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ABSTRACT

The theory of optimal algorithmc processes is part of conputational

conpl exity. This paper deals with anal ytic conputational conplexity. The

rel ati on between the goodness of an iteration algorithmand its new func-

tion evaluation and menory requirements are anal yzed. A new conjecture

i s stated.



1. I NTRCDUCTI QN

Conput ational conplexity is one of the foundations of theoretical
conputer science. The phrase conputational conplexity seens to have
been first used by Hartnanis and Stearns [10] in 1965 al though the first
papers belonging to the field are those of Rabin [25, 26] in 1959 and 1960.
e of its inportant conponents is the theory of optimal algorithmc
processes. VW& distinguish between optinality theory for algebraic (or

conbi natorial) processes, which we call al gebraic conputational conplexity

and optinmality theory for analytic (or continuous) processes, which we call

anal yti c conputational conplexity.

The last few years have witnessed striking devel opments in al gebraic
conput ational conplexity; for exanple, the miltiplication of nunbers
(Gook [5], SchSnhage and Strassen [28]), the multiplication of nmatrices
(Wnograd [38], Strassen [29], Hopcroft and Kerr [12]), polynom al eval ua-
tion (Wnograd [38]), nedian of a set of nunbers (Hoyd [9]), graph planarity
(Hopcroft and Tarjan [13]). Surveys may be found in Knuth [17], Borodin [1],
and M nsky [21].

Research on anal ytic computational conplexity dates to the early
sixties (Traub [30-36] and predates nost of the algebraic results. Mre
specifically the work on anal ytic conputational conplexity to date has con-
cerned optimal iteration.Recent results are due to GCohen [ 2], Cohen and
Varaiya [ 3], Feldstein [6], Feldsteinand Firestone [7, 8], Hndmarsh [ 11],
Jarratt [14], King [16], MIler [19, 20], Paterson [24], R ssanen [27],
and Wnograd and Wl fe [39]. (Paterson's results are summari zed at the

end of Section 2,)



In this paper we define basic concepts and pose sone fundarent al
questions in optimal iteration. |In the ternnology of Knuth [18] we per-
forma Type B analysis. That is, we consider a famly of algorithns for
solving a particular problemand select the "best possible". VW survey
earlier work, report recent progress, and state a new conjecture. S nce
the field is changing rapidly, some of the results cited have not yet
appeared in the open literature. An abbreviated version of this nmateri al
was presented (Traub [37]) at the IFIP 71 Congress, with somewhat different
termnol ogy and notati on.

This paper is intended for the non-specialist in iteration theory and
therefore sone precision in definitions and some generality in the nodel s

of iteration algorithnms are sacrificed.



2.  BASI C QONCEPTS

V& begin by specifying the problem Let F denote the class of in-
finitely differentiable real functions defined on the real line. W
assurme that if f € F, then f has at |east one sinple zero «, that is, a
nunber a such that f () - 0, f'(,) t 0. The assunption of infinite
differentiability is for sinplicity. For any algorithmwe shall discuss,

f need only have a small nunber of derivatives on a finite interval.

Qur problemis to approximate <y for f € F. This zero-findi ng probl em
may seemrather specialized, but in fact, it is equivalent to the fixed-point
probl em of cal culating a nunber , such that , = g(a), an ubiquitous problem
in mathematics and applied mathematics. It may be formulated in an ab-
stract setting and covers partial differential equations, integral equa-
tions, boundary val ue problens for ordinary differential equations as
wel |l as many other Inportant problens (Collatz [4]).

W consider iterative algorithns for the approximation of . A se-
guence of approximating iterates {x” is generated by an iteration func-
tion. W shall not give a formal definition of iteration algorithm The
interested reader may consult Otega and Rheinboldt [22] and Cohen and
Varaiya [ 3] .

Qur aimis to discuss optimal iteration algorithns. There are a nunber of
neasures we could optinmze. For exanple, we could mninize the total nunber
of arithmetic operations needed to approxinate, to within an error e.

This neasure is strongly dependent on the particular f in question. For

our current purpose, we prefer a neasure which is not so dependent on f



and which is easier to calculate. (A the end of this section we report

arecent optimality result which does optimze arithnetic operations.)
V¢ introduce general neasures of cost and goodness. The cost con-

sists of tw parts: the new evaluation cost e and the nenory cost m

The new eval uation cost e is defined as the nunber of new function eval ua-

tions required. This definition is notivated by the foll ow ng consi dera-

tions. Aniteration step consists of two parts.

1. Calcul ate new function val ues.

2. Conbine the data to calculate the next iterate.

Since the evaluation of functions requires invocation of subroutines
whereas the calculation of the next iterate requires only a fewarith-
nmetic operations, we neglect the latter.

