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ABSTRACT

A matrix S 1s a solvent of the matrix polynomial
M(x) = x™ + Alx""l +oese ¥ A,

1f M(S) = Q, where Ai, X and S are square matrices. We
present some new mathematical results for matrlix polynomials,
as well as a globally convergent algorithm for calculating
such solvents.

In the theoretical part of thlis paper, existence
theorems for soclvents, a generallzed division, interpolation,
a block Vandermonde, and a generallzed Lagranglan basls are
studied.

Algorithms are presented which generalize Traub's
scalar polynomial methods, Bernoulll's method,and eigenvector
powerling.

The related lambda-matrix problem, that of finding

a scalar X such that

IA™ 4 a_am-1

1 +o--+Am

is singular, is examined along with the matrix polynomial
problem. |

The matrlix polynomlal problem can be cast into a
block elgenvalue formulation as follows. Given a matrix A of
order mn, find a matrix X of order n, such that AV = VX,
where V is a matrix of full rank. Some of the implications

of this new block elgenvalue formulation are considered.
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CHAPTER I

Introducticon

In this chapter we state the problem, give some of
the definitions, present the major results of the paper, and

outline the entlire dlssertation.

1.1 Preliminaries. Algorithms for the solutlicn of the scalar

polynomial problem, x + alxm'l + +*+ +a =0, have become

extremely efficient. See Traub [20,21] and Jenkins and Traub
[7,8]. A generalization of the scalar polynomial 1s given by

the following.

Definition 1.1 @iven n by n matrices A ,A,,...,A , & matrix

m

polynomial M(X) 1s the matrix function

= m m-1 cus
M{X) = AXT + Alx + AL (1.1}

in the n by n matrix variable X.

If Ao 1s nonsingular, then the monle matrix polynomlal I1s
B(x) = aslm(x). (1.2)

Two generallzations of the roots of a scalar poly-
nomial are to be examined. The first one, the majJor emphasis
of this work, 1s classlcal. Little is known, however, zbout

existence and calculation of such roots of matrix polynomials.




Definition 1.2 A matrix S 1s 2
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nomial M{X) if

M(5) = Q. {1.3)

Definition 1.3 A matrix W 1s a weak solvent of the matrix

polyncmial M{X} if

det M{W) = 0. (1.4

A speclal case of the weak solvent problem is the
important lambda-matrix problem. Restricting the class of
weak sclvents to scalar matrices, AI, and using the notation

M{A) = M{AI), the lambda-matrix problem 1s that of finding

a scalar A such that
- LI
M(R) = A 27 + A + + A (1.5)

is singular. Such a scalar i1s called a latent root of M(X)

and vectors b and r are right and left latent vectors, respec-

tively, if, for a latent root p, M{p)b = 0 and rTM{p} = 0?

M{A) 1n equation (1.5) is an n by n matrix whose elements are
scalar polynomials in A. See Lancaster [13], Gantmacher [2],
MacDuffee [15], and Peters and Wilklnson [17] for a complete
dlscusslon of lambda-matrices. A description of some of the
present methods of sclving the lambda-matrlx problem is found

in Appendlx B.
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Only monic matrix polynomials are studied in the
main part of this dissertation. The case of the nonmonic
matrix polynomial, and where AO is singular, will be consid-
ered in Appendix A. If Ao is nonsingular, the monic matrix
polynomial M(X) can be obtained by the solution of several
linear systems, as was suggested by Peters and Wilkinson [17].
Hence, we conslder

Xm--l

MX) = X"+ A + oo + AL (1.6)

1
The following are some well-known results that willl
be frequently used. They may all be found in Lancaster [13].
A corollary of Bézout's theorem states that if S is

a solvent of M(X) then

M(1) = Q(A)(IA-S), (1.7)

where Q(A) 1s a monic lambda-matrix of degree m-1l. Another
result is that the lambda-matrix M(A) has mn latent roots,
and hence, it follows immedlately from (1.7) that the n
eigenvalues of a solvent are all latent roots of the lambda-
matfix. Furthermore, the n{(m-1) latent roots of Q(X) are
also latent roots of M(1).

If one 1s interested in the solution of a lambda-
matrix problem, then a solvent will provide n latent roots
and can be used for a matrix deflation, which ylelds the new

problem Q(X1).




1.2 Main Results of thls Paper. The follicwing are the prin-

¢ipal results of this work. They will be proved in later
chapters.

The Fundamental Theorem of Algebra, that a scalar
pelynomial has at least one zero, does not hold true for
matrix polynomlials. There are matrix polynomials which have
no solvents (Theorem 2.6)}.

It 1s useful to have a concept of a matrix poly-
"nomlial with a complete set of solvents. Thils 1s a generali-

th

zation of an n degree acalar polynomizal having n rocts.

e e et —— — w———— i o—

is the same, counting multiplicities, as the set of mn latent

roots of M(1i).

Thus, in the special case of M(A) having mn dis-
tinct latent roots, a complete set of m solvents must have

nc common elgenvalues and each solvent must have distinect

elgenvalues.

We consider a generalization of the scalar

Vandermonde matrix.

Definition 1.5 Given n by n matrices S,,*-+,5 , the block

Vandermonde matrix is




’ I I X - ae T
él Sz aaw »aw Sm
V(8,,,8,) =] @ . : (1.8)
m-l m-l LI I ] [ N N ) m_l
Sl SE Sm 1

It will be shown in Chapter U4 that 1t is not suffi-
clent that matrices 3,,**+,5_ have distinct and disjoint
elgenvaluez for V(Sl,'-',sm) to be nonsingular.

Exlstence of a2 complete set of solvents for the
Important special case of the lambda-matrix having dilstinct

latent roots is given by the following theorem (Theorem 4.1).

Theorem If M(A) has distinct latent roots, then M(X) has a

complete set of solvents, S

1,---’Sm’ and V(Sl’-’.'sm) 15 non-
singular.

Definition 1.6 A solvent of M(X) 1s a dominant solvent if

the n elgenvalues of this solvent are strictly the n largest

latent roots of M(A).

Algorithm 1, presented below and again in Chapter 5,
attempts to find a dominant solvent of M(X). It 1s a gener-
alizatlon of one due to Traub [21] for scalar polynomials.
The algorlithm has two stages. The first, a generalization of
Sebastizo e Silva's algorithm (see Householder [4]), generates
a sequence of matrlx polyncomlals, all of degree less than m.

Then the last two matrix polynomials of the generated




sequence are used 1n a matrix iteration which 1s to converge

to a domlnant solvent,.

Algorithm 1
(1) Let GO(X) = T and

In
g , ,(X) = 6 (X)X - o M(X), (1.9)

n+1l

]
=]
]

n=0,1,*=+,L=1, where

= n _1 -8 n
G (X) = °‘1xm + +al. (1.10)

-1
LY/ L~1
(11) Let X, -(al)(al ) and
Xpa1 = G (X0 (X)) (1.11)

for 1 = 0,l,***.

Convergence of thls algorithm is established for a

class of matrix polynomials (Theorem 5.1).

Theorem If

(1) M(X) has a complete set of solvents, Sy,+**,5,

(i1) S, is a dominant solvent, and,

(111) V(s

1:"':5m) and V(Sa,---,sm) are nonsingular,

then

-1 _
(un) Gn(X) - Ml(X) as n + =, where

(1) G, (X) 1
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ﬁl(x) is the unique monic matrix polynomial of

degree m-1 with solvents 52,-1-,Sm, but not Sl’ and
(11) for L sufficiently large X, of equation (1.11) con-
1___9._—. con-—

verges to S1

It will be shown {(Corollary 5.2 and Lemma 5.7) that
each stage of the algorithm 1s llnearly convergent. Let U be
the absolute value of the ratlic of the smallest elgenvalue of
Sl and the largest remaining latent root of M(A). Then the

asymptotic error constants of the first and second stage are
¢,0 and cch-l, respectively, where ¢ < 1 and L 1s the num-
ber of iteratlions of the first stage before switching to the
second stage. Thus, the second stage, though llinearly con-
vergent, can be made arbitrarily fast by lncreasing the num-
ber of iterations of the first stage. In the ocomputational
algorithm, we plick an arbitrary L and then examine the second
stage. If it is converging too slowly (or diverging), then
the first stage 1s resumed for several steps and the process
i1s continued. Thus, given that the three hypotheses of the
above theorem are satlsfied, this process, 1n exact arithmetic,
1s guaranteed to yield a solvent of the matrix polynomial.

If a dominant solvent does not exist, then the algo-
rithm will not yield a sclvent. In addition to the results 1n
the above theorem, the flrst stage ylelds a dominant latent
root, if one exlsts. Conslder the following algorithm which

obtains a dominant latent root (Chapter 7).
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Definition 1.7 Glven vectors VeV so,v. of dimension n, a

1"
lambda-vector g(A) 1s the vector function

m

g(A) = v A" + lem“l LRI (1.12)

Algorithm 2 Let go(l) be an arbitrary m-1 degree lambda-

vector. Generate

Boyy (V) = g (O - MM, (1.13)
where
g (A) = vgn)mm”l $oeee 4 vé”). (1.14)

This 18 another generallzation of Traub's scalar
polynomlal algorithm, For a vector v, denote by max v the
first element of v which has the maximum absolute value,
Note. that max v 1s not a norm. Then a convergence theorem

for the algorithm is as follows (Theorem 7.1).
Theorem If
(1) M(A) has distinet latent Toots, p,,***,P,..
(11) |eoq| > oyl for 1 #1, and

T T - AT
(111) rig,(py) # 0, where r.M(p;) = 07,

then

sn(k) M(A)

1

1M

(1) g.(A) » Where M(p,)b, =0
n max v 1 —_— 171




and

v§n+1) ~ o,V
{n)
1l

(n)
(11) 1

+ 0. (1.15)
max v

The transpose of any column of equation (1.9) with
X = AI, 1s precisely equation (1.13), wilth MT(A) replacing
M(A). Since the latent roots of MI(A) are the same as those
of M(1), a domlnant latent root.of M(A) can be obtalned from
equation (1.15) by Algorithm 1, the matrix polynomial solvent
algorithm, This can be done regardless of whether a dominant

solvent, or any solvent at all, exlists.

1.3 Outline of the Remalnder of the Paper. Thls paper con-

tains three intertwined yet distinct subjects. They are

(1) new theoretical results on matrix pelynomials,

{(11) algorithma for solvents and latent roots, and
(111) a new block elgenvalue problem.

Chapter 2 conslders the basic properties of sol-
vents. The existence of solvents and factorization of lambda-
matrices are consldered here. A generallization of Bézout's
Theorem and the relatlonship between polynomial coefficlients
and the elementary symmetric functlons are alsc discussed.

In Chapter 3 we present some of the basic proper-
tles of matrix polynomiala. Interpclation, representation
theorems and fundamental matrix polynomials are presented in

thls chapter.




Properties of the block Vandermonde matrix are given
in Chapter 4.

The second major area of this dissertation concerns
itself with algerithms for finding solvents and latent roots.
Chapter 5 presents Algorithm 1, the main algorithm of the
paper. The method finds solvents and is a generalization of
Traub's scalar polynomial methods [21]. A convergence
theorem, computational discussion and flow-chart are given
here.

A block Bernoulli method is described in Chapter 6.
The relation between this method and Algeorithm 1 is discussed.

In Chapter 7 we present Algorithm 2, which finds a
dominant latent root. The key result is given - the computa-
tions o¢f Algorithm 2 are done by Algorithm 1. A vector
Bernoulli method is also described.

The third area of this work is a new block eigen-
value problem. It is that of finding a matrix X of order n
such that for given matrix A of order mn, the eguation
AV - VX ig satisfied for a matrix Vv of full rank. Chapter 8
deals with this problem. It is shown that when A is the
block companion matrix, this problem is a generalization of
the matrix polynomial solvent problem. A general theory of
block eigenvalues as well as two algorithms based on eigen-
vector powering are offered.

Chapter 9 describes numerical testing of Algorithms

1 and 2.



CHAPTER 2

Selvents

»In this chapter we study some of the propertlies of
solvents. Section 2.1 c¢onslders a dlwvision of matrix poly-
nomlials which results in a new derivation and generallzatlon
of Bézout's theorem., Section 2.2 examlnes the block compan-
ion matrix. Principal vectors of solvents are consldered in
Sectlion 2.3. The exlistence of solvents and factorlzation of

lambda~matrices are both dealt with in Section 2.14.

2.1 Generalized Divlsion. The e¢lass of matrix polynomials

is not closed under multiplication or divislon., Conslider the

product of N{(X) = X + N and L{X) 2 X + L. We get

2 ¢ NX + XL + NL which is not of

the general form of a matrix polynomlal; XE + Alx + AE.' A

H{X)L{X) = [(X+N)}(X+L) = X

new operaticn wlll be defined for matrix polynomlals which
will reduce to 4divialon In the scalar case; n = 1.

Theorem 2.1 Let M(X) = X + Alxm’l + ses 4+ A and

W(x) = xp + lep—l + tra & Bp’ wlth i1} 1 P Then there

exists a2 unique, monlc matrix polynomial F(X)} of degree m-p

and a unique matrix polynomial L(X) of degree p-1 such that

M(X) = FOOXP + B FOOXP™h + ot s B,F(X) + L(X), (2.1)

Proof: Let F(X) = X™P 4+ px™P-l 4 ..oy F  ang

p
. Eguatlng

1

= p—l p-’.z L LI
L(X) = L X°7" + LxP7° 4 + Loy

- 11 -
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coefficlents of equation (2.1), Fl,Fa,--

LO,,L]_,.---v,Lp_1 can be sutcessively and unlquely

-,Fm_p and

determined from the m eguations. #

Equation (2.1) 1s the matrix polynomial divislon of

M(X) by W{(X) with quotient F(X) and remalnder L(X).

Definltion 2.1 Assoclated wlth the matrlix polynomlal,

M{X) = x4+ Alxm-l + rev 3 Am’ 1s the commuted matrix poly-

nomial

xm + xm—l

f(x) Ay + see + AL (2.2)

1

If M(R) = 0, then R is a left solvent of M(X).

The matrlx 8 such that M(5) = 0, previously Just
called a solvent, will be referred to as a right solvent when
confusion might occur.

An important association between the remalnder,
L{X), and the dividend, M(X), in equation (2.1}, will now be
given. It generalizes the fact that for scalar polyncmlals
the dividend and remainder are equal when evaluated at the

roots of the divisor.

Corollary 2.1 If R i1s a left solvent of W(X), then

£(ry = M(R).
Proof: Let Q(X) = M(X) - L(X). Then, 1t 1s easlily shown

that

&x) = X" PR + xX"PTRHOF] 4 eee + RXOF (2.3)

m-p°
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The result immediately follows sinece Q(R) = g for

all left solvents of W{X). #

The case where p =1 18 very useful 1n this paper.
Here we have W(X) = X - R where R is both a left and right

solvent of W{X}. Then Theorem 2.1 shows that
M{X) =2 PF{(X)X - RF(X) + L (2.4)

where L 1s a conatant matrix. Now Corollary 2.1 shows that

L = ﬁ(R), and, thus,
M(X) = F(X)X - RF(X) + M(R). (2.5)

There 1s a corresponding theory for M(X). In this

case, equation (2.1) 1s replaced by

fico = PR + PTHCOB, + e+ HOOB + B (2.6)

and Corollary 2.1 becomes the Tollowling.

