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A matrix S Is a solvent of the matrix polynomial 

M(X) = f 1 + A^" 1" 1 + + A m, 

if M(S) - £, where A ± , X and S are square matrices. We 

present some new mathematical results for matrix polynomials, 

as well as a globally convergent algorithm for calculating 

such solvents. 

In the theoretical part of this paper, existence 

theorems for solvents, a generalized division, interpolation, 

a block Vandermonde, and a generalized Lagrangian basis are 

studied. 

Algorithms are presented which generalize Traub's 

scalar polynomial methods, Bernoulli's method,.and eigenvector 

powering. 

The related lambda-matrix problem, that of finding 
a scalar \ such that 

IAra + A-.X111"*1 + ••• + A 1 m 

is singular, is examined along with the matrix polynomial 

problem. 

The matrix polynomial problem can be cast into a 

block eigenvalue formulation as follows. Given a matrix A of 

order mn, find a matrix X of order n, such that AV = VX, 

where V is a matrix of full rank. Some of the Implications 

of this new block eigenvalue formulation are considered. 

ABSTRACT 
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CHAPTER I 

Introduction 

In this chapter we state the problem, give some of 

the definitions, present the major results of the paper, and 

outline the entire dissertation. 

1.1 Preliminaries. Algorithms for the solution of the scalar 

polynomial problem, x m + a-jX 1 1 1 - 1 + ••• + a m - 0, have become 

extremely efficient. See Traub [20,21] and Jenkins and Traub 

£7,8]. A generalization of the scalar polynomial is given by 

the following. 

Definition 1.1 Given n by_ n matrices A Q,A 1,... ,A m, a matrix  

polynomial M(X) is the matrix function 

M(X) = A o X m + A^'1 + ... + A m (1.1) 

in the n by_ n matrix variable X. 

If A Q is nonsingular, then the monic matrix polynomial is 

M(X) i A~^M(X). (1.2) 

Two generalizations of the roots of a scalar poly­

nomial are to be examined. The first one, the major emphasis 

of this work, Is classical. Little is known, however, about 

existence and calculation of such roots of matrix polynomials. 



Definition 1.2 A matrix S is a solvent of the matrix poly­ 

nomial M(X) if 

M(S) » 0. ( 1.3) 

Definition 1.3 A matrix W is a weak solvent of the matrix  

polynomial M(X) If 

det M(W) » 0. (l.it) 

A special case of the weak solvent problem is the 

Important lambda-matrix problem. Restricting the class of 

weak solvents to scalar matrices, XI, and using the notation 

M(X) = M(XI), the lambda-matrix problem is that of finding 

a scalar X such that 

M(X) - A Q X r a + A ^ 1 " " 1 + + A m ( 1 . 5 ) 

is singular. Such a scalar is called a latent root of M(.X) 

and vectors b and r are right and left latent vectors, respec­

tively, if, for a latent root p, M(p)b » 0 and r TM(p) = 0_T. 

M(A) in equation (1.5) Is an n by n matrix whose elements are 

scalar polynomials in X. See Lancaster [13]» Gantmacher [2], 

MacDuffee [15], and Peters and Wilkinson [ 1 7 ] for a complete 

discussion of lambda-matrices. A description of some of the 

present methods of solving the lambda-matrix problem is found 

in Appendix B. 



O n l y m o n l c m a t r i x p o l y n o m i a l s a r e s t u d i e d i n t h e 

m a i n p a r t o f t h i s d i s s e r t a t i o n . T h e c a s e o f t h e n o n m o n l c 

m a t r i x p o l y n o m i a l , a n d w h e r e A Q i s s i n g u l a r , w i l l b e c o n s i d ­

e r e d i n A p p e n d i x A . I f A Q i s n o n s i n g u l a r , t h e m o n i c m a t r i x 

p o l y n o m i a l M ( X ) c a n b e o b t a i n e d b y t h e s o l u t i o n o f s e v e r a l 

l i n e a r s y s t e m s , a s w a s s u g g e s t e d b y P e t e r s a n d W i l k i n s o n [ 1 7 ] . 

H e n c e , w e c o n s i d e r 

M ( X ) = X m + A . X 1 " " 1 + + A • ( 1 . 6 ) 1 m 

T h e f o l l o w i n g a r e s o m e w e l l - k n o w n r e s u l t s t h a t w i l l 

b e f r e q u e n t l y u s e d . T h e y m a y a l l b e f o u n d i n L a n c a s t e r [ 1 3 ] . 

A c o r o l l a r y o f B e z o u t ' s t h e o r e m s t a t e s t h a t i f S Is 

a s o l v e n t o f M ( X ) t h e n 

M ( A ) = Q ( A ) ( I A - S ) , ( 1 . 7 ) 

w h e r e Q ( A ) i s a m o n i c l a m b d a - m a t r i x o f d e g r e e m - 1 . A n o t h e r 
ft 

r e s u l t i s t h a t t h e l a m b d a - m a t r i x M ( A ) h a s m n l a t e n t r o o t s , 

a n d h e n c e , I t f o l l o w s I m m e d i a t e l y f r o m ( 1 . 7 ) t h a t t h e n 

w e i g e n v a l u e s o f a s o l v e n t a r e a l l l a t e n t r o o t s o f t h e l a m b d a -

m a t r i x . F u r t h e r m o r e , t h e n ( m - l ) l a t e n t r o o t s o f Q ( A ) a r e 

a l s o l a t e n t r o o t s o f M ( A ) . 

I f o n e is i n t e r e s t e d i n t h e s o l u t i o n o f a l a m b d a -

m a t r i x p r o b l e m , t h e n a s o l v e n t w i l l p r o v i d e n l a t e n t r o o t s 

and can b e u s e d f o r a m a t r i x d e f l a t i o n , w h i c h y i e l d s t h e n e w 

p r o b l e m Q ( A ) . 



_ n _ 

1.2 Main Results of this Paper. The following are the prin­

cipal results of this work. They will be proved in later 

chapters. 

The Fundamental Theorem of Algebra, that a scalar 

polynomial has at least one zero, does not hold true for 

matrix polynomials. There are matrix polynomials which have 

no solvents (Theorem 2 . 6 ) . 

It is useful to have a concept of a matrix poly­

nomial with a complete set of solvents. This Is a generali­

zation of an n t h degree scalar polynomial having n roots. 

Definition 1 . 1 A set of m solvents of M(X) is a complete set 

of solvents, if the set of mn eigenvalues of the m solvents 

Is the same, counting multiplicities, as the set of mn latent  

roots of M ( X ) . 

Thus, in the special case of M(A) having mn dis­

tinct latent roots, a complete set of m solvents must have 

no common eigenvalues and each solvent must have distinct 

eigenvalues. 

We consider a generalization of the scalar 

Vandermonde matrix. 

Definition 1 .5 Given n by n matrices S ^ * " ^ , the block  

Vandermonde matrix is 



v(s 1,--•,s m) = 

olll-l 
1 

I 

S 2 

I 

s m 

,m-l gin-l 
m 

( 1 . 8 ) 

I 

It will be shown in Chapter H that it is not suffi­

cient that matrices S.,»»',S have distinct and disjoint 
1 m 

eigenvalues for V ( S 1 , « « - , S m ) to be nonsingular. 

Existence of a complete set of solvents for the 

important special case of the lambda-matrix having distinct 

latent roots is given by the following theorem (Theorem U . l ) . 

Theorem If M(A) has distinct latent roots, then M(X) has a 

complete set of solvents, S ^ * • • ,S m, and V ( S 1 > - fS f f l) is non- 

singular. 

Definition 1.6 A solvent of M(X) is a dominant solvent If 

the n eigenvalues of this solvent are strictly the n largest  

latent roots of M ( X ) . 

Algorithm 1, presented below and again in Chapter 5 , 

attempts to find a dominant solvent of M ( X ) . It is a gener­

alization of one due to Traub [ 2 1 ] for scalar polynomials. 

The algorithm has two stages. The first, a generalization of 

Sebastiao e Silva's algorithm (see Householder [4]). generates 

a sequence of matrix polynomials, all of degree less than m. 

Then the last two matrix polynomials of the generated 
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sequence are used In a matrix iteration which is to converge 

to a dominant solvent. 

Algorithm 1 

(I) Let G Q ( X ) - I and 

a n + 1 ( X ) - G n(X)X - ajM(X), ( 1 . 9 ) 

for n - 0 , 1 , " * » L - 1 , where 

G n(X) = c^x" 1" 1 + ••• + ajj. ( 1 . 1 0 ) 

( 1 1 ) Let. X 0 - ( a j ) ^ 1 ) 
- 1 

and 

X I + 1 = ( 1 " n ) 

for I - 0 , 1 , • • • . 

Convergence of this algorithm is established for a 

class of matrix polynomials (Theorem 5 - 1 ) . 

Theorem If 

(1 ) M(X) has a complete set of solvents, S 1 , . . . , S m , 

(ii) S ^ a dominant solvent, and, 

(ill) V ( S 1 , . - , S m ) and V ( S 2 , ...,S m) are nonslngular, 

then 

(i) G (X) H (ct n) V(X> F U x ) as n •* «, where n V 1/ n l — 
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M^ U ) Is the unique monic matrix p o l y n o m i a l of 

degree m-1 w i t h solvents S 2 , * • • , S m , but not S 1 , and 

(II) for L suffi c i e n t l y large X± of equation (1.11) con­ 

verges to 

It w i l l be shown (Corollary 5-2 and Lemma 5-7) that 

each stage of the a l g o r i t h m is linearly convergent. Let a be 

the absolute value of the ratio of the smallest eigenvalue of 

and the largest r e m a i n i n g latent root of M ( A ) . T h e n the 

asymptotic e r r o r constants of the first and second stage are 

C j O and c2aL~1, r e s p e c t i v e l y , w h e r e a < 1 and L is the num­

ber of iterations of the first stage before switching to the 

second s t a g e . T h u s , the second s t a g e , though linearly con­

v e r g e n t , can be m a d e arbitrarily fast by Increasing the num­

b e r of iterations of the first stage. In the computational 

a l g o r i t h m , we pick an arbitrary L and then examine the second 

stage. If it is converging too slowly (or d i v e r g i n g ) , then 

the first stage is resumed for s e v e r a l steps and the process 

is continued. T h u s , given that the three hypotheses of the 

above theorem are satisfied, this p r o c e s s , In exact arithmetic, 

is g u a r a n t e e d to yi e l d a solvent of the matrix p o l y n o m i a l . 

If a dominant solvent does not e x i s t , then the algo­

rithm w i l l not yield a solvent. In addition to the results in 

the above theorem, the first stage yields a dominant latent 

r o o t , if one e x i s t s . Consider the following algorithm which 

obtains a dominant latent root (Chapter 7 ) . 



Definition 1.7 Given vectors v ,v x,•••,v of dimension n, a 

lambda-vector g(X) is the vector function 

g(X) = v o X m + v 1 X m " 1 + ••• + v m . ( 1 . 1 2 ) 

Algorithm 2 Let g Q ( X) be an arbitrary m-l degree lambda-

vector. Generate 

g n + 1 ( X > » g n(X)X - M ( X ) v [ n \ ( 1 . 1 3 ) 

where 

g n U ) = v ^ x " 1 " " 1 + + v m
n ) . ( 1 . 1 1 ) 

This is another generalization of Traub's scalar 

polynomial algorithm. For a vector v, denote by max v the 

first element of v which has the maximum absolute value. 

Note, that max v is not a norm. Then a convergence theorem 

for the algorithm is as follows (Theorem 7 - 1 ) . 

Theorem If 

(I) M m has distinct latent roots.. P 1 » " ' » P m n » 

(II) Ip-J > | P i| for 1 * 1 , and 

(iii) r ? g o ( P l ) * o , where r * M ( P l ) - 0 T , 

then 

(I) I (X) = S " ( X / W \ - yM(,Xl bi, where M ( P l ) b , = 0 
max v< n> A - p l 1 1 1 " 



and 

v < n + 1 ) - P , v < n ) 

(ii) — t J 1 - 0. ( 1 . 1 5 ) 
max v^ ' 

The transpose of any column of equation ( 1 . 9 ) with 

X - XI, is precisely equation ( 1 . 1 3 ) , with M T ( X ) replacing 

M ( X ) . Since the latent roots of M (X) are the same as those 

equation ( 1 . 1 5 ) by Algorithm 1 , the matrix polynomial solvent 

algorithm. This can be done regardless of whether a dominant 

solvent, or any solvent at all, exists. 

1.3 Outline of the Remainder of the Paper. This paper con­

tains three intertwined yet distinct subjects. They are 

CD new theoretical results on matrix polynomials, 

( 1 1 ) algorithms for solvents and latent roots, and 

C U D a new block eigenvalue problem. 

Chapter 2 considers the basic properties of sol­

vents. The existence of solvents and factorization of lambda-

matrices are considered here. A generalization of Be"zout's 

Theorem and the relationship between polynomial coefficients 

and the elementary symmetric functions are also discussed. 

In Chapter 3 we present some of the basic proper­

ties of matrix polynomials. Interpolation, representation 

theorems and fundamental matrix polynomials are presented in 

this chapter. 



Properties of the block Vandermonde matrix are given 

in Chapter 4. 

The second major area of this dissertation concerns 

itself with algorithms for finding solvents and latent r o o t s . 

Chapter 5 presents Algorithm 1, the main algorithm of the 

p a p e r . The method finds solvents and is a generalization of 

Traub's scalar polynomial methods [ 2 1 ] . A convergence 

theorem, computational discussion and flow-chart are given 

h e r e . 

A block Bernoulli method is described in Chapter 6. 

The relation between this method and Algorithm 1 is d i s c u s s e d . 

In Chapter 7 we present Algorithm 2, which finds a 

dominant latent root. The key result is given - the computa¬ 

tions of Algorithm 2 are done by Algorithm 1 . A vector 

Bernoulli method is also described. 

The third area of this work is a new block eigen¬ 

value problem. It is that of finding a matrix X of order n 

such that for given matrix A of order mn, the equation 

AV - VX is satisfied for a matrix V of full rank. Chapter 8 

deals with this problem. It is shown that when A is the 

block companion m a t r i x , this problem is a generalization of 

the matrix polynomial solvent problem. A general theory of 

block eigenvalues as well as two algorithms based on eigen¬ 

vector powering are offered. 

Chapter 9 describes numerical testing of Algorithms 

1 and 2. 



CHAPTER 2 

Solvents 

•In this chapter we study some of the properties of 

solvents. Section 2 .1 considers a division of matrix poly­

nomials which results In a new derivation and generalization 

of Bezout's theorem. Section 2.2 examines the block compan­

ion matrix. Principal vectors of solvents are considered in 

Section 2.3- The existence of solvents and factorization of 

lambda-matrices are both dealt with In Section 2 .4 . 

2 - 1 Generalized Division. The class of matrix polynomials 

is not closed under multiplication or division. Consider the 

product of N(X) = X + N and L(X) = X + L. We get 

N(X)L(X) - (X+N)(X+L) = X 2 + NX + XL + NL which is not of 

the general form of a matrix polynomial; X^ + A^X + A^. A 

new operation will be defined for matrix polynomials which 

will reduce to division in the scalar case; n » 1. 

Theorem 2 .1 Let M(X) - X™ + A ^ X m 1 + ••• + A m and 
p p_i " " " A " W(X) = X + B^X + + with m >_ p. Then there 

exists §. u.n. , monic matrix, polynomial P(X) of degree m-p 

and a unique matrix polynomial L(X) of degree p - 1 such that 

M(X) = F(X)X P + B1F(X)XP~1 + ••• + B PCX) + L(X), ( 2 . 1 ) 

Proof: Let F(X) - X m " P + F ^ ' P " 1 + + F m _ p and 

L(X) * L 0 X P _ 1 + L X X P ~ 2 + ••• + L r Equating 

- 11 -



c o e f f i c i e n t s o f e q u a t i o n ( 2 . 1 ) , F±,P2,•••,Fm_p a n d 

L
0 » L l > " ' " * L p „ l c a n b e s u c c e s s i v e l y a n d u n i q u e l y 

d e t e r m i n e d f r o m t h e m e q u a t i o n s . # 

E q u a t i o n ( 2 . 1 ) i s t h e m a t r i x p o l y n o m i a l d i v i s i o n o f 

M ( X ) b y W ( X ) w i t h q u o t i e n t F ( X ) a n d r e m a i n d e r L ( X ) . 

D e f i n i t i o n 2 . 1 A s s o c i a t e d w i t h t h e m a t r i x p o l y n o m i a l , 

M ( X ) s X m + A ^ X 1 1 1 " 1 + • • • + A , i s t h e c o m m u t e d m a t r i x p o l y ­ 

n o m i a l 

ftCX) = X m + X m _ 1 A 1 + + A m . ( 2 . 2 ) 

I f M ( R ) = £ , t h e n R I s a l e f t s o l v e n t o f M ( X ) . 

