T I t I F L A G - 1 
GET: C A C 1 3 < T Y P E > = P T R ) - > GETO 

C A C 1 3 < T Y P E > # P L ) - > ERRORGET 
R l - N I L 
R 2 - A C 1 3 
- > GET2 

GETOt MAR-AC 13<ADDR> 
R l - A C 1 3 

G E T I I MBR-MCMAR3 
R 2 - M B R 
C R 2 < T Y P E > # P L ) - > ERRORGET 

GET2I I A R - R 2 < P N > 
CI FLAG = 0 ) - > T l - P D T C I A R 3 
CI FLAG * = ! ) - > T l - I A R 
CAC23<CDR> » T l ) - > RETURN 
CR2<AM2> = I N M E D I A T E ) - > ENDGET1 
R 1 < T Y P E > - P T R 
R 1 < A M 2 > - R 2 < A M 2 > 
R 1 < A D D R > - R 2 < N P > 
M A R - R 2 < N P > 
- > GET 1 

ERRORGET: E R R O R F L A G - 1 
- > RETURN 

E N D G E T M R l - N I L 
- > RETURN 

GET SEARCHES FOR A PROPERTY C A C 2 3 ) I N A PROPERTY 
L I S T OF AN ATOM C A C 1 3 ) . 

THERE ARE TWO B A S I C FLAVORS* DEPENDING ON WHETHER WE 
KNOW THE INDEX OF THE PROPERTY C L E . I T S SHORT NAME OR ENTRY 
P O I N T I N P D T ) OR NOT* IN WHICH CASE WE REQUIRE AN EXTRA 
TABLE L O O K - U P INTO P D T . 

GET C H A I N S DOWN THE PROPERTY L I S T U S I N G THE N P 
P O I N T E R U N T I L I T F I N D S THE END OF THE PROPERTY L I S T C THE 
PROPERTY I S NOT THERE) OR A PROPERTY ELEMENT WITH THE SAME 
INDEX CIN THE IMMEDIATE V E R S I O N ) OR ONE WHOSE A S S O C I A T E D PDT 
ENTRY I S EQUAL TO THE SECOND ARGUMENT. 

R l WILL CONTAIN A P O I N T E R TO THE PL ELEMENT AND R 2 
THE PL ELEMENT P R O P E R . I N CASE OF F A I L U R E TO F I N D THE 
PROPERTY R l WILL CONTAIN N I L AND R 2 THE L A S T P L ELEMENT. 
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K U U A H S T A C K - ' G O R K ' 
EQUAL I t S T A C K - U P C + i 

- > KU 
<R1 a TRUE) - > itETURN 
< A C 1 3 < T Y P E > # P T H ) - > ENDEQUAL2 
< A C 2 3 < T Y P E > # P T R ) - > ENDEQUAL2 
< A C 1 3 < A M 2 > » L I S T P O I N T E R ) - > E N D E Q U A L 2 
< A C 2 3 < A M 2 > # L I S T P O I N T E R ) - > ENDEQUAL2 
MAR-AC 13 <ADDR> 
MDR-MCMAR3 
H1-M13R 
M A R - A C 2 3 < C D H > 
MBR-MCMAR3 
R2-MHR 
T K T Y P E > - P T R 
T 1 < A M 8 > - H 1 < A M 2 > 
T i < ADJJR>-H1«:ADDH> 
S T A C K - T 1 
T 1 < A M 2 > - R 2 < A M 2 > 
T1 < A D D R > - H y < A D D R > 
S T A C K - 1 1 
AC 1 3 < T Y P E > - P T R 
AC 1 3 < A M 2 > - R 1 < A M 1 > 
AC 1 3 < A D W l > - H l < C A R > 
A C 2 3 < T Y P E > - P T R 
A C 2 3 < A t < U > - R 2 < A M l > 
AC U 3 < ADD]<> - Hii< CAR> 
S T A C K - U P C + 1 
- > EUUALl 
( H i = M I L ) - > ENDEQUAL3 

AC 2 3 - S T A C K 
AC 1 3 - S T A C K 
- > EQUAL 1 

ENDEQUAL2I H I - N I L 
- > RETUJIN 

ENDEQUAL3I T 1 - S T A C K 
( T K T Y P E > o CORK) - > RETURN 
- > ENDEQUAL3 

•CORK' I S OUR GUARANTEE THAT WE WILL ESCAPE EQUAL 
COMPLETELY* A S SOON A S ONE OF THE L E V E L S OF RECURSION F A I L S . 