Corollary 2.2 If S is a right sclvent of W(X), then

N(S) = M(8).

We agaln consider the case of p = 1. Let

W(X) = X -~ 5. Then equation (2.5) becomes
M(X) = XH(X) - B(X)S + M(S). (2.7)

Restricting X to a scalar matrlx AI, and noting that
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M(A) = M()A), we get Bézout's Theorem (see Gantmacher [2,

vol., I, p. 81]) from equations (2.5) and (2.7):

M(A) = (IA-R)F(A) + M(R)

H{(A)(IX-8) + M(3) (2.8)

for any matrices R and 3. If in addition R and 8 are left

and right solvents, respectively, of M(X), then

M(X) = F(X)X - RF(X), (2.9)

M(x) = xfi(x) - A(X)8 (2.10)
and

M(A) = (IXA-R)F(A) = H(A)Y(TIAr-8). (2.11)

Hence, Corollaries 2.1 and 2.2 are generallizations of
Bezout's Theorem.

The use of block matrices 1s fundamental in this
work. For notatlonal purposes it 13 useful to have a concept
of the transpose of a bloek matrlx wilthout transposing the

blocks.

Definition 2.2 Let A be a matrlx with block structure (Bij)

with B, , matrices of order n. The block transpose of dimen-

1J
sion n of A, denoted aP(™)

8 the matrix wlth block struc-

LI ~1-4

ture (Bji)'

The order of the block transpose will generally be
aB(m) o T

dropped when 1t 1s c¢lear. Note that, 1ln general, R
except when n = 1,
A scalar polynomial exactly dlivides another scalar

polynomlal, 1f all the roots of the divisor are roots of the
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dividend. A generalization of the scalar polynomlal result

is glven next. The notation is that of Theorem 2.1.

Corollary 2.3 If W(X) has p left solvents, Rl,‘--,Rp which

are also left solvents of M(X), and if VB{Rl,o--,Rp) 1s non-

singular, then the remainder L(X) = 0.

Proof: Cecrollary 2.1 shows that ﬁ(Ri] = g for

1 = 1,+++,p. Since vB(Rl,'--,Rp) is nonsingular,

and since

e [ fe
I R, +++ B! L2 £(r,)
S 2 EER IR RO I
SR TR I B L AR R Y

it follows that L(X) = Q. Thus,
- p p-1
M(X) = F(X)X* + BlF(x}X + ser 3 BpF(]{}. # (2.12)

From equation (2.11) 1t follows that the elgen-
values of any solvent (left or right) of M(X) are latent
roots of M(A). These equatlions allow us to think of right
{left} solvents of M(X) as right {left) factors of M{A).

In the scalar polynomial case, due to commutivity,
right and left factors are equivalent. HRelatlons between

left and right solvents can now be given.
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Corollary 2.4 If SJ and R, are right and left solvents of

M(X), respectively, and Sj and Ri have no common elgenvalues,

then Fitsj) = 0, where Fi(x) is F(X) defined by equation

(2.9) with R = R,.

Proof: Equation (2.9) shows that
1'«‘1(_3.1)3‘j - RiFi(SJ) = 0. (2.13)

Slnce SJ and Ri have no common elgenvalues,

Fi(sj) = 0 uniquely. This follows, since the
solution of AX = XB has the unique solution
X =20, 1f and only 1f A and B have no common

eigenvalues. See Gantmacher [2, p. 215]. #

Given a left solvent Ri of M(X), Theorem 2.1 shows
that Fi(x) exists uniquely. If S is a right solvent of M(X)
and if Fi(S) is nonsingular (S 1s not a weak solvent of F(X)),
then.equation (2.13) shows that

-1
R, = Fi(S)SF1 (s). (2.14)

1

This glves an assoclation between left and right solvents.

2.2 Block Companion Matrix. A useful tool In the study of

scalar polynomials 1s the companion matrlx. The elgenvalues
of a companion matrix are the roots of its associated poly-

nomial. See Wilkinson [22, p. 12]. A generallzation of this




- 17 -

is given below. Definition 2.3, Theorem 2.2 and Corollary

2.5 can be found in Lancaster [13].

Definition 2.3 Given a matrix polynomial

M) = X"+ AX™ 4 e wa,

1

the block companion matrix assoclated with 1t 1s

[0 v 0 -
m
I -A
c = ) m-l (2.15)
I -A

It 1s well known that the elgenvalues ©of the block
companion matrix are latent roots of the associated lambda-
matrix. See Wilkinson [22, p. 12]. Simple algebraic manipu-

lation yields this result.

Am—l

1l +...+Am)'

Theorem 2.2 Det(C-AI) = (—1)mndet(IAm+A

Since C 1s an mn by mn matrix, we immedlately ob-

tain the followlng.

Corollary 2.5 M(X) has exactly mn finlte latent roots.

The form of the bhlock companlon matrix could have
been chosen differently. Theorem 2.2 also holds for the

block transpose of the companion matrix:




(2.16)

The algcrithms given in this paper are based on
eigenvector powering schemes. It will be useful to know the
eigenvectors of the block companion matrix and itg block
transpcse. The results are a direct generalization of the

gcalar cage.

Theorem 2.3 If ig a latent root of M(X) and b™ and are

right and left latent wvectors, then p. is an eigenvalue of C

B
and of ¢ and

(1) : Is the right eigenvector of C ,

(11) 7 is the left eigenvector of C, and




(111)

Proof:
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Parts

T 2 0 s bil)xm‘Q 4 eee 4 pM1)

i

is the right elgenvector of C, where

(2.17)

(1) and (11) are easily verifled by substi-

tutions into the appropriate elgenvalue problem.

For part (1i1), consider

Multiply out; multiply

f (m-1)
0 ees 0 -A \ ’dim \
1 ~A__y :
- || e
l I -Ay | \d§0) ]

rdgm—l)\

(1)
dy

4

(2.18)

the Jth component equation

by A9"1; and add. The result 1s
H, (O = M(0)al®) = 0w, (1), (2.19)
where
= 4q(m=-1) (m-2) v (0),m-1
H (A) = af +af™By 4 + a1 (2.20)
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Equation (2.19) at A = py shows that

M(p )d(o) = 0 and, hence, al®) 45 o right latent
1771 1

vector. Manlpulating equation (2.19), the result

equation (2.17) with dio) = b and dgj) = bij)

1
for J = 1,**-,m~-1, follows. #

2.3 Structure of Solvents. The elgenvectors and principal
vectors of a solvent will now be considered. From equation
’(2.11) it follows that the eigen#ectors of a left (right)
solvent are left (right) latent vectors of the lambda-matrix.
Lancaster [13, p. 50)] glves the characterization of a solvent

that has only elementary divisors.

Theorem 2.4 If M(A) has n linearly independent right latent

vectors, bl,--Q,bn, corresponding to latent roots Pys®*"sPp>»

then QAQ-l 1s a right solvent, where Q = [bl,...,an and

A = diag(pl,...,pn).

Proof: From M(QAQ™L) = (QA“+A1QAm‘1+---+AmQ)Q‘1 the

m=-1

result follows, since QA™ + AlQA + e 4+ AmQ

is Just M(pi)b1 =0 for 1 = 1,+++,n. #
It follows from the above proof that if a solvent

is dlagonalizable, then i1t must be the form QAQ™ Y, as in the

above theorem.

Corollary 2.6 If M(A) has mn distinect latent roots, and the

set of right latent vectors satisfy the Haar conditlon {that

every set of n of them are linearly independent), then there

are exactly (ﬂ?) different right solvents.
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Conslder next the case of a solvent which is not
diagonalizable. In a manner similar to Roth [18], we con-

sider the principal vectors of a solvent.

Definition 2.4 The J*® principal latent vectors of M(A) with

respect to the latent root p is Pj’ which satlsfles

G YT ey + gy w9 e, + s+ MRy = g,

(2.21)
where
k

My = Q—E M(A).
ax

Note that the first prinecipal latent vector 1s a latent

vector.

Theorem 2.5 The principal vectors of a solvent are principal

latent vectors of M(A).

Froof: To alleviate notational difflcultles, consider the

case where m=2 and n = k =3, The Jordan

p 1

form of the solvent 1s J = p 1 ]. Let

o]

= _ =1
P = (P1P2P3) where S = PJP

Q

1a the solvent

of M(X) = X + A,X + A,. Thus,

1 2
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2
Q0 = M(S)P = BPIPEPB)J + AI(P1P2P3)J + AE(PIPEPBﬂ

_({r.2 >
[(Ip +A1p+A2)Pl,(21p+Al)P1 + (Ip +Alp+A2)P2,IP1

+ (EIp-i-Al)P2 + (Ip2+Alp+A2)P3]
=[M(p)P1,M'(p)P1
+ M(p)P,, 3 M"(p)P, + M'(p)B, + M(p>P3].

Hence, Pl’ P, and P3, the principal vectors of S,

2
satisfy equation (2.21), the definition of prin-

clpal latent vectors. #

It is the strategy of this paper to solve the
lambda-matrix ﬁroblem by finding solvents and then finding
the eigenvalues of those solvents. The calculation of sol-
vents from the solution of the latent root problem has been
conslidered in the literature. The followlng 1s a short
description of the method.

Since the elgenvalues of a solvent are latent roots
of the lambda-matrlix, and there are mn latent roots, it feol-
lows that there are only a finite number of Jo?dan forms of
potential solvents. Let the latent roots be glven and let J
be a matrix in Jordan form with n of the latent roots as 1its
elgenvalues. Then, to find a corresponding solvent 5, 1f
one exlsts, a nonsingular matrix P must be found such that
1y

M{PJP™ = Q. Thus, a nonsingular matrix P must be found

such that
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pI™ 4 A pPI™

l LI R =
1 + * AP = Q. {2.22)

This approach, described in MacDuffee [15, p. 95], is of the
general form

AXB. + A XB

1484 »XB 5 + s AmXBm = C. ({2.23)

Lancaster [11] and Gantmacher [2] have considgered the solu-

tion of equation (2.23). The prbhlem.is difficult numerically.
Algorithm ) tries to find a =2clvent directly,

rather than by the above route of solving the latent rcot

problem first.

2.4 Existence of Solvents. We now show that the Fundamental

Theorem of Algebra does not hold for matrix polynomlals.

Theorem 2.6 There exlsts a matrix polynomlal with no sol-

vents.

Proof': Consider

12A2l+2 i e 1

M(A) = = 132 - 21x +
-1 A%-2a -1 0

(2.24)
Det M(A) = A% = 423 + 632 - 4A + 1, which has all

four roots at A = 1., Thus, the Jordan form of a

1l 1
solvent must elther be J_. =1 or J, = .
1 2 (U 1)
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Since M(I) ¥ 0, 1t follows that J2 iz the only

1 1

feaslble Jordan form. M(1) -(_ ) and, thus,

1 -1
b = (1,—1)T i1s the only latent vector, to within
a4 scalar multiple. The second principal vector
ts such that M'(1l)b + M(l)P2 = 0. Here,

2A-2 0
M'(}r) = ( ) and, hence, M'(1l) = Q.

0 2x-2
Thus, P2 = b to within a scalar multiple. Using
Theorem 2.5 and the linear dependence of the first
two principal latent vectors, it follows that J2 is
not a feaslible Jordan form for a solvent of equa~

tion (2.24). #

Conslder now the speclal case of a matrix polynomial whose
assoclated lambda-matrix has distinet latent roots. It wili
be shown that in this case a complete set of solvents always

existas. First we need the following fact about bhlock matrices.

Lemma 2.1 1f a matrix A 1s nonsingular, then there exists a

- ~

o A1 A
permutation of the columns of A te A such that A=| _ -
har Ao
with All and A22 nongingular.

Proof: Let A and A,, be matrices of orders n and k, re-

1
spectively, with arbitrary 1 < k < n. Assume the
lemma 15 false. Conslder evaluating the deter-
minant as follows. For each of the first k rows,

pick an element from a different column. Then
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multiply these elements and the remaining minor.
The sum, wlth appropriate alghs, of every poasible
¢holce of the k columns, 12 the determinant of A.
The k cholces of the ¢olumns determine a square
matrix. If that matrix 1a nensingular, then the
minor must be zeroc, slnce the lemma was assumed
false. Thus, such terms make no contrilbuticn to
the determinant of A. A particular minor appears
several times 1n the sum. It occurs the number
of ways the zame k columns can be pleked in dif-
ferent orders. Each miner can thus be factored
from several terms; the result being the minor
times the determlnant of the matrix formed by the
k columna arnd the first k rows. Thus, i1f the
matrix formed by the k celumns i1z singular, then
there is ne contribution from this term in the
determinant of A. Therefore, A must be singular,

which 1s a contradictlon. #

Once the columns of A are permutated to get A and

11
322 nonsingular, the process can be continued to simllarly

divide 322 Into nonsingular blocks without destroying the

nonsingularity of Ell‘

Theorem 2.7 f A, a matrix of order mn, ls nonsingular, then

o=

there exlsts a permutation of the columns of A to A = (B

ij)’
with Bij g matrix of order n, such that B11 1ls nonsingular

for- j_ m l,.l'i,m.
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The important existence theorem is now given.

Theorem 2.8 If the latent roots of M{)\) are distinct, then

M(X) has a complete set of solvents.

Proof:

If the latent roots of M(A) are distinct, then the
elgenvalues of the block companlion matrlx are dis-
tinet, and, hence, the elgenvectors of the block
companion matrlx are linearly independent. From

b

i
PyPy
Theorem 2.3 the set of vectors . for
m-1
| P10y
for 1 = 1l,*+*+*,mn are eligenvectors of CB. The

matrix whose columns are these mn vectors is non-
singular. Theorem 2.7 shows that there are m dis-
Joint sets of n linearly independent vectors bi.'
Using the structure QAQ—l of Theorem 2.4, the com-

plete set of solvents can be formed. #

Corollary 2.7 If M(XA) has distinct latent roots, then 1t can

be factored into the product of linear lambda-matrices.

Proof:

Since M{A) has distinct latent roots, there exists
a right solvent S and M(A) = Q(A)(IA-S). Q(A) has
the remaining latent roots of M{X) as 1its latent
roots. It follows then, that the latent roots of
Q(A) are distinect. Thus, the process can be con-

tinued until the last quotlent 1s linear. #




The process described in the above proof considers
golvents of the sequence of lambda-matrices formed by the

division M(A} - Q(A) (IA-5).

2y

Definition 2.5 A seguence of matrices 1>""">C, form a chain

of solvents of M(X) if C, ig a right solvent of Q (X)), where

Q.(X) 5 M(X) and

Q.(X) = Q.. (X) (IX-C)). {2.25)

It should be ncted that, in general, only C, is a
right solvent of M(X). Furthermcore, C 1s a left sclvent of
M(X) . An equivalent definition of a chain of sclvents could

be defined with C¢”, a left solvent of T,(X), and

TCX) E C1lX-C, ,)T. (X). (2.26)

Corollary 2.8 1If M(X) has distinct latent rootg, then M(X)

has a chain of sclvents.

Given and Q (X}, Q, ,(X) of equation (2.25) can
be found by a generalized Horner divigsion gcheme. In the
numerical solution of the lambda-matrix problem, the strategy
considered here will be to find a chain of sclvents using the
matrix polynomial sclvent algorithm and Horner division.