T h e m a t r i x S s u c h t h a t M ( S ) = £ , p r e v i o u s l y j u s t 

c a l l e d a s o l v e n t , w i l l b e r e f e r r e d t o a s a r i g h t s o l v e n t w h e n 

c o n f u s i o n m i g h t o c c u r . 

A n I m p o r t a n t a s s o c i a t i o n b e t w e e n t h e r e m a i n d e r , 

L ( X ) , a n d t h e d i v i d e n d , M ( X ) , i n e q u a t i o n ( 2 . 1 ) , w i l l n o w b e 

g i v e n . I t g e n e r a l i z e s t h e f a c t t h a t f o r s c a l a r p o l y n o m i a l s 

t h e d i v i d e n d a n d r e m a i n d e r a r e e q u a l w h e n e v a l u a t e d at t h e 

r o o t s o f t h e d i v i s o r . 

C o r o l l a r y 2 . 1 I f R i s a l e f t s o l v e n t o f w ( X ) , t h e n 

£ ( R ) = M ( R ) . 

P r o o f : L e t Q ( X ) - M ( X ) - L ( X ) . T h e n , it i s e a s i l y s h o w n 

t h a t 

Q < X ) s X m - p W ( X ) + X m ~ p " 1 W < X ) P 1 + + W ( X ) F m _ p . ( 2 . 3 ) 



The result Immediately follows since Q(R) - £ for 

all left solvents of W ( X ) . # 

The case where p = 1 Is very useful In this paper. 

Here we have W(X) « X - R where R Is both a left and right 

solvent of W ( X ) . Then Theorem 2 .1 shows that 

M(X) = P(X)X - RF(X) + L ( 2 . 1 ) 

where L Is a constant matrix. Now Corollary 2 .1 shows that 

L = M(R) , and, thus, 

M(X) = F(X)X - RF(X) + M ( R ) . (2 .5) 

There Is a corresponding theory for M ( X ) . In this 

case, equation ( 2 . 1 ) is replaced by 

M(X) = X PH(X) + X ^ H U J B + + H(X)B + N(X) (2 .6) 

2* 
and Corollary 2 .1 becomes the following. 

Corollary 2.2 If S is a right solvent of W ( X ) , then 

N(S) = M ( S ) . 

We again consider the case of p = 1. Let 

W(X) = X - S. Then equation (2 .5) becomes 

flCX) = XHCX) - H(X)S + M ( S ) . ( 2 . 7 ) 

Restricting X to a scalar matrix XI, and noting that 
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M(A) = M ( A ) , we get B S z o u f s Theorem (see Gantmacher [2, 

vol. I, p. 81]) from equations (2.5) and (2.7): 

M(A) = (IA-R)P(A) + M(R) = H(A)(IA-S) + M(S) (2.8) 

for any matrices R and S. If in addition R and S are left 

and right solvents, respectively, of M ( X ) , then 

M(X) = F(X)X - RF(X), (2.9) 

M(X) = XH(X) - H(X)S (2.10) 
and 

M( A) = (IA-R)F(A) = H(A)(IA-S). (2.11) 

Hence, Corollaries 2.1 and 2.2 are generalizations of 

Bezout's Theorem. 

The use of block matrices is fundamental In this 

work. For notational purposes it is useful to have a concept 

of the transpose of a block matrix without transposing the 

blocks. 

Definition 2.2 Let A be a matrix with block structure ( B ^ ) 

with B ± J matrices of order n. The block transpose of dimen­ 

sion n of A, denoted A B ( n ) , is the matrix with block struc­ 

ture ( B J ± ) . 

The order of the block transpose will generally be 

dropped when it is clear. Note that, in general, A A , 

except when n = 1. 

A scalar polynomial exactly divides another scalar 

polynomial, if all the roots of the divisor are roots of the 



dividend. A generalization of the scalar polynomial result 

is given next. The notation is that of Theorem 2.1. 

Corollary 2.3 If W(X) lias p left solvents, R 1 , * " » R p which 

are also left solvents of M ( X ) , and If V 8 ^ , • • • ,R ) Is 

singular, then the remainder L(X) = 0 . 

Proof: Corollary 2.1 shows that £ ( R ± ) - 0 for 

non-

p. Since V B ( R 1 , • • • , R p ) Is nonsingular, 1 » 

and since 

R l 

R„ Rpr 1 

R p ••• R P 1J 

Vi 
L p - 2 

/ 

f £ ( R x ) 

* 

It follows that L(X) = g. Thus, 

M(.X) = F(X)X P + B ^ C X J X P " 1 + ••• + B F(X). # (2.12) 

From equation (2.11) it follows that the eigen­

values of any solvent (left or right) of M(X) are latent 

roots of M ( A ) . These equations allow us to think of right 

(left) solvents of M(X) as right (left) factors of M ( A ) . 

In the scalar polynomial case, due to commutivity, 

right and left factors are equivalent. Relations between 

left and right solvents can now be given. 



Corollary 2.4 If Sj and R± are right and left solvents of 

M( X ) , respectively, and S. and have no common eigenvalues, 

then F ^ S ^ ) = 0, where F 1 ( X ) Is F(X) defined b_£ equation 

(2.9) with R = R ± . 

Proof: Equation (.2.9) shows that 

F 1(Sj)Sj - RjF-^CSj) - 0.. (2.13) 

Since Sj and R ± have no common eigenvalues, 

P ± C S j ) - & uniquely. This follows, since the 

solution of AX = XB has the unique solution 

X » 0, If and only If A and B have no common 

eigenvalues. See Gantmacher [ 2 , p. 2153. # 

Given a left solvent R ± of M ( X ) , Theorem 2 .1 shows 

that F 1 ( X ) exists uniquely. If S Is a right solvent of M(X) 

and if P 1 ( S ) is nonsingular (S is not a weak solvent of F ^ X ) ) , 

then equation (2.13) shows that 

R ± = P 1 ( S ) S P - 1 ( S ) . (2.14) 

This gives an association between left and right solvents. 

2.2 Block Companion Matrix. A useful tool in the study of 

scalar polynomials is the companion matrix. The eigenvalues 

of a companion matrix are the roots of its associated poly­

nomial. See Wilkinson [22 , p. 1 2 ] , A generalization of this 
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i s g i v e n b e l o w . D e f i n i t i o n 2 . 3 , T h e o r e m 2 . 2 a n d C o r o l l a r y 

2 . 5 c a n b e f o u n d i n L a n c a s t e r [ 1 3 ] . 

D e f i n i t i o n 2 . 3 G i v e n a m a t r i x p o l y n o m i a l 

M ( X ) s x ™ + A ^ X m ~ ^ + + A m , 

t h e b l o c k c o m p a n i o n m a t r i x a s s o c i a t e d w i t h i t is. 

C = 

0 

I 

- A m 

- A m - l 

-A, 

( 2 . 1 5 ) 

I t I s w e l l k n o w n t h a t t h e e i g e n v a l u e s o f t h e b l o c k 

c o m p a n i o n m a t r i x a r e l a t e n t r o o t s o f t h e a s s o c i a t e d l a m b d a -

m a t r i x . S e e W i l k i n s o n [ 2 2 , p . 1 2 ] . S i m p l e a l g e b r a i c m a n i p u ­

l a t i o n y i e l d s t h i s r e s u l t . 

T h e o r e m 2 . 2 D e t ( C - A I ) = ( - l ) m d e t ( l A m
+ A l A 1 " - 1 * - • - + A ) . 

\ 1 m / 

S i n c e C i s a n m n b y m n m a t r i x , w e i m m e d i a t e l y o b ­

t a i n t h e f o l l o w i n g . 
C o r o l l a r y 2 . 5 M ( A ) h a s e x a c t l y m n f i n i t e l a t e n t r o o t s . 

T h e f o r m o f t h e b l o c k c o m p a n i o n m a t r i x c o u l d h a v e 

b e e n c h o s e n d i f f e r e n t l y . T h e o r e m 2 . 2 a l s o h o l d s f o r t h e 

b l o c k t r a n s p o s e o f t h e c o m p a n i o n m a t r i x : 



(2.16) 

•A m ~ A m 1 

The algorithms given in this paper are based on 

eigenvector powering schemes. It will be useful to know the 

eigenvectors of the block companion matrix and its block 

transpose. The results are a direct generalization of the 

scalar case. 

Theorem 2.3 If is a latent root of M(X) and and are 

right and left latent vectors , then p± is an eigenvalue of C 
B 

and of C and 

p i b i 

(i) Is the right eigenvector of C , 

m-L 

p l r i 
(11) is the left eigenvector of C, and 

i r i 



r 
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(ill) 

/ m - l ) 

> 1 1 ) 

is the right e i g e n v e c t o r of C, where 

M( A)b 
X - p i = b 1 X m - 1 + b 4

( 1 ) X m - 2 + + b j m ' 1 ) . ( 2 . 1 7 ) 'i i 

P r o o f : Parts (i) and (ii) are easily verified by s u b s t i ­

tutions into the a p p r o p r i a t e eigenvalue p r o b l e m . 

F o r part ( i i i ) , consider 

0 * * * 

I 

-A 
A m ] 

-A m - l 
,(1) 

* 1 IK0' I 
p l 

/ (m-i) 
d i 

d I 
(0) 

(2 .18) 

Multiply o u t ; multiply the j t h component equation 

by X" and add. T h e result is 

H 1 (X)X - M ( X ) d < 0 ) = PjlHjlC X) , (2 . 19) 

where 

V X ) = d ^ ' ^ + d [ m " 2 ) X a[Q)Xm-1. (2.20) 

I 

I 



E q u a t i o n (2 . 19) at A = p^ shows that 

M ^ p i ^ d i ° ^ = - a n d * h e n c e » d i ° ^ i s a right latent 

vector. M a n i p u l a t i n g equation ( 2 . 1 9 ) , the result 

equation ( 2 . 1 7 ) with d < 0 ) - b ± and d < J ) = b < J 5 

for j = - . m - l , f o l l o w s . # 

2-3 S t r u c t u r e of S o l v e n t s . .The eigenvectors and p r i n c i p a l 

vectors of a solvent w i l l now be considered. From e q u a t i o n 

( 2 . 1 1 ) it follows that the eigenvectors of a left (right) 

solvent are left (right) latent vectors of the l a m b d a - m a t r i x . 

L a n c a s t e r [ 1 3 , p . 50] gives the c h a r a c t e r i z a t i o n of a solvent 

that has only elementary d i v i s o r s . 

T h e o r e m 2.4 If M ( A ) has n linearly Independent right latent  

v e c t o r s , c o r r e s p o n d i n g to latent roots- P 1 , " * , P n , 

then Q A Q " 1 is a right s o l v e n t , w h e r e Q = [ b 1 , . . . , b ] and 

A = d i a g ( p 1 ( . . . , P n ) . 

P r o o f : From M ( Q A Q _ 1 ) * ( Q A m + A 1 Q A m ~ 1 + » • • • A ^ Q " 1 the 

result f o l l o w s , since Q A m + A ^ Q A 1 1 1 " 1 + ••• + A Q 
1 m 

Is just M(pt)b± = 0 for i « l,---,n. # 

It follows from the above p r o o f that if a solvent 

is d i a g o n a l l z a b l e , then It must be the form Q A Q " 1 , as In the 

above theorem. 

Corollary 2.6 If M ( A ) has mn distinct latent r o o t s , and the 

set of right latent vectors satisfy the Haar condition (that  

every set of n of them are linearly i n d e p e n d e n t ) , then there  

are exactly ( m ™ \ different right s o l v e n t s • 
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Consider next the case of a solvent which Is not 

dlaRonallzable. In a manner similar to Roth [ 1 8 ] , we con­

sider the principal vectors of a solvent. 

Definition 2.4 The j t h principal latent vectors of M(A) with  

respect to the latent root p is Pj, which satisfies 

jj^jX M ( J _ 1 ) ( P > P I + 7 j ^ y f m ( J _ 2 ) ( P ) P 2 + *** + MCp)Pj « 0, 

( 2 . 2 1 ) 

where 

M ( k ) ( A ) = M(X). 
dX k 

Note that the first principal latent vector is a latent 
vector. 

Theorem 2.5 The principal vectors of a solvent are principal  

latent vectors of M(X). 

Proof: To alleviate notatlonal difficulties, consider the 

case where m = 2 and n = k = 3 . The Jordan 

form of the solvent Is J Let 

P = ( P 1 P 2 P 3 ) where S = P J P - 1 Is the solvent 

of M(X) = X 2 + A XX + A 2. Thus, 



& = M(S)P « [£P 1P 2P 3)J 2 + A 1(P 1P 2P 3)J + A 2(P 1P 2P 3)] 

= [(lp 2+A 1p+A 2)p 1,(2Ip+A 1)P 1 + (lp 2+A 1p+A 2)p 2 >IP 1 

+ (2Ip+A 1)P 2 + (lp 2+A 1p+A 2)p 3] 

- [ M ( P ) P 1 , H ' ( P ) P 1 

+ M(p)P 2, | M " ( p ) P 1 + M'(p)P 2 + M(p-)P 3]. 

Hence, P ^ P 2 and P 3, the principal vectors of S, 

satisfy equation (2.21), the definition of prin­

cipal latent vectors. § 

It is the strategy of this paper to solve the 

lambda-matrix problem by finding solvents and then finding 

the eigenvalues of those solvents. The calculation of sol­

vents from the solution of the latent root problem has been 

considered in the literature. The following Is a short 

description of the method. 

Since the eigenvalues of a solvent are latent roots 

of the lambda-matrix, and there are mn latent roots, it fol­

lows that there are only a finite number of Jordan forms of 

potential solvents. Let the latent roots be given and let J 

be a matrix in Jordan form with n of the latent roots as its 

eigenvalues. Then, to find a corresponding solvent S, if 

one exists, a nonsingular matrix P must be found such that 

M(PJP - 1) = £. Thus, a nonsingular matrix P must be found 

such that 
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P J m + A 1 P J m " 1 + + A m P » &. (2.22) 

This approach, described in MacDuffee [15, p. 9 5 ] , is of the 

general form 

A ] X B 1 + A 2 X B 2 + ••• + A m X B m = C. (2.23) 

Lancaster [11] and Gantmacher [2] have considered the solu­

tion of equation (2.23). The problem is difficult numerically. 

Algorithm 1 tries to find a solvent directly, 

rather than by the above route of solving the latent root 

problem first. 

2.4 Existence of Solvents. We now show that the Fundamental 

Theorem of Algebra does not hold fdr matrix polynomials. 

Theorem 2.6 There exists a matrix polynomial with no sol­ 

vents. 

Proof: Consider 

A 2-2A+2 l \ / 2 l' 
M(X) - ( ] » IA 2 - 2IA + 

-1 X 2-2Xy \-l 0 

(2.24) 

Det M ( M - A1* - 4 A 3 + 6 A 2 - 4A + l, which has all 

four roots at A = 1. Thus, the Jordan form of a 

solvent must either be J, - I or J = ). 
d \0 1/ 



Since M(I) f £, It follows that J2 is the only 
/ 1 1\ 

feasible Jordan form. M(l) =( J and, thus, 
Vl —1 / 

b = (1,-1)T is the only latent vector, to within 
a scalar multiple. The second principal vector 
is such that M'Cl)b + M(1)P? » 0. Here, M'(X) = ( J and, hence, M'(l) - 0. \ 0 2A-2/ 
Thus, P2 • b to within a scalar multiple. Using 
Theorem 2.5 and the linear dependence of the first 
two principal latent vectors, it follows that J2 Is 
not a feasible Jordan form for a solvent of equa­
tion (2.24). 4 

Consider now the special case of a matrix polynomial whose 
associated lambda-matrix has distinct latent roots. It will 
be shown that In this case a complete set of solvents always 
exists. First we need the following fact about block matrices. 
Lemma 2.1 If a matrix A Is nonsingular, then there exists a 

/All A12̂  
permutation of the columns of A to A such that A = I 

\A21 A22, 
with A^ and A22 nonsingular. 

Px*oô f* * IjGt .A £LiTid ̂]L 1 ̂® 11*ic©s of* oi*d.©rs n ̂Lfid y 
spectlvely, with arbitrary 1 < k < n. Assume the 
lemma is false. Consider evaluating the deter-

"11 - -» "> 
-̂̂ vely, with arbitrary 1 < k < n. Assur 
lemma is false. Consider evaluating the deter­

minant as follows. For each of the first k rows, 
|p i_ £Lin i^Y\ ^̂rn !*L f* ̂̂̂^ 5̂ unun » 1̂  



M U L T I P L Y THES-E E L E M E N T S A N D T H E R E M A I N I N G M I N O R . 

T H E S U M , W I T H A P P R O P R I A T E S I G N S , O F E V E R Y P O S S I B L E 

C H O I C E O F T H E K C O L U M N S , I S T H E D E T E R M I N A N T O F A . 