TYPE G.C. U . U . B 

•CELL 
AMI CAR AM2 CDR 

0 3 11 13 37 39 63 

F i g u r e 4 . 1 : LIST CELL 

TYPE G.C. PROPERTY 
•PL» INDEX 

AMI 

0 3 

VALUE LIST 

11 13 

AM2 NEXT PROPERTY 

37 39 "63 

F i g u r e 4 . 2 : PROPERTY LIST ELEMENT 

TYPE G.C. COUNTER 
»SAV» 

VECTOR 

0 3 11 

5 

F i g u r e 4 . 3 j STRUCTURE ACCESS VECTOR 



A P P E N D I X 5 

D E S C R I P T I O N OF MICROCOMMANDS 

COMMOM F I E L D S IN MICRO WORDS 

M W / M l C R O W 0 R D < O l 6 3 > 
T Y P E < 0 : 3 > 1= MW<Ot3> ALWAYS TYPE *MICROCOMMAND* 
0 P < 0 » 2 > I * MW<4lG> SELECT I N T E R P R E T A T I O N . 

R B S / R E L E A S E - B U S - S I G N A L < 0 l 4 > J= M W < 5 9 t 6 3 > USED TO 
RELEASE AND CLEAR B U S E S 

RTB1 *= R B S < 0 > 
R T B 8 »= R B S < 1 > 
RALU t = R B S < 2 > 
R B S < 3 : 4 > U N D E F I N E D 

MICROWORD TYPE 1 , S P E C I F Y 1 ALU OP A N D / O R A FULL WORD 
TRANSFER A N D / O R AN I N D I R E C T FULL WORD TRANSFER ( U S I N G THE 
I N D I R E C T A D D R E S S R E G I S T E R ) . S E E F I G . 5 * 1 . 

A L U F / A L U - F I E L D < 0 : 2 1 > » = M W < 7 S 2 « > 
A L U E / A L U F - E N A B L E l » A L U F < 0 > 
A L U B l / A L U - B U S - l < 0 * 7 > 1= A L U F < 1 : 8 > OPERAND 1 
A L U B 2 / A L U - B U S - 2 < 0 * 7 > : » A L U F < 9 l l 6 > OPERAND 2 
A L U F N / A L U - F U N C T I 0 N < 0 : 4 > 1= A L U F < 1 7 : 2 1 > 

T F / T R A N S F E R - F I ELD< OJ 1 7 > t= M W < 2 9 : 4 6 > 
T F E / T F - E N A B L E *= T F < 0 > 
T B S / T R A N S F E R - B U S - S E L E C T O R t » T F < l > 
R l < 0 : 7 > T F < 2 : 9 > 
R 2 < 0 t 7 > : = T F < 1 0 : 1 7 > 

I T F / I N D I R E C T - T R A N S F E R - F I E L D < O t 1 0 > : = M W < 4 7 : 5 7 > 
I T F E / I T F - E N A B L E : = I T F < 0 > 
I T F T / 1 T - F R O M - T O »= I T F < 1 > 
I T B S / I T - B U S - S E L E C T I T F < 2 > 
R l < 0 * 7 > : = I T F < 3 : 1 0 > 

MW<58> U N D E F I N E D 

MICROWORD TYPE 2 S P E C I F Y 1 BYTE TRANSFER AND A 
P O S S I B L E J U M P . S E E F I G . 5 . 2 . 

B T F / B Y T E - T R A N S F E R - F I E L D < O t 3 4 > 1 = M W < 7 * 4 I > 
T B S : = B T F < 0 > 
R l < 0 : 7 > : = B T F < U 8 > 
I B P 1 / I N I T I A L - B I T - P 0 S I T I 0 N - 1 < 0 : 5 > : = B T F < 9 l 1 4 > 
R 2 < 0 » 7 > . = B T F < 1 5 : 2 2 > 
I B P 2 / I N I T I A L - B I T - P 0 S I T I 0 N - 2 < 0 : 5 > : = B T F < 2 3 * 2 8 > 
F B P 2 / F I N A L - B I T - P O S I T I 0 N - 2 < 0 l 5> t = B T F < 2 9 l 3 4 > 

J F / J U M P - F I E L D < 0 : 1 6 > : = M W < 4 2 s 5 8 > 
J E / J U M P - E N A B L E *= J F < 0 > 
N E X T / N E X T - U I N S T R U C T I O N < 0 : 1 5 > 1= J F < 1 1 1 6 > 



MICROWORD TYPE 3 S P E C I F Y 2 PARALLEL FULL WORD 
TRANSFERS* THE I N P U T WORDS ARE E I T H E R IN M ( L O C A L ) OR A S OUTPUT OF 
A L U . S E E F I G . 5 . 3 . 