If 19+ »5 """ chain of solvents of M{X), then

M{X) = IX"+A X"~ + e88 +A = (IX-C) (IX-C)---(IX-C).
{2.27)
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Thls leads to a generalizatlon of the classlcal result for
scalar polynomials which relates coefflclents to elementary
symmetric functions. By equating coefficlents of equation

(2.27) one gets the following theorem.

Theorem 2.9 If Cl,-'-,Cm form a chaln of solvents for

M(X) = X + Alxm‘l # e + A, then

Ay = =(Cy+Ctee=4C )
Ay = (Cy0,+C Cotece+Cy 1C) (2.28)

3 In .
A= (-1)7c,Cy e eC .



CHAPTER 3

Properties of Matrix Polynomials

Some of the basic properties of matrix polynomlals
are considered in this chapter. Sectlon 3.1 concerns 1tself
wlith matrix polynomial interpolation. A generallzation of
the fundamental scalar polynomials 1s given. Representation
theorems for matrix.polynomials, lambda-matrices, and lambda-
vectors are presented 1ln Section 3.2. Section 3.3 -studles

the fundamental matrix polynomlals.

3.1 Interpclation. Glven scalars Sy57 58 the fundamental

nl

polynomials mi(x) = p(x) s Where p(x) = II (x—si),

(x-5,)p"(s,) i=1

are of great Iimportance 1In interpolation theory. Their use-

fulness comes from the fact that mi(sJ) =§ We will now

13-
generallze this for our matrix problem.

Definition 3.1. Given a set of matrices, S,,-*+,S_, the

m’

fundamental matrix polynomials are a set of m-1 degree matrix

polynomials, Ml(X),-'-,Mm(X), such that Mi(sj) = 6131'

Sufficient conditions, on the set of matrices

S --,Sm, for a set of fundamental matrix polynomials to

1"
exlst uniquely wlll be gilven in Theorem 3.2. First, however,

we need the following results.

Theorem 3.1 Given m pairs of matrices, (Xi’Yi) 1 =1,+++,m,

then there exists a unique matrix polynomial
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[_}§ m_l m_::') . 40 =
P(X) A X + AX + + AL, such that P(Xi) Y,

for 41 = 1,*--,m, 1f and only 1if V(X1,~°-,Xm) is nonsingular.

Proof: P(Xi) = Yi for 1 = 1,+++*.m 15 equlvalent to

rI " s . I l
Xl = Xm
Arshpeysttmsh) [ A B R R
m-1 - m-1
ixl X

Corollary 3.1 Given m palrs of matrices, (Xi,YQ, 1=1,-+-,m,

they uniguely determine a monile matrlx polynomial

= m m—l 4 4 b =
P(X) = X"+ AX + + Am, such that P(xi) Yi for

1= 1,***,m, if and only 1if V(Xl,---,xm) 1s nonsingular.

Proof: Let fi = Yi— X? and apply Theorem 3.1 to (XiﬁiL #

Let M(X) have 'a complete set of solvents, Sl,---,Sm,

such that V(Sl,-~-,3m) is nonsingular. According to Theorem

3.1, there exlsts a unique matrlx polynomlal

. L (1).m=1 e (1)
Mi(x) = AX + + A (3.1
such that
My (54) = 84,1, (3.2)

Note that Mi(x) has the same solvents as M(X), except S1 has
heen deflated out. The Mi(x)'s are the fundamental matrlx

pelynomials.
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Denote by V(Sl,"°,Si_l,si+l,---,5m) the block

Vandermonde at the m~1l solvents, Sl,---,sm, with S1 deleted.

Theorem 3.2 If matrices S ---,Sm are such that V(Sl,---,sm)

l’
1s nonsingular, then there exist unique matrix polynomials
M, (X) = Aii)xm‘l b oaee 4 Aéi), for 1 = 1,+~+,m, such that

Ml(x),"°,Mm(X) are fundamental matrix polynomlals. If,

furthermore, V(Sl,--- S Sk+1"..’sm) is nonsingular, then

2 k_l,
Agk) 1s nonsingular.

Proof: V(Sl,-o-,Sm) nonsingular implies that there exists
a unique set of fundamental matrix polynomlals,

MI(X)yo e e M (X). V(Sy,°++,S S

k-1"Sk+17"" " »5n

nonsingular and Corollary 3.1 imply that there
exists a unique monic matrix polynomial
N (x) = X1 4 N2 o ooy jUE) D syen

k 1 m

that Nk(SJ) =0 for J # k. Conslder
QR(X) = Nk(Sk)Mk(X)- Qk(sj) = Nk(sj) for
J = 1,***,m. Since V(Sl,-°-,Sm) 1s nonsingular
and both Qk(X) and N, (X) are of degree m-1, it
follows that Qk(x) = Nk(x). Thus,
Nk(x) = Nk(Sk)Mk(X). Equating leading coeffi-
clents, we get I = Nk(Sk)Agk) and thus A(k)

1
is nonsingular. #

3.2 Representation Theorems. The fundamental matrix poly-

nomials, Ml(X),"',Mm(X), can be used in a generalized
Lagrange lnterpolation formula. Paralleling the scalar case

we get the following representation theorems.




- 32 -

Theorem 3.3 if matriceslsl,-'-,sm are such that V(Sl,--°,Sm)

1s nonsingular, and MI(S),‘--,Mm(X) are a set of fundamental

matrix polynomials, then, for an arbitrary

G(X) = le’“‘l # e 4B, (3.3)
_3 follows that
m
G(X) = Y G(s,OM,(X). (3.4)
i1=1
m
Proof: Let Q(X) = ):‘ G(S,)M, (X). Then Q(8,) = G(S,)
1=1

for 1 = 1,*++,m. Slnce the block Vandermonde is
nonsingular, 1t follows that Q(X) is unique and,

hence, G(X) = Q(X). #

A lambda-matrix was defined as a matrix polynomilal
whose varliable was restricted to the scalar matrix AI. Thus,

the previous theorem heclds for lambda-matrlces as well.

Corollary 3.2 Under the same assumptions as in Theorem 3.3,

for an arbltrary lambda-matrix

Am—l

By

LH

G(A) + 00 4B, (3.5)

t follows that
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m
G(X) = 3 G(S,)M, (A). | (3.6)
im1

A basis for lambda-vectors will be presented next.

Theorem 3.4 If M()X) has distinct latent roots, Pys®**sPps

with right latent vectors bl,---,bmn, then for an arbltrary

lamhbda-vector

g(A) = v A b e 4y (3.7)

there exists a unique set of constants Byserss® s such that

mn
s0) = ¥y -, (3.8)
i=]

Proof: If the latent roots of M(A) are distinet, then the
elgenvectors of the block companion matrix (Theo-
rem 2.3 (111)) form a basls for vectors of dimen-
sion mn. By equatlon (2.13) lambda=-vectors

FRAL_y, are formed by partitioning the elgen-
1

vectors of the block companion matrix into the
vector coefficients. The ui's are those reguired
to write (v1,°-',vm)T as a linear combination of

the eigenvectors of the block companion matrix., #

3.3 PFundamental Matrix Polynomlals. Fundamental matrix poly-

nomials were deflined such that ”1(333 = 61JI. A result
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simllar to equation (2.9) can be derlved based on the funda-

mental matrix polynomials, It was previously (Section 2.1)

developed using matrix polynomial division,

Theorem 3.5 ££ M(X) has a complete set g£ right solvents,

Syst**S» such that V(Sl,--gsm)_and V(8,58 5

11251477 " "55n)

are nonsingular and Ml(x),---,mm(x) are the set of funda-

mental matrix polynomials, then

NEY
M, (X)X - S,M, (X) = A7"/M(X), (3.9)

where A&i) 1s the leading matrix coefficient of M, (X).

Proof: Let Qi(x) 2 Mi(X)X - SiMi(X). Note that
Qi(sj) = 0 for all J. M{X) 1s the unique monic
matrix polynomial with right solvents Sl,---,Sm
since V(Sl,'°',sm) is nonsingular. The leadlng

matrix coefficlent of Q,(X) is Agi) which is non-

singular, since V(Sl,"',81_1,31+1,"-,Sm) is
()71
nonsingular. Thus, M(X) = Ay Qi(x): #

A previous result (equation (2.5)) stated that if
Ri was a left solvent of M(X), then there exlsts a unique,

monic polynomial Fi(x) of degree m—~1, such that

M{X) = Fi(x)x - HiFi(X)' (3.10)

Comparing equations (3.9) and (3.10), we obtaln the followlng

result.
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Corollary 3.3 Under the conditions of Theorem 3.5

-1
F, (X) [A&i)] M, (X) and

-1
R, = [A](_j‘)] singi) (3.11)

is a left solvent of M(X).

If M(X) has a complete set of right solvents,

Sl’...’sm’ such that V(Sl’. --,Sm) and V(Sl’. . .'Si—l,si+l’. . "Sm)

for 1 = 1,**+,m are all nonsingular, then, by equatiocn
(3.11), there exists a complete set of left solvents of

M(X), Rys®**,R_, such that R, is similar to S; for all 1.

Corollary 3.4 Under the conditions'gg Theorem 3.5, 12 R1 EE

defined as in equation (3.11), then

-1
B0 = [a8] w0 = aaerp) . (3.12)

Proof: The result follows from equation (2.11) and

Corollary 3.3. #



CHAPTER 4

The Block.Vandermonde

The block Vandermonde matrix is of fundamental
importance to this work. This chapter considers the prop-

erties of the block Vandermonde.

It is well known that in the scalar case (n ¢ 1),

A

det V(B,,-",8.) « Il <i-"9> V)

i>J

and, thus, the Vandermonde isg nonsingular if the set of g"'s
are distinct. One might expect that if the eigenvalues of
X" and X, are disjoint and distinct, then VEX“Xg)- is non-
singular. That this is not the case is shown by the follow-
ing example.

The determinant of the block Vandermonde at two

points is

det V(XT,X,} - det f V- det (X -X,}. (4.2)
v vl <2/
Even if X, and X, have no eigenvalues in commeon, X, - X may
/2 0\

still be singular. The example X, - | J and

tk 2\
x -1 J yields X, - X, singular.

\O 3/
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It will be shown that the xl and X, in this example

2
cannct be the complete set of solvents of a monic matrix

polynomlal. First, however, the followlng 1s needed.

Lemma 4.1 Let matrix A have distinct eigenvalues, and N be a

subspace of ED of dimension d. Suppose further that if veN,

then Av € N. Under these condltions, d of the elgenvectors

of A are 1n N.

Proof: Let Av1 = Aivi for 1 = 1l,++,n. The set of vi's
is a basis for En, since A has distinct eigenvalues,

Let v ¢ NC E™, and order the {vy} such that
3
v = E e, vy with Sy ¥ 0 for 1 = 1l,+-+,8. Let
1=1
8
P(t) = [] (t-1,), then P(A)v, = 0 for
J=2

J = 2,+++,8. Hence,

s
P(A)v = E ¢ P(A)vy = ¢ P(A)v,
1=1
S
= Il (A=2,T) | vy
\
8
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)

Let d; = ¢, ]'[ ("1"".1) # 0'. Thus ,
J=2

v, = éL P(A)v ¢ N. Similarly, v, € N for

1 1
1 =1,***,8., The lemma follows, since v € N

was arbltrary. #

Theorem 4.1 If M(A) has distinct latent roots, then there

exists a complete set of right solvents of M(X), S S,

’...
1 m

and for any such set of solvents, V(Sl,"-,sm) is nonsingular.

Proof: The existence was proved in Theorem 2.7. Sqs
1

m._.
X 4 s o0 +Am’

o ’Sm’

belng right soclvents of M(X) = Xm-FAI

1s equlvalent to

’I .ew I
8 R S
1 m el ... _oMm
-(Am,-t-,Al) : : "'(-Sl, 3 Sm)n
m-1 m-1
[Sl‘ Sm
(4.3)

Assume det V(Sl,---,Sm) = 0, and let N be the null
space of V(Sl,-'-,sm). That 1s, v € N if and
only 1if V(Sl,-'-,sm)v = 0. Since Al""’Am in
equation (4.3) exist, Jjolning any row of
(—Sl,-'-,-Sm) onto V(Sl,---,Sm) gives a larger
matrix but with the same rank as V(Sl,°--,Sm).
Thus, for all v € N, (S?,---,Sﬁ)v = 0. Hence, for

all v € N
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2 R 2

fSl Sm
Q=1 do |V om V(8,05 )dlag(S, 0,8 v,

m m

S1 Sm

(4.4)

Letting A = diag(Sl,°--,Sm), equation (4.4) shows
that for all v € N, Av e N. Since A has distinct
eigenvalues, Lemma 4.1 appllies, and there are as
many elgenvectors of A In N as the dimensipn of N.
The eigenvalues of diag(si,---,sm) are the eigen-
values of the Si's, and the eigenvectors are of the

T T

form (0 ,v ,OT), where v 1s an elgenvector of one

of the Si's. This is because 1if

e \ [ o |
A . o |3 2],
| o flef el

then Siv = Av and SJW = Aw. Thils cannot be

since S1 and SJ do not have any common elgenvalues.

Let an arbltrary eilgenvector of diag(Sl,---,Sm),

T
(OT,VT,OT) , be 1In N. Then




I LI I
S " S 0
- I - 0.
. . v
b L R

1 m =

But then, Iv = 0 which 1s a contradiction. Thus

det V(Sl,---,Sm) # 0, #

The example considered before this theorem was a
case where matrices Xl and X2 had distinct and disj}oint
eigenvalues and det V(Vl,xz) = 0. Thus, by the theorem,
they could not be a complete set of right solvents for a
monic, quadratic matrix polynomlal. In contrast with the

theory of scalar polynomlals, we have the followling result.

Corollary 4.1 There exist sets containing m matrices which

are not a set of right solvents for any matrix polynomial of

degree m.

A generalization of equation (4.1), that the
Vandermonde of scalars 1s the product of the differences of

the scalars, will be given. Let Médg‘.s (X) be a monic
1 k

matrix polynomial of degree 4 > k with right solvents

The supefscript d will be omitted 1f 4 = k.

S, ,eee,S

1°° k'
Note that this matrix polynomial need not necessarily exlst,

nor be unique.

Theorem 4.2 ir V(Sl,---,Sk) 1s nonsingular for k=2, «+,r-1,

then




det v(sl,---,sr) = det v(sl,---,sr_l} det M

Proof:

Det V(Sy,+-+,5,) = det|,

- 4] -

Slt . Sr‘.—l

(4.5)

The nonsingularity of ?{Sl,---,sr_lj and Corollary

3.1 guarantee that M {X) exlsts uniquely.

r-1
The determinant of ?{Sl,---,sr} wlll be evaluated

Sl..-s

by bloeck Gaussian elimination using the fact that

A B A+EC  B+ED
det ( ) = det ( ) . {(4.6)
¢ D c D
I aee I 1
51 et 5y
lég—l . ;;-l
1 I e T
= det ?Eﬂsl " ?r_sl
l é;-l_sg-l e ;;—1_S§—1
1 1 I cee T \
5,-8, 53-8, se- 8-S,
= det Méié2(33) oo Méiéz{sr)
| e ey
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where M§:§2(X) . (xd-sg) - (sg-sg)(sz-sl)‘l(x-sl).