T H E K C H O I C E S O F T H E C O L U M N S D E T E R M I N E A S Q U A R E 

M A T R I X . I F T H A T M A T R I X I S N O N S I N G U L A R , T H E N T H E 

M I N O R M U S T B E Z E R O , S I N C E T H E L E M M A W A S A S S U M E D 

F A L S E . T H U S , S U C H T E R M S M A K E N O C O N T R I B U T I O N T O 

T H E D E T E R M I N A N T O F A . A P A R T I C U L A R M I N O R A P P E A R S 

S E V E R A L T I M E S I N T H E S U M . I T O C C U R S T H E N U M B E R 

O F W A Y S T H E S A M E K C O L U M N S C A N B E P I C K E D I N D I F ­

F E R E N T O R D E R S . E A C H M I N O R C A N T H U S B E F A C T O R E D 

F R O M S E V E R A L T E R M S ; T H E R E S U L T B E I N G T H E M I N O R 

T I M E S T H E D E T E R M I N A N T O F T H E M A T R I X F O R M E D B Y T H E 

K C O L U M N S A N D T H E F I R S T K R O W S . T H U S , I F T H E 

M A T R I X F O R M E D B Y T H E K C O L U M N S I S S I N G U L A R , T H E N 

T H E R E I S N O C O N T R I B U T I O N F R O M T H I S T E R M I N T H E 

D E T E R M I N A N T O F A . T H E R E F O R E , A M U S T B E S I N G U L A R , 

W H I C H I S A C O N T R A D I C T I O N . § 

O N C E T H E C O L U M N S O F A A R E P E R M U T A T E D T O G E T A N D 

A 2 2 N O N S I N G U L A R , T H E P R O C E S S C A N B E C O N T I N U E D T O S I M I L A R L Y 

D I V I D E A 2 2 I N T O N O N S I N G U L A R B L O C K S W I T H O U T D E S T R O Y I N G T H E 

N O N S L N G U L A R I T Y O F A N . 

T H E O R E M 2.7 I F A , A M A T R I X O F O R D E R M N , I S N O N S I N G U L A R , T H E N  

T H E R E E X I S T S A P E R M U T A T I O N O F T H E C O L U M N S O F A T O A = ( B ± , ) , 

W I T H B 1 J A M A T R I X O F O R D E R N , S U C H T H A T B 1 ± LS_ N O N S I N G U L A R  

F O R 1 = 1 , .••,M. 



T H E I M P O R T A N T E X I S T E N C E T H E O R E M I S N O W G I V E N . 

T H E O R E M 2.8 I F T H E L A T E N T R O O T S O F M < A ) A R E D I S T I N C T , T H E N 

M ( X ) H A S A C O M P L E T E S E T O F S O L V E N T S . 

P R O O F : I F T H E L A T E N T R O O T S O F M ( A ) A R E D I S T I N C T , T H E N T H E 

E I G E N V A L U E S O F T H E B L O C K C O M P A N I O N M A T R I X A R E D I S ­

T I N C T , A N D , H E N C E , T H E E I G E N V E C T O R S O F T H E B L O C K 

C O M P A N I O N M A T R I X A R E L I N E A R L Y I N D E P E N D E N T . P R O M 

B I 

P I B I 
T H E O R E M 2.3 T H E S E T O F V E C T O R S 

5 1 B I 

F O R 

F O R 1 = L , - . - , M N A R E E I G E N V E C T O R S O F C B . T H E 

ÎISI* XNN cX v ̂ i5 XNFII ^ ^ ̂ 

^^ F I P ^ ^ A . " ^ j ? T ^ ^ 2 *̂  ^^^VFS T c t T 2L"^*M CL̂ LS 

^ O 1 N T S G "T S O F N 1 I N C ELI* ^ R̂ CL © P $ N D 6 I*I T C "T O R S B 

U S I N G T H E S T R U C T U R E Q A Q O F T H E O R E M 2.4, T H E C O M -

5̂ G 1 6 S t1 'C3 S JL JFL t s c £TN Î INS OL 

C O R O L L A R Y 2.7 I F M ( A ) H A S D I S T I N C T L A T E N T R O O T S , T H E N I T C A N 

B E F A C T O R E D I N T O T H E P R O D U C T O F L I N E A R L A M B D A — M A T R I C E S . 

P R O O F : S I N C E M ( A ) H A S D I S T I N C T L A T E N T R O O T S , T H E R E E X I S T S 

A R I G H T S O L V E N T S A N D M ( A ) = Q ( A ) ( I A - S ) . Q ( A ) H A S 

T H E R E M A I N I N G L A T E N T R O O T S O F M ( A ) A S I T S L A T E N T 

R O O T S . I T F O L L O W S T H E N , T H A T T H E L A T E N T R O O T S O F 

Q ( A ) A R E D I S T I N C T . T H U S , T H E P R O C E S S C A N B E C O N ­

T I N U E D U N T I L T H E L A S T Q U O T I E N T I S L I N E A R . § 



The process described in the above proof considers 

solvents of the sequence of lambda-matrices formed by the 

division M(A) - Q(A)(IA-S). 

Definition 2.5 A sequence of matrices c i> ### >C m form a chain 

of solvents of M(X) if C± is a right solvent of Q±(X) , where 

Qm(X) 5 M(X) and 

Q± (X) = Q 1 - 1 ( X ) ( I X - C 1 ) . (2.25) 

It should be noted that, in general, only C m is a 

right solvent of M(X) . Furthermore, C 1 is a left solvent of 

M(X) . An equivalent definition of a chain of solvents could 

be defined with C^, a left solvent of T 1 ( X ) , and 

T±CX) E C l X - C m - 1 , 1 ) T 1 - 1 ( X ) . (2.26) 

Corollary 2.8 If M(X) has distinct latent roots, then M(X) 

has a chain of solvents. 

Given and Qt(X), Q±_ 1(X) of equation (2.25) can 

be found by a generalized Horner division scheme. In the 

numerical solution of the lambda-matrix problem, the strategy 

considered here will be to find a chain of solvents using the 

matrix polynomial solvent algorithm and Horner division. 

If - ± 9 * ' * > - , f o r m a chain of solvents of M ( X ) , then 

M(X) = IX m + A 1 X m ~ 1 + ••• + A m = (IX-C 1)(IX-C 2) (IX-C m). 
(2.27) 
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This leads to a generalization of the classical result for 

scalar polynomials which relates coefficients to elementary 

symmetric functions. By equating coefficients of equation 

(2.27) one gets the following theorem. 

Theorem 2.9 If C 1,*••,C form a chain of solvents for 

M(X) = X111 + A^X 1 1 1" 1 + + A , then 1 m' 

A l " ~ t C l + C 2 + " " + C m ) 

A 2 
( Cl C2 + Cl C3 +" , + C

m-lV (2.28) 

A m - C ~ 1 ) m C l C 2 " • C m • 



CHAPTER 3 

Properties of Matrix Polynomials 

Some of the basic properties of matrix polynomials 

are considered In this chapter. Section 3-1 concerns itself 

with matrix polynomial Interpolation. A generalization of 

the fundamental scalar polynomials is given. Representation 

theorems for matrix polynomials, lambda-matrices, and lambda-

vectors are presented in Section 3 . 2 . Section 3-3-studies 

the fundamental matrix polynomials. 

3.1 Interpolation. Given scalars s 1 , - " , s m , the fundamental 

m 

polynomials m (x) = , where p(x) = J[ (x-s ) , 

(x-si)p»Cs1) 1 = 1 

are of great Importance in interpolation theory. Their use­

fulness comes from the fact that n̂Cs.) = 6 ± J . We wijl now 

generalize this for our matrix problem. 

Definition 3 . 1 . Given a set of matrices, S x , — , S m , the  

fundamental matrix polynomials are a set of m-l degree matrix  

polynomials , M ^ X ) , • • • , such that ĴCSj) = 6 1. 

Sufficient conditions, on the set of matrices 

^ • • • J S * for a set of fundamental matrix polynomials to 

exist uniquely will be given in Theorem 3 . 2 . First, however, 

we need the following results. 

Theorem 3-1 Given m pairs of matrices, (X±,Y±) 1 = m, 

then there exists a unique matrix polynomial 

- 29 -



,m-l 
rm-2 p(x) - A ^ X , J " + A 2 r - - + . . . + A

m > such that P(X±) ~ Y± 

for 1 = l,"-,m, If and only If V U ^ * * * ^ ) is nonsingular. 

Proof: P(X ±) = Y ± for 1 =!,•••,m is equivalent to 

/ I 

X l 

xm-l 

I 

X 

X 

m 

m-l 
"m 

(Y Y • • • Y ) 

Corollary 3-1 Given m pairs of matrices, (X^Yj), i = l,-'-,m, 

they uniquely determine a monic matrix polynomial 

P(X) = X m + A^X 1 1 1" 1 + + A , such that ?(X±) = Y± for 

1 = l,---,m, if and only If V(X-L,• • • ,X m) is nonsingular. 

Proof: Let Y ± = Y± - x j and apply Theorem 3 . 1 to ( X ^ ) . # 

Let M(X) have a complete set of solvents, S , » s
m» 

such that V(S 1,«••,S m) is nonsingular. According to Theorem 

3 . 1 , there exists a unique matrix polynomial 

(i) Ym—1 + • • * + A (i) m ( 3 - D 

such that 

M ±(Sj) = 6 1. (3 .2) 

Note that M ±(X) has the same solvents as M(X), except S± has 

been deflated out. The M 1(X)«s are the fundamental matrix 

polynomials. 



Denote by V(51,* * • , S 1 _ 1 , S 1 + 1 , • • • , S m ) the block 

V a n d e r m o n d e at the m - l s o l v e n t s , S 1 > " » > S | n , with S± deleted. 

T h e o r e m 3-2 If matrices S 1 , « • * , S m are such that V t S ^ • • • , S m ) 

Is n o n s i n g u l a r , then there exist unique matrix polynomials 

M ^ X ) H A ^ X ™ " 1 + ••• + A ^ , for 1 = l,«-«,m, such that 

M 1 ( X ) " « \ ( X ) are f u n d a m e n t a l m a t r i x p o l y n o m i a l s . I f , 

f u r t h e r m o r e , V ^ , - • • » S k _ 1 » S k + 1 , - • • . S j Is n o n s i n g u l a r , then 

A < k ) is n o n s i n g u l a r . 

P r o o f : v < s ! » * ' ' > s
m ) n o n s i n g u l a r Implies that there exists 

a unique set of fundamental matrix p o l y n o m i a l s , 

M j U ) , * " , M m ( X ) . V ( S 1 , " . * s i c _ i * s
k + i » " * ' S

m > 

n o n s i n g u l a r and Corollary 3-1 imply that there 

exists a unique monic m a t r i x p o l y n o m i a l 

N k U ) = X 1 1 1" 1 + N ^ X * " 2 

N m k ) > 
such 

that N k ( S . ) - p_ for j / k. C o n s i d e r 

Q k ( X ) = Q k ( S j ) • N k ( S j ) for 

j = i,•••sm. Since V ( S l t • • • , S m ) is n o n s i n g u l a r 

and both Q k ( X ) and N k ( X ) are of d e g r e e m - l , it 

follows that Q k ( X ) = N k ( X ) . T h u s , 

N k ( X ) s N k ( S k ) M k ( X ) . E q u a t i n g leading c o e f f i ­

c i e n t s , w e get I = N k ( S k ) A ^ k ^ and thus A ^ k ^ 

Is n o n s i n g u l a r . # 

3-2 R e p r e s e n t a t i o n T h e o r e m s . The f u n d a m e n t a l matrix p o l y ­

n o m i a l s , M-j/X),*** , M m ( X ) , can be used in a generalized 

Lagrange i n t e r p o l a t i o n formula. Paralleling the scalar case 

we get the following r e p r e s e n t a t i o n t h e o r e m s . 



it follows that 

Theorem 3-3 If matrices S 1 , - . - , S m are such that V ( S 1 , • • • , S m ) 

iS. nonsingular, and M 1 ( S ) , • • • are a set of fundamental 

matrix polynomials, then, for an arbitrary 

GCX) = B^X™" 1 + ••• + B m , (3 .3) 

it follows that 

m 
GCX) = £ G ( S i ) M ± ( X ) . (3 .4) 

1=1 

m 
Proof: Let Q(X) = £ G(S 1 )M j L (X). Then Q ( S ± ) = G ( S ± ) 

1=1 

for 1 = l,"-,m. Since the block Vandermonde Is 

nonsingular, it follows that Q(X) Is unique and, 

hence, G(X) = Q ( X ) . # 

A lambda-matrix was defined as a matrix polynomial 

whose variable was restricted to the scalar matrix XI. Thus, 

the previous theorem holds for lambda-matrices as well. 

Corollary 3-2 Under the same assumptions as In Theorem 3 - 3 , 

for an arbitrary lambda-matrix 

G(X) = B ^ 1 " " 1 + + B m , ( 3 . 5 ) 



m 

G ( X ) - £ G ( S 1 ) M ± ( X ) . 

i-1 
(3.6) 

A b a s i s f o r l a m b d a - v e c t o r s w i l l b e p r e s e n t e d n e x t . 

T h e o r e m 3.4 I f M ( X ) h a s d i s t i n c t l a t e n t r o o t s , P ] ^ " ^ ^ 

w i t h r i g h t l a t e n t v e c t o r s b 1 > * , , » t ) m n , t h e n f o r a n a r b i t r a r y  

l a m b d a - v e c t o r 

g ( X ) = V ; L X j n ' m— 1 + + v^ ( 3 . 7 ) 

t h e r e e x i s t s a u n i q u e s e t o f c o n s t a n t s OL ,.. . ,<* » s u c h t h a t 

m n 
M ( X )  ai X - p4 V 

1 = 1 

(3.8) 

P r o o f : I f t h e l a t e n t r o o t s o f M ( X ) a r e d i s t i n c t , t h e n t h e 

e i g e n v e c t o r s o f t h e b l o c k c o m p a n i o n m a t r i x ( T h e o ­

r e m 2.3 ( H i ) ) f o r m a b a s i s f o r v e c t o r s o f d i m e n ­

s i o n m n . B y e q u a t i o n ( 2 . 1 3 ) l a m b d a - v e c t o r s 

b ± a r e f o r m e d b y p a r t i t i o n i n g t h e e i g e n ­

v e c t o r s o f t h e b l o c k c o m p a n i o n m a t r i x i n t o t h e 

^̂ 5̂ j1"̂  i ^ * f ^ ^ ^ ̂5 ^ ^ g ^̂  

T 
t o w^*ito f v * * * v ) ct «LJLn©3iX* c o m b 1 n£l11 o n of* 1 * 1 m 

t g ©1 n c t o x™ 3 o t h © b 1 o c It c onip cLfi 1 o n mst t r i x 

3.3 F u n d a m e n t a l M a t r i x P o l y n o m i a l s . F u n d a m e n t a l m a t r i x p o l y ­

n o m i a l s w e r e d e f i n e d s u c h t h a t M ^ ( S j ) • 6^jl. A r e s u l t 



similar to equation (2 .9) can be derived based on the funda­

mental matrix polynomials. It was previously (Section 2 . 1 ) 

developed using matrix polynomial division. 

Theorem 3-5 If M(X) has a complete set of right solvents, 

S1»"'>V 2 ^ ™£± V ( S l * " " * S m ) 22l v( si>*'*> si-i* si+i»""> sm ) 

are nonsingular and M ^ X ) , • • • ,M m(X) are the set of funda­ 

mental matrix polynomials, then 

M ^ X J X - S ^ C X ) = A ^ M U ) , C3-9) 

where A ^ I J la the leading matrix coefficient of M ± ( X ) . 

Proof: Let Q ^ X ) = M ±(X)X - S i M ± ( X ) . Note that 

QjtSj) = & for all J. M(X) Is the unique monic 

matrix polynomial with right solvents S 1 , - - - 1 S m 

since V ( S 1 , . " , S m ) is nonsingular. The leading 

matrix coefficient of Q ^ X ) is A ^ which is non-

singular, since V ( S 1 , " . , S 1 _ 1 , S 1 + 1 , - . , S i n ) is 

nonsingular. Thus, M(X) h A [ 1 J Q ^ X ) . # 

A previous result (equation ( 2 . 5 ) ) stated that if 

R A was a left solvent of M ( X ) , then there exists a unique, 

monic polynomial P ± ( X ) of degree m-l, such that 

M(X) = F ±(X)X - R ^ U ) . (3 .10) 

Comparing equations (3 .9) and ( 3 - 1 0 ) , we obtain the following 

result. 
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Corollary 3.3 Under the conditions of Theorem 3.5 

F i U ) = [ A ^ ] V^X) and_ 

R i * [Aiiy\ ls±Ai±) ( 3 > 1 1 ) 

iS. a left solvent of M ( X ) . 