S A L U / S T 0 R E - A L U < 0 : 9 > 1= M W < 7 : 1 6 > 
S A L U E / S A L U - E N A B L E 1= S A L U < 0 > 
T B S t = S A L U < 1 > 
R l < 0 l 7 > 1= S A L U < 2 : 9 > 

B t F / B U S - l - F I E L D < O l 1 6 > : » M W < 1 7 l 3 3 > 
B 1 F E / B I F - E N A B L E ! » B l F < 0 > 
B 1 R 1 < 0 : 7 > 1= B 1 F < 1 * 8 > 
B 1 R S < 0 I 7 > 1= B 1 F < 9 : 1 6 > 

B 2 F / B U S - 2 - F I E L D < 0 : 1 6 > : = M W < 3 4 ! 5 0 > 
B 2 F E / B 2 F - E N A B L E *= B 2 F < 0 > 
B 2 K K 0 l 7 > 1= B 2 F < 1 * 8 > 
B 2 R 2 < 0 » 7 > 1= B 2 F < 9 : 1 6 > 

M W < 5 1 : 5 8 > U N D E F I N E D 

MICROWORD TYPE A S P E C I F Y JUMP ON C O N D I T I O N S . THE 
C O N D I T I O N S F I E L D I S S T I L L U N D E F I N E D , I T MAY BE E I T H E R A D I R E C T 
B I T MASK OR A ENCODED F I E L D . SEE F I G . 5 . 4 . 

T C F / T E S T - C O N D I T I O N S - F I E L D < 0 : 3 5 > t = M W < 7 l 4 2 > 
J F / J U M P - F I E L D < O t 1 5 > ! = M W < 4 3 ! 5 8 > 

MICROWORD TYPE 5 S P E C I F Y C O N D I T I O N B I T S TO BE SET 
OR RESET IN THE EXTERNAL WORLD. SEE F I G . 5 . 5 . 

S C F / S E T - C O N D I T I O N S - F I E L D < 0 : 5 1 > ! = M W < 7 : 5 8 > 

MICROWORD TYPE 6 S P E C I F Y A I N M E D I A T E BYTE 
COMPARISON AND A JUMP ON EQUAL OR NOT EQUAL. S E E F I G . 5 . 6 . 

C B F / C O M P A R E - B Y T E - F I E L D < 0 * 1 8 > : = M W < 7 : 2 5 > 
B S / B U S - S E L E C T O R : » C B F < 0 > 
R K 0 I 7 > : = C B F < 1 » 8 > 
I B P l < 0 : 5 > : = C B F < 9 : 1 4 > 
B L / B Y T E - L E N G T H < 0 : 3 > : = C B F < 1 5 » 1 8 > 

I B P / INMEDI A T E - B I T - P A T T E R N < O t 15> t => M W < S 6 l 4 1 > 
J F / J U M P - F I E L D < 0 : 1 6 > : = M W < 4 2 : 5 8 > 

J C / J U M P - C O N D I T I O N : = J F < 0 > 
J A / J U M P - A D D R E S S < 0 : 1 5 > : = J F < 1 U 6 > 



TYPE ! ~6F 

1 

"SF.FIEU) 

ENABLE Rl 

-39-
TRANSFiT FIELD 

F N ENABLE B U S 
I ( E L E C T 

R. 

0 3 15 23 28 29 30 38 46 47 48 49 57 58 63 

Figure 5.It Microword type I 

BYTE TRANSFER FIELD 

BUS 
SELECT 

IBP1 1BP2 FBP2 

JUMP FIELD 

ENABLE JUMP 
ADDR 

RBS 

0 3 15 21 29 35 41 42 

Figure 5.2t Microword type 2 

58 63 

TYPE OP STC 
= j 1 
3 ENABLl 

)RE ALU 
riELD 

BUS 1 R, 
SELECT 1 

BUS. 

ENABLl 

1 FIE I 

R l 

D 

R 2 

BUS. 