(82-31) is nonsingular, since
det (S,~3,) = det V(5,,8,) # 0. It will be shown
that after k steps of the block Gaussian elimina-

tion, the general term for the 1,J block, 1,J > k,

is M(iul) (S,). Assume 1t 1s true after k-1 steps.
Sl...sk J

Then, after k steps, the 1,] element 1s

mii-1) (s

(1-1) (k-1) -1, (k-1)
ces ) - M YyTM
Sqt**8py Y

Sl...s - (SK)MS ...S (Sk S OIDS‘ (S

J)a
k-1 1 k-1 1 k-1

This is merely Méij%zs (X) evaluated at X = S
1 “k

3
Using the fact that the determinant of a block tri-
angular matrix 1s the product of the determinants
of the diagonal matrices, (see Householder [5]),

the result follows. #

Corollary 4.2 If V(Sl,...,S ) 1s nonsingular and Sk is

k-1

not a weak solvent of My ,,,q
1 k-1

(X), then V(Sl,°",3k) is

nonsingular.

It is useful to be able to construct matrlx poly-

nomials with a given set of right solvents.

Corollary 4.3 Given matrices Sl"'.’sm such that V(Sl,---,Sk)

is nonsingular for K = 2,+--,m, the iteration NO(X) = I

-1
N, (X) = Ny COX = Ny (S,)8,N]2(8,)N, 4 (X) (4.8)
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is defined and yields an m degree menic matrix polynomial

Nm(x)’ Such thﬂ.t‘, Nm(sil - Q for 1 = 1,...,“1.

Proof: Nl(J{) =X - Sl BJ"’IS (Xj .  Assume Nk{_}{} = Msl_ . .sk(X) .

1
Then, from equation (4.8}, Nk+l(si} =0 for
i = 1,4+~ ,k+1l and, hence, N (X) =M, .. (X},
k+1 S1 Sk+1

The sequence of block Vandermonde belng nonslngular

guaranteea the nonsingularity of N 5 ¥

1-1( 1)'
Corcllary 4.4 If V(Sl,'--,sk) is ponsingular for k= 2,*+°,m,

then 31"”’Sm are a complete set of right solvents for

e ().
”sl 5,

Proof: The result follows directly from Theorem 3.5, where

we obtalined

(1)
(Ix-si)mi(x) = A M{x). A (4.9)



CHAPTER 5

A Matrlix Polynomial Algorithm

This chapter presents the paper's main algorithm,.
It computes solvents and is a generallizatlon of one of
Traub's methods. Section 5.1 gives the algorithm. A global
convergence theorem 1s presented in Sectlion 5.2. Section 5.3
considers computational aspects of the algorithm and has a

detalled flow-chart of the method.

5.1 A Generallzation of Traub's Algorlithm. The following

algorlithm for matrix polynomials, Iin the scalar case, reduces

to Traub's scalar polynomlial algorithm.

Algorithm 1 (1) Let GO(X) = 1 and generate matrix poly-

nomlals Gn(X) by

n
6,1 (X) = 8 (0K ~ aJM(X), (5.1)

for n = 0,1,**+,L-1, where

n

m_l * e & n
lx + + o (5.2)

Gn(x) ERY

L\/ L-1\"!
Then, {(11) let XO = (“1)(“1 ) and generate

-1
X = G (X )G 7, (Xy) . {5.3)

i+l

-4y -




The algorithm has two stages. The first, a gener-
alization of Sebastiao e Silva's algcecrithm (see Householder
[} generateg a sequence of matrix polynomials. Equation
(5.1) ensures that each of these matrix pclynomials is of

degree less than m, the degree of M{X). Under suitable con

-1
ditions G (X) (a“) G (X) will be shown (in the next

1
section} to converge to M” (X), a menic fundamental matrix
polyncmial.

The second stage generates a sequence of matrix
iterates which will be ghown (in the next section) to con-
verge to a sgolvent. The peint at which cne switcheg from

stage one to stage twe, the value of L, will be considered

in Section 5.3%

5.2 The Convergence Thecrem. In the proofs that Bernculli's

method and Traub's scalar peclynomial algorithms converge, the
main property needed is that if p.” is a dominant root, then
(p./p.}) ->0 as n+", for p any other root. Toc gener-
alize this property to solvents, the following result is
needed, the proof of which was provided by P. A. Businger of

Bell Telephone Laboratories.

Definition 5.1 Matrix A dominates matrix B if all the eigen-

values of A gtrictly dominate, in modulus, those of B.

Lemma 5-1 If matrix A dominates matrix B, then A~"CB" + 0

as n + <, for any constant matrix C.

Proof: For any e =» 0, let
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B = Py(e)(Ig(e))Pe(e)7, (5.4)
where
[ 2g
€ AB
Jg(e) = . . . (5.5)
E AB]

See Ortega and Rheinboldt [16, p. 43] for a discus-

sion on this modified Jordan form. Then,
8™l < ey ce)ll Hpg(e)™ il (e+max|ag)), (5.6)

where the norm 1s the infinity norm. Noting that

-] -1
Aa ‘ Ap
-2 -]
€ AA -elA AA
= »
-2 —1}
l € "A] \ ~€Ap Ap
(5.7)
the result

1A~ < lIp, (el e, (o) "M —S—sr + —2 (5.8)
- A A min|A§l min|A, |
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is similarly obtained, where PA(e) 158 defined as
in equation (5.4). Combining equations (5.6) and
(5.8) we get

n
NA~PcB™ || < k|(e+max|Ay}) [ —Empm + —2—
min!AAl m1n|AA|

(5.9)

where k, a function of €, is independent of n.

th power 1ls less

When € = 0, the constant to the n
than one, since mex|Ag|/min[A,[ < 1. By continu-
ity, there exlsts an € > 0 so that the constant
is still less than one, and, hence, [[A"TcB"|l + 0

as n =+ o, #
We now give the convergence theorem for Algorithm 1.

Theorem 5.1 I

(1) M(X) has a complete set of solvents, S,,***,S ,

(11) Sl is a dominant solvent, and,

(111) V(Sl,-‘°,Sm) and V(Sa,---,sm) are nonsingular,

: -1
then (1) G (X) = (a?) G, (X) » M(X), where M,(X) 1s the

unique monic form of the fundamental matrix polynomial such

that Ml(SJ) =§.,I, and

13
(11) for L sufficiently large, xi of (5.3) converges

to §,.

Proof of part (1): From equation {(5.1), the result

- n _, qn
Gn(Si) = Go(si)s1 SH (5.10) -
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followa. By Theorem 3.3 and equation (5.10), we

get

m m
6 (X) = 3 6 (SOm (X)) = > sTM (X, (5.11)
1=1 1=1

and, thus,

m
ol = 3 si‘ni”. (5.12)
1=1

Sl and Aglj are nonslngular and, thus, there 1s an

N such that fer n > N, u? must be nonsingular,

8ince using Lemma {5.1) and equation (5.12)
n( n,(1l) -1 :
a. [STA ) + I {5.13)

as n -+ =, Using equations (5.11) and (5.12) and

Lemma (5.1), we get, for n > N,

-1
= N n
G (X) = (“1) a_ (%)
m -1 m
. (1) - n
2 staj stsTh | Y s (o
1=1 1=1

{5.14)
{cont'd}
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m -'l

m
o~Nan (1) -N.N
- | 20 s1"siAy 2, S7MsiM (X
1=1 1=1
+ (A(”)-lm (x) = . (X) (5.14)
1 1 (X3 = M (%), .
by Lemma 5.1. #

We defer the proof of part (11i) of the theorem to

first obtain some results which will be needed 1n the proof.

Corollary 5.1 Under the hypotheses of Theorem 5.1,

(ag)-1a2+l + Ry (5.15)

as n + o, where R, 1s the dominant left solvent.

s

Proof: Modification of equation (5.14) and Corollary 3.3

-1 -1
+1 1 1
ylelds (ag) a? > (Ai )) SlAg ) - Ry

n =+ «, #

as

The following lemmas all use the same hypotheses

as in Theorem 5.1. Let
6, (X) = 6 (X)eft (0. (5.16)

Thus, stage two of Algorithm 1, equation (5.3) 1s

Xy4q = ¢L(xi). (5.17)
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In Lemma 5.2 we show that every right solvent is a
fixed point of ¢L(x) for each L. Lemma 5.4 shows that ¢L(X)
is defined for all X in some neighborhood of the dominant
solvent. Lemma 5.6 gives the local convergence of the second
stage of Algorithm 1. Flnally, Lemma 5.7 says that stage one
will yleld a point 1n the locally convergent region (Lemma
5.6) of the dominant solvent. Stage one supplies a suffi-
ciently accurate starting value for the locally convergent
stage two and, hence, the overéll algorithm l1s globally
convergent. The proof of part (1i) of Theorem 5.1 then

immediately follows.

Lemma 5.2 ¢L(S) = 8 for all L and any right solvent S.

Proof: The result follows from equation (5.10) and the

fact that GO(X) = I. #

Lemma 5.3 There exists a nontrlvial ball B, centered at Sl,

such that for all X ¢ B

(1) 1I-M, (X)) < K < 1, (5.18)

and

(11) IIMJ(X)II < D, J#£1, (5.19)

for some D independent of J.

Proof: A matrix polynomial is a continuous functlon of 1t€s
matrix variable. The results thus follow from con-
tinuity and the facts that Ml(Sl) = I and

MJ(Sl) =0 for J # l.‘ #
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It follows from Lemma 5.3 that for all X ¢ B,

Ml(X) is nonsingular and

"MFI(X)” -1 - IIIiM LON (5-20)

Lemma 5.4 If X € B, then there exists an L' such that

¢L(x) is defined for every L > L'.

Proof: For X € B, let

v, (X) = MJ(X)le(X) (5.21)
and
m
W 0. = 35 sl 0. (5.22)
j=2
Then,

J=1
m

. 2: s7Bslly 0 | w00

= sh Mz 0)m ). (5.23)

Note that WL(X) + 0 as L + o uniformly for

X € B, This follows since
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v, ol = 1w, Coug txl < =P < = (5.24)

by Lemma 5.3. Thus, I + WL(X) + 1l as L + -
and, hence, I + WL(X) is invertible for large L.
By equation (5.23), G _,(X) is invertible for

large L and the result follows. #

Lemma 5.5 If X € B, then

Hs v, (X)S LH £ T0 IIM collimgteoll < ,‘_’II; ,  (5.25)

where 0 < 0 < 1, and t is a constant independent of L and X.

Proof: The result follows from equation (5.9), where

g = maxIAS I/minlxs | <1 for J # 1. #
J 1

Lemma 5.6 If x € B and L is sufficiently large, then
¢ ) + 3

1’
Proof: Let Xe B and L > L' of Lemma 5.4, Set

EL(X) = ¢L(x) - 5;. (5.26)
Then, since

0, (X) = G, (X)G]2, (X)

-1
m
sbv, (x) s v (x)} .
33
=1
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it follows that

m m
L~-1 L-1
B (X) 3 5377V, (X) (5,-8)857 Vv, (X).
J=1 J=2
Let
. oL-1 ~(L-1)
TJ,L(x) SJ VJ(X)Sl . (5.27)
Thus, by Lemma 5.5,
L
Dto_
ey Ol <37 > 0
as L - », Choose L large enough so that
m
2Ty o < F < (5.28)
J=2
for rll X € B. Then,
m m
EL(X)[I + 3 TJ’L(X)] = Z (S,~8))7, [(X)
J=2 J=2
glves, by equation (5.25),
m L-1 -1
IS =S llxo™" ~{im, () [HIMS = CxOM
41 ] 1 (5.29)

”EL(X)“ < 2
Py 1-F




for all X € B. A matrix polynomial Is contin-
uously differentiate. Since M"8." " 0 for

i * 1, the result

Mj(X)|| < t||xX-8H, (5.30)

t
“ 1, t e sup 1IM.(X)1l, follows £from the
X€B ’

where J

mean value theorem. Finally,

I"00-83jJI < ca”llx-8"1 (5.31)

for all X € B, where

m
B diij-ridi”

¢ = abs iz2 1
(1-F) (1-K)

The result feollows from equation (5.3D, since

0 <0 <1 and L can be taken large enough so
that ca'"' < 1.

The preceding lemma gave convergence for the second

stage of Algorithm 1 if X € B. The next lemma shows that

X 1is in B if the first stage is continued 1long enocugh,
o

Lemma 5-7 For L sufficiently large. i




m
: L _ L,(J)
Proof: Noting that oy = 2: SjAl , a proof simllar to
J=1
that in Lemma 5.6 will yileld
-1
L L-1
(al)(al ) + 5, (5.33)
as L + =, #

The second part of Theorem 5.1 can now be easlly

proved uslng Lemmas 5.2 through 5.7.

Proof of Part (il) of Theorem 5.1: For L sufficlently
large, XO € B by Lemma 5.7. Lemma 5.6 then

+ 3. #

shows that Xi 1

Equation (5.31) reveals the rate of corivergence.

Corollary 5.2 |[¢ (X)=5,Il < co" Hx-s | for 211 X e B,

where 0 <9 < 1.

This corcllary shows that even though the second
stage 1s only linearly convergent, the asymptotic error
constant can be made as small as desired by increasing the
number of 1terations-of the first stage. The asymptotlc
error constant for stage one will depend on

o = max|Ag |/min{Xg | < 1, while that of stage two can be
J 1

significantly faster than stage one. Thls 1s the purpose of
the second stage, for eguation (5.33) shows that stage one

can also yield Sl'
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5.3 Computational Conslderations. A computational diffi-

culty in generatling the sequence Gn(x) in stage one,
n
Ggq (X) = G (X)X = o M(X), (5.34)

is that the matrix coefficients of Gn(x) will grow expo-

nentially. Thils may be avoided by generating én(x) by

-~ ~n ’
Kn+l(x) = Gn(X)X - aIM(X) (5.35)
and
K (X)
|T%’]'LT|-I_ 1 KA
K
~ _ 1l
Gn+1(x) = “ (5.36)
| Kn+1(x) otherwise,

n
1

Kn(X), respectlvely. Then let

where &2 and K, are the lead matrix coefficients of G _(X) and

G _1(X) =6, _,(X) (5.37)

and

L-1
1

Now, GL(X) and GL_l(X) contaln the same scalar constant that

was bullt-up in normalizing &n(x) in equation (5.36). Thus,
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the constant vanilshes 1n ¢L(xJ = GL{X)GLEI(I}, and the
growth of the coefficlent has been stopped. Furthermore,
= -

GH{I) = GH(X}.

The followlng strategy 1s used to switch from
stage one to stage two.

(1) Compute En{x) until the matrix polynomials tend to
settle down.

(11} Compute stage two, as long as rapid convergence
appears to be occcurrding. If stage two 1s too slow
or ls diverging, resume stage c¢ne for several more
steps.

A flow-chart of the algerithm that exhiblts the
strategy follows. It 1s guaranteed to work, using exact
arithmetic, for any matrlx polynomlal satlisfying the condi-
tions of Thecorem 5.1. The actual computer preogram that was

used to test this algorlithm appears In Appendix D.
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GIVEN M{X)

WANT 8 SUCH THAT||M(SIi < «

STAGE ONE
ITERATION

16;+, -8 ll<E

NO

ITERw=—|

!

ITER=—ITER+!

M) < 174 1M )

STAGE TwWO
ITERATION

YES .RESULT Xi+41

OR ITER <3

E=—|/2E




CHAPTER 6

The Block Bernoulll Method

This chapter covers a generalization of Bernoulll's
scalar polynomial method to the matrix polynomlal problem.