If M(X) has a complete set of right solvents, 

S 1,---,S m, such that V t S p • • .,S m) and V t S ^ - • - . S ^ ^ S ^ , - • - , S m ) 

for 1 = l,"*,m are all nonsingular, then, by equation 

( 3 . H ) . there exists a complete set of left solvents of 

M ( X ) , R 1 , « " , R m , such that R± Is similar to S± for all 1 . 

Corollary 3.4 Under the conditions of Theorem 3 - 5 , i£ R ± Is 

defined as in equation ( 3 - 1 1 ) . then 

M ± ( X ) = [ A ^ 1 5 ] \±(\) - ( I A - R ^ ^ M U ) . (3 . 12) 

Proof: The result follows from equation ( 2 . 1 1 ) and 

Corollary 3-3. # 



CHAPTER 4 

The Block.Vandermonde 

The block Vandermonde matrix is of fundamental 

importance to this w o r k . This chapter considers the prop¬ 

erties of the block V a n d e r m o n d e . 

It is well known that in the scalar case (n • 1 ) , 

det V ( B i , - " , s „ ) « II <'i-'j> V*") 

i>J 

and, thus, the V a n d e r m o n d e is nonsingular if the set of s A | s 

are distinct. One might expect that if the eigenvalues of 

X** and X 2 are disjoint and distinct, then V f X A X g ) - is non-

singular. That this is not the case is shown by the follow­

ing example. 

The determinant of the block Vandermonde at two 

points is 

det V ( X T , X 0 ) - det f V- det ( X , - X n ) . ( 4 . 2 ) 
1 2 Vl X 2 / 

Even if X, and X 2 have no eigenvalues in common, X 2 - X 1 may 

/ 2 0\ 

still be singular. The example X, - I J and 

fk 2\ 
X 0 - I J yields X? - X, singular. 

2 \0 3 / 

- 3 6 -
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I T W I L L B E S H O W N T H A T T H E X1 A N D X 2 I N T H I S E X A M P L E 

C A N N O T B E T H E C O M P L E T E S E T O F S O L V E N T S O F A M O N I C M A T R I X 

P O L Y N O M I A L . F I R S T , H O W E V E R , T H E F O L L O W I N G I S N E E D E D . 

L E M M A 4 , 1 L E T M A T R I X A H A V E D I S T I N C T E I G E N V A L U E S . A N D N B E A 

S U B S P A C E O F E N O F D I M E N S I O N D . S U P P O S E F U R T H E R T H A T I F V € N , 

T H E N A V E N . U N D E R T H E S E C O N D I T I O N S , D O F T H E E I G E N V E C T O R S 

O F A A R E I N N . 

P R O O F : L E T Av^ - X ± V ± F O R 1 - L , * " , N . T H E S E T O F V ^ S 

I S A B A S I S F O R E N , S I N C E A H A S D I S T I N C T E I G E N V A L U E S . 

L E T V E N C E N , A N D O R D E R T H E { V . } S U C H T H A T 

S 

V " 

S 

P(t) - II (t-AJ), then P ( A ) V J « 0 for 
J - 2 

J - 2 , - * » , S . H E N C E , 

S 

P ( A ) V - £ C 1 P ( A ) V 1 » C 1 P ( A ) V 1 

I = L 



Let d. i (n (xi~\j>) * °- Thus* 
J-2 v ± = Tp P(A)v € N. Similarly, v̂  e N for 1 = l,«",s. The lemma follows, since v e N was arbitrary, # Theorem 4.1 If M(X) has distinct latent roots, then there  exists a complete set of right solvents of M(X), S1,"*,Sm, and for any such set of solvents, V(S1,*«»,Sm) Is nonsingular. Proof: The existence was proved in Theorem 2.7- si»*".s

m, being right solvents of M(X) = Xm +A1Xm"1
 +••• + A M , is equivalent to 

(Am,-••,A1) 
I 
Sl 
sm-l 

I 
S„ m 
sm-l m 

(4.3) 

c 

Assume det , • • • ,Sm) =0, and let N be the null space of V(S1,-«',Sm). That Is, v e N if and only if V(S1,-",Sm)v » 0. Since A1,---,Am in equation (4.3) exist, joining any row of (-Ŝ* • • ,-Sm) onto V(S1,-",Sm) gives a larger matrix but with the same rank as V(S1,•••,S ). Thus, for all v e N, (s™, • • • ,sjj)v = 0. Hence, for all v e N 



0 *= 

1 m 
2 • *« _2 
1 m 

,m 
> in 

V(S 1,« • • ,.Sm)dlag(.S1,- • • ,S m) v. 

(4.4) 

Letting A = diagCS^• f.S ) , equation (4.4) shows 

that for all v e N, Av € N. Since A has distinct 

eigenvalues, Lemma 4 . 1 applies, and there are as 

many eigenvectors of* A In N as the dimension of* N 

The eigenvalues of* diag(S * * * S ) are the eigen™ 

!i values of the S 's, and the eigenvectors are of the 
form (0 ,v ,0 ) , where v is an eigenvector of one 

of the S ^ s . This is because if 

m 

fM n 
A V 

0 = X 0 

V V 

0 
— / 

then SjV - Xv and S.w « Xw. This cannot be 

since S ± and Sj do not have any common eigenvalues. 

Let an arbitrary eigenvector of diagtS^• • • ,s ), 

( 0 T , v T , 0 T ) T , be in N. Then 



I 

s. 
sm-l 

I 

S 
* 

m 

m-l 
m 

0 

v 

w/ 
= o 

But then, Iv = 0 which Is a contradiction. Thus 

det VCSjy • • ,S ) / 0. # 
The example considered before this theorem was a 

case where matrices X± and X ? had distinct and disjoint 

eigenvalues and det V(V1,X2) = 0. Thus, by the theorem, 

they could not be a complete set of right solvents for a 

monic, quadratic matrix polynomial. In contrast with the 

theory of scalar polynomials, we have the following result. 

Corollary 4 . 1 There exist sets containing m matrices which  

are not a set of right solvents for any matrix polynomial of 

degree m. 

A generalization of equation ( 4 . 1 ) , that the 

Vandermonde of scalars Is the product of the differences of 

the scalars, will be given. Let M * d ' „ (X) be a monic 
°l k 

matrix polynomial of degree d >_ k with right solvents 

S^,««« jS^. The superscript d will be omitted if d ~ k. 

Note that this matrix polynomial need not necessarily exist, 

nor be unique. 

Theorem 4.2 If VXSjy ,Sk) is nonsingular for k= 2,-",r-l, 

then 



D E T V T S , , * - - ^ ) » D E T V ( S , « . . , S ,) D E T M „ Q (S ) . 
R - I B I * ' R - 1 

(4.5) 

P R O O F : T H E N O N S L N G U L A R I T Y O F V ( S 1 • • , S R - 1 ) A N D C O R O L L A R Y 

3 . 1 G U A R A N T E E T H A T M „ „ ( X ) E X I S T S U N I Q U E L Y . 
^ 1 * " , { S R - L 

T H E D E T E R M I N A N T O F V ( S 1 > « « » , S R ) W I L L B E E V A L U A T E D 

B Y B L O C K G A U S S I A N E L I M I N A T I O N U S I N G T H E F A C T T H A T 

D E T C : ) - • (7 7) (4.6) 

D E T V ( S 1 , " - , S R ) - D E T 

S R ~ 1 

I 

G R - L 

» D E T 

I I 

V S 1 

„ R - L „ R - L 
2 "~ 1 

• sr-s1 

S R - L _ S R - L 

D E T 

I I 

\ 

V S 1 s3-s1 

m{21 (so 
1 2 J 

S R " S L 

M S 2 S ( S R )  

B L B 2 R 

( 4 . 7 ) 



where M £ * > U> - (xD-S*) - (s*-sJ)cs2-S1)*1(X-S1). 

(S 2-S 1) is nonsingular, since 

det ( S ^ S ^ - det VCS^Sg) * 0. It will be shown 

that after k steps of the block Gaussian elimina­

tion, the general term for the I,J block, i,j > k, 

is M ^ 1 - 1 ^ c (S,). Assume it is true after k-1 steps. 
I k " 

Then, after k steps, the I,J element is 

(i-1) ( s j M ( i - D ( s ) M < k - D ( s j-lM(k-l) ( s > 
S l * " S k - l J V S k - l k V " S k - l k Sl*** Sk-l J ' 

This is merely M^ 1;*} (X) evaluated at X * S,. 
S l S k J 

Using the fact that the determinant of a block tri­

angular matrix Is the product of the determinants 

of the diagonal matrices, (see Householder [53), 

the result follows. # 

Corollary 4.2 If V ( S 1 , . .. > S ] C _ 1 ) is nonsingular and S k Is 

not a weak solvent of M„ ,,, s (X), then V ( S 1 , • • • , S k ) is 
3* It *** 1 

nonsingular. 

It Is useful to be able to construct matrix poly­

nomials with a given set of right solvents. 

Corollary 4.3 Given matrices S 1 > " - * < S | B such that V ( S L T • • • , S K ) 

Is nonsingular for K = 2 , " * , m , the Iteration N Q(X) = I 

N ±(X) = N ±_ 1CX)X - N 1 _ 1 ( S 1 ) S 1 N ~ ^ 1 ( S ± ) N 1 - 1 ( X ) ( 4 . 8 ) 
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is. defined and yields an m degree monic matrix polynomial 

N m ( X ) , such that N ( S ^ » £ for i » l,«-«,m. 

Proof: N,(X) = X - S, «J*L (X). Assume N-CXMMc. . <, (X) . i i ^ 1 k 
Then, from equation (4 . 8 ) , N ^ C S ^ ) = 0 for 

i - l,"*,k+l and, hence, N k + 1 ( X ) = M g (X). 

The sequence of block Vandermonde being nonsingular 

guarantees the nonslngularity of ^ ( S ^ . # 

Corollary 4.4 If V(S 1,• • • ,S k) is nonsingular for k= 2,*",m, 

then S 1 , » , S are a complete set of right solvents for 

M s ... s <X). 
1 a 

Proof* The result follows directly from Theorem 3*5> where 

w e obtCLIMed 

(IA-S 1)M 1(X) - A ^ 1 } M ( X ) . # (4.9) 



CHAPTER 5 

A Matrix Polynomial Algorithm 

This chapter presents the paper's main algorithm. 

It computes solvents and is a generalization of one of 

Traub's methods. Section 5-1 gives the algorithm. A global 

convergence theorem is presented in Section 5.2. Section 5-3 

considers computational aspects of the algorithm and has a 

detailed flow-chart of the method. 

5-1 A Generalization of Traub 1s Algorithm. The following 

algorithm for matrix polynomials, in the scalar case, reduces 

to Traub's scalar polynomial algorithm. 

Algorithm 1 (1) Let G Q(X) = I and generate matrix poly­

nomials G n(X) bjr 

G n + 1 ( X ) = G n(X)X - ajM(X), (5-1) 

for n = 0,1,*••,L-1, where 

G (X) = a n X m _ 1 + ... + a
n . (5.2) n 1 m 

Then, <ii) let X q = ( o ^ ) ^ " 1 ) 1 and generate 

Xi+1 = G L ( X i ) G L - l ( X i ) * < 5 ' 3 ) 

- Hk -
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The algorithm has two stages. The first, a gener­

alization of Sebastiao e Silva's algorithm (see Householder 

[*0)> generates a sequence of matrix polynomials. Equation 

(5.1) ensures that each of these matrix polynomials is of 

degree less than m , the degree of M ( X ) . Under suitable con 

section) to converge to M*(X) , a monic fundamental matrix 

polynomial. 

iterates which will be shown (in the next section) to con¬ 

verge to a solvent. The point at which one switches from 

stage one to stage two, the value of L, will be considered 

in Section 5.3* 

5.2 The Convergence Theorem. In the proofs that Bernoulli's 

method and Traub's scalar polynomial algorithms converge, the 

main property needed is that if p.^ is a dominant root, then 

( p i / p 1 ) n -> 0 as n + 0 0, for p.A any other root. To gener¬ 

alize this property to solvents, the following result is 

needed, the proof of which was provided by P. A. Businger of 

Bell Telephone Laboratories. 

Definition 5.1 Matrix A dominates matrix B if all the eigen­ 

values of A strictly dominate, in modulus, those of B. 

Lemma 5-1 If matrix A dominates matrix B, then A ~ n C B n + 0 

as n + «>, for any constant matrix C. 

Proof: For any e > 0, let 

ditions will be shown (in the next 

The second stage generates a sequence of matrix 



B P B(e)(j B(e))p B(e)- 1, (5.4) 

where 

J B ( e ) 

*B 

B 

(5.5) 

See Ortega and Rheinboldt [16, p. 43] for a discus­

sion on this modified Jordan form. Then, 

l|Bn|| < l|PB(e)ll f|PR(e)_:Lil <e+max|X R|), (5.6) ' B 

where the norm Is the infinity norm. Noting that 

A 

e A A 

-1 

e X, 

- 1 

-eX -2 ,-1 

-eXT 2 X T 1 

A A 

(5.7) 

the result 

IU- n || < ||PA(e)||||PA('e)-- L N 

^min X^ min|X A 

(5.8) 

E 



Is similarly obtained, where PAU) is defined as 

In equation (5.4). Combining equations (5-6) and 

(5.8) we get 

||A"nCBn|| < kju+max|XR|> ̂  E
 ? 

n 

min|x*| mlntX^J ' 
(5-9) 

where k, a function of e, is independent of n. 

When e - 0, the constant to the n t h power is less 

than one, since max|X R|/min|X A| < 1. By continu­

ity, there exists an e > 0 so that the constant 

is still less than one, and, hence, ||A"nCBn|| - 0 

as n <». # 

We now give the convergence theorem for -Algorithm 1. 

Theorem 5 . 1 If 

(i) M(X) has a complete set of solvents, S ^ " ' ^ , 

(ii) S1 is a dominant solvent, and, 

(lil) V(S 1,.*.,S m) and V(S 2,-.-,S m) are nonsingular, 

then (1) G n(X) = (a") \j n<X) * M̂ U), where M-^X) Is the  

unique monic form of the fundamental matrix polynomial such  

that M ^ S j ) - Sjj1* *M 
(11) for L sufficiently large, X of (5-3) converges 

— 3 1 * 
Proof of part (I): Prom equation (5.1), the result 

G n(S i) = G o ( S ± ) S n - S n (5.10) 



follows. By Theorem 3-3 and equation ( 5 . 1 0 ) , we 

get 

m m 
G n ( X ) " E G

n
( S i ) M i ( X ) " E s JWiCX), ( 5 . 1 D 

1-1 1 -1 

and, thus, 

m 
a l = E S 1 A 1 ± ) # (5-12) 

1=1 

S 1 and A* 1' are nonsingular and, thus, there Is an 

N such that for n > N, a" must be nonsingular, 

since using Lemma ( 5 - D and equation (5-12) 

•ft;*! 1')" 1 * 1 < 5- i 3 > 

as n •* ». Using equations ( 5 - 1 1 ) and (5-12) and 

Lemma ( 5 - 1 ) , we get, for n > N, 

y1 I m 
Y* S n A ( i ) ] S n S " n [ V SnM (X) Vi=i 1 1 / 1 1 Vi-i 1 1 

(5.14) 
(cont'd) 



a Y1 / a E ̂ M'M E Wi<*> 
* (4"°) 1 M I ( X ) e V X )* (5.14) 

by Lemma 5.1. * 
We defer the proof of part (11) of the theorem to first obtain some results which will be needed in the proof. 

Corollary 5-1 Under the hypotheses of Theorem 5-1. 
(°l) al+1 * Rl (5'15) 

as n + «, where n± Is the dominant left solvent. 
Proof: Modification of equation (5-14) and Corollary 3-3 

yields (ot̂ of1 - (Ai1))"1S1Â 1) - ̂  as n •*• », # The following lemmas all use the same hypotheses as in Theorem 5.1. Let 
<j>L(X) = GL(X)Ĝ 1(X). (5.16) 

Thus, stage two of Algorithm 1, equation (5-3) is 
Xi+1 = *L(Xi}- (5'17) 



In Lemma 5-2 we show that every right solvent Is a 

fixed point of <f>L<X) for each L. Lemma 5-4 shows that 4>L(X) 

is defined for all X In some neighborhood of the dominant 

solvent. Lemma 5-6 gives the local convergence of the second 

stage of Algorithm 1. Finally, Lemma 5-7 says that stage one 

will yield a point in the locally convergent region (Lemma 

5.6) of the dominant solvent. Stage one supplies a suffi­

ciently accurate starting value for the locally convergent 

stage two and, hence, the overall algorithm is globally 

convergent. The proof of part (ii) of Theorem 5-1 then 

Immediately follows. 