ENABLl 

-2 FIE1 

: R X 

U> 

R 2 

0 3 6 7 8 16 17 25 33 3t 

Figure 5.3: Microword type 

\ 42 50 57 63 

3 

TYPE OP 

4 
TEST CONDITIONS FIELD 

JUMP 
ADDR 

RBS 

0 3 6 42 58 63 

Figure 5.4: Microword type 4 

TYPE 
•|iC» 

OP 

5 
SET CONDITIONS FIELD 

RBS 

0 3 6 58 63 

Figure 5.5: Microword type 5 

TYPE OP 

6 

COMPA 

BUS 
SELECT 

RE BYT 

R ̂ 

E FIEL 

1BP1 

D 

BL 

BIT PATTERN JUMB 

JUMP 
CONDI
TION 

FIELD 

JUMP 
ADDR 

RBS 

15 21 25 41 42 

Figure 5.6: Microword type 6 

58 63 

7 
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APPENDIX 6 

GARBAGE COLLECTION TECHNIQUES 

OUTLINE 

1. CONVENTIONAL GARBAGE COLLECTION 

1.1 DESCRIPTION 

1.2 ADVANTAGES 

1.3 DISADVANTAGES 

2. COMPACTING GARBAGE COLLECTION 

2.1 DESCRIPTION 

2.2 ADVANTAGES 

2.3 DISADVANTAGES 

2.4 MICROCODE IMPLEMENTATION 

2.5 PAGING SCHEMES 

3. PARALLEL GARBAGE COLLECTION 

3.1 THE PROBLEM 

3.2 FEATURES (ADVANTAGES AND DISADVANTAGES) 

3.3 DESCRIPTION OF A PROPOSED SOLUTION 

3.4 IMPLEMENTATION 

4. OVERVIEW 



1. CONVENTIONAL GC 

1.1 Description: (as in LISP 1.5) 

Given pointers to main system lists (symbol tables, stack, 

OBLIST, etc.), enumerate and mark all cells that can be reached from 

these, by iteration on CDR's and recursion on CAR's, when latter is 

subliat. Then step linearly through memory, collecting all unmarked 

cells into a new Free Storage List / FSL; marked cells are unmarked 

(for next time GC is called) but otherwise untouched, thus returned 

to original (pre-GC) state. (Note: "/" introduces abbreviations.) 

1.2 Advantages: 

1) Simple and straightforward 

2) Time-honored, well understood and debugged 

3) Embodies basic GC principle: "If you can find it, save it; 
else re-use it". 

1.3 Disadvantages: 

1) Recursion requires use of stack, to potentially great depth. 

2) Does nothing to consolidate/localize current data; if you've 
been working in 64K but only save 20K of "hot" lists, those 
20,000 cells will still be scattered throughout the 64K 
space, i.e., your "working set" is not reduced, from either 
Paging or M.Cache standpoint. 

3) Requires one dedicated marker bit in each word (P.LISP word 
allows two bits, though) 

4 ) That linear sweep through all of allocated memory (after 
the find-and-mark phase) takes a while on the M-sizes we 
are talking about (~ 1 M words) [Fenichel 69] — maybe 
several seconds. 

5) Parallel GC is Impossible. 
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6) Lack of consolidation makes conventional GC less attrac
tive for compact-1ist/CLS systems, and ultimately useless 
where random-size plexea/RSP capability is desired. 

2. COMPACTING GARBAGE COLLECTION/CGC 

N.B. CGC is not confined to, nor does it imply, CLS [Hansen 69]. 

We use the term "compacted list" to mean a list of either type which 

has been consolidated by a CGC. See 2.4.1. 

2.1 Description of Compacting GC Algorithms: 

(References [Cheney 70] and [Fenichel 69J will be helpful in 

understanding what follows.) "GC" is an implementation-dependent 

(hence undefined at present [Fenichel 69] procedure which calls GC2 

on each main system list (stack, object list, symbol tables, etc.). 

"GC2" copies each list structure given by a pointer/PTR from 

GC into a "new" semi-space/ss, using a third routine "COPYLIST". 

Copylist copies only the top level of a list into the new area. 

Then GC2 advances a scanning pointer SCAN through the New copied 

lists, looking for yet-uncopied sublists in CAR's, to which COPYLIST 

is applied -- its result updates the CAR. Note whenever an Old cell 

is copied, its CDR is changed to point to the New copied cell. See 

Fig. 6.1. When SCAN catches up to NEXT, GC2 is finished. If GC 

has no more system lists, CGC is complete. 