A relationship 1s shown between it and Algorithm 1.

Definition 6.1 PFor the matrix polynomial

MCX) = X + A X1 4 eee s A, (6.1)

1

the block Bernoulli iteration is

Xjgp AKXy + e +AX, =0, - (6.2)

with xo,x_l,-o-,x_m+1 given starting matrices.

The general solution to the matrix difference

equation (6.2) is obtalned precisely as in the scalar case.

Theorem 6.1 1If §8,,¢*+,S are right solvents of M(X), such

that V(Sl,--o,sm) is nonsingular, then

1% * **c + Sap (6.3)

1s the general solution to the matrix difference -equation

(6.2), where @y,tte,0 are matrices determined by the initial

conditions.

Proof: Substitution of equation (6.3) into equation (6.1)
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yields

m
)3 ByXiagsr ™ Z 2 S“JH

J=0 J=0 ° k=1
m
me 1+2J-m+1
=3 ZAJsd.skdmuk-g
k=1 \ §=0

where Ao = I. The nonsingular block Vandermonde
insures that Gyttt sa, can be uniquely calculated
in terms of xo,x_l,...,x-m+l.
solution to equation (6.2) and xi = ﬁi for the

If x1 18 the general

~

first m consecutive subscripts, then X, = X, for

all 1. #

In the scalar Bernoulli method, if there 1s a
dominating root, then the ratio of the Bernoulli iterates

converges to the root.

Theorem 6.2 If M(X) has solvents Sl,-'-,sm, such that S1 is

2 dominant solvent, and V(Sl,'--,sm) is nonsingular, and if

X oX_qs°°*»%_p4q BFe chosen so that a, is nonsingular, then
-1 -1
(1) xn-lxn > S1 1° and
1 - J
(11) ann 1*8; as n>m=.

Proof: Part (i) is obtalned from
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m “1/ m
-1, . n-1 n
xr’x—lxn (E Si %y E Siui
i=] i=]
m 1
-(n-l) n-1, ~(n-1),n
a + Y. 8] 57 %a, | (550, + ): 5] sja
1=2 im?
1
-+ nl Slul.

For part (1i),

-1

m
n n-1 E S oy 2 S;"lui

i=1

(3 W sh1g-1g -(n-l))(I+ gh=

11 %1 >

‘where

z: SJ —(n-l)

and

m
- n-1, g-(n-1)
vV, ZSJ a,57°"
J=2

n-1 =1.=-(n-1)
Furthermore, wnsl oy Sl +Q

i

-1 -1 —(n—l)) ’

%1 1

and

(6.4)

(6.5)



- 62 -

n-1 =l,=(n-=1) -1
V.S, "ay7S + Q. Thus, X X~y + S,. #

1

The block Bernoulll iteration (6.2) can also be

written as

!

x1—m+2 0
Xi 0
X441 | \_Am

where Xi is a matrix of order n.

elgenvector powering except

fxi-m+1‘

.
*
]

i-1

| x

r

1 rxi-m+1
1 X, ,
IS I IR ST

(6.6)

Equation (6.6) looks 1like

1s not a vector 1n

the usual sense. A theory of such power methods will be

considered in Chapter 8.

Consider the same power-like method on the trans-

pose of the matrix in equation {(6.6).

!w;+1‘ 0 e

That 1s, consider

T 1 ] Wl |
m m
T .
-A .
m-1P bt 1. (6.7)
. 1
. Wg
T 1
A1 |\




Multiplying out, the syatem

m m 1

m-1 m m-11

L * L] (6.8)

. . . .

it er2 o eti Ui

J-1
results. Multiply the J'° equation on the left by (x7)
and add. The result is
C6.9)

G ., (X) - G (X)X - (w")'M(X),

where
s - (WHV + .+ (WE), (6.10)

This is precisely stage one of Algorithm 1. These results

are generalizations of what occurs in the scalar case. See

Traub [21].



CHAPTER 7
A Lambda-Matrix Algorithm

In this chapter we present an slgorithm, agaln
based on Traub's scalar polyncmial algorithm, to obtain a
dominant latent rcot. 3ecticn 7,1 gives the algorithm and a
convergence theorem. Section 7.2 consldera another gener-
alization of the Bernoulll method and ita relaticnship to

the algorithm of Seetien T.1l.

7.1 A Method Based on Lambda-Vectoras. The basic approach

to the lambda-matrix problem taken in this paper 13 to find

a c¢haln of solvents and, then, to find the eigenvalues of each
matrix of the chain. For Algorlithm 1 to yleld a solvent,
which is needed in thls approach, a dominant solvent must
exist. Since a domlnant solvent need not exist, an alter-

native approach will be considered.

Algorithm 2 Let go(l) be an arbltrary m-1 degree lambda-

vegctor. Generate

B (M) = g, (08 = MO, (7.1)

where

L}

Ek(l) = Vik)lm_l § oeea 4 vrik)' (7.2)

Algorithm 2 1s ancother generalization of Traub's

scalar polynomial algerithm., It seeks a domlnant latent root,

- 64 -
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Theorem 7.1 1If
() M(X) has distinet latent roots, IR .

(11) |pq] > [p4f for 1 ¥ 1, and

(111) rig (p,) # 0, where riM(p,) = 0T,

then
(1) g, (A) B (V) m)b h M{p. )b 0
E = . s ¥Where P =
k max v{k) - Py _— 1771
and
{k+1) {k)
v - 0.V
(11) -t » 0,
max Vl

Proof: By Thecrem 3.4, the lambda-vector gn(k) can be

represented unlquely by

iilg]
g (1) = Y, 8lK) xﬂ?%q b (7.3)
i=]

where M(pi)bi = §J, Thus,

”ik) 2 B(k) g (7.9
1=1

Substituting equations (7.3) and {(7.4) into equa-
mn B(k+1) (k)

-8, 7p
tion (7.1, one gets M(A} 3, —= — pi lp, =0
1
1=1
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for all A. 'Thus, (k} - 5191: whera @, = BED).

i
Vaing thisa,

—— - ; 1
g (1) =
max ) 51"‘:"1
1=l
mn o \K
1 1
M(AY Y 31( 1) — b,
- i=]
mn o \K
S
max :E: ﬁi ( N b1
1=1
M( A
- b
T pl 1

as k + =, if B, ¥ 0, since b, 18 unique to

within a scalar multiple. Furthermore,
mn

B4M(p,)
So(plj 8,M’ (Dl)b + Z 3‘;—':'51' b, and, thus,
since rEM(pl} = Q?, we get
r1g (p,) = BIrIM'(p))b . (7.5)

T .
Finally, rlgo(pl) /0 implies 8, # 0. For

part (11)
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mn 0 k
1
JUHL) () 2 8 (ﬁ) (eg=py oy
1 1V =2 .0
max v\ K k -

mn 0
1 max 2: Bi (Ei) b1
1=1 1

th

Let (v)r denote the r-°"' component of vector v.

Corollary 7.1 Under the conditions of Theorem 7.1, if
(v(k+l))

| 1
b ) ¥ 0, then L sop..
( /e ’ ivgkj 1
r

Proof:

| mn
(v{t D)) (E Bipl;+lbi)

1 r 1=} r
(k) mn -
.(VI )I" (Z Bipl;bi)
i=1 r
mn o k+1
(Z () )
i=]

as k » w, as long as (Blbl) 0.
T
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If dlvision of vectors 1s defined as componentwise
division, then v§k+1)+v&k) is an n dimension vector, with
each component an estimate of pl. In a manner similar to

the last two proofs, we get the following result.

Corollary 7.2 Under the conditions of Theorem 7.1,

LK)
1 +b
max vikj 1
Consider again, the first stage of Algorithm 1:
_ k
Gppp(X) = G (X)X = a M(X), (7.6)
where
= k -l LI ] k
G (X) = X"~ 4 set 4 ap. . (7.7)

Transpose both sides of equation (7.6) and substitute

X =2 to get

T
T T T k
Gy yy(A) = GL(AIA = M (A)(al) : (7.8)
1 th

Let gk(A) be the lambda-vector formed by taking the 1
column of the matrix coefficlents of Gg(l). Then,

1 1 T k

B (M) = g (M)A = MI(X)vy 4, (7.9

where v? 1 18 the leading vector coefflcient of gi(k).

3




- 69 -

Equation (7.9) is preclsely Algorithm 2, operating on MT(A).
The latent roots of M(A) are the same as those of MT(A).
Thus, the computations of Algorithm 2 are done by Algorithm 1.
Even 1f Algorithm 1 does not work, due to the lack of a domi-
nant solvent, 1t ls posslble to obtaln a domlnant latent
root by extracting the computations of Algorithm 2 from the
computations (successful or not) of Algorithm 1,

The convergence theorem for Algorithm 2 has the
requirement that r?go(pl) ¥ 0. 8ince Algorithm 1 used
GO(X) =« T, 41it followa that at least one column of equatlon

(7.8) satisfies this requirement.

7.2 A Vector Bernoulll Method. A block (matrix) Bernoulli

iteration was previously considered. Another generallzation
of Bernoulll's method 1z now presented. Similar ldeas may

be found in Guderley [3].

Definition 7.1 For the lambda-matrix

IA™ & a ™3

1 AR Y WS (7.10)

the vector Bernoulll iteration is

V(k+l) + A V(k) + ses 4 Amv(k_m+l) = Q, (7.11)

1

with v(o) '-¢,v(_m+l) given vectors.
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Equation (7.11) ecan be written as

v{k-m.+2)'| | 0
v(k) ) 0
LKD) _A
| |

Iv(k—m+1}

-
[ ] -
L]

{7.12
1 ?(k—l} )

.. -'ﬁll l

L0

This 1s Just the elgenvector powering on the block transpose

of the block companicon matrix.

block companlon matrix is

e} o

. 1

vék+1} .
k+1)

L

Multiplying out, we get

v(k+1}
m

(k+1)
vm-l

v:{lk+1)

Then,

L0
m

»

N0

Eigenvector powering on the

o)
—ﬁm ‘ ’_ym
~Ame1 .
1. (7.13)
: ||
(k)
e T B A1
(k)
- Ay
(k)
- A1
] (7.18)
(k)
- Alvl .
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By (V) = g (A = MO, (7.15)

where the lambda-vector

. JKmel L, (k)
g (2) = vi™ia + LI AR (7.16)
1z obtalned by multiplying the 1! equation of (7.14) by
1=l 2nd adding.

A
Equation (7.15) 18 precisely Algorithm 2. <Consec-
utive substitutions of equations (7.18) ylelds

(k+1) (k) e (k-m+1)
vy t AV + Ay Q. (7.17)

Thus, the leading vector ceoefflcelent of Algorithm 2 1s a
vector Bernoulll 1terate. This is a generalization of what

occurs in Traub's [21] secalar polynomlal algorithms.



CHAPTER 8

Block Eigenvalue Problem

A block eigenvalue problem Is considered im this
chapter. Let A be a given matrix of order mn. The matrix X
of order n is desired such that there exists an mn by n
matrix, V, of full rank, so that AV * VX. Power methods of
the form V., , ¢ AV" are considered, where is an mn by n
matrix. It was shown in Chapter & that the first stjage of
Algorithm 1 is of this form, where A is the block 'companion
matrix. Sections 8.1 and 8.2 define the problem and con-
gider complete sets of block eigenvalues. In Section 8.3 we
present some generalizations of linear algebra with respect
to thig new formulation. The application of the new eigen-
value problem tc¢ the block companicon matrix is given in
Section 8.4. Also discussed is the relationship between
block eigenvalues and right sclvents. In Section 8.5 we pre-

sent two algorithms based on eigenvector powering.

8.1 Block Eigenvectors. Let the term block vector denote an

mn by n matrix that has been partitioned into a column of n
by n blocks. It is equivalently an m-tuple, each of whose

components 1is a s8quare matrix.

Definiticon 8.1 A matrix X of order n is a block eigenvalue

of order n of matrix A of order mn, 1f there exists a block

vector V of full rank, such that AV * VX, V ig a block

eigenvector of order n of A.
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Generally the order of a block eigenvalue or block elgen-
vector will be understood and will not be referred to
explicitly.

A problem that has recelved a good deal of
attention is that of finding a matrix X such that AX = XB,
where matrices A and B,.of orders m and n, respectively, are
given. Jameson [6] and Gantmacher [2, p. 215] are amongst
many authors who have consgidered this problem. The main re-
.sult for this problem is that Ai = XB has only the trivial
solution X = 0, if and only if A and B have no common
eigenvalues. This result will be of use in this paper.

Returning to the block eigenvalue problem, we have

the following.

Theorem 8.1 If AV = VX with V

of full rank, then all the
eigenvalues of X are elgenvalues of A.

Proof: Let A be an elgenvalue of X with eigenvector u.
Thus, AVu = VXu = AVu. Therefore, either A 13 an
elgenvalue of A with elgenvector Vu or Vu = Q.
Since V 1s an mn by n matrix and it is of full
rank, there exists a left inverse to V. Thus,

Vu = 0 can only occur if u = 0, which cannot

happen since u 1s an eigenvector of X. #

Corollary 8.1 If A is the block companion matrix, then all

the eigenvalues of a block eigenvalue of A are latent roots

of M(1).
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Proof: The result follows from Theorem 8.1 and the fact
that the eigenvalues of the block companion matrix

are latent roots of 1ts assoclated lambda-matrix.#

8.2 Complete Sets of Block Eigenvalues. It wlll be shown

that a solvent ls a block eigenvalue of a block companion
matrix. Furthermore, it will be proved that a matrix always
has a block elgenvalue. 8ince a solvent does not always
exist by Theorem 2.6, it follows that a block elgenvalue of

a block companion matrix 1s not necessarily a solvent.

eigenvalues 1s the set of elgenvalues of the matrix.

Theorem 8.2 Every matrix A, of order mn, has a complete set

of block eigenvalues of order n.

Proof: Let Pys® Py be any n eigenvalues of A and let

P ,...,Pn be thelr assoclated eigenvectors or prin-

1
clpal vectors, where needed. Then, V==(Pl,°--,Pn)
is a block elgenvector with block elgenvalue in
Jordan form. This process can be contlnued for
each of the m sets of n eigenvalues of A. #
As an example of the construction 1in the above

p 1 1

p 1

_l -
proof, let (P1P2P3Pu) A(P P,PSP)) p . Then,
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( ) ’ ]') ( ) » ) P
A(P.P,) = (P,P and A(P,P,) » (P.P , and
12 13(0;. 174 1"'(01:

p 0O p 1
hence, ( ) and ( ) are a complete gset of bleock
0 u o p

elgenvalues of A.

Definition 8.3 In & complete set of block elgenvalues, one

of them is weakly dominant, if all 1ts elgenvalues are

greater than or equal to the eigenvalues of any other block

~eigenvalue 1n the complete set.

The construction of Theorem 8.2 can be done such
that the Cirst block elgenvalue contains the n largest elgen-
values of the matrix. We thus get the followilng important

result that was not true for solvents.

Corollary 8.2 Every block matrix has a complete set of bloeck

elgenvalues with one of them weakly dominant.

Block eigenvalues thus far considered have all been
in Jordan form. However, unlike solvents, any matrix simllar
to a block elgenvazlue 1s also a block eigenvalue. This fol-

1

lows, since, 1f AV = VX and Y = P "XP, then A{VP)=(VP)Y,

and VP 1s st1l1ll of full rank.