A function evaluation is the calculation of f or one of its deriva-
tives. Thus if f(x,) and f' (,,) arerequired, e - 2. W could assign a
new eval uation cost of 6, for the evaluation of f < (Traub [36, p. 262]),
but this woul d make the neasure f-dependent.

V¢ turn to the second conponent of the cost. If previous function

evaluations at x , X are used to calculate x,.,, then we define

mas the menory cost of the iteration.

Anot her conponent of the cost is not included in this paper. An
iteration such as the secant iteration involves the subtraction of quan-
tities which are close together, and to mai ntai n accuracy, nore precision
shoul d perhaps be carried. The theory should be extended to include this

cost.



V& turn now to a nmeasure of the goodness of an iteration. Let

1 - a If there exists a nunber p such that

[%,,4 - o
g an 2
i |xi - alp

then p is called the order of the iteration. This definition of order will

serve for our purposes. For other definitions of order the reader is re-
ferred to Otega and Rhei nbol dt [22] and Cohen and Varaiya [ 3].

This is a reasonabl e measure of goodness since if Ais near unity,
then x , has about p tines as nmany significant figures as x..

The order has two additional properties which make it useful for our
purposes. |t depends prinarily on the algorithmand only weakly on f and
it is fairly easy to calculate. For exanple, for all tw ce continuously
differentiable functions f for which f"() ~ 0, Newton iteration (see
Exanple 1 below) has order p = 2. (Recall we are assuning throughout this
paper that f*(,) ~ 0.) Under the same conditions, the secant iteration
has order p - j(I +J5) = 1. 62

Two widely known iteration algorithms nay serve to illumnate the,e
definitions. W will use themto introduce data flow charts which are a

conveni ent way to describe algorithns fromour point of view

Exanple 1. Newton Iteration. Let x, be given. Define

X141 “[x,f(x), 1 (x)].

1 rl(xi;



The data flow chart of Figure 1 exhibits the process at step i. For

Newt on iteration,
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Cal cul ate

i+l

FIGURE 1. DATA FLOWN CHART FOR NEWION | TERATI ON

e 2, Secant Iteration. Let x,, X, be given. Define



The data flow chart of Figure 2 exhibits the process at step i.

secant

focus for the remai nder of this paper.

iteration,

e" 1
m= 1

p«~1+J5) * 1.62 (if f'((y> " 0).

bk

Eval uat e
N I__Cbtain from
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it
Cal cul ate
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FI QURE 2. DATA FLON CHART FCR SECANT | TERATI ON

V¢ now pose the following optimality questions which wll

be di scussed at the end of this section.

CGher optinmality problens wll



TVWO CPTI MALI TY QUESTI ONS

1. Wat is the naxi nal order Pejtnwm ch can be achieved for iterations

whi ch use e new function eval uati ons and have nenory n?

2. What is the nost that nenory mis worth? That is, what is P, - P, ?

)

The answers depend on the class of iterations under study. Traub
[36, Section 1.22] introduced four classes depending on the function

eval uation and menory requirenments of the algorithns. These cl asses

are:
e - Point
Me - Point Wth Menory
Mul ti poi nt

Miul tipoint Wth Menory

V& shal|l discuss optimality results for only the first three classes in
this paper.

These cl asses nmodel algorithns appropriate for stationary iterations on

sequential machines. An iteration rule is stationary if it does not change

fromstep to step. A formal definitionnmay be found in Otega and

Rhei nbol dt [ 22]. Because of the assunption of sequential machi ne, the
definition of one point iteration with nmenory (Section 5) uses the same
nunber of derivatives at each point. On parallel machi nes we may want
to vary the nunber of derivatives at each point. The case where the
nunber of derivatives varies is studied by Traub [ 36, pp. 60-65] and

Feldstein and Firestone [7].



Besi des those posed earlier, we discuss sone additional optinality
questions. An inportant neasure of the goodness of an algorithmis the

efficiency index defined by
1

B- P’

(See Gstrowski [23, Chapter 3] and Traub [36, Appendix C for discussion
of this index.) A study of iterations with high values of the efficiency
index is reported by Feldstein and Firestone [ 7],

An efficiency index simlar to E has been used by Paterson [24] to
derive a nmost interesting result concerning the cal cul ation of square
roots. The calculation of JE is identical with calculating the positive
zero of f = x2-A Pat erson takes for his efficiency neasure of” the

iteration

log, p
M - v=~~—

where p denotes the order and Mdenotes the nunber of rultiplications or
divisions (except by constants). S nce Paterson deals with a particular f,
Mis a good nmeasure. Note that V=10g, Ewith Mreplacing e as a neasure
of cost.

Pat erson observes that for Newon iteration, V- 1. He proves

THECREM (Paterson [24])

If bis arational functional with rational coefficients, generating

a sequence converging to an algebraic nunber a and with order greater than

unity, thenv< 1.
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Thus Newton Iteration is optimal for the calcul ation of square roots,
at least anong iterations with rational coefficients.

