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Abstract

The problem of representation and handling of constraints is here con-
sidered, mainly for picture processing purposes. A systematic specification
and utilization of the available constraints could significantly reduce the
amount of search in picture recognition., On the other hand, formally stated
constraints can be embedded in the syntactic productions of picture languages.
Only binary constraints are treated here, but they are represented in full
generality as binary relations., Constraints among more than two variables are
then represented as networks of simultanecus binary relations. In general,
more than one equivalent (i.e., representing the same constraint) network
can be found: a minimal equivalent network is shown to exist, and its com-
putation is shown to solve most practical problems about constraint handling.
No exact solution for this central problem was found. Anyway, constraints
are treated algebtraically, and the solution of a system of linear equations
in this algebra provides an approximation of the minimal network. This solution
is then proved exact in special cases, e.g., for tree-like and series parallel
networks and for classes of relations for which a distributive property holds.

This latter condition is satisfied in cases of practical interest.
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1, Introduction

In writing this paper we had in mind mainly the problems of a particular
field, namely picture recognition and deseription. However, the problem of
proper representation and economic handling of constraints is very general
and is important in many problems of operations researcﬁ, engineering and
computer science. For instance, many practical design problems consist of
finding any solution which satisfies all topological and geometrical restric-
tions [1]. Even when an optimization problem must be stated, the chosen
constraint representation is essential in determining the nature of the
mathematical problem involved and its difficulty. Unfortunately, many prac-
tical constraints are difficult to handle, because they involve in a complicated
way many variables, For instance, we can mention the noncrossing condition
among electriecal paths in an integrated circuit layout or as & more esoteric
example, the restriction to be faced in the design of computer rooms that
all magnetic tape units must be in sight from the operator.

In picture processing, constraints play an important role, but they
are unlikely to be representable in a linear or anyway simple form. Here
constraints are better known by the name of (geometrical, topological,
structural) properties of the class of picture under consideration. But in
fact they are present as fixed characteristics in explicit models or are
implied by recognition routines which do not take into account configurations
without the desired property.

However, we believe that an explicit and consistent treatment of con-
straints can bring valuable advantages. To show what we have in mind, we

present some Scenarios,.




a)

b)

Speed up of the recognition process. Often recognition subroutines

search a picture for specific elements or features. The search space

is usually more than two-dimensional, because other free parameters must
be determined at the same time (e.g., the angular position of a stroke,

the vertex structure in a cube {2]), For efficiency, what we are looking
for must in general be dependent on what we have already found out about
the particular picture., More precisely, it is useless to look for features
which are possible a priori, but are not consistent with the part of the
picture we have already recognized. For instance, if the problem is to
recognize human faces [3] we must of course limit the search for particular
elements (eyes, nose, mouth, ears, etc.) to the areas of the picture where
they may ever be present, A second step is to establish constraints
between pairs of elements. If for instance the position of one ear has
already been determined, the area in which the mouth could be found is
further restricted., Such binary constraints, if formally stated, can be
intersected and composed, For instance, if also an eye has been deter-
mined, the allowed area for the mouth can be considered the intersection
of the constraints given by the ear and the eye. Furthermofe, the pres-
ence of elements yet unfound, such as the nose, but for which constraints
have been defined, could transmit further constraints from determined
elements to the sough ones. In conclusion, if all those constraints

are superimposed, the search space can be reduced. Only the first few
elements will be time consuming. For the others, the recognition procedure
should be essentially a check of the evidence we have already gathered.

Optimal recognition. In particularly bad cases, combined evidence from

all-elements is required before accepting a picture, because many acceptable




c)

d)

candidates are present for each feature. This situation arises mainly
during preprocessing or anyway during recognition of unstructured

entities (see [4] for the limit case of optimal detection of curves).

In this case it is convenient to assign a merit figure to the various
alternatives, and then to find the best one with an optimization procedure,
Again, systematic handling of constraints is vital in reducing the combi-
natorics involved.

Imperfect models. A model can be imprecise because it i8 too simple, or

because something present in the model is missing in reality. In the
former case the model will not be as powerful as it could be, but it will
work; while in the latter case the picture could be rejected as not satis-
fying the model. The missing part could be simply obscured by the noise.
If the model is organized in terms of constraints, a model without the
critical part could be systematically built taking into account the
constraints transmitted from one part of the model to the other through
the missing part,

Linguistic methods. The application of parsing mechanisms in picture

analysis is very promising [5,6]. These methods work well if the struc-
ture of the image is mainly topological, as in bubble chamber tracks,
chemical structures, block diagrams [7,8]. If geometrical information

is essential, it can be embedded in the syntax rules only in simple cases,
as in the linguistic description of mathematical formulas [9]. If the
allowed geometrical relations can be expressed as a set of simultaneous
constrainté, they can be formally added to the rewriting rules of the
grammar under the form of applicability conditions [10]. In this way,
perhaps the geometrical comsistency of the various rules can be proved

at a grammar level. This fact would guarantee that all the pictures

generated by the grammar are consistent and representable on the plane.




In this paper we have limited our formalization to binary constraints.,

On the other hand, they are represented in the most general way, i.e., as
algebraic relations between sets of possible values of pair of variables [14],
For many variables, a constraint is then represented as a network of simulta-
necus binary relations.

Of course, an n-ary constraint cannot always be represented exactly by
an n-vertex network of bimary constraints. However an optimal approximating
network can be given easily., On the other hand, many different but equivalent
networks can represent the same n-ary constraint. All the networks equivalent
to a given one can be ordered by set inclusion. A least element is proved to
exist and it is called the minimal network. Minimal networks are shown to
have all the constraints as explicit as possible.