Note: NEXT is just the free-storage pointer, initialized to the 

beginning of the new SS. 



OLD SS 
CAR AM2 CDR 

Low 

High 

Full of "garbage" 
(inactive data) and 
roundabout CDR's. 
<AM2> = 3 flags 
copied cells, whose 
CDR points to NEW copy. 

NEW SS 
CAR CDR 

There are no ptre into OLD here. 
Most CDR's point to following 
location. 

t> . SCAN - sublist Finder 

May still be OLD sublist pointers 
/ in CAR Fields here. 

< • NEXT - free-storage index 

Virgin Free Storage 
/ (contents ignored) 

J 

Figure 6.1 
State of Semispaces with CGC Partially Completed 



2.2 Advantages of CGC: 

1) Reduction of page (or cache) faults; three reasons: 

a) Each individual list is localized in M following 
a CGC run, so accessing one word (say, the first) 
of it brings all or most of the entire list into 
real Mp (if p a g i n g ) , or the next few words into 
M.Cache. 

b) Reduction of total "working set 1 1 — all active 
data are concentrated at low end of user's total 
allocated (virtual) M space. 

c) Free Storage List/FSL is linear (in rest of al¬ 
located M) , which increases chances that new lists 
will be formed in contiguous blocks also. 

2) Look-ahead schemes are profitable — good chance that CDR 
(Mem [n]) = n + 1. (M.Cache is one crude form of look-ahead.) 

3) Compacted lists can be read out onto disk, tape, etc. and 
read back in without disturbing common sublists or re¬ 
entrant/circular/looped structures. [Hansen 6 9] . 

4) CGC can handle reentrant/circular/looped lists easily 
(though so does conventional GC) . 

5) CGC algorithm is simple [Cheney 70] --especially for SLS. 
Much simpler than [Schorr 6 7 ] . 

6) CGC needs no recursion, stacks, or dedicated bits. 

7) Works for (and more or less needed for) CLS. 

8) Random-sized Plexes/RSP or Vectors are easy to implement 
because of the linear FSL, without the horrendous complexity 
of AED System [Ross 6 7 ] . Includes Strings and User-Defined 
Data Types a la SNOBOL 4. 

9) PGC -- garbage collection in parallel with user-program 
execution -- becomes possible. No more n-second hangups 
while LISP collects! 

2.3 Disadvantage of CGC: 

Virtual memory size must be doubled [Fenichel 69] [Cheney 70] 

therefore address space must acquire one extra bit's worth of information 
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to diatinguish which "semi-space" an address is in during GC execu

tion. But ... 

1) Only two pages of "New" semi-space need be kept in Mp, 
and ~ 6 pages give best performance if special paging 
scheme is used (see 2.5). Faults are l/page-size per 
page and predictable (hence special scheme). 

2) Linear nature of read/write sequences in New SS goes well 
with M.Cache. 

3) Size of M.virtual in the C.ai is such that doubling 
M.virtual needed may be o.k. 

4) Or let OS.LISP (in collaboration with AMOS) keep a hunk 
of Mp around which severalLISP jobs can time-share for 
CGC (the physical location of this hunk changes: after 
a job CGC's into it, that job's Relocation Registers 
are changed to use it as working M; its old M is re
allocated into the 'hunk' pool); 

5) Or CGC onto Ms (disk, drum, etc.) directly and swap back 
into same Mp space. Fine, if you can stand the time re
quired (you only write/read active words) and the use of 
recursion [Fenichel 69]; [Cheney 70] won't work without 
addressable memory. 



2.4 Microcoded Implementation 

Note: in flow charts, box numbers correspond to comments in code 

listings. 

".X" = Mem[X] - M[X<CDH>] 

Enter GC2 (Per); local scan; global Next 

Ptr «- COPYLIST (Ptr) 

Pre-type (CAR (.Scan)) 
i.e., .Scan <AMl> = ? 

PTR (List | PList) 
i.e., = 0 | 1 

CAR(.Scan) - Copylist(CAR(.Scan)) 

Scan - Scan + 1 

yes 

Immediate ATOM 
i.e., = 2 

Scan < Next? 