Lemma 5-2 <t»L(S) = S for all L and any_ right solvent S. 

Proof: The result follows from equation (5-10) and the 

fact that G Q(X) - I . # 

Lemma 5-3 There exists a nontrivlal ball B, centered at 

such that for all X € B 

(1) || I-M1CX>|J < K < 1, ( 5 . 18) 

and 
(II) ||Mj(X)|| < D, J ^ 1, ( 5 . 1 9 ) 

for some D Independent of j. 

Proof: A matrix polynomial Is a continuous function of its 

matrix variable. The results thus follow from con­

tinuity and the facts that W^S^) = I and 

Mj ( S ^ » 0 for j 1. # 



It follows from Lemma 5-3 that for all X e B, 

M 1(X) is nonslngular and 

lMl1(X) 

II J- \ it 
1 - HI-M̂XJII 

(5.20) 

Lemma 5A If X € B, then there exists an L« such that 

* L(X) ls_ defined for every L > L*. 

Proof: For X e B, let 

V (X) = M ( X ^ C X ) (5.21) 

and 

m 

wL(x). = 2 S I L S J V J ( X ) - C 5 - 2 2 ) 

j=2 

Then, 

m 
,L-1, 

j = l 

( m \ 

i + £ s^^sj-^wj Ml(x) 
- S ^ I + w ^ U ) ) ^ ) . (5.23) 

Note that W L(X) fl, as L * « uniformly for 

X € B. This follows since 
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I I V J W L L - ||MJ(X)MrL
1CX)|| < R ^ - T < » ( 5 . 2 4 ) 

by Lemma 5-3- Thus, I + W L ( X ) -> 1 as L -> -

and, hence, I + W L ( X ) is Invertible for large L. 

By equation ( 5 - 2 3 ) , G ^ C X ) I S invertible for 

large L and the result follows. # 

Lemma 5-5 If X e B, then 

S J V J C X J S - 1 ! < xaL||MJ(X)||||M-1(X)li < ^ , (5.25) 

where 0 < o < .1, and T Is a constant Independent of L and X. 

Proof: The result follows from equation ( 5 - 9 ) . where 

a - max|A s |/nin|Ag | < 1 for j * 1.. I 

Lemma 5.6 If X e B and L is sufficiently large, then 

X i " ^ L ^ i - i 5 ^ sr 

Proof: Let X e B and L > L* of Lemma 5-4. Set 

E L(X) = <|>L(X) - S 1 . (5-26) 

Then, since 

/ m \ / m 

•(E *»5v» E^V*' 



it follows that 

m m 
E L(X) £ sf\W = £ ( S j - S ^ S ^ H j f X ) 

J»i i"2 

Let 

TA T(X) * si,-1V,(X)s:(L"1). (5 .27) 

Thus, by Lemma 5-5; 

Dxa L 

as L «>. Choose L large enough so that 

m 
£ l|T J < L(X)|| < F < 1 (5.28) 

J-2 

for all X € B. Then, 

E L(X) 
m 

+ V T, _(X) 
J»2 

m 
L (SJ-S1)TJ,L(X) 

J-2 

gives, by equation ( 5 . 2 5 ) , 

™ ||S1-Sll|TaL-l||M1(X)||||»Cl(X)|| 
||EL(X)|| ^ £ — J ± " 1 (5.29) 

J-2 1 " F 



for all X € B. A matrix polynomial Is contin­
uously differentiate. Since M̂ S. A 83 0 for 
j A 1, the result 

||Mj(X)|| < t||X-SiH , (5.30) 
t 

where J A 1, t • sup llM.(X)ll, follows from the 
X€B J 

mean value theorem. Finally, 
I AOO-SjJI < caAllx-SAI (5.31) 

for all X € B5 where 

m 
E iisj-siiiTt 

c = abs iz2 1 

(1-F)(1-K) 
The result follows from equation ( 5 . 3 D , since 
0 < o < 1 and L can be taken large enough so 
that ca1"1 < 1. # 
The preceding lemma gave convergence for the second 

stage of Algorithm 1 if XQ € B. The next lemma shows that 
X is in B if the first stage is continued long enough, o 
Lemma 5-7 For L sufficiently large5 1 ) € B| 



m 

Proof: Noting that tx̂  - ^ ^ S j A ^ , a proof similar to 

that in Lemma 5-6 will yield 

as L •+ ». # 

The second part of Theorem 5.1 can now be easily 

proved using Lemmas 5-2 through 5.7. 

Proof of Part (11) of Theorem 5.1: For L sufficiently 

large, X € B by Lemma 5-7. Lemma 5-6 then ° o 
Cl 

Equation (5-3D reveals the rate of convergence. 

Corollary 5-2 |j ̂ (Xj-Sjl < ca L' 1||X-S 1|| for all X e B, 

where 0 < a < 1. 

shows that X, -> # 

This corollary shows that even though the second 

stage is only linearly convergent, the asymptotic error 

constant can be made as small as desired by increasing the 

number of iterations of the first stage. The asymptotic 

error constant for stage one will depend on 

o = max|A q |/min|A„ | < 1, while that of stage two can be 
J 1 

significantly faster than stage one. This is the purpose of 

the second stage, for equation (5-33) shows that stage one 

can also yield 



5-3 Computational Considerations. A computational diffi­

culty in generating the sequence 0 n(X) in stage one, 

G n + 1 ( X ) = G n(X)X - ajM(X), (5-34) 

is that the matrix coefficients of C?n(X) will grow expo­

nentially. This may be avoided by generating G n(X) by 

K n + 1 ( X ) = G n(X)X - ajM(X) (5 .35) 

and 

G n + 1 ( X ) 

\l[X) If K f 1 * 0 II K N + 1 || 1 

(5-36) 

K n + 1 ( X ) otherwise, 

where a" and K " are the lead matrix coefficients of G n(X) and 

K n ( X ) , respectively. Then let 

G L_ 1(X) = G^_^(X) (5 .37) 

and 

Gt (X) = G L_ 1(X)X - a ^ M C X ) . (5-38) 

Now, G L(X) and G L_ 1(X) contain the same scalar constant that 

was built-up In normalizing G n(X) in equation ( 5 - 3 6 ) . Thus, 
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the constant vanishes In * L(X) = G ^ X j G ^ C X ) , and the 

growth of the coefficient has been stopped. Furthermore, 

G n(X) = 0 n(X). 

The following strategy is used to switch from 

stage one to stage two. 

(i) Compute G n(X) until the matrix polynomials tend to 

settle down. 

(ii) Compute stage two, as long as rapid convergence 

appears to be occurring. If stage two is too slow 

or is diverging, resume stage one for several more 

steps. 

A flow-chart of the algorithm that exhibits the 

strategy follows. It Is guaranteed to work, using exact 

arithmetic, for any matrix polynomial satisfying the condi­

tions of Theorem 5.1. The actual computer program that was 

used to test this algorithm appears in Appendix D. 



O T V E N M(X) 

W A N T $ S U C H T H A T | | M { 3 ) | | < « 

. 0 5 

r 

R E S U L T X I + , 



CHAPTER 6 

The Block Bernoulli Method 

This chapter covers a generalization of Bernoulli's 

scalar polynomial method to the matrix polynomial problem. 

A relationship is shown between it and Algorithm 1. 

Definition 6.1 For the matrix polynomial 

M(X) - X"1 + A^" 1" 1 + •«« + A . (6.1) 1 m* 

the block Bernoulli iteration is 

Xl+1 + A l X i + + Am Xl-m+l " -* ( 6 , 2 ) 

with X .X ,«««,X given starting matrices. 

The general solution to the matrix difference 

equation (6.2) is obtained precisely as in the scalar case. 

Theorem 6.1 If S ^ ' " ^ are right solvents of M(X), such  

that V ( S 1 J " . ,S m) is nonslngular. then 

X i " Slal + — + Sm°m < 6'3) 

!§ . MIS. genera l s o l u t i o n to the matrix d i f f e r e n c e -equation 

1 m (6.2), where a.," » ,o are matrices determined by the initial 
conditions. 

Proof: Substitution of equation (6.3) into equation (6.1) 
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yields 

m m m 

J-0 J-0 k»l 

m / m £ (E v!TJ) sit2J-mt\ - a 
k-1 \J-0 

w h e r e A - I. The n o n B i n g u l a r block Vandermonde 

insures that a l * " " ' a m c a n b e u n l c l u e l y calculated 

in terms of X Q,X_ 1....»X_ m + 1. If X± is the general 

solution to equation (6.2) and X± * 5̂  for the 

first m consecutive subscripts, then Xx « X± for 

all i. # 

In the scalar Bernoulli method, If there Is a 

dominating root, then the ratio of the Bernoulli Iterates 

converges to the root. 

Theorem 6.2 If M(X) has solvents .S m, such that S 1 is 

a dominant solvent, and V(S 1,*•••,S m) is nonsingular, and if 

V*-!'"'•*-«+! SE2. £hP±£n so that a, is nonsingular, then 

( i ) Xn-l Xn * a l l s i a l ' SSS 

^ Xn Xn-l - S l SSL n * 

Proof: Part (1) is obtained from 



/m v7m > 
Xn-l Xn " \ £ *T\J snia±j 

m \ 1 / m v e siCn"1>srs) (si°i+ e siCn"1>s?ai 
1-2 / \ 1-2 

_1 

For part (11), 

• 1 

-(si+vr1->i1^(n-1,)(i+vrMls:(n-1))"1. 
where 

m 
W n - 2 S j a ^ " " 1 ) (6.4) 

J-2 

and 

m 
V n ' E S ^ a . S " * " - 1 * J J 

J-2 
C6.5) 

Furthermore, w n S n ~ 1 a ~ 1 S ~ ( n ~ 1 ) £ and 
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VrV3!̂ "1* * A- Thus, X n X ^ 1 . S 1 . | 

The block Bernoulli iteration (6.2) can also be 
written as 

Xi-m +2 
• • 

xi+i 
0 
-A m 

»A • • • 
m-l 

I 

•A. 

X W l 
Xi-1 
X i / 

(6.6) 

where X, is a matrix of order n. Equation (6 .6) looks like 

eigenvector powering except 

i-m+1 

X, 1-1 
is not a vector In 

(i / 
the usual sense. A theory of such power methods will be 

considered in Chapter 8. 

Consider the same power-like method on the trans­

pose of the matrix in equation ( 6 . 6 ) . That is, consider 
wi+ll 
m 

W ^ + 1 

\ W i + 1 I 

Pi / 

0 

I 

-AJ 

m 
-A. m-. 

-A 

I 

( 6 . 7 ) 

I 
• 

* 
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Multiplying out, the syatem 

m m l 

m-1 m m-1 1 
(6.8) 

2 • A i w i 

results. Multiply the J t h equation on the left by (x T) 

and add. The result is 

J-l 

i + 1 

G 1 t 1 ( X ) - G±(X)X - ( w ^ ) T M ( X ) , C6.9) 

where 

a±(x) - (wJjV1 + ... + (w£)T. (6.10) 

This is precisely stage one of Algorithm 1 . These results 

are generalizations of what occurs in the scalar c a s e . See 

Traub [21] . 



CHAPTER 7 

A Lambda-Matrix Algorithm 

In this chapter we present an algorithm, again 

based on Traub's scalar polynomial algorithm, to obtain a 

dominant latent root. Section 7.1 gives the algorithm and a 

convergence theorem. Section 7.2 considers another gener­

alization of the Bernoulli method and its relationship to 

the algorithm of Section 7.1. 

7.1 A Method Based on Lambda-Vectors. The basic approach 

to the lambda-matrix problem taken in this paper is to find 

a chain of solvents and, then, to find the eigenvalues of each 

matrix of the chain. For Algorithm 1 to yield a solvent, 

which is needed in this approach, a dominant solvent must 

exist. Since a dominant solvent need not exist, an alter­

native approach will be considered. 

Algorithm 2 Let g Q(A) be. an arbitrary m-1 degree lambda- 

vector. Generate 

g k + 1 C A ) - g k U)X - M(A)v< k ), ( 7 . 1 ) 

where 

g, (A) = v ^ A ™ " - 1 + ••• + v ( k ) . (7.2) °k 1 m 

Algorithm 2 is another generalization of Traub's 

scalar polynomial algorithm. It seeks a dominant latent root. 
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Theorem 7.1 If 

(1) M(X) has distinct latent roots, p ^ - ^ 

(11) | P l | > | P l | for 1 ft 1, and 

(111) r T g o ( P l ) fi o, where r ^ p , ) - 0 T , 

then 

g t(X) MU)b, 
(i) g, (X) = —*—nrv * i 1 » , where M(p 1)h 1 - 0 

k max v\K) A " p l l i -

and 

v(k+l) _ p y(k) 
(11) — ,J 1 * 0. 

max v ^ K ; 

Proof: By Theorem 3 . 4 , the lambda-vector g n(X) can be 

represented uniquely by 

mn 
gk(x) « £ eik) r^-b,, ( 7 . 3 ) 

i-i 1 

where M(p 1)b ± - 0. Thus, 

mn 
vik) " S 6i k > bi- <7.4) 

1»1 

Substituting equations (7-3) and ( 7 . 4 ) into equa-
mn ^(k+l) _ g(fc)p 

tion ( 7 . 1 ) , one gets M(X) £ ~ — x . 1  

X - p "1 " -
i«l 1 



for all A. Thus, B ^ k ) - 6 ^ * , where &t - e £ 0 ) . 

Using this, 

as k + «, If 3 ^ 0 , since ^ is unique to 

within a scalar multiple. Furthermore, 

g 0( P ] L) - e 1M'(p 1)b 1 • 2pHrt-bi a n d * t h u s * 

i-2 1 1 

since r^M(p 1) - 0 T , we get 

rW»l> ' VlM,(pl>bl* (7'5) 

Finally, r^g QCp 1) i* 0 implies 6 X + 0. For 

part (ii) 
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0. H 

Let ( v ) r denote the r t h component of vector v. 

Corollary 7-1 Under the conditions of Theorem 7.1, If 

as k », as long as (B-,0,) ? 0. # 
r 



If division of vectors is defined as componentwise 

division, then v [ k + 1 ) f v [ k ) is an n dimension vector, with 

each component an estimate of p . In a manner similar to 

the last two proofs, we get the following result. 

Corollary 7-2 Under the conditions of Theorem 7 . 1 , 

TkY * b l * 
v l 

max v 

Consider again, the first stage of Algorithm 1: 

G k + 1 ( X ) = Q k(X)X - a kM(X), ( 7 . 6 ) 

where 

G kCX) = c^x"1-1 + + a k. . (7 -7) 

Transpose both sides of equation ( 7 . 6 ) and substitute 

X » XI to get 

T 
G k + 1 ( X ) = G k(X)X - M T(X)(a k) . (7-8) 

Let gk(.X) be the lambda-vector formed by taking the i r 

column of the matrix coefficients of G k(X). Then, 

th 

g J + 1 ( X ) - g£(X)X - M T ( X ) v k
> ± , ( 7 . 9 ) 

where v k , is the leading vector coefficient of g£(X). 
1*1 K 
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Equation (7-9) is precisely Algorithm 2, operating on M T ( A ) . 

The latent roots of MCA) are the same as those of M T ( A ) . 

Thus, the computations of Algorithm 2 are done by Algorithm 1. 

Even if Algorithm 1 does not work, due to the lack of a domi­

nant solvent, it is possible to obtain a dominant latent 

root by extracting the computations of Algorithm 2 from the 

computations (successful or not) of Algorithm 1 . 

The convergence theorem for Algorithm 2 has the 

requirement that r ^ , ^ ) * 0. Since Algorithm 1 used 

G (X) " I , it follows that at least one column of equation o 
(7 .8) satisfies this requirement. 

7.2 A Vector Bernoulli Method. A block Cmatrlx) Bernoulli 

iteration was previously considered. Another generalization 

of Bernoulli's method is now presented. Similar ideas may 

be found in Guderley [ 3 ] . 

Definition 7 . 1 For the lambda-matrix 

IX m + A 1 A m _ 1 + + A m, ( 7 . 1 0 ) 

the vector Bernoulli iteration is 

v ( k + l ) + (k) + ... + A v(*-m +l) . 0 ( 7 > n ) 

JL m — 

with v^°^,*•* > v(~ m +l) given vectors 



Equation ( 7 . 1 1 ) can be written as 

(k-m+2) 
V 

• 

(k) 
V 

-
y(k+l) 

0 I I 

" Am -Vl — 
I 

" A l 

v(k-m+l) 

• 

„(k-l) 

\ , 0 0 

.(7.12) 

This Is Just the eigenvector powering on the block transpose 

of the block companion matrix. Eigenvector powering on the 

block companion matrix is 

r(k+l) 
m 

(k+1) 

V C K + L ) 

0 

I 

-A 
m 

I -A 1 

(k) 1 

m 

(k) 
r2 
, 0 0 

I 

(7.13) 

Multiplying out, we get 

(k+1) 
m 
(k+1) 
m-l 

M L 

v ( k ) - A v C k ) 

m m—1 1 
(7.14) 

r(k+l) . v(k) _ A v(k) 
1 v 2 1 1 

• • * 

• 

Then, 
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where the lambda-vector 

g k U > = v^ 0*" 1" 1 + + v ^ k ) , (7-16) 

is obtained by multiplying the 1 t h equation of (7-14) by 

A 1 " 1 and adding. 