8.3 Block Vector Algebra. We now conslder some of the baslc

properties of block elgenvalues.

Definition 8.4 Block vectors, Vys*t*,V, of dimension mn by n,

k
are block linearly independent, 1f 2: viﬂi =0 1mplies
i=1
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that Ai =0 for all i, where Ai are matrices of order n.

Note that a set .of block vectors being block
linearly dependent does not imply that one of them can be
solved for as a combination of the others, since all the

Ai's may be singular.

Lemma 8.1 For i = 1l,+**,m, ‘let the block vector

V, = (vyys***,vy ). Then, V,,

independent if and only 1if {vij} for 1 = 1,+++,m,

---,Vm are block linearly

J = 1,***,n, are llnearly independent in E™,

Proof: (1) Assume {vij} are llnearly dependent. Thus,

there exists {uij} not all gzero, such that

2: ®yqVyy = 0. Let A, be a matrix whose first
1]

column is (ail,---,ain)T, and the remainder of the

m

matrix is zero. Then E V,A; = 2 and not all
1=1

the Ai = 0.

(11) Assume {Vi} are block linearly dependent.

Thus, there exists {A;} not all zero matrices, such
m

that D, V,A; = 0. Let k be such that there is an
1=1

element 1n the kth

1s not zero. Then, Z viJ(Ai)

column of at least one Ai that

=0 slnce thils 1is

1] Jk
m
th
the k' column of 2: V;A; and, since,‘{vij} are
1=1

linearly dependent. #




- T7 =

Definition 8.5 Block vectors V,,***,V  of dimension mn by

n form a block basls i1f for any V of the same dimension

there exists a unlque set of matrices Al,*",Am such that
m
Ve ) VAL
i=1
Block vectors being block linearly independent and

forming a block bazls are related by the followlng.

Theorem 8,3 Block vectors Vl""’vm of dimension mn by n

form a block basis if and only 1f they are block linearly

independent.

Proof': Let V be a block vector of dimension mn by n,

The matrix (Vl,---,vm) 1s square and, by Lemma 8.1,
honsingular, if and only if {Vi} are block linearly

independent. #

A generalization of a matrix with distinct elgen-
values being similar to a dlagonal matrix, 1s glven by the

next result.

Theorem 8.4 If A has block elgenvalues Xy,*°°,X with block

elgenvectors Vl,"',Vm that are block linearly independent,

and 1f X 1s also a block elgenvalue of A, then X is a block

elgenvalue of dlag(X,,*-+,X ). Furthermore,

(vl’...’vm) A(vl,--p’vm) - diag(xl,oiq’xm). (8'1)
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Proof: Equation (B.1) is easily verified. Let AV = VX,
Then, by Theorem 8.3, there exists a unique set
of n by n matrices, O 5° a0, such that

m
\T
V = 2: Viai. Let A = (“f:"‘:“ﬁ) . Thus,
i=1

V = (Vl,'--,Vm)A. Since (Vl,-i-,Vm) is nonsingular
and V is of full rank, by definition, it follows
that A 1s of full rank. Now, using equation (8.1),

we get

(Vysees sV )AX = VX = A(V 0=,V A

(Vyseee,V) dlag(Xy,eee,X JA.

Finally, diag(xl,---,xm)A = AX with A of full

rank. #

8.4 Block Companion Matrix. An application of the block

eigenvalue problem is given below. We agaln consider the

block companion matrix. Recall that

0 esn 0 —Am ‘
I -A
c = . ot (8.2)
\ I --Al

and
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0 k|
Ba ) (8.3)
4] I
“An “Api T -A
where
- m m-l - W
M(X) = X + Alx T F + Am. (8.4)

It will be shown that a scolvent 1s a block elgen-
value. The converse 1s not true, since a matrix similar to
a block elgenvalue is also a block elgenvalue, but the same
is not true of solvents.

The following 1s easily verified.

Theorem 8.5 If S 1s a right solvent of M(X), then S 1s a
I
3

S

block eigenvalue of c® with block eigenvector

=1

Unlike the scalar elgenvalue problem, the block
elgenvalues, with respect to left and right block elgen-

vectors, are different.

Definition 8.6 An n by n matrix Y is a left block elgenvalue

of dimension n of A, & matrix of order mn, if there exists a

block vector W of dimension n by mn of full rank, such that

WA = YW. W 1s a left block eigenvector.
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A generalization of what occurs in the scalar case,

(see Jenkins and Traub {8]), is given in the next theorem,

Theorem 8.6 If R 1s a left solvent of M(X), then R is a

left block elgenvalue of CB, with left block elgenvector

(Dm_l,---,Dl,I), where

D(A) = A" ep A2 b wp A#D_ L = (I-R)TIM(A). (8.5)

1 2
Proof: Let
B |
(Dp,_qs°**sDys1) ) = Y(D__1,**,Dy,1).
. 0 I
Ay App A
Multiplying out, we get
- Am = YDm_1
Doy ~ Ap1 = YPpoo
. . : (8.6)
D2 - A2 = YDl
D1 - Al =Y

Consecutive substitutlions yield

m-1

YU 4+ YTTUA, 4+ eee #YA . + A = 0. Thus, Y =R,

th

1 1l
a left solvent of M(X). Now, multiply the 1




equation of (8.6} by A'""'; add; let
D(X) = IX"" 1+ ]D,X"~" + e¢es e D and get

equation (8.5) -

In a similar manner, we find that If 8 is a right

solvent of M(X), then S is a block eigenvalue of C, with

'm-1
block eigenvector ., wWheare
M{(X)dX-8)" = IxX*uww 4 VA" 4 + Vv (8.7)
m-1%#
Let be a left solvent of M(X). Then by equation

{8.5) and Corollary 3.*», it follows that M (X} =D (X), 1if

the appropriate block Vandermondes are nonsingular. Also, by

equation (2.12), D*8 " » (AJ'") , which 12 the inverse of
the leading matrix coefficient of the 1 fundamental matrix
polynomial.

Let

(8.8)

and
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= (ot 2(.3),

where 1t 1s assumed that both V(Sl,*",Sm) and

V(Sl,"',Si_l,Si+l,-",Sm) are nonsingular, and that

-1
R, = Agi) SiAii) from equation (3.11).

The bilortheogonality of right and left block elgen-
vectoras is glven by the followling.

Theorem 8.7 Under the above assumptions

-1
A Giini) . (8.10)

Proof:

- (p%) .. oD 1) °
WYy (Dm—l’ Dy 'I) !

_ (1), (1) R
=Dpy * Ppp Sy ¢ + 877 = Dy (8,)

-1

= = = (i)

= D1($1)”1(53) GiJDi(Si) GiJAl . #
From Theorem 8.5 and Lemma 8.1 the result that

V(Sl,"',sm) is nonsingular, 1f and only if the block elgen-
vectors of GB are block linearly independent, 1is easily

obtained.
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8.5 Algorithms for Block Eigenvectors. Consider now block

powering methods, as in equations (6.6) and (6.7). Let

v1
Vo
(V)k = Vk, where V =] and V1 is an n by n matrix.
vm
Algorithm 3 Let
-1
Upyp = AUn((AUn)k) , (8.11)

where U, is an arbitrary block vector of full rank and

1 <k <m 1s an arbitrary fixed lnteger.

The normalization in equation (8.11) depends upon

the nonsingularity of (AUn) .
k

-1
o a0 n
Lemma 8.2 U_ = A UO«A U°)k) .

Proof:

U1 = AUn((‘“’n)k)-l
o (5, (o)) )
- AEUn_l((AUn_l)k)-l((Azun—l)k ((AU“"I)k)-l i

- nzun_l((azun_l)k)—l - eee = An+1U°((An+on)k)-l.#
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With this 1dentity, convergence can be proved.

Theorem 8.8 Let Sl,---,sm be a complete set of block elgen-

l,"',vm. -I_-f_ sl dDmi-

nates all the other block elgenvalues and UO is 1n the span
m
of {Vi}, that 1is UO = Z ‘J’iai, and a, 1s nonsingular, then

-1 -1
U ,q = AUn((AUn)k) converges to vl((vl)k) , 10 (V) s

values E£ & with block elgenvectors V¥

k
nonsingular.

Proof:

=y
It

) (Anuo)((ﬂnuo)k)“l

m

In
E v,sTe a7 s]" E(v) ST

1=1

' m m -1
- n n
= 22 v,Sia, ) VySy0y

1=1 1=1

as n+ =, by Lemma 5.1. Since, as shown above,
-lo-n ( ) (
(AUn) a7s]" » (v;) , it follows that AUn) 1s
k k k
nonsingular for n sufficiently large since (vl)'l

k
exists by the hypothesls. f
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In the application to the block companion matrix,

the existence of & k such that (Vl) is nonsingular, is
k

equivalent to the existence of a solvent. If a right solvent

exlsts, k can be taken as 1 by Theorem 8.,5. The converse 1s

proved below,

Theorem 8.9 If C°V = VX and (V), is nonsingular, then

S = (V)lx(V)Il 1s a right solvent.

Proof':
-
-1 D, -1 a
Let V(V);” =D =}, . V(V);” 1s a block
| Oy |
elgenvector of C with block elgenvalue:
o -1
8 = (V)X(V);”. Thus,
o I 3 N E
| ". D D
c2 = 02 S.
0 I : .
“An Apy -All Dny f Dny
Multiplication ylelds D, = S'™! ana
DmS + Ale + oo + Am = 0. Hence, S is a right
solvent. #
Thus, Algoerithm 3, applied to the block companion
matrix,

converges to a block elgenvector assoclated with a
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solvent. 3Since block elgenvalues always exist but solvents
do not, 1t 1s necessary to consider a normalization whilch
does not depend on the existence of solvents. A block eilgen-
value ylelds, by Corollary B.1, as much information to the
latent root problem as a solvent does. The difficulty is
that a deflatlon of the form M()) = Q(A)(IA=S) 1s not
avallable for block eigenvalues.

For a block vector V, of full rank, let (VJ)

J k

J
denote the n by n matrix formed by taking the first n rows of

vy

chooslng the n linearly 1independent rows i1s not important,

that are llnearly Ilndependent. Actually, the rule for

as long as the rule yields a unique set of rows.
Algorithm 4 Let

-1
Uy, = AUy (AUJ)kJ . (8.12)

If 1t 1s assumed that A 1s nonsingular and U0 is of
full rank, then AUJ wlll remain of full rank, and the ltera-
tion (8.12) will always be defined. It 1s the goal here to

get U, to converge to Vl, the block elgenvector corresponding

J
to the dominant block elgenvalue of A. Since the domlnant
block eigenvalue cannot be singular, it follows that for UJ
close to Vl, A is not required to be nonsingular to ensure

that the normalization, (8.12), 1s defined.
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Lemma 8.3 Uy = AlU_ (AJUO)kJ‘ -
Proof:
-1
oy = (),
N 1\ O\
- A, (AUJ—l)kJ_l AUy (AUJ'l)kJ_l s
o \-1
g (AUJ—I)kJ—l (AEUJ—l)kJ (AUJ—l)kJ_l
-1
- A%, (“EUJ-l)kJ s W (AJ+1U°)kJ -

Let (Vl) denote the n by n matrlx formed from the
r
first n linearly independent rows of Vl. Convergence of

Algorithm 4 can now be proved precisely, as in Theorem 8.8.

Theorem 8.10 Let Sl,---,Sm be a complete set of block elgen-

values of A with block elgenvectors VyseresV . If S, domi-

nates all the other block eigenvalues in the set and U  1s in .

m
the span of {Vl}, that 1s Uo = 2: V&ai, and al is non-
1=1

-1 -1

singular, then UJ+1 = AUJ((AUJ)kJ) converges Eg_vl(vl)r




CHAPTER 9

Numerlcal Results

Eight numerical examples follow. All calculations
were done on Cornell University's IBM 360/67 in APL. This is
a time-sharing language that gives the numerical analyst
flexibility in designing algorithms. It has complete matrix

arithmetic and does all calculations in double precision.

9.1 Consider the monic cublc matrilx polynomial

3 -6 6 2 2 =42 18 66
M(X) = X° + X° + X+ .
, -3 -15 21 65 -33 -81

Algorithm 1 yields for stage one

ao(x) = Xza
_ ,  [-l.h4k 2,222 ~0.667 -h.667
Gl(x) = X° + X + s
-1.111 -4.778 2.333 6.333
_ , [-1.821 2.979 -1.105 -6.865
Gz(x) = X< + X + ,
-1.490 -6.290 3.432  9.192
, [-1.956 3.356 (—1.39u _8.061
G (X) = X° + X + R
3 -1.678 -6.989 5.030 10.697
5 ~2.008  3.574 -1.586 -8.762
6,00 = x° + X + ,
-1.787 -7.368 4.381 11.557
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~ 5 f{=2.026 3.711 ~1.715 ~9.193
G5{X) - X° + X + | ,
~1.856 -7.593 5.597 12.07%

and for stage two

and

3.9925  -2.4261

3.9729 -2.0892
1.0446 7.1067

1.008g 7.0195

]
)
3.9927 —z.ang)
)
ool

3.9999 -2.0001
1.0001 7.0001/ '

1 7
pelynomial.

4 -2
Sl = ( ) 1s a dominant right solvent of the matrix

9.2 Consider the monie, cublc matrlx polynomial having right

7 2 5 1 4y .2
solvents 3, = s B, = and S, =
1o\a1 & 2 \-2 2 3 \3 1/°



file:///-1.856

which have eigenvalues 5,6; 3,4 and 1,2, respectively. Thus,
in a dominant solvent., Furthermore, VCS*“SgjsS”™) and

VES™S") are nonsingular. The unique monic matrix polynomial

having these solvents, which was obtained using Corollary 4.3,

is

” 79104478 0.82089552\
M(X) X+ '

¢ 91044776 -9.20895522

42.34328358  -10.16417910
+ I | X
,-13.43283582 25.64179104,

*-50.35820896 21.88059701\

15.58208955 -22.80597015

The corresponding lambda-matrix has latent roots and latent

vectors
Root Vector
1 (L,1.5?
2 (1.1}°
3 (1,-2)7
4 (1,-D
5 (1,-D T
5 {(1,-.5)
7 2
Prom these results, we find that S, is also a
\-4 1

solvent. Its eigenvalues are 3 and 5 and, hence, it yields
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only redundant information for the lambda-matrix problem.
Note that the only combinatlion of latent roots that cannot be
elgenvalues of a solvent are 4 and 5.