It is part of the folklore of nunerical mathematics that it is better
to do sonething sinple nore times then sonething nore conplicated fewer
times. Peterson's result may be interpreted as stating and proving this

rigorously for a particular probl em
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3. I NTERPQLATCRY | TERATI CN

Before discussing optinality results for classes of iterations, we
di scuss particular famlies of iterations which play a special role in
the theory, the interpolatory iteration algorithns 1* ~ introduced
and anal yzed by Traub [35], [36]. For our purpose here, we need not know
how fornulas for interpolatory iteration are derived. Indeed, there are
two fanmlies of interpolatory iterations derived fromdirect and inverse
iteration. Both famlies have the same order for a given e and mand we
shall not distinguish between them In both fanilies, I|,,is Newton

iteration and » ~ is secant iteration.
For interpolatory Iterations we have a conplete theory relating
order to evaluation and nenory costs. Let ¢ denote the order of an

e,m
interpolatory iteration 1~. Then we have the followi ng basic result.

THECREM (Traub [36, Section 3.3 and 6.1])

do-G © For all finite e and m> 0,, e <0e m< e+l. For e fixed,

q is a strictly increasi n% function of mand
| 'e»m
lim g = e+l.
m-» e» *
This is a very satisfying result. |t says that for interpolatory

iteration, Increasing menory while keeping the nunber of new eval uations
fixed al ways increases the order.

An inportant corollary is
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OCRCLLARY (Traub [36, Section 6.1])

For all finite m qexa'eq?d < 1.

Thus for interpolatory iterations menory adds |less than unity to the
order.
Woper and | ower bounds on the order are given by the follow ng theorens.

Let
emt N o

and let € denote the base of natural |ogarithns.

THECREM (Traub [36, Section 3.3])

e . . e
(e+l)" = (e+l)"

A sharper result is given by

THECREM (Kahan [ 15])

" (etl - 1- em
e+T

Val ues of q,, for snall values of e and mmay be found in Table 1.
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1.000

1.618

1.839

1.928

1 e=2 e - 3
2.000 3.000
2.732 3.791
2.920 3.951
2.974 3.988

TABLE 1

VALUES OF q
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4. ONE-POA NT | TERATI ON

An iteration function belongs to the class of one-point iterations
its nenory

if all new function evaluations are at the point x, and if

m= 0. Thus

Xiyg = $e,b[X'i ,f(xi),...,f.’”’\(x,l)].

The data flow chart for a one-point iterationis givenin Figure 3.

=

Eval uat e
f(.) . . (L)
>£
41 [ X FCX) ..., EC"Y (X)) ]
<

FI QURE 3. DATA FLOWVCHART FCR ONE- PO NT | TERATI QN

For one-point iterations the first optinmality question is settled by the
that P is the optimal order for an iteration

t heorembel ow.  Recal |
e,m
characterized by new function eval uations e and nenory m

THECREM (Traub [ 30, 36, Section 5.4])
P = e.
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5. ONE-PQA NT | TERATI ON W TH MEMCRY

An iteration function belongs to the class of one-point Iterations

with nenory if all new function evaluations are at the point x and if

Its nmemory m> 0. Thus

T+1" % nEV<! >
I B B B R I

L} H m o mn 1
Aom'ANio- mA - N AN

The seni-col on separates new function eval uations fromthose recovered
frommenory. The data flowchart for a one-point iteration wth nenory
is givenin Figure 4.
\ f
Eval vat e

f(x) foxo(x)

Cbtain fromnenory

X F(x_),...,fe " (x)

. . (e- .1)

T-m i - r»t *t | -n’

Cal cul ate

i +1:$emt oI >- - - »inet 1‘<x\>i Xiciy v v vy fo l>(Xl_nn)]

FIGQURE 4. DATA FLON CHART FCR ONE- PO NT | TERATI N W TH MEMCRY
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The initial conjecture onoptimality for this class was reported at

the 1961 Nati onal ACQM Conf er ence.

CONJECTURE (Traub [30, 36 (Section 6.3)])

For all one-point iterations with finite nemory m

‘e,m" ‘e, 0 <"’

Uhtil the late sixties no progress was reported, but there have been
exciting recent results. The matter has been investigated by Wnograd and
VWl fe [39] who assert a stronger result. Under weak conditions on the

admssible iteration functions, interpolator iteration 1 is optinal
e,m

anong all iterations characterized by new function eval uations e and nmenory
m The truth of the conjecture then follows fromthe Corollary in
Section 3.