Equation (7-15) la precisely Algorithm 2. Consec­

utive substitutions of equations (7.1*0 yields 

V ( k + 1 ) + A , v J k ) + ... + A v , ( k ~ i n + 1 ) - 0. (7.17) i xi m l — 

Thus, the leading vector coefficient of Algorithm 2 is a 

vector Bernoulli iterate. This is a generalization of what 

occurs in Traub's [21] scalar polynomial algorithms. 



CHAPTER 8 

Block Eigenvalue Problem 

A block eigenvalue problem Is considered in this 

chapter. Let A be a given matrix of order m n . The matrix X 

of order n is desired such that there exists an mn by n 

m a t r i x , V , of full r a n k , so that AV * V X . Power methods of 

the form V i t 1 • AV^ are considered, where is an mn by n 

matrix. It was shown in Chapter 6 that the first stjage of 

Algorithm 1 is of this form, where A is the block "companion 

matrix. Sections 8.1 and 8.2 define the problem and con­

sider complete sets of block e i g e n v a l u e s . In Section 8.3 we 

present some generalizations of linear algebra with respect 

to this new formulation. The application of the new eigen¬ 

value problem to the block companion matrix is given in 

Section 8.4. Also discussed is the relationship between 

block eigenvalues and right solvents. In Section 8.5 we p r e ­

sent two algorithms based on eigenvector powering. 

8.1 Block Eigenvectors. Let the term block vector denote an 

mn by n matrix that has been partitioned into a column of n 

by n b l o c k s . It is equivalently an m - t u p l e , each of whose 

components is a square matrix. 

Definition 8.1 A matrix X of order n is a block eigenvalue  

of order n of matrix A of order mn, if there exists a block  

vector V of full rank, such that AV * VX. V is a block  

eigenvector of order n of A. 



Generally the order of a block eigenvalue or block eigen­

vector will be understood and will not be referred to 

explicitly. 

A problem that has received a good deal of 

attention is that of finding a matrix X such that AX • XB, 

where matrices A and B, of orders m and n, respectively, are 

given. Jameson [6] and Gantmacher [2, p. 215] are amongst 

many authors who have considered this problem. The main re­

sult for this problem is that AX »• XB has only the trivial 

solution X - £, if and only if A and B have no common 

eigenvalues. This result will be of use in this paper. 

Returning to the block eigenvalue problem, we have 

the following. 

Theorem 8.1 If AV - VX with V of full rank, then all the  

eigenvalues of X are eigenvalues of A. 

Proof: Let X be an eigenvalue of X with eigenvector u. 

Thus, AVu - VXu » AVu. Therefore, either A is an 

eigenvalue of A with eigenvector Vu or Vu • jQ. 

Since V is an mn by n matrix and it is of full 

rank, there exists a left inverse to V. Thus, 

Vu - 0 can only occur if u - 0, which cannot 

happen since u is an eigenvector of X. § 

Corollary 8.1 If A is the block companion matrix, then all  

the eigenvalues of a block eigenvalue of A are latent roots 

of M(A). 



Proof: The result follows from Theorem 8.1 and the fact 

that the eigenvalues of the block companion matrix 

are latent roots of its associated lambda-matrix.* 

8.2 Complete Sets of Block Eigenvalues. It will be shown 

that a solvent is A block eigenvalue of A block companion 

matrix. Furthermore, it will be proved that a matrix always 

has a block eigenvalue. Since a solvent does not always 

exist by Theorem 2 . 6 , it follows that a block eigenvalue of 

a block companion matrix is not necessarily a solvent. 

Definition 8.2 A set of block eigenvalues of a matrix is a 

complete set if the set of all the eigenvalues of these block  

eigenvalues la the set of eigenvalues of the matrix. 

Theorem 8.2 Every matrix A, of order ran, has A complete set 

of block eigenvalues of order n. 

Proof: Let P l , " - , p n be any n eigenvalues of A and let 

P 1,...,P n be their associated eigenvectors or prin­

cipal vectors, where needed. Then, V - (P x,••-,P n) 

is a block eigenvector with block eigenvalue In 

Jordan form. This process can be continued for 

each of the m sets of n eigenvalues of A. 

As an example of the construction in the above 
lo 1 ' 

proof, let 
P 

Then, 



hence, ^ P ^ and ^ P ^ are a complete set of block 

eigenvalues of A. 

Definition 8.3 In a complete set of block eigenvalues, one 

of them is, weakly dominant. if all its eigenvalues are  

greater than or equal to the eigenvalues of any_ other block  

eigenvalue in the complete set. 

The construction of Theorem 8.2 can be done such 

that the first block eigenvalue contains the n largest eigen­

values of the matrix. We thus get the following important 

result that was not true for solvents. 

Corollary 8.2 Every block matrix has a complete set of block  

eigenvalues with one of them weakly dominant. 

Block eigenvalues thus far considered have all been 

in Jordan form. However, unlike solvents, any matrix similar 

to a block eigenvalue is also a block eigenvalue. This fol­

lows, since, if AV - VX and Y - P _ 1XP, then A(VP) - (VP)Y, 

and VP is still of full rank. 

8-3 Block Vector Algebra. We now consider some of the basic 

properties of block eigenvalues. 

Definition 8.4 Block vectors, V ^ - - - , ^ of dimension ranb^n, 
k 

are block linearly independent. if £ V ± A ± = 0 implies 
1=1 



that A 1 = & for all 1, where A± are matrices of order n. 

Note that a set .of block vectors being block 

linearly dependent does not Imply that one of them can be 

solved for as a combination of the others, since all the 

A ^ s may be singular. 

Lemma 8.1 For 1 = ,m, let the block vector 

V l = * v l l » " * * vln*" T h e n * v i * " * * v m a r e p l o c k linearly  
independent if and only if {Vj.,} for i=l,»«*,m, 

j = l,*",n, are linearly Independent in E m n . 

Proof: ( 1 ) Assume (v ± J } are linearly dependent. Thus, 

there exists not all zero, such that 

£ alj vij = -* L e t A i b e a m a t r i x whose first 
lj 
column is (o ± 1,• • • ,ot l n ) T , and the remainder of the 

m 
matrix Is zero. Then £ = £ and not all 

1=1 
the A, » 0. 1 — 

( 1 1 ) Assume {V ±} are block linearly dependent. 

Thus, there exists {A±} not all zero matrices, such 
m 

that £ V A = 0 . Let k be such that there is an 
1=1 

X 1 is not zero. Then, S vij( Al) = ^ s l n c e t h l s i s 

n J K 

m 
the k t h column of V* V.A. and, since, {v..} are 

*-' I I 1J 
1=1 

linearly dependent. # 



Definition 8.5 Block vectors V 1 » , " » V m Pf dimension ran by 
n form a block basis if for any_ V of the same dimension 

there exists a unique set of matrices • • • ,A m such that 
m 

v * m V I A I -
i=i 

Block vectors being block linearly independent and 

forming a block basis are related by the following. 

Theorem 8.3 Block vectors V ^ - ' ^ V of dimension mn by_ n 

form a block basis if and only if they are block linearly  

Independent. 

Proof: Let V be a block vector of dimension mn by n . 
/A 

m / 
V = J] V i A i i s equivalent to V - (V 1, • • • 9v4 \ 

1=1 \ A 

The matrix (^ 1»*"^ m) is square and, by Lemma 8.1, 

nonsingular, if and only if {VjL} are block linearly 

independent. # 

A generalization of a matrix with distinct eigen­

values being similar to a diagonal matrix, is given by the 

next result. 

Theorem 8.4 If A has block eigenvalues X ^ * " ^ with block  

eigenvectors V 1 , " ' , V m that are block linearly Independent, 

and if X is also a block eigenvalue of A, then X is a block  

eigenvalue of d l a g ^ , * • • .X^) . Furthermore , 

(vi****'vmrl A<V"'V- «*s(V"'V-



Proof: Equation (8.1) is easily verified. Let AV » VX. 

Then, by Theorem 8.3, there exists a unique set 

of n by n matrices, <* 1>' t t> a
m> s u°h that 

,T m 
V " E V i V L e t A ~ ( a l » " * » a m ) ' T n u s ' 

1=1 

V - (V 1.*"*>V n i)A. Since (V^'-'.VJ is nonsingular 

and V Is of full rank, by definition, it follows 

that A is of full rank. Now, using equation (8.1), 

we get 

(V 1,---,V m)AX = VX MVlt'" ,v m)A 

Finally, diag(X 1,«••,X m)A = AX with A of full 

rank. # 

8.4 Block Companion Matrix. An application of the block 

eigenvalue problem is given below. We again consider the 

block companion matrix. Recall that 

0 

I 
m 

" Am-1 
* 

I -A 1 

(8.2) 

0 

and 



C B 

0 

- A m -A m-l 

I 

" A l 

(8.3) 

where 

M(X) = X m + A^" 1" 1 + + A m. (8.4) 

It will be shown that a solvent Is a block eigen­

value. The converse is not true, since a matrix similar to 

a block eigenvalue is also a block eigenvalue, but the same 

is not true of solvents. 

The following is easily verified. 

Theorem 8.5 If S is a right solvent of M(X), then S is a 
I 

block eigenvalue of C with block eigenvector 
S 

,m-l 

Unlike the scalar eigenvalue problem, the block 

eigenvalues, with respect to left and right block eigen­

vectors, are different. 

Definition 8.6 An n by_ n matrix Y is a left block eigenvalue 

of dimension n of A, a matrix of order mn, if there exists a 

block vector W of dimension n by_ mn of full rank, such that 

WA = YW. W is a left block eigenvector. 



A generalization of what occurs in the scalar case, 

(see Jenkins and Traub [ 8 ] ) , Is given in the next theorem. 

Theorem 8.6 If R is a left solvent of M(X), then R is a 

left block eigenvalue of C B , with left block eigenvector 

( D m _ 1 , " - , D 1 , I ) , where 

D(X) = I X m " 1 + D 1 X m - 2 + .-. + D m „ 2 A + Dm-l 5 d^-RJ'^f X) . (8 .5) 

Proof: Let 

~ Am " Am-1 ""* 

I 

" A l 

Y ( D m - l ' " ^ D l * I ) 

Multiplying out, we get 

m Y D m - l 

Vl " Vl ' YDm-2 
(8.6) 

D, 

D-

A 2 

A l 

Y D 1 
Y 

Consecutive substitutions yield 
„m . Y m~^A + ••• +YA , + A - 0. Thus. Y = 1 m-l m - ' 
a left solvent of M(X). Now, multiply the 1 t h 

R, 



- 8 1 -

equation of ( 8 . 6 ) by A 1"" 1; add; let 

D(X) = IX 1™ -" 1 +r ] D , X - - ! + ••• • D and get 

equation ( 8 . 5 ) -

In a si—ilar — a n n e r , we find that If S is a right 

solvent of M ( X ) , then S is a block eigenvalue of C, with 

' - - 1 

block eigenvector , where 

M ( X ) d X - S ) " 1 = IX1*""1 + VA" + + V ( 8 7 ) 

Let be a left solvent of M ( X ) . Then by equation 

( 8 . 5 ) and Corollary 3.*», it follows that M± (X) = D± (X) , if 

the appropriate block Vander—ondes are nonsingular. A l s o , by 

equation ( 3 . 1 2 ) , D * S * » (AJ 1*) , which is the inverse of 

the leading —atrix coefficient of the i funda—ental —atrix 

p o l y n o — i a l . 

Let 

( 8 . 8 ) 
1 

and 



w i " (Dra-i'*"*Dii)»1)' (8-9) 

where it ia assumed that both VfS^* • • ,S m) and 

V(S 1,".,S 1_ 1,S j L + 1,--.,S m) are nonsingular, and that 

R i = A i 1 J
 lsiAi±)

 f r o m e < l u a t l o n (3.11). 

The biorthogonality of right and left block eigen­

vectors is given by the following. 
Theorem 8.7 Under the above assumptions 

Proof: 

W i V J (D m* D ^ . l ) 

I 

S. 

sm-l 

- Dmil + Dm-2 SJ + — + *?* = D i ( V 
= D 1 ( S 1 ) M 1 ( S J ) - ^j^V = 6 1 j A [ 1 ) " 1 . # 

Prom Theorem 8.5 and Lemma 8.1 the result that 

V(S 1,-•• JS m) is nonsingular, if and only if the block eigen-

vocfcoi*s of* C block linearly independent ̂  is ©<isily 

Ob t £L iT*l€ d • 



8 - 5 Algorithms for Block Eigenvectors. Consider now block 

powering methods, as In equations (6 .6) and ( 6 . 7 ) . Let 

( V ) k - V k , where V 

V l 

m 

and V. is an n by n matrix. 

Algorithm 3 Let 

U n + 1 - A U C8.ll) 

where U Q is an arbitrary block vector of full rank and 

1 < k < m is an arbitrary fixed integer. 

The normalization in equation (8.11) depends upon 

the nonslngularity of (AU n) . 

,-1 
Lemma 8,2 U n - A n U o | A n U o ) J 

Proof: 

Vl 

V1(K-.).)-(K1(K.1)k)-)>y' 
Vi((»«),r((«v.).((»«u" 
?U ^ ( a 2 u ) y 1 • • •• - A n + 1 U ^ ( A n + 1 U ) ^ # 

http://C8.ll


With this identity, convergence can be proved. 

Theorem 8.8 Let S 1,».»,S m be a complete set of block eigen­ 

values of A with block eigenvectors ^ 1 » ' " ^ m - If S 1 domi­ 

nates all the other block eigenvalues and U Q is in the span 
m 

21 <vi>» t h a t Is u
0 " £ v i a i » a i i 3. nonsingular, then 

// \-1 It \ \_1 / 
U n + 1 * A Un(( A Un)J converges to V^vJJ > 1£ IfL 
nonsingular. 

Proof: 

U n " (A"Uo)((AnUo)J"1 

/ m \ II m 

m \ / m V"1 

V 

as n -»• », by Lemma 5 . 1 - Since, as shown above, 

(AU n) c^S" 1 1 + ( V l ) k
> " f o l l o w s t h a t ( A U n ) k

 i s 

nonsingular for n sufficiently large since (v̂ -1 

exists by the hypothesis. # 



In the application to the block companion matrix, 

the existence of a k such that (v̂  is nonsingular, is 

equivalent to the existence of a solvent. If a right solvent 

exists, k can be taken as 1 by Theorem 8.5- The converse Is 

proved below. 

Theorem 8.9 If C BV - VX and ( V ) 1 Is nonsingular, then 

S « (VJ^XCV)" 1 Is a right solvent, 

Proof: 

Let V V ( V ) " 1 

I 

D 2 

D 
m 

. V( V ) " 1 is a block* 

eigenvector of C with block eigenvalue' 

S - (V^X-iV)" 1. Thus, 

III 

-A_ -A , m m-l 

I 

-A 1) m 

I 

« 
• 
« 
• 
* 

D m » 

s . 

Multiplication yields D± - S 1 " 1 and 

DmS + A XD + ••• + A m - £. Hence, S is a right 

solvent. # 

Thus, Algorithm 3, applied to the block companion 

matrix, converges to a block eigenvector associated with a 
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solvent. Since block eigenvalues always exist but solvents 

do not. it is necessary to consider a normalization which 

does not depend on the existence of solvents. A block eigen­

value yields, by Corollary 8 . 1 , as much Information to the 

latent root problem as a solvent does. The difficulty is 

that a deflation of the form M(X) - Q(X)(IX-S) Is not 

available for block eigenvalues. 

For a block vector Vj of full rank, let ^Vj) 

denote the n by n matrix formed by taking the first n rows of 

Vj that are linearly independent. Actually, the rule for 

choosing the n linearly Independent rows is not important, 

as long as the rule yields a unique set of rows. 

Algorithm 4 Let 

(8.12) 

If It is assumed that A is nonsingular and U Is of 
o 

full rank, then AU, will remain of full rank, and the Itera­

tion (8.12) will always be defined. It Is the goal here to 

get Uj to converge to the block eigenvector corresponding 

to the dominant block eigenvalue of A. Since the dominant 

block eigenvalue cannot be singular, it follows that for Uj 

close to V i a A is not required to be nonsingular to ensure 

that the normalization, (8.12), Is defined. 