For thilis problem

- 2 -5 7/9 1 4/9 8 7/9 -4 1/9
Ml(x) = X° + X + s
1 8/9 -4 2/9 -3 8/9 4 5/9

" to which Eﬁ(x) is to converge. Letting G (X) = x2, we get

— 5 -3.541 .678 4.183 -1.708
Gl(X) = X° + X + ,
.T24 -2.,644 -1.259 2.122

- 2 -5.696 1. 407 8.566 -3.986
62(X) a X + X + ,
1.759 -4.161 ~3.553 4,357

and

_ 5 [-5.770 1.4 8.756 -4.099°
GB(X) = X" + X + .
1.876 -l4.216 -3.854 4,535
The ratio of the leading matrix coefficlents, which 1is to

7 2

) » results 1n
-1 4

converge to S1 = (
-1 11.791 -.821

(1)) - :
-1.910 9.209

-1 [6.874  1.682
) - (S o),



file:///-1.259
file:///-3.854

- 92 -

and
-1 6.983 1.966
()67 - (0 )

Algorithm 2 which ylelds a dominant latent root was shown to
be obtainable from the first stage of Algorithm 1. The iter-

ation for this problem 1s

Latent Root Estimate

1 11.791044
2 8.332911
3 7.247455
y 6.743387
5 6.467439
6 6.302969
T 6.200093
8 6.133848
9 6.090399
10 6.061549
11 6.042225
12 6.029191
13 6.020346
14 6.014309
15 6.010162
16 6.007294
17 6£.005296
18 6.003892
19 6.002895
20 6.002181
21 6.001663
22 6.001283
23 6.001000
24 6.000787
25 6.000626
26 6.000501
27 6.000404
28 6.000327
29 6.000267
30 6.000218

AlY of the iteratlions thus far described have been

linearly convergent. The ratioc of the errors has been .8,
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which 1s the ratio of the smallest eigenvalue of the dominant

solvent and the largest of the next dominant solvent. The

second stage should also be linear, but with a ratio of
errors C(.B)L’l. The results are
L = 10 L =5 L = 2
6.8738 1.6815 6.8632 1.0039 8.3287 -.0258
X =
° ~.8769 4.3084 -.8216 4.,9284/\-1.2123 6.u4868
(6.9766 1.9515\ / 6.8378 1.5718)(7.08113 .5261
x =
1 -.9770 4. ou'rs) ~.8495 14,3918 -.8895 5.3558
6.9963 1.9927 6.9153 1.8115 6.8201  .88u4
X, = .
2 -.9964 4.0072/ \ -.9215 4.1741/ \ -.8009 4.9547
6.9994 1.9989\ / 6.9602 1.9165 (6.7670 1.11158)
X -
3 -.9995 14,0011/ \ -.9630 4.0774 -.7878 14,7206
6.9999 1.9998 6.9819 1.9630 6.7763 11,3414
X, = .
A -.9999 4.0002/ \ -.9832 4.0343/ \ -.8043 4.5559
7 2 7 2 6.9790 1.9573
Xy5 = .
-1 4 -1 4 -.9819 4.0367

The ratio of the errors, which by Corollary 5.2

should be C(.B)L'l, was found for large values of i to be
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[%342-31 _H/“xi‘sium

<15
.23
.36
.54
.78
.91

HM-I‘-'O'\mS lr'

Thls shows that by increasing the number of 1terations of

stage one, stage two can be made to converge more rapldly.

9.3 Consider the matrix polynomial

2 ~11. 44382802 3.4320249653
M{X) = X" +
0.8613037448 -5.556171983

0.5533980583 7.332871012

( 41.02912621 -20.93481276 )
+ X

(-39.65603329 23.56171983
+
0.6074895978  —3.386962552

7T 2
It has a2 complete set of sclvents, S1 = ( ) and
-1 4

hy -2
S, =8, = . The elgenvalues of S, are 5 and 6, while
27373 1

while the elgenvalues of 82 are 1 and 2. Clearly, ?{31,82,33)
and V{Sz,ss) are singular. Algorithm 1 converged for all

values of L. With L = 6, we get

6.7783  1.2464
X = ]
° -~1.0231  3.9215
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6.9896 1.9764
Xl " s
-3.001) 3.9975

6.9997 1.9995
X, = .
-1.0000  3.9999

The convergence 1ls fast, though linear, since the asymptotic

and

error constant 1is (.h)s.

¢.4 Consider the problem
5 -12.4 4.4 > 52.6 =29.2 -73.2 4p.8
M{X) = X"+ X°+ X+ .
1-6 _BIG ""10-“' 22-8 16-8 -19-2

T 2
This problem has a complete set of solvents, Sl =( )_,
~1 &

1 0 3 2\
52 = (-2 2), and 53 = (0 u). Sl domlnates, ?(51,32,53}

is nonsingular, and v{32,33] is singular. Ml(x) exists
uniquely, but its leadling matrix coefficient is singular.

Hence 1lim Eh(x) does not exist. However, Algorithm 1 con-
n-+® .

verged. This 1s because the second stage needs the ratio of

G, (X) and G _,(X), not Ei(x}. For thls type of problem, the

=1
equation XD = a?(u&-l) can cause difficultles because

u?'l can become singular, For this problem, however, the

L-1
1

If it had, a random xo would have been used. After twenty

ratio 4id exist since o did not gulite become singular,
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iterations of the first stage,

5.0260 -2.0376
-.5065 5.0094

Then,

6.6745 1.3489

2 \-.0186  4.1628

and
6.9929 1.9857

3 \-.9982  4.0036

5.1741  -1.6544
X, = ,
~.5435 4.9136

9.5 Consider the gquadratic

M(X) = X
8 10 k4

The corresponding lambda-matrix has latent roots -16,05113,
-.4215 and -.2637+ 1.86491. There exlst two solvents having
these as thelr elgenvalues, but nelther can domlnate, slince
there 1s a complex pair of latent roots whose absolute value
1s between the two other latent roots. Algorithm 1 did not
converge, but Algorithm 2, whose computations are done by
Algorithm 1, did converge to yleld the dominant latent root,

-16.05113. The order of the matrix coefficlents was then
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revergsed and the minimum latent root was found. Uslng these
results, a solvent was formed, deflated, and the new problem
yielded a solvent with elgenvalues which were the remaining
complete pair of latent roots. This prcblem suggests the

use of a random complex shift of the varlasble In the lambda-
matrix. This will break up troublesome complex pairs of

latent roots. With a shift of 1, Algorithm 1 converged with
no difficulties. All computations were done in the complex

domaln.

9.6 Consider the quadratic

2 -1 ~b 0 12
M(X) = X° + | X 4+ .
2 -0 -2 1k
The corresponding lambda-matrix has latent roots 1,2,3,4 with
correaponding latent vectora (1,OJT, (O,I)T, (l,l)T, (1,1)T.
1 2
The problem has a complete set of golvents S1 = and
0 3

4 a
32 = ( ). Other solventas have slgenvalues 1,2} 1,4 and
e 2

2,3. The only palr which cannot be the elgenvalues of a sol-
vent is 3,4. Thus, no domlnant solvent exlsts and Algorithm
1 4id not converge. However, Algorithm 2, az computed by
Algorithm 1, yielded the dominant latent root, 4.

Reversing the order of matrix coefficients has the
effect of making the latent roots the reciprocals of the

original latent roots. The right solvents are the lnverse of
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the original ones. Thus, 1 and % are the new dominant latent

1 0
roots. Algorithm 1 converged to ( ) » and, hence, the
0 %
/1 0
solvent ( was found for the original problem. Note that
D 2

for the problem for which Algorithm 1 did converge, there was

no complete set of solvents which included the dominant sol-

(6 )
vent .
0 %

9.7 Lancaater conslders a test problem which "depends on a

parameter whose value determines the proximity of clustered

roots" [13, p. 90]. Consider M(X) = x° + AjX + A,, where

36 —(1ra+282)  a(1+28%)  -82(a248)
2 0 0 0
= 0 2 0 0
0 0 2 0
and
“1420°  w-a(a®+28%)  20%82  -ap®(a®+89)
2a ~(a2+28%) 2082 -82(a®+8%)
I - 0 0 0 ’
0 1 0 0 |

where B = a + 1, The elght latent roots of M(A) are




+(l+a)i ,

and —at(l+a)i o

Algorithm 1 was tested, and worked for a e 2,1,.5|.1 and
.001. When a Is made small, the smallest eigenvalue of the
dominant solvent approaches the largest eigenvalue of the
next solvent. Thus, convergence is considerably slower for

smaller a. Using the code in Appendix D, the results were

a L Iterations [I"c*i>H
2 10 3 7210~
1 10 2 9*10~"
.5 10 2 8*10-~°
1 28 7 2xio"
.001 30 6 .004

9.8 Finally, consider the intriguing problem

M{X) = X° + X +

Note that
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1 0
S, = ( ) is a dominant solvent, but it can be shown that
2 2

there 1s no corresponding 82 that would form a complete set

of solvents. Letting GO(X) = X, we get

1 1 2 2
Gl(X) = X -
2 2 c 0

and

With

-1
G,(X)G; " (X)

(A ) (R )

for all X such that

45 (X)

1t is easlly seen that ¢2(X) = S1

1 1 2 2
/ )X - ( ) i1s nonsingular. Thus, the exact solution
\2 2 0 0

is obtained 1in one iteratlon of stage two for any X

satisfying thls one easy conditilon.




AFPPENDIX A

Nonmonic Lambda-Matrices

This paper has considered only matrix polynomials
(and lambda-matrices), vhere the identity matrix was the
leading matrix coeffleclent. Consider now, the matrix

polynomial

M(X) xm-1

in

m
AOX + Al + + Am' (A.1)
If A, 1s nonsingular, then M(X) = A;lM(X) is the problem

that 1s dealt with In the body of this paper. If R is a left

solvent of M(X), the R = A;l

RA, is a left solvent of M(X).
The case where Ao is singular presents some Aiffi-
culty in the matrix polynomial problem. Pranklin [1] con~
1 0 5 0 2 0 0
siders the problem M(X) = X° + X + 2 0,
0 0 3 0 0 6

0 =2
) for all values of & and b. Thus,

which has a solvent (

a b

a matrix polynomlal with both AD and Am singular can have
solutlions with varlable eigenvalues.
If Am is nonslngular then

i

R - m m— .e
MUX) = A X + A X + + A (A.2)

i

can be used. The sclvents of MR(X) are the inverses of the
solvents of M{X). M(X) does not have any singular solvents

since A 1s nonsingular. However, if MR(X) has a complete
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set of solvents, then one of them must be singular, since
zerc is a latent root of MF(X}. This follows aince
det M(0) = det A_ = O.

In contrast to the matrix polynomial precblem, the

latent roots of the lambda-matrix problem

Nt SO {&.3)

- m
M{A) = Aol + ﬂl -

can be calculated, even if Ao 1s singular. If Am Is singular,
then A = 0 1s a latent rocot of M{i). If ¢ is not a latent

root of M(A), then Am(c) is nonsingulsar, where
= = m s
M, (X} = M(d+e) = A _(e)r” + + A (). (A.4)

Furthermore, 1f ¢ ¥ 0 1s a latent rcot of M(\A), then 1l/p

1s a latent root of

lm—l

MR () -

" (3)

1]
Bﬁh
et
+
b=

+ v + AO. {A.5)

If MR(l} has a zero latent root {Ao 1s singular}, then M{X})
is said to have an unbounded latent root. A lambda-matrix
M(A) is sald to be degenerate 1f det M{A) = 0 for all &,
This can only occcur if Ao and ﬁm are singular.

Consider the following algorithm for a non-

degenerate lambda-matrix. It transforms a lambda-matrix
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with a slngular leading matrix coefficient intc one which 1is

not. The transformed lambda-matrlx 1s either

(1) MR(A} ir Am is ncnsingular
or (4i1) MS(A} = M M(% + c), where det M(c) # 0.

Part (11i) works since :«‘"MS(%) = M{i+c), which does not

have a zero latent root,



APPENDIX B

Previously Known Methods for Lambhda-Matrices

The determinant of a lambda-matrix 1s a scalar
polynomial. Let f(A) = det M(X). If one 1s willing to
evaluate the determinant many times, then one can use any
of a number of algorithms for the zeros of a scalar functlon.

Tarnove [19] considers the use of Muller's method. He de-
P-1

flates known roots by considering fP(A) = f(A) H' (A—Ai)-l.
1=1

Lancaster [10] notes that
£1(1) = £(\)Trace{M 1(A)M'(A\)}, which he uses in Newton's
method. Newton's method is also used by Kublanovskaya [9],
who finds f(Al)/f'(Ai) by using a factorization of M(Ai).
Another approach analyzed by Lancaster [12] 1s the
uée of a power-like method with a generallized Raylelgh

quotient. That 1s, for arbltrary Eo’ n_ and Ao’ let

0
-1
-1 T
g, = M(AT g, ny = [M (Ai)] n,> and

nfM(Ai)Ei
p\ = A, - 0 , . Lancaster has shown that, for a
nyM (A8,

class of lambda-matrices, thls 1lterative process 1s locally

convergent and quadratic. Modiflcations of the above algo-
-1 T -1
rithm by & = (AT, o, ny = [WTO)] oy has also

been considered by Lancaster.
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Another approach, due to Lancaster [14], 13 to
conalder the elgenvalues of M{A). Let u{X} be a secalar such
that M(A) - uw(A)I 13 singular. Then a scalar ¢ 1s needed
such that u{p) = 0. Lancaster conslders Newton's method
on u{A}.

The above methods of Lancaster and Kublanovskaya
are only locally convergent and they do not have a method of
deflaticn assoclated with them.

A symbol-manipulation approach is to perform
Gaussian elimination on the lambda-matrix using polynomials
In the computztlions. That is, every non-triviazl lambda-
matrix with det AO # 0 can be transformed, by elementary
transformations only, into a form such that
M(L) = P{AIN(X)Q(X), where det P(A) = ¢y A0,
det Q(X) = ¢, # 0 and N(X) = diag{a,(A),->+,a (1)), with

aiﬁlj monic polynomlials and aitl} divides a (A}, N(A) is

1+1
called the Smith canonical form of M{l). See Wllkinson [22,
p. 19]. Then all the roots of the aifk}'s are latent roots
of M(A).

This method parallels the approach of finding the

characterlistle equatlion 1n the elgenvalue problem.




APPENDIX C

The Quadratic Matrix Polynomial

The monic, quadratic matrix polynomlsal,

M(X) = x2 + Alx + Az, (C.1)

with right solvents S1 and Sz, is of the general form

M(X) = X° - [sl-+(sl-sz)sz(sl-sz)“l]x + (sl-sz)sz(sl—sz)“ls1

(C.2)
if det V(sl,s2) = det (32—81) # 0. Note that if S, and S,
commute, then
2
M(X) = X° - (sl+32)x + 3132 (C.3)

even if V(Sl,S2) is singular.

The corresponding lambda-matrilx can be factored as

M(A) = (IA-(sl-sz)sz(slaszj“l)(Ix-sl)
= (IA_ (slnsa)sl(sl-se)“l)(IA—sa). (C.h)
Thus,
R, = (5,-8,)5,(8,-8,)7" (c.s)
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and

-1
R, = (8)-5,)8,(5,~8,) (C.6)

are left solvents of M(X). From equation (C.5) it follows

that

2 2
52 - 52 = (5,+R,)(5,-5,). (c.7)

"Furthermore, --A1 = R2 + Sl = Rl + 82 and A2 = stl = Rlsz‘

It is easily verlfied that

0 I I 0 I 0 S1 I
= (C.8)
—A2 —Al 81. I S1 I/\O 82
Sl I
and hence, the block companion matrix is similar to
0 S
2

regardless of V(Sl,sz).