Wnograd and Wl fe [39] have pointed out an anbiguity in the notion
of menory since instead of using menory explicitly at each step, one can
use it inplicitly by encoding it in other data. Gohen and Varaiya [ 3]
cite an exanpl e of such an encoding. Cohen and Varaiya deal with the
anbiguity by adding a condition to the definition ef order which insures

that encodi ng does not increase the rate.

R ssanen [27] resolves the anbiguity by inposing a snoothness condi -
tion on admssible algorithnms. He proves that then the secant iteration
(that is, the interpolator iteration I,, has maxi nal order among all

algorithnms onewith e =1, m= 1.
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6. MLTIPA NT | TERATI ON

V¢ summarize the situation for one-point iterations with or without
nmenory. A one-point iterationwth e new function evaluations (and there-
fore e-1 derivatives) is of order at nost e. A one-point iteration wth
nmenory with e new function evaluations (and therefore e-1 derivatives) is

of order less than e+l. Table 2 summarizes the situation.

New function H ghest ot i nal

eval uati ons QO der
One- Poi nt e e-1 e
e- Poi nt e e-1

Wth Menory

TABLE 2. SUWARY CF FACTS ABQUT | TERATI ON FUNCTI ONS

Is there a class of iteration algorithns for which these restrictions
do not hold? An affirmative answer is provided by multipoint iterations
(Traub [ 34], [36, Section 1.2]).

An iteration function belongs to the class of nmultipoint iterations

if new function evaluations are nade at nore than one point and if its

menory m= 0.
V¢ shall confine ourselves to giving a general prescription and a
data flow chart of a multipoint iteration only for the case of a two-point

iteration. Then
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(e.-D (es1)
X,n- t[XEX),..,f (VA" AV (i >*

The data flow chart is given by Figure 5.

x
i

Evaluate
(el-l)
f(xi),---,f (xi)
Calculate

(el-l)
z, = ¢[xi,f(xi),...,f (Ki)]

Evaluate
(ez -1)'

f(zi),...,f (zi)

L
Cal cul ate

(e.-1) (e -1)
= o Cx, F(X),....f (x),z,6(z),....f * (z2)]

i+l

FIQURE 5. DATA FLON CHART FCR TWD PA NT | TERATI CN

Afourth class of iterations, multipoint with nmenory, is defined by
Traub [36, Section 1.2]. W shall not discuss multipoint iteration with

nmenory here.
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Table 2 lists two types of requirenents, one on the total nunber of
new function eval uati ons and a second on the highest derivative required.

First we give exanples to show that the restriction on derivatives need

not apply for nultipoint iterations.

Exanpl e 1
XMJ)(x)) - <><x)

41"+ xN - 2(Xx,) + »e

$(x) =x-f (x)

This is a particular case of the St effensen-Househol der-Gstrowski iteration

(Traub [36, Appendix D|>. Note that no derivatives are used. Yet if
f'(of) i1, P- 2.

Exanpl e 2

Let L * 3 be fixed and | et

F4+1 tx, F(x), F(x), f(X),....f(\_)],
wher e
f(X .(x))
oA WS VIECA - (X))
and
\'1(X>’<):Xi'

This is anmultipoint iteration based on L-I points. The new function eval ua-
tions are L-1 evaluations of f and one of f\ For all tw ce continuously

differentiable f for which f"(«) ~ 0, this iteration is of order L (Traub
[36, Section 8.34],
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These two exanples show that for nultipoint iterations there is no
connection between the highest derivative required and the order.

For these two exanples, the order equals the nunber of new function
eval uations. Since we proved this was always the case for one-point itera-
tions, we mght be tenpted to suppose that this result holds for nultipoint

iterations also. That this is not the case is shown by the follow ng exanpl e.

Exanmpl e 3

f(Xt)

i VJF)

f(.) p(Ex) - ff<x,n
T+ =1 " Foty'z,) - f (JJ

The data flow chart is given in Figure 6.

Eval uat e

fOxi, f-0x]

> f
Cal cul at e

Eval uat e

c(zi >

V|
Cal cul at e

i+

FIGURE 6. AN EXAMPLE OF A MULTI PO NT | TERATI ON
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141 |

FIGURE 7. GEOMETRIC INTERPRETATION
D is midpoint of line between (zi,o) and (xi,f(xi))
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This iteration uses two evaluations of f and one of f' . Jarratt [14]
has constructed a fourth order iteration using just two evaluations of f
and one of f. King [16] constructs a famly of fourth order methods which
use two values of f and one value of f.

Ve turn to optimality considerations for multipoint iterations. As
before |et Pe’nodenote the maximal order for an iteration with new function
evaluations e and no nenory. If we permt only one-point or multipoint
iterations (no menory), we knowthat p * 2 (Newton iteration) and

P. ., (Exanple 3 above).

W state a
NEW CONJECTURE

For all one-point or nultipoint Iterations wthout nenory,

P2,0:2

P3,0:4
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