Figure 6.2 
GC2 



Enter COPYUST (Ptr); global Next 

CLR1 

(is .Ptr already-copled/AC*? ^ 3 1 - ^ R e t u r n CDR (.Ptr 

no 

Copyllst «- Next 

> 
t 

Is .Ptr AC? 

no 

"Copy" 

> 
11, CLR2 

yes 
CDR (.(Next-1) - CDR (.Ptr) 

.Next «- .Ptr c Return Copylist 
CDR (.Ptr) - Next 

Mark .Ptr as "AC" ** 

Pre-type (CDR(,Next) - ? 
(.Next <AM2> = ?) 

i 

PTR List 1 PList 
(- 0|1) 

8 Ptr «- CDR (.Next) 

9 CDR (.Next) «- Next + 1 

10 Next «- Next + 1 

3 

3 

Test <AM2> = 3, in this version 

**.Ptr <AM2> - 3, in this version 

Note: We don't need the GC bits 4, 5; these can be used for TYPE or UUB fields. 

7 

Figure 6.3 
COPYLIST 



2.5 Paging Schemes for Compacting GC: 

Special algorithms can take advantage of the predictable way 

GC2 and COPYLIST access New SS: 

1) SCAN and NEXT both advance linearly through New, never 
point into Old SS. 

2) All reads/writes in New are at locations pointed to by 
Scan and Next -- no probes at "random" locations. 

3) NEXT is write-only, no fetches. 

4) SCAN will read (and perhaps write) every word in a page 
once before running out of it -- likewise NEXT writes 
every word once before reaching boundary. 

5) Thus n-word pages cause a fault about every l/n accesses. 
You can't ask for better "folding". 

Treat each of the two pointers' working sets as two ring buffers -¬ 

it requires 2 two pages in Mp per pointer. When Scan or Next crosses 

a page boundary, the just-exited page is written out, and all Mp 

buffer sections other than that and the just-entered one are set 

up to fetch the next higher pages, once they have written out their 

previous contents. 

This look-ahead eliminates faults, if there are enough 
buffer sections to keep up with rate-of-advance of 
Next and Scan. Note since Next is write-only, it need 
never fetch pages into its buffer. The algorithm must 
allow for case where Scan and Next are on same page. 
The ring buffer is like a caterpillar tread rolling 
over Ms; see Figure 6.4. 

Even if paging is not used, the linear-advance nature of New pointers 

will make good use of M.cache look-ahead capabilities --Scan can use 

all the look-ahead it can get. 



SCAN 

M.pri (core) 

M.sec (drum) 

Writing Fetching 

Figure 6.4 
Ring Buffer "Caterpillar Tread" (See Sec. 2.5) 

The best number of buffer sections is a function of how fast CGC 

pushes Scan and Next, page size, and time needed to swap a page in 

or out. Size of Next's buffer ~ l/2 size of Scan's, since all 

sections can be writing-out, i.e., currently-active section is 

"leading tread" in the caterpillar picture (Figure 6.4) -- nobody 

is reading in. 

3. PARALLEL [COMPACTING] GARBAGE COLLECTION/PGC 

3.1 The Problem: 

List-processing systems which rely on occasional garbage col-

lections/GC to recover free storage (as opposed to SLIP-type LP 

systems using reference counts to keep track continuously of avail

able space) must suspend operation entirely for a period (~ 1 second) 

while the GC runs. 

This is o.k. inmost applications, but increasing emphasis 

on real-time LP applications like robots and speech processing 

suggests a demand for a LISP system that would not go to sleep every 

minute or so. 



The proposed solution is a Compacting GC that runs "in parallel" 

with user's LISP functions. Bits of GC are run in between bursts 

of user's computing, in usual time-sharing time-multiplexed fashion. 

No change in LISP list structure is required (except slight 

address-space extension or addition of indicator bit, which is 

easily fit into P.LISP machine word), although PGC will also work 

for Compact List Structure/CLS. 

PGC LISP runs around a 2-section ring buffer, filling current 

section ("semi-space") with computation while "simultaneously" 

copying still-valid previous results from preceding section. 

3 . 2 Features (good and bad) of Parallel GC/PGC: 

A = Advantage; D = Disadvantage; R = Requirement on implementation 

(A) LISP system never has to stop dead for several seconds 
to GC (unless Bailing Out ( 3 . 3 ) ) . 

(A) Applicable to conventional linked-lists/SLS, also to 
Compact List/CLS. 