Assume that Al and A2 are real matrices and let

S, = 57 + 1S be a right solvent. Then,
_ 2 r c r o]
MO) = 1A% 4 A+ 4, (Ix-(32+132))(n-(slusl)). (C.9)
Equating coefficlents, we get RS+S°=0 anda RSs, +REs®=0
; at=172 251 R85, =0

Then, R;R;-fsisg = 0. By direct substitutlon 1t now follows

that ST - 1s§ 1s also a right solvent. Thus,
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Theorem C.1 For a real, monlc and guadratic matrix poly-

nomial If 8§ + iC is a right solwvent, then

(1) 8§ - IC Iz a right golvent ,

(11) R - 1iC Is a left solvent, and

{111) R + IC is a left solvent,

A

where R + 5 * -4

Given arbitrary matrices and §5,, Corocllary *1.1
shows that there might not be a monle, quadratic matrix poly-
nomial having them ag solvents. Such a conditicn ocgurs if
§™ and S, have distinct and disjoint eigenvalues and 1if
det V(S8 ,8.) » 0 If v(8,,8,) 1s nocnsingular, then M({X)
always exists. The following regult gives necessary and

sufficient conditions for the existence of MI{X) .

Theorem C.2 There exists a matrix polynomial

M(X) = X + A" + A having right solvents S and S if and

only if there exists a solution Y of

y(s.-s,) - (s’ -87). (c.io)
Proof: In finding A, and A to satisfy
M(S,) =8S*+A. 8, +AaA, -0
M{S.). - & + B S, + & -0 (C11)

the matrix A, must satisfy *i*2vw1” -(sf-s*). T
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Note that if V(Sl,sa) is singular and the condi-
tion of Theorem C.2 1s satisfied, then M(X) exists, but is

not unique. From equation (C.10) if follows that

Corollary C.1 If (S,-8;) 1s singular and (Sg-si) is non-

singular, then there 1s no monic, guadratlic matrlx poly-

nomlals having Sl and 82 as right solvents.




APPENDIX D

Computer Programs

The computer program that was used for Algerithm 1
follows. It is written in APL for the IBM 360/67. It is an
interactive language and the program asks for

(1) the degree of the matrix polynomial,
{11) the dimension of the matrix coefficlents,
{1ii} the matrix polynomisl,
and (iv) the stopping criterion {(an € such that HM(Xi}H < g
terminates the computation).

Following the code is an actual ocutput For Example 1

in Chapter 9.
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[1]
[21]
[3]
[4]
{5]
{61
71
R
[a]
{10]
[11]
(12]
{f1a]
[14]
[15]
[186]
[17]
[181]
(19]
(20]
[21]
[22]
(23]

v

- 111 -~

YMAINLIIIV

MAIN; T ;N3 N1 ;X ;X1 E1; 52 CITER 1G:G1 M N1 MiSW
'*INPUT DEGREE OF MATRIX POLYNOMIAL!
Y+

*INPUT SIZK OF MATRICES!

¥+0

*MATRIX POLYNOMIAL'
M"‘“H-ri).l‘i-ﬂ)nﬁ

{l+M+BAR M

GITER+O

E1+0,05

YACCEPT }{|M(5)])<®

E2+[)

I=1

CALG:"5TAGE ONE i#adkakkhnndnnnnhn!

SW+0

G+E1 GEE M

N1+«NORM M F X

TSTAGE THOQ wwxnsdnnnsehwnwnan | |H(X)|]= "3 N1
+(I=z1)/LP

+(N1<N)/LP

X+X1

N1i+N

'USE OLD ITERATE TO START LIMCX) | )= ';N
X

[24] LP:X1+(G F X)+.xINVP G1 F X

[25]
[26]
{271
(28]
(29]
[30)
(311
[32]
[33]
[3u]
[as]
(36]
[37]
{38]
[39]
L401]
[u1]
[uz2]
{43]
Tuy]

v

N+NORM M F X1
VITERATION '*:1:' ..., S ea e PIM(XY = "0
I+I+1

X1

+(N<F2)Y/END
+(SW<2)/CONT
+(N<0.25xN1)/COND
El+E1=0,5
+(FITER<200)}Y/CALG
Y700 MANY ITERATES!
+END

CONT : X+X1

N1+N
SN+5K+1
+LF

FEND: "k kAR A A NN R A RNk k!

GITER+1:" ITERATIONS OF STAGE 1!
I-1;' ITERATIONS OF S5TAGE 2!
'SOLVENT'; X1

VIIM(S)t = Yy3NORM M F X1
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{1]
(21
(al
(4]
[5]
(61
[73
(-
[9]
(10]
[11]
(121
[13)
[14]
[15]
(161
[172
[18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
(271

1]
{2]
£3a)
4]

v
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VGERTUOIV

G+E1 GEE M;;SH;T;SW

SW+0

+({(GIrER>0)/LOOP

Cle (M, U, p( (1 )e =1 )), (O (M-1)xx])

LoOP:SHE+ (Y, B . ¥)p(,GCal1+1(M~2);;]),(Omt x}))

v

v

v

v

v

GeSH-C101; 41 MULD? MLi+1Y;:]

+(F1[1;1;11=20)/ZFERO

"LATENT ROOT EST ';GITER+1;' ';G[1:1;1]¢C101:1;1)
ZERO:C+G+NORM((M=¥) . X)pC

T+NORM( (MxQ¥) . ¥)pGC~C1

G1+G

SW+SW+1

GITER+GITER+1

+(GITER=200)/TOOMUCH .

+(SW=8)/T00MUCH

+(F1<T)/LOCP
TOOMUCH : SE+ (M. N W) (G024 v(H~1);:]), (0= x})
G+SH-G101;:) MULT M[1+1{:;])

+(g1(1:1:1])=0)/2FR01 .
YLATENT ROOT EST '"3;C0ITER+1;' ':;601:1:1)%0101:1:1)
ZERO1:'FINISHED GENERATION OF ¢ T0 ';CITER+1
+{0=DETERM G1f1::])/INIT

XeGl1l;;)+.xINVP G1[1:3)

YINTTITAL X ';X

+100
INTT : X+ (}. . ¥)p? (01 (¥x})))x10

YARTIFICIAL INITIAL X':X

+(0=DETERM C1 F X)/IRIT

vFLUIV

A«M F S:.1:.J
I+14pM

A+M[1;;]

J+2
LP:A+MLJ ;3 )+A+ . %5
+{TaJ+J+1)/LP

yMULTLO]Y

PROD+C MULT MiK:J
PROD+(J+pM}p0

K+1
LOOPsPRODLK ;; )+C+ . xM[K; 3]
+(J[1]zK+K+1)/L0OOP




rl
{2)
rs)
(43
(5]

(1]

[11]
[2]
(3l
[a]
(5]
(63
(7]
el
[9)
[101]
111
(121
[13]
[1u]
[15]
[16]
(173
[18]
[19]
(201
(21}
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vRARIDI®

v ME«BAR M ;J:K:7

v

ME+JSpl , (D21 24Jeptf)

PoINVP M[11:)

K+2
LOOP:MBLK;:)+T+.xM[K;;)

+(J(1)eXk+~X+1)/LOOP

vNORMILOIV
N+«NORM &
Ne[ /+/ |5

vOEPERMLOIV

D+«DETERM M ;J ;X3 T PN ULV
U+M

L+(1N)s .z NeltpH

V+1 X

R

D+1
NEXTCOL:VIJ]+k+14¥|U[J;: ]
VIK])+J

+{K=J)/NOCHANCE

D+-D

TULJ; ]

ULJ:)+«VLK; ]

ULK; )+
NOCHANGE : IT+J+1

(127 10>V ULJ:J))I/SING
Depxl[J;d1]

+{JsN}/100
NEXTROW:LLIT ; J1«UL I ;I U[J ;¥ ]
ULI;]+Ul3-LLT;7)xU[J:])
+(HzI+I+1}/NEXTROW
+{N>J+J+1)/NEXTCOL
+ROCHANGE

[221 SING:D+D

v
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MAIN
INPUT DEGREE OF MATRIX POLYNOMIAL

O: 3
INPUT SIZE OF MATRICES
0: 2
MATRIX POLYNOMIAL
O: 1001 766 "3 "15 2 “42 21 65 18 66 33 ~B81
1 0
o 1
& 6
"3 T1s
2 T2
21 65
18 66
“33 a1
ACCEPT | |H(8)] |«
0: .00001
ETAGE ONF sexawknuexwhihhn
LATERNT ROOT EST 1 &
LATENT ROOT EST 2 2,666666667
LATENT ROOT EST 3 ~3.7%
LATENT ROOT EST 4 21.23333333
LATENT ROQT EST 5 9.791208791
FINISHED GENERATION OF G T0 5
INITIAL X
3.992462543 T2.426142109
1.213071054 7.631675705
STAGE IWO asxxnaxeswxaxaxs | |M(X)|]= 9,607873686
ITERATION 1 ..... vevesssees  TIM(X)I1= 1.277362968
3,972923%527 2,089215678
1.044607839 7.106747044
ITERATION 2 .iuvvuanngoanas  [1M(X)I]1= 0,2293107142
3.992690243 2,017863253

1.008931626 7.019u485122



ITERATION 3 ........ crveers  IMIXY] =
3.99B847172 2.00335881
1,001679405 7.003509934

ITERATION % ..vvunenn sevee.  TIMEXYI=
3.999709525 2.,000609132
1.00030u566 7.000623223

ITERATION 5 «.uvvvennannnas  JIH(X) )=
3,999947122 2,000108385
1.000054192 7.000109699

ITERATION 6 .uvvvnnnnneseas |IM{X))]=
3.999990575 “2.000019094
1.000009547 7.000019217

ITERATION 7 vuivvrinenn seeen  liMUX) ]| |=
3.999998338 S2.000003346
1,000001673 7.000003358

ITERATION B ....vewvunn ceee  HIMCX)|1=
4,999999709 ~2.000000585
1,000000292 7.000000586

R Ty T T 2
5 ITERATIONS OF STAGE 1
8 ITERATIONS OF STAGE 2

SOLVERT
3.999949709 ~2.000000585
1.000000292 7.000000586

[ I{M{S)l1l= 7,.026157959F° 6

0.04157477338

0.007424137007

0.001311183582

0.0002301117362

4,024636788E™ 5

7.026157959E° 6



10.

11.

12.

13.

14,

REFERENCES
Franklin, "Algebraie matric equations," J. Math.
Physics, 10(1931), 289-314.

Gantmacher, The Theory of Matrices. I, II, Chelsea
Publishing Co., New York, 1960.

Guderley, "On nonlinear eigenvalue problems for
matrices,” SIAM J. Appl. Math., 6(1958), 335-353.

Householder, "Generalizations of an algorlithm of
Sebasgiéo e Si1lva," Numerische Mathematik, 16(1971),
375-382.

Householder, The Theory of Matrices in Numerical
Analysis. Blaisdell, New York, 19604.

Jameson, "Solution of the equation AX + XB = C by
inversion of an MxM or NxN matrix," SIAM J. Appl.
Math., 16(1968), 1020-1023.

Jenkins and J. Traub, "A three-stage algorithm for
real polynomials using gquadratic iteration," SIAM
Jd. Numer. Anal., 7(1970), 545-566.

Jenkins and J. Traub, "A three-stage variable-shift
iteration for polynomial zeros and its relation to
generalized Rayleigh iteration," Numerische
Mathematik, 14(1970), 252-261,

Kublanovskaya, "On an approach to the solution of the
generallized latent value problem for A-matrices,"
SIAM J. Numer. Anal., 7(1970), 532-537.

Lancaster, "Algorithms for lambda-matrices,"
Numerische Mathematik, 6(1964), 338-394.

Lancaster, "Explicit solutlons of linear matrix
equations," SIAM Review, 12(1970), 54l-566.

Lancaster, "A generallzed Raylelgh quotlient iteration
for lambda-matrices," Arch. Rat. Mech. & Anal.,
8(1961), 309-322.

Lancaster, Lambda-matrices and Vibrating Systems.
Pergamon Press, New York, 1966.

Lancaster, "Some applications of the Newton~-Raphson
method to non~linear matrix problems," Proc. Royal
Soe. London, (A), 271(1963), 324-331.

- 116 -




17

18.

19.

20.

21.

22

- 117 -

MacDuffee, The Theory of Matrices. Chelsea, New York,

1976.

Ortega and W, Rheinbeoldt, Iterative Solution of
Nonlinear Equations In Several Variables.
Academic Press, New York, 1970

Peters and J. Wilkinson, "aAX * XBX and the gener-
alized eigenproblem," SLAM J. Num. Anal. 7(1970),
2179-492.

Roth, "On the unilateral equation in matrices>"
Trans. Amer. Math. Soc., 32(1930), 61-80.

Tarnove, "Determination of eigenvalues of matrices

having polynomial elements," J. Soc¢. Indust. Appl.
Math., 6(1958), 163-171.

Traub, "The calculation c¢f zeros of polynomialsg and
analytic functiconsg," Mathematical Aspects of
Computer Science» Proc. Symp. Appl. Math., 19*

American Mathematical Society, Providence, R. I.,
1967, 138-152.

Traub, "A class of globally convergent iteration
functions for the solution of polynomial equations,"
Mathematics of Computation» 20(1966), 113-138

Wilkerson, The Algebraic¢ Eigenvalue Problem, Oxford,
London, 1963,




Security Classification

DOCUMENT CONTROL DATA -R&D

(Security classilication of title, body of abstract and indexing annotation muat be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2, REPORT SECURITY CLASSIFICATION
Computer Science Department Unclassgified
Carnegie-Mellon University (I GRrROUP

Pittsburgh, Pa, 15213

3. REPORT TITLE

ON THE MATRIX POLYNOMIAL, LAMBDA-MATRIX AND BLOCK EIGENVALUE PROBLEMS

4. DESCRIPTIVE MOTES (Type of report and Incluaive datea)
Scientific Report

5. AUTHORIS) (First name, middle initial, last name)
J. E. Dennis, Jr,

J. F. Traub
R. P, Weber
6. REPORT DATE 3. TOTAL NO. OF PAGES 75, ND. OF REFS
December 17, 1971 117 22
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBER(S)
N 00014-67-A-0314-0010, NR 044-422 MU-CS5-71-110

b. PROJECT No.  F44620o70-C-0107

94, OTHER REPORT NO(S5) (Any other numbera that mey he asejgned

<. this report)
d,
10, DISTRIBUTION STATEMERNT
Distribution of this document is unlimited.
11. SUPPILLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research ,
Advanced Research Projects Agency

13. ABSTRACT _1
A matrix § is a solvent of the matrix polynomial M(X) = o+ Alxm + ... F Am

if M(8) = 0, where A , X and S are square matrices. We present some new mathematical
results for matrix polynomials, as well as a globally convergent algorithm for calculad
ing such solvents,

In the theoretical part of this paper, existence theorems for solvents, a general-
ized division, interpolation, a block Vandermonde, and a generalized Lagrangian basis
are studied,.

Algorithms are presented which generalize Traub's scalar polynomial methods,
Bernoulli's method, and eigenvector powering.

The related lambda-matrix problem, that of finding a scalar )\ such that

Ilm -+ Allpql + ... + Am is singular, is examined along with the matrix polynomial

problem,
The matrix polynomial problem can be cast into a block eigenvalue formulation as

follows. Given a matrix A of order mn, find & matrix X of order n, such that AV = VX,

where V 1s a matrix of full rank. Some of the implications of this new block eigen-
value formulation are considered.

DD "5M.1473

Security Classification




Security Claasification

KEY WORDS

LIHK A

LINK B

LihNK ©

ROLE

wT

ROLE

WT

ROLE

WT

Security Claszification