Let (VjJ denote the n by n matrix formed from the 

first n linearly independent rows of V r Convergence of 

Algorithm 4 can now be proved precisely, as in Theorem 8.8. 

Theorem 8.10 Let S 1 , " * , S m be a complete set of block eigen­ 

values of A with block eigenvectors V l f---,V . If S 1 domi­ 

nates all the other block eigenvalues In the set and U is In 
m 

the span of {V^, that Is U Q = Vi ai» S M a j iS. non-
1=1 

singular, theji U J + 1 = AUj ̂ AIT,^ \ converges to V ^ V ^ " 1 . ' 



CHAPTER 9 

Numerical Results 

Eight numerical examples follow. All calculations 

were done on Cornell University's IBM 360/6? In APL. This is 

a time-sharing language that gives the numerical analyst 

flexibility in designing algorithms. It has complete matrix 

arithmetic and does all calculations in double precision. 

9.1 Consider the monic cubic matrix polynomial 

M(X) - X 3 + 
/_ 6 A + / 2 -H2\ + / 18 66\ 

\-3 -15/ + \21 65/ + \-33 - 8 1 / 

Algorithm 1 yields for stage one 

G o(X) = X 2 

G ^ X ) = X 2 + 

G 2(X) 
/-1.821 2.979\ /-1.105 - 6 . 8 6 s \ 

\-1.490 -6.290/ + \ 3.M32 9.192/ ' 

file:///-l.l90


and 

G 5(X) = X 2 + P /-2.026 3.71l\ /-1.715 - 9 . 1 9 3 \ I lx + I \-1.856 -7.593/ \ 1-597 12.075 

and for stage two 

and 

X l 

X, 

*3 

x4 

3-9925 -2.4261 

1.2131 7 .6317 

3-9729 -2.0892 

1.0446 7.1067 

3.9927 -2.0179 
1.0089 7 .0195 

3-9985 -2.0034 

1.0017 7.0035 

3.9997 -2.0006 

1.0003 7-0006 

3-9999 -2.0001 

1.0001 7.0001 

/4 - 2 \ 

\1 7/ 
S = I is a dominant right solvent of the matrix 

1 \1 7, 
polynomial. 

9-2 Consider the monic, cubic matrix polynomial having right 

/ 7 2\ / 5 l\ A - 2 \ 
,1=\-1 k)' 8 3 ^ - 2 2) ^ 3 3 \3 -ij solv&nts S, 

5 

file:///-1.856


which have eigenvalues 5,6; 3,4 and 1,2, respectively. Thus, 

in a dominant solvent., Furthermore, VCS^SgjS^) and 

VfS^S^) are nonsingular. The unique monic matrix polynomial 

having these solvents, which was obtained using Corollary 4.3, 

is 

M(X) X 3 + C": 
79104478 

91044776 

0.82089552\ 

-9.20895522 

42.34328358 -10.16417910 
+ I |X 

,-13.43283582 25.64179104, 

^-50.35820896 21.8805970l\ 

19.58208955 -22.80597015 

The corresponding lambda-matrix has latent roots and latent 

vectors 

Root 

1 

2 

3 
4 

5 
6 

Vector 

(1,1.5? 

(1.1) T 

(1,-2) T 

(1,-D 

(1,-D 

(l,-.5) 

T 

7 2 
Prom these results, we find that Sh is also a 

\-4 1 
solvent. Its eigenvalues are 3 and 5 and, hence, it yields 



only redundant Information for the lambda-matrix problem. 

Note that the only combination of latent roots that cannot be 

eigenvalues of a solvent are 4 and 5. 

For this problem 

M 1(X) = X 2 + f ' )x + -5 7/9 1 4/9 \ / 8 7/9 -4 1/9 
1 8/9 -4 2/9 / \-3 8/9 4 5/9 

to which G n(X) is to converge. Letting G Q(X) « X 2, we get 

9 /-3.541 .678\ / 4.183 -1.708\ 
G-,(X> « X 2 + X + I V \ .724 -2.644/* + \-l.259 2.122,) * 

P /-5.S96 1.407\ / 8.566 -3.986\ 
G\(X) - X 2 + X + { 2 \ 1.759 -4.161/ V-3.553 4.357/ 

and 

« / - 5 . 7 7 0 1.441 \ / 8.756 -4.099 \ 
G 0(X) = X 2 + ]x + [ 

1.876 - 4 . 2 1 6 / \ - 3 . 8 5 4 4 . 5 3 5 / 

The ratio of the leading matrix coefficients, which is to 

/ 7 2 \ 
converge to S 1 = , results in 

\-l 4/ 
/ iw 0V1 Al-791 -821 
VVVl) m\^.910 9.209J' 

/10W 9V1 / 6.874 1.682\ 
^ 'vW " V --877 4.308/ ' 

file:///-1.259
file:///-3.854


and 

K w r • (!:;:; 
Algorithm 2 which yields a dominant latent root was shown to 

be obtainable from the first stage of Algorithm 1. The Iter­

ation for this problem is 

Latent Root Estimate 

1 11.791044 
8.332911 

CM 

11.791044 
8.332911 

3 7-247455 
4 6.743387 
5 6.467439 
6 6.302969 
7 6.200093 

CO
 6.133848 

9 6.090399 
10 6.061549 
11 6.042225 
12 6.029191 
13 6.020346 
14 6.014309 
15 6.010162 
16 6.007294 
17 6.005296 
18 6.003892 
19 6.002895 
20 6.002181 
21 6.001663 
22 6.001283 
23 6.001000 
24 6.000787 
25 6.000626 
26 6.000501 
27 6.000404 
28 6.000327 
29 6.000267 
30 6.000218 

All of the iterations thus far described have been 

linearly convergent. The ratio of the errors has been .8, 

:::;:) • 
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which la the ratio of the smallest eigenvalue of the dominant 

solvent and the largest of the next dominant solvent. The 

second stage should also be linear, but with a ratio of 

errors C ( . 8 ) L ~ 1 . The results are 

X 

L - 10 L » 5 h - 2 

/6.S738 l . 6 8 l 5 \ / 6 . B 6 3 2 1.0039\/ 8.3287 - .0258' 

° " \-.8769 4.3084 JU-8216 4.9284 A-1.2123 6.4868 

/ 6.9766 1.9515 \ /6.8378 1.5718 \ / 7.0843 .5261 
X l " \-.9770 4.0475/ 4.3918 ) \ 8 8 9 5 5.3558, 

X 2 

X 4 

/6.9963 1.9927\ /6.9153 1.8ll 5\ / 6.8201 .8844\ 

\-.9964 4.0072/ \-.9215 4.1741/^-8009 4.954 7 >) 

/ 6.9994 1 . 9 9 8 9 \ / 6 . 9 6 0 2 1 . 9 1 6 5\ /6.76 70 I.l4 58\ 
3 " V-.9995 4 . 0 0 1 1 / \-.9630 4.0774 / V-.7878 4.7206/ 

/ 6.9999 1.9998\ / 6.9819 1.9630 \ / 6.7763 1.34l4\ 

\-.9999 4.0002/ \-.9832 4\0343 / \-.8043 4.5559 / 

/ 7 2 \ / 7 2 \ / 6.9790 1.9573\ 
1 5 \-i 4 A-1 * ) \-.98l9 4.0367/ 

The ratio of the errors, which by Corollary 5-2 
should be C ( . 8 ) L " 1 , was found for large values of i to be 

file:///-.8769
file:///-.9770
file:///-.9964
file:///-.9215
file:///-.9995
file:///-.9999
file:///-.8043
file:///-.98l9


||Xi+l-Sl JI/ll̂îilL 
10 
8 
6 
4 
2 
1 

.15 

.23 

.36 

.51 

.78 

.91 

This shows that by increasing the number of Iterations of 

stage one, stage two can be made to converge more rapidly. 

9.3 Consider the matrix polynomial 

M(X) - X" + 
-11.44382802 

0.8613037448 

+ ( 
41.02912621 

0.5533980583 

/-39.65603329 
0.6074895978 

3.42024 9653\ 2 

-5.556171983/ 

-20.93481276 

7.332871012 

23-56171983 \ 
-3.386962552/ 

and 
/ 7 2\ 

It has a complete set of solvents, S1 - f I 

S 3 = ( 4 T h e e l g e n v a l u e s o f s i a r e 5 a n d 6» w n l l e S 2 

while the eigenvalues of S 2 are 1 and 2. Clearly, V f S ^ S ^ S ^ 

and V(S 2,S 3) are singular. Algorithm 1 converged for all 

values of L. With L - 6, we get 

/ 6.7783 1.2464\ 
X ° " \-1.0231 3.9215/ ' 

file:///-1.0231


/ 6.9896 1.976U\ 

1-...00U 3.9975 

and 

/ 6.9997 1 . 9 9 9 5 A 

2 V-I.OOOO 3.9999/ 

The convergence is fast, though linear, since the asymptotic 

error constant is C . I O 6 . 

9.4 Consider the problem 

2 / - 1 2.H 4.I.\ 2 / 52.6 -29.2\ /-73.I 
M U ) " X \ 1.6 - 8 . 6 / X \ l O . H 2 2 . 8 / X A L 6 . « 

/ 7 2\ 
This problem has a complete set of solvents, S. -| J , 1 V-l 4 / 

/ 1 0\ /3 2\ 
s

2 " ( ^ , and S 3 - ̂ 3 ^j. Sx dominates, V C S ^ S ^ S ^ 

is nonsingular, and V(S 2,S 3) is singular. M ^ X ) exists 

uniquely, but its leading matrix coefficient is singular. 

Hence lim G (X) does not exist. However, Algorithm 1 con¬ 

verged. This is because the second stage needs the ratio or 

G L(X) and G L - 1 ( X ) , not G~L(X). For this type of problem, the 

equation XQ - a ^ a ^ " 1 ) 1 can cause difficulties because 

a^" 1 can become singular. For this problem, however, the 

ratio did exist since a^" 1 did not quite become singular. 

If It had, a random X Q would have been used. After twenty 

file:///-1.0000
file:///lO.H


iterations of the first stage, 

Then, 

and 

X l 

X 3 

A . 0 2 6 0 - 2 . 0 3 7 6 \ 

\ - . 5 0 6 5 5 . 0 0 9 4 / 

A.1741 - X . 6 5 ^ \ 

V-5435 4 . 9 1 3 6 / ' 

/ 6 . 6 7 1 5 1 . 3 4 8 9 \ 

X 2 " ^ - . 9 1 8 6 4 . 1 6 2 8 J * 

/6.9929 1 .9857\ 

\ - . 9 9 8 2 4.0036/ 

9.5 Consider the quadratic 

The corresponding lambda-matrix has latent roots - 1 6 , 0 5 1 1 3 , 

- . 4 2 1 5 and - . 2 6 3 7 ± 1.86491. There exist two solvents having 

these as their eigenvalues, but neither can dominate, since 

there is a complex pair of latent roots whose absolute value 

Is between the two other latent roots. Algorithm 1 did not 

converge, but Algorithm 2, whose computations are done by 

Algorithm 1 , did converge to yield the dominant latent root, 

- 1 6 . 0 5 1 1 3 - The order of the matrix coefficients was then 

file:///-.5065
file:///-.5l35
file:///-.9982


reversed and the minimum latent root was found. Using these 

results, a solvent was formed, deflated, and the new problem 

yielded a solvent with eigenvalues which were the remaining 

complete pair of latent roots. This problem suggests the 

use of a random complex shift of the variable in the lambda-

matrix. This will break up troublesome complex pairs of 

latent roots. With a shift of i, Algorithm 1 converged with 

no difficulties. All computations were done in the complex 

domain. 

9.6 Consider the quadratic 

The corresponding lambda-matrix has latent roots 1,2,3,4 with 

corresponding latent vectors (1,0) T, (0,1) T, (1,1) T, (1,1) T. 

2,3. The only pair which cannot be the eigenvalues of a sol­

vent is 3,4. Thus, no dominant solvent exists and Algorithm 

1 did not converge. However, Algorithm 2, as computed by 

Algorithm 1, yielded the dominant latent root, 4. 

Reversing the order of matrix coefficients has the 

effect of making the latent roots the reciprocals of the 

original latent roots. The right solvents are the inverse of 

The problem has a complete set of solvents and 

Other solvents have eigenvalues 1,2; 1,4 and 
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the original ones. Thus, 1 and H are the new dominant latent 
roots. Algorithm 1 converged to 

0\ 

solvent 
.0 HJ 

, and, hence, the 
! 

was found for the original problem. Note that 

for the problem for which Algorithm 1 did converge, there was 

no complete set of solvents which included the dominant sol-

/l 0\ 
vent 

,0 h 

9.7 Lancaster considers a test problem which "depends on a 

parameter whose value determines the proximity of clustered 

roots" [13, p. 90]. Consider M(X) X 2 + A 1 X + A 2, where 

and 

A, 

3« 

2 

0 

0 

W + 2 8 2 ) 
0 

2 

0 

-l+2a' 

2a 

1 

0 

a(l+2B*) 

0 

0 

2 

«-<x(a 2
+2B 2> 

-CaW) 
0 

2 a 2 6 2 

2a3 2 

0 

0 

- B 2 ( a 2 + 6 2 

0 

0 

0 

- a B 2 ( a 2 + P
2 ) 

- B 2 C A 2 + B 2 ) 

0 

0 

where a + 1. The eight latent roots of M(A) are 

1 

B 



±(l+a)i , 

and -a±(l+a)i • 

Algorithm 1 was tested, and worked for a • 2,l,.5|.l and 

.001. When a Is made small, the smallest eigenvalue of the 

dominant solvent approaches the largest eigenvalue of the 

next s o l v e n t . T h u s , convergence is considerably slower for 

smaller a . Using the code in Appendix D, the results were 

a _L_ Iterations ll"<*i>H 

2 10 3 7><10~ 6 

1 10 2 9*10~ 9 

.5 10 2 8*10~ 6 

.1 28 7 2 x i o " 6 

.001 30 6 .004 

9.8 Finally, consider the intriguing problem 

M(X) 

Note that 
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/I 0\ 
s l " I 2 / 1 S a d 0 m l n a n t s o l v e n t » b u t i f c c a n b e shown that 

there Is no corresponding S 2 that would form a complete set 

of solvents. Letting G Q(X) » X, we get 

1 l\ (2 2 
G CX) -[ X -

x x 2 2 \0 0 

and 

fl 1\ /2 2 
G (X) - ( X -

2 \6 6/ U 4 J 
With 

• 2(X) = G 2(X)G~ 1(X) 

•[(:;>-(! :i(;;>-(: if-
it is easily seen that * 2(X) = S 1 for all X such that 

f1 1S)x - f2 ^ is nonsingular. Thus, the exact solution 
\2 2/ \0 0/ 

is obtained in one iteration of stage two for any X 

satisfying this one easy condition. 



APPENDIX A 

Nonmonlc Lambda-Matrices 

This paper has considered only matrix polynomials 

(and lambda-matrices), where the identity matrix was the 

leading matrix coefficient. Consider now, the matrix 

polynomial 

M(X) = A 0 X m + A^" 1" 1 + + A M . (A.l) 

If A Q is nonsingular, then M ( X ) = A'HlCX) is the problem 

that is dealt with In the body of this paper. If R is a left 

solvent of M ( X ) , the R » A Q 1 ^ is a left solvent of M ( X ) . 

The case where A Q is singular presents some diffi­

culty in the matrix polynomial problem. Franklin [1] con¬ 

— - ™ M ; X ) _ ; ( C O ) X 2 + ( ° 3 C ) x + C I) -** 
which hsis SL solvent I I fox* £ill v&luos of & cincl 1̂ * Thus ̂  

\ a b / — 

a matrix polynomial with both A Q and A m singular can have 

solutions with variable eigenvalues. 

If A is nonsingular then 

M R(X) = A m X m + A ^ j X ™ " 1 + + A Q (A. 2) 

can be used. The solvents of M R(X) are the Inverses of the 
solvents of MCX). M(X) does not have any singular solvents 
since A m Is nonsingular. However, if M R(X> has a complete 



set of solvents, then one of them must be singular, since 

a zero is a latent root of M R ( X ) . This follows since 

det M R(0) •= det A - 0. 
o 
;r* In contrast to the matrix polynomial problem, the 

latent roots of the lambda-matrix problem 

M(A) = A Q A m + A^'1 + ... + A m (A. 3) 

can be calculated, even if A Q is singular. If A m is singular, 

then A « 0 is a latent root of M(A). If c is not a latent 

root of M(A), then A m(c) is nonsingular, where 

M C(X) = M(A+c) E A o(c)X m + + A m(c). (A.4) 

Furthermore, if p jt 0 is a latent root of M(A), then 1/p 

is a latent root of 

*(A) = A m M(i) S A m A m + A ^ A " 1 " 1 + + A Q. (A.5) 

If M R(A) has a zero latent root (A Q is singular), then M(A) 

is said to have an unbounded latent root. A lambda-matrix 

M(A) is said to be degenerate if det M(A) - 0 for all A, 

This can only occur if A and A are singular. tf o m 
Consider the following algorithm for a non-

degenerate lambda-matrix. It transforms a lambda-matrix 



- 103 -

with a singular leading matrix coefficient into one which is 

not. The transformed lambda-matrix is either 

(1) M R ( \ ) If A M is nonsingular 

or (11) M ^ ( A ) = Xm M(£ + cj, where det M(c) * 0. 