(D) Need double the (virtual) memory, for 2 semi-spaces, 
as with any CGC. 

(R) PGC must compact storage (i.e., use CGC). 

(D) Both semi-spaces /ss's are "active" most of time (though 
one usually more than other), as "working set" is dis
tributed over both SS's. As a consequence, "thrashing" 
of pages may be serious enough that elaborate schemes to 
prevent this may be worthwhile. We are currently sketch
ing some of these, based on recent discussions with Alan 
Kay of Stanford; these will be reported in a later paper. 

(D) So special ring-buffer paging tricks (or M.cache advan
tages) of non-parallel GC (sec. 2.5) are unavailable. 

(A) So 3 no need to write special paging schemes! 

(R) Address space must be well-ordered. 



(R) Must be able to tell which SS an addr belongs to, with
out indicator bits, etc. 

(R) STACK, ALIST, etc. may need special treatment (?). 

(R,D) LISP primitives need slight mod's, which add slightly 
to running time. 

(R) OS.LISP (or delegates) must synchronize PGC with user pro
gram — lots of work here, though not that time-consuming. 

(R) "Bail-out" procedure needed to recover from premature SS 
free-storage exhaustion. (3.3) 

3.3 Description of Parallel GC Proposed: (See [Fenichel 69] for notions 

of "flip" and "semi-space".) 

We use a slightly modified version of the CGC in Section 2. 

LISP jobs run under a supervisor/Super (some or all of which may 

be part of LISP interpreter) which can be in one of two modes — 

User and GC. Mode at time t determines whether user's LISP code 

or GC is running at t. 

When current semi-space is exhausted (i.e., 'next' points to 

top address of semi-space) there are two options, depending on 

whether PGC has been completed. If it has, the supervisor simply 

'flips' semi-spaces and restarts. If not, then the storage has 

run out before GC has finished copying the old semi-space, and a 

special recovery procedure 'bail-out' is invoked (see 3.3.6). 

A conventional interrupt system is unsafe. Some LISP and GC 

routines cannot be suspended in the middle of their operation. 

When pointers are being inspected or modified, instead of interrupts, 

these routines will check the system timer and 'voluntarily' return 

control to the supervisor, perhaps getting a little more than their 

time slice. 



Let us call the time quanta for LISP and GC, QU and QG, 

respectively; in general QU * QG. The supervisor alternates modes, 

switching at first opportunity after current mode's time slice is 

used up. 

The ratio RG = QG/QU is fairly critical. If too small, the 

semi-space can be exhausted before GC has copied the old semi-

space, requiring a bail-out action; if too large, it approaches 

the conventional GC, by stopping the user program for large periods 

of time after each 'flipping1 of semi-spaces. 

The supervisor can dynamically adjust RG during execution 

as follows: 

Let S = semi-space size (number of cells) 

Let UI • number of active cells (not garbage) at start of 
(i+l)th semi-space flip 

Let GI = S-UI = number of recoverable (garbage) cells 

The optimal relation RG is given by: 

RG - QG/QU - K * GI / UI 

where K = (average time required by GC to copy an active cell 

from old semi-space) / (average time required by LISP to obtain a 

new cell) • 



"BAIL-OUT" RECOVERY PROCEDURE FOR EXHAUSTED NEW SS (PROPOSED): 

Figure 6.5. The Situation: 

OLD NEW 
Low 

High 
wmm 
w/h////t— 

WET 
I Contains no ptrs into 

"garbage". 
SCAN 

«— NEXT 

Figure 6.6. The Bail-Out: Append More M (Begged from AMOS) to NEW; 
Finish GC Exclusively 

^LD NEW 

"Borrowed" 
extra M spac 

All ptrs to OLD have 

' r e ^ v e d d a t e d 

Figure 6.7. Now Flip SS's, Do Complete Exclusive GC; Return (De-allocate) 
Borrowed Space to LMOS. 

NEW OLD 

^All active 
data 

SCAN, NEXT 

>Free storage 

Now resume 
u^er job. 

i )Returned to 
,j pool 

resources 



IMPLEMENTATION 

Some of the requirements of the PGC translate into small changes in 

the compacting garbage collector and introduce some extra overhead in 

some LISP primitives and on the LISP operating system: 

LISP primitives must now recognize when the cell accessed has been 

copied into the new semi-space and if so spend one extra memory cycle 

to get it. 

LISP 'pointer moving' primitives (RPLACA, RPLACD, NOONC, P-List 

functions, etc.) must do extra work to prevent errors; for instance, 

inserting in a cell already in the new semi-space, a pointer to a list 

still in the old one; if this is the only pointer to that list, it may 

never be copied into the new semi-space. (See Figure 6 . 8 for a solution.) 

LISP system supervisor must now: 

- control alternation of execution of LISP programs and PGC 
and dynamically compute the 'optimal' ratio RG 

- initiate recovery procedures, with possible help from AMOS 

- swapping policies should be integrated with the system, 
for instance, a job in i/o wait should not be swapped out. 
Instead, we can run 'solid' PGC (it does not hurt to finish 
earlier! 

Subroutine GC2 must be modified to allow for cells created by non-

pointer moving primitives like CONS with: 

- CDR fields pointing to old semi-space 

- CAR fields of cells reached by SCAN pointing to new semi-
space 

These require that GC2 test both CAR and CDR field at cell under 

SCAN. 



Figure 6 8 "Patch" to be added at entry to any pointer-moving primiti 
P(A,X,...); pointer A,X; where intent is: CAR(.A) «- X or 
CDR(.A) - X . 

"Do it" - original (non-PGC) entry label of P(A,X...) 

ve 

( Enter, P(A,X,...) ) 

Pre-type CDR(X) 
(X<AM2> « ?) 

Immediate ATOM 

List 
(- 0 

PList 
1) 

. . . . . , >l • 

Which subspace does X 
point to? 

OLD 

Is .X already-copied? 
(.S<AM2> = 3?) 

No 

(-2) Do it 

NEW Do it 

X *- CDR( ,X) 
) > (X<CDR> - .X<CDR> 

I 
Do it 

[Use left dotted line if CAR(.A) - X; right for CDR] 

(A > SCAN?> 
Yes 

Do It 

1 
CAR(.Next) - X 

CDR(.Next) - NIL 

Next - Next + 1 

Create "fake" list 
Vcell with X as 
' "sublist". 

V 

Do it 

? 

file:///cell
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4. OVERVIEW OF GC AND LIST STRUCTURE OPTIONS 

There are three independent (almost) Boolean features of a LISP 

system: 

- Compacting Garbage Collection/CGC 

- Compact-List Structure/CLS 

- Parallel Garbage Collection/PGC 

Figure 6.9 "Karnaugh Map" Summary of Options Possible in Combination 

Compacting GC/CGC Conventional (McCarthy) GC 

Compact 
Lists/CLS { 

Linked 
(-i compact) / 
Lists/SLS ' 

Yes - more 
or less 
required 

Yes 
No - PGC in 
CLS require 

CGC 

Not worth 
s it 

Yes - see 
Sec. 2 

Yes - see 
Sec. 3 

Not in our 
scheme;* 
PGC require 

CGC 

Sure -
LISP 1.5, 
} 1.6 

Parallel GC/PGC 

*Other schemes might use, e.g., page-wise McCarthy GC. See sec. 3.2. 



APPENDIX 7 

The following is an abstract of the report "C.ai: A Computing 

Environment for Al Research", obtainable from the Carnegie-MelIon 

University Computer Science Department. 

A computer for artificial intelligence research is examined. The 

design is based on a large, straightforward primary memory facility 

(about 8 million 74 bit words). Access to the memory is via at least 

16 ports which are hardware protected; there is dynamic assignment of 

the memory to the ports. The maximum port bandwidth is 8,600 million 

bits/sec. Processors for languages (e.g., LISP) and specialized terminals 

(e.g., video input/output) can be reliably connected to the system during 

its operation. The approach is evolutionary in that high performance 

processors, such as the Stanford Al Processor, can be connected to the 

memory structure, giving an overall power of at least 100 times a PDP-10 

(and 200 to 300 times a PDP-10 for list processing languages) for 10 

processors -- although no processors can be attached. Using this 

approach we might expect 40 — 80 million PDP-10 operations/second. 

At the same time, special language processors (P.I) can be designed 

and attached. These processors give even larger power increases, but 

for restricted language use. Two processors, P.LISP and P.L* were 

examined for the LISP and L* languages and are reported on separately 

A plan for building the machine in increments over the next three 

to five years is examined. Specific schedules are proposed. 

Concurrent with the operation of the machine, there should be re

search into the design of hardware, software and theory of constructing 

large scale computing facilities with maximum modularity. 
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