Part (.11) works since A ™ ^ ^ ) - M(X+c), which does not 

have a zero latent root. 



APPENDIX B 

Previously Known Methods for Lambda-Matrices 

The determinant of a lambda-matrix Is a scalar 

polynomial. Let f(A) - det M(A). If one is willing to 

evaluate the determinant many times, then one can use any 

of a number of algorithms for the zeros of a scalar function. 

Tarnove [ 1 9 ] considers the use of Muller's method. He de-
P-l 

flates known roots by considering f p(A) = f(A) IJ (X-X^)'1. 

1=1 

Lancaster [ 10] notes that 

f'(A) = f(A)Trace{M" 1(A)M'(A)}, which he uses in Newton's 

method. Newton's method is also used by Kublanovskaya £.9], 

a factorization of 

Another approach analyzed by Lancaster [ 1 2 ] Is the 

use of a power-like method with a generalized Raylelgh 

who finds f(A 1)/f'(X 1) by using a factorization of M ( A ± ) . 

quotient. That is, for arbitrary £ Q , n Q and A Q, let 

^ - [M(A 1)]" 1C 0, n 1 = [ M 1 ^ ) ] n 0 , and 

n^M(A,)q 
Xi+1 = Ai 5 . • Lancaster has shown that, for a ru M' ( A.) £. 1 1 1 
class of lambda-matrices, this iterative process is locally 

convergent and quadratic. Modifications of the above algo— 

- 1 f T I"1 

rlthm by £ ± = [MfA^] n ± = |̂ M (̂J ni_i n a s also 
been considered by Lancaster. 



- 105 -

Another approach, due to Lancaster [lH], Is to 

consider the eigenvalues of M(X). Let u(X) be a scalar such 

that M(X) - u(A)I is singular. Then a scalar p is needed 

such that u(p) - 0. Lancaster considers Newton's method 

on u(X). 

The above methods of Lancaster and Kublanovskaya 

are only locally convergent and they do not have a method of 

deflation associated with them. 

A symbol-manipulation approach is to perform 

Gaussian elimination on the lambda-matrix using polynomials 

in the computations. That is, every non-trivial lambda-

matrix with det A Q ft 0 can be transformed, by elementary 

transformations only, into a form such that 

M(X) - P(X)N(X)Q(X), where det P(X) - ^ * 0, 

det Q(X) » c 2 t 0 and N(X) * d i a g ^ U ) • • ,a n<X)) , with 

a t(X) monic polynomials and a ^ X ) divides a 1 + 1 < X ) . N(X) is 

called the Smith canonical form of M(A). See Wilkinson [22, 

p. 19]. Then all the roots of the a^AJ's are latent roots 

of M(X). 

This method parallels the approach of finding the 

characteristic equation in the eigenvalue problem. 



APPENDIX C 

The Quadratic Matrix Polynomial 

The monic, quadratic matrix polynomial, 

M ( X ) = X 2 + A X X + A 2, (C.l) 

with right solvents S1 and S 2 , Is of the general form 

M ( X ) = x2 - [ s 1 + (s1-s2)s2(s1-s2)~1]x + (s1-s2)s2(s1-s2)"1s1 

(C.2) 

if det V(S 1,S 2) = det ( S ^ S ^ ¥ 0. Note that if Ŝ ^ and S 2 

commute, then 

M(X) = X 2 - (S 1+S 2)X + S X S 2 (C.3) 

even If VCS-^S^ is singular. 
The corresponding lambda-matrix can be factored as 

M(A) = (iX - (S 1-S 2)S 2(S 1-S 2)~ 1)(IX-S ; L) 

- (ix- (s 1-s 2)s 1(s 1-s 2)" 1)(ix-s 2). (C.4) 

Thus,, 

R 2 = ( S 1 - S 2 ) S 2 ( S 1 - S 2 ) ' 1 (C .5) 



S 2 " S l ' (S 1+R 2)(S 2-S 1). (C.7) 

Furthermore, -A± * R 2 + S± » ^ + S 2 and A 2 * R 2 S 1 = R^Sg. 

It is easily verified that 

0 I \/I 0\ /I 0̂  I 

" A2 - Al/\ sl V \ s l V\0 s; 
(C.8) 

(S l 1 

o s 2 

regardless of V C S ^ S ^ . 

Assume that Ax and A 2 are real matrices and let 

S x • + 1S° be a right solvent. Then, 

M(X)= IX 2 + A l A + A, =(lX-(R^iR^))(lA-(sr
1+iS^)y ( C 9 ) 

Equating coefficients, we get R*+s£-0 and R ^ + R̂ s£ = 0. 

Then, R 2 R 2 + S ° S ^ = 0. By direct substitution It now follows 

that S£ - 1S° is also a right solvent. Thus, 

and 

R i = ( s 1 - s 2 ) s 1 ( s 1 - s 2 ) " 1 (C.6) 

are left solvents of M(X). From equation (C.5) It follows 

that 



T H E O R E M C.L F O R A R E A L , M O N L C A N D Q U A D R A T I C M A T R I X P O L Y ­ 

N O M I A L , IF S + I C IS A R I G H T S O L V E N T , T H E N 

(1) S - IC IS A R I G H T S O L V E N T , 

(11) R - I C IS A LEFT S O L V E N T , A N D 

(ILL) R + IC IS A LEFT S O L V E N T , 

W H E R E R + S * - A A . 

G I V E N A R B I T R A R Y M A T R I C E S A N D S 2 , C O R O L L A R Y 

S H O W S T H A T T H E R E M I G H T N O T B E A M O N L C , Q U A D R A T I C M A T R I X P O L Y ­

N O M I A L H A V I N G T H E M AS S O L V E N T S . S U C H A C O N D I T I O N O C C U R S IF 

A N D S 2 H A V E D I S T I N C T A N D D I S J O I N T E I G E N V A L U E S A N D IF 

D E T V ( S , , S 2 ) » 0- IF V ( S , , S 2 ) I S N O N S I N G U L A R , T H E N M ( X ) 

A L W A Y S E X I S T S . T H E F O L L O W I N G R E S U L T G I V E S N E C E S S A R Y A N D 

S U F F I C I E N T C O N D I T I O N S FOR T H E E X I S T E N C E O F M ( X ) . 

T H E O R E M C.2 T H E R E E X I S T S A M A T R I X P O L Y N O M I A L 

M ( X ) = X 2 + A ^ X + A 2 H A V I N G R I G H T S O L V E N T S S , A N D S 2 I F A N D  

O N L Y IF T H E R E E X I S T S A S O L U T I O N Y OF 

Y ( S 2 - S J - ( S 2 - S 2 ) . ( C . I O ) 

P R O O F : I N F I N D I N G A ] L A N D A 2 T O S A T I S F Y 

M ( S J = S 2 + + A 2 - 0 

M ( S 2 ) . - S 2 + A , S 2 + A 2 - 0 ( C L L ) 

THE M A T R I X A-, M U S T S A T I S F Y A I A S 2 " " S L ^ - ( S F - S * ) . I 
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Note that if VCS-^Sg) is singular and the condi­

tion of Theorem C.2 is satisfied, then M(X) exists, but is 

not unique. Prom equation (C.10) if follows that 

Corollary C.l If (Sg-S^ is singular and (sf-sf) is non- 

singular, then there is. no monlc. quadratic matrix poly­ 

nomials having S 1 and S 2 as right solvents. 



APPENDIX D 

Computer Programs 

The computer program that was used for Algorithm 1 

follows. It is written in APL for the IBM 360/67. It is an 

interactive language and the program asks for 

(1) the degree of the matrix polynomial, 

(11) the dimension of the matrix coefficients, 

(ill) the matrix polynomial, 

and (iv) the stopping criterion (an e such that IE MCX±>|[ < e 

terminates the computation). 

Following the code is an actual output for Example 1 

in Chapter 9. 
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VMAINlQjV 
V MAIN ilill'.NliXiXl iBl ;B2 tGITER iGiGl iUiUlMtSW 

[I] 'INPUT DEGREE OF MATRIX POLYNOMIAL' 
[ 2 ] tf+TL 
[3] 'INPUT SIZE OF MATRICES' 
l>3 
[ 5 3 'W/RTFLX POLYNOMIAL' [ 6 3 ,fi)Pn 
[7] £ M ¥ * M * W 
[8 3 GITER+O 
[ 9 3 F H - 0 . 0 5 
[ 1 0 3 'ACCEPT | | W ( 5 ) | | < « 
[II] E 2 * D 
[ 1 2 3 1*1 
[ 1 3 3 CALGz'STAGE ONE ****************' 
[ 1 4 3 SW+0 
[ 1 5 3 G*£l G E £ Af 
[ 1 6 3 N1+N0RM M F X 
[ 1 7 ] 'STAGE TWO **************** ||tfU)||= ';ffl 
[ 1 8 3 - U = 1 ) / L P 
[ 1 9 3 -«-(ffl<ff)/LP 
[ 2 0 3 X-Xl 
[ 2 1 ] ffl+ff 
[ 2 2 ] 'f/Stf OLD ITERATE TO START \\M(X)\\= ';ff 
[ 2 3 3 * 
[ 2 4 3 LP:Xl+iG F X)+.*INVP Gl F X 
[ 2 5 3 N+NORM M F XI 
[ 2 6 3 'ITERATION M W < J O I I = ' (ff 
[ 2 7 3 1 * 1 + 1 
[ 2 8 3 XI 
[ 2 9 3 +(N<F2)/END 
[ 3 0 3 +(SW<2)/CONT 
[ 3 1 3 JV<0. 2 5 * * 1 )/<70/M* 
[ 3 2 3 E 1 « - E 1 * 0 . 5 
[ 3 3 3 +(GITER<200)/CALG 
C 34 J T O O TFXFFJT ITERATES' 
[ 3 5 3 - • f f W 
[ 3 6 3 <7CW2*: X-«-JRI 
[ 3 7 ] Nl+N 
[ 3 8 3 SW+SW+1 
[39] ->-LP 
[ U 0 3 E H : * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
[ 4 1 3 GITER+li' ITERATIONS OF STAGE 1' 
[<+2] ITERATIONS OF STAGE 2' 

[11] • | ) | | = • xNORM II F XI 

file:///GITER


X I 3 
[2] 
[ 3 ] 
C M ] 
[ 5 ] 
[ 6 ] 
[7] 
[83 
L 9 3 
[103 
[113 
[ 1 2 ] 
[ 1 3 3 
[L«+3 

[ 1 5 ] 
[ 1 6 3 
ri7] 
£ 1 8 ] 
[ 1 9 ] 
[ 2 0 ] 
[ 2 1 ] 
C 2 2 ] 
[ 2 3 ] 
[ 2 1 ] 
[ 2 5 ] 
1 2 6 ] 
[ 2 7 ] 

VGEFtUlV v G+El GEE M\SR\T\SW SW+Q +(GITER>0)/L00P 
GL«-<tf.tf.fi>P< .<IFI)..*TTF ) , < 0«T ( t f-I ) * f f * f f ) 

G+SH-Glllnl MULT W T L + I T F ; ; ] 
- • ( G U I ;1 ill=0)/ZFRO 'LATENT HOOT EST 'iGITER+li* ZERO:G+G*NORM( (TFXFI) ,E)QG T+NORM( (TFXG) tN.)pG-Gl Gl+G SW+SW+1 GITER+GITER+1 -(GITERZ200)/TOOMVCH +{SW>8)/T00MUCN •+(EKT)/L00P TOOMVCH\SR+{M.tUtl)pt , G L [ L + * ( # -G+Sn-GllliO MULT W C L + T F F ; S L 
+ < G 1 [ 1 ; 1 ; 1 3 « O ) / Z F * 0 1 'LATENT ROOT EST ';GITER+H' ZERO!:'FINISHED GENERATION OF G •*( 0*DETERM Gill ul)/MIT X+Gtliil+.*IBVP C L C L S S D 'INITIAL X 'iX 
-•100 

ITFIR:JR«-(£,G)P?(0<I(FFIXFF))XIO 'ARTIFICIAL INITIAL X'\X •+( 0*DETERM Gl F X)/INIT 

;<7[LIL;l3*GIRI:L;L] 

I ) ; ; 3 ) . ( 0=ITFXFF) 

• ; f f [ L ; L ; l 3 * C L [ L ; L ; l 3 
T O • ;<?ITI?/?+I 

v 

vnU3v V A+M F SiliJ 
[ 1 ] H - L T P M 
[2] Y H - W [ L ; S 3 

[ 3 ] J+2 [i+3 LP:4«-tfUs;3+i4+.*S 
[ 5 ] - ( 7 * M + 1 ) / L P 

V 

V PROD+C MULT M\K\J 
[ 1 ] PROD+(J+pM)pO 
[2 3 X * L 
C 3 3 L O O P : P R O D I K ; ; ] * < ? + . * M U ; ; 3 
[•»] - U [ L ] I X < - X + L ) / L 0 0 P 

V 
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7 MB+BAR M\J\K\T 
Tl] W W p l . (0«i2+.N-nAf> 
L2] T*-INVF W[l;t3 
[3] Xt-2 
[4] LOOP :J>«CX;» I T * . «JVCJfii.D 
[5] H.(J[i]aX^*l)/LOOP 

V 

VNORMUnv V N-RORM S 
[i] tf+r/+m 

7 

7 D+DETERM M\J\K\I\T\H\U\l\V 
[ 1 3 (/<-« [2] L+iiN)*.*\N+l*pM 
[33 K-Mff 
[43 J«-l 
[53 
[63 AfFXrOOZi:nJ]*/f*lttU/r«r;] 
[73 K [ * W 
[83 +iK*J)fWOCBABQE 
[11] (/U;>I/[X;3 
[123 £>U;]-r 
[133 ffOO/Mffffff:W+l 
[143 10>|«/iJ3)/5IJfC 
[153 £N-l»«lfC^lJ] 
[163 +W.ff>/100 
[17] TOMOITiLt/i/D^Cr^ltlfWj/] 
[183 ff[I;3*f/[I;3-I[J;^]xf/CJ;] [193 •+INZI+I+D/NEXTROW [20] ->OI>J4-J+1)/NEX?COL. [21] +NOCHANGE [22] SINGiD+0 

7 

file:///K/I/T/H
file:///
file://L./V


MAIN 
INPUT DEGREE OF MATRIX POLYNOMIAL 
Q: 3 
INPUT SIZE OF MATRICES 
0: 2 
MATRIX POLYNOMIAL 
• : 1 0 0 1 ~6 6 ~3 ~15 2 "42 21 65 18 66 ~33 "81 

1 0 
0 1 

"6 6 
"3 "15 

2 "«*2 
21 65 

18 66 
"33 "81 

ACCEPT ||W(5)|f< 
•: .00001 

STAGE ONE **************** 
LATENT ROOT EST 1 6 
LATENT ROOT EST 2 2.666666667 
LATENT ROOT EST 3 "3.75 
LATENT ROOT EST 4 21 .23333333 
LATENT ROOT EST 5 9.791208791 
FINISRED GENERATION OF G TO 5 
INITIAL X 

3.992462543 ~2.426142109 
1.213071054 7.631675705 

STAGE TWO **************** f|JV(JO|t= 9.607873686 
ITERATION 1 MAfU)l!= 1. 277362968 

3.972923527 "2.089215678 
1.044607839 7.106747044 

ITERATION 2 \\M(X)\\= 0.229310714; 
3.992690243 "2.0178632S3 
1.008931626 7.019485122 



ITERATION 3 ) \M(X)\ 
3.99847172 "2.00335881 
1.001679U05 7.003509934 

ITERATION 4 |\M(X)\ 
3.999709525 "2.000609132 
1.000304566 7,000623223 

ITERATION 5 1 |/f(Jf) | 
3.999947122 "2.000108385 
1.000054192 7.000109699 

ITERATION 6 | \M(X)\ 
3.999990575 "2.000019094 
1.000009547 7.000019217 

ITERATION 7 | \ M(X)\ 
3.999998338 "2.000003346 
1.000001673 7.000003358 

ITERATION 8 | \tf(X) \ 
3.999999709 "2.000000585 
1.000000292 7.000000586 

t|«(S)II" 7.026157959F 6 

= 0.04157477338 

= 0.007424137007 

= 0.001311183582 

= 0.0002301117362 

* 4.024636788£"5 

= 7.026157959F-6 
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