The problem of the determination of the minimal network from a given
one is then shown to include most of the practical problems mentioned above
about constraint composition and transmission. Unfortunately, no general
algorithm was found. This is not surprising, since very tough problems,
like the graph coloring problems, fit this scheme.

Approximate solutioms are considered instead., In those networks (which
are called closed) all those global constraints are explicit that can be
transmitted through all the possible paths in the network., The problem of
determining & closed, equivalent network is then stated algebraically. If
the operations of intersection and composition of constraints are defined,
the above problem can be shown equivalent to the solution of a system of
linear equations in this algebra. Since composition does not distribute,
in general, over intersection, an iterated Gaussian elimination algorithm is

required for finding the solution of the system.




In the last section, some special cases are investigated, in which
closed networks are minimal, i.e., in which our algorithm computes the
exact solution. If the topology of the network is restricted, tree-like
and series-parallel closed networks are proved minimal, The same result is
also achieved if we restrict the class of allowed relations to a class where
composition distributes over intersection. This is the case when the sets
of possible values of variables have a lattice structure and the relations
satisfy a monotonicity assumption. This condition is satisfied in some
cases of practical interest, such as the shortest path problem in a graph
(possibly with negative weights) and its multimensional equivalents, Here

our algorithm becomes the well-known Floyd algorithm [13].



2. Upion, intersection and composition of copstraints

In this section & constraint between two variables is represented, in
complete generality, by & relation between two sets. Elementary algebraic
properties of relations are then recalled.

If a constraint exists between two variables x; and %, , X3€ X, = {xl,lﬁ"’xl,Nl}:
x2€X2 = {x2:1"”’x'2,N2} then in general not all possible pairs (Xl,r s x2,s)
are allowed. The set of allowed pairs is called a relaltion between sets Xl and X2.
In general, it 1s convenient to consider ordered pairs and thus to distinguish
between a relation 312 and a relation Rypy. For instance, if X = {1,2] and
X, = {1,2,33 then Ryy = {(1,1),(2,1),(1,3)} is a relation. Any relation Ry,
is thus a subget, proper or improper, of the product set X = Xl X X2 of all the
pairs. A standard way of representing subsels is to use the chafacferistic
function F:

Fo Xyxl={0,1) ; Fllu,e,xpe)) =1 iff (x,.,% )€ oy
In other words to each pair in X & binary digit is associated, which is 1 if
and only if the pair belongs to the relation. Being characterized by a binary

Nl-N2

number of Ep*ly digits, 2 different relations exist between Kl and X2.

Usvally, these dirits are arranged in a Ny x K, matrix [Rys ng] whose rows
]
correspond to the elements of set X1 and columns to set X,. Thus we have:
Rig,rs =1 1ff (% 55 Xp o) € R2p

In our example, the characteristic binary matrix is:

101
100

In what follows, relations will be mainly represented in matrix noéation.

Ri2 =

s ~1 . . .
The inverse Ryp of a relation 30 is defined as the transpose:
L _ o7
R2,rs = M12,rs = Ro1,8r




For relations, being sets, we can define the usual operations of negation

Rlz =-‘R12 iff R12,I'S = "1 R12,I'S (I‘ = l,ooo,Nl y 3= 1,...,}12)
union or logical sum

1 111 . - [ ] 11

Ryp = Bio U R iff B12,rs H‘.l."Z,'r'sv.nl2,rs

intersection or logical product '
' " . ot "

Rip = Ry MRy ATF Ry o= Ryp 1A Ryp

and the partial ordering relation of set inclusion
T t "

Rip &Ry A Rpp g © Pazre
An empty relation ¢12 and an universal relation Uj, can be defined

Glz,rs =0 3 V12,05 = 1
such that

Rip Y @15 = %) 5 Ry N Upp = Byp
for all Ryp. Thus relations between two sets form a complete lattice with
greatest element U and least element @ and where the dperations of sup and
inf coincide with union and intersection respectively.

Next step is to consider a constraint Ry, between variables x; and xp
and a constraint R23 between variables x; and Xqe There will be a&n induced
or transmitted constraint Ry; between variables xj and X ¢ a pair (xl,r , x3,s)
is allowed, if at least one value X, ; exists, such that both (xl,r s Xp,t)
and (xg,t , XB,S) are allowed by Ry, and Rp3 respectively. This requirement

defines the operation of gomposition of relations:
N

R3 = Ryp " Ryg  3ff Ryg . “t\li Rio,rt N\ R23,te

Note that ccmpesition, in matrix nctation,is just binary matrix multiplication.

For example, -we may have
10 11
éi P M3 = Ryp t Rp3 T 10[

101 . _
Ryp = llool L R




It is very easy to see that composition is assoc¢iative, and that an identity
relation exists, defined only between a set and itself,

I 1 iff r=2=s

11l,rs
such that

Ryz » To2 = I11 * Ryp = B2
Tor every. relation Rjs.

The defined operations of union,intersection and composition have an
useful monotonicify property. If f(Rys) is any expression involving the opera-
tions of intersecticn, union and cpmposition among relation R12 and any_number
of constants, from BJ‘.ES R'J'.2 we have i‘(R:'Lz) c f(R']'_z). This property
is obvious if we notice that function £, wfitten in binary form, contains
binary sums and products, but no negations.

A particular case of a relation happens when one of the two sets (say the
first) has just one element. These relations, in binary form, are representable
as vectors and are in a one-to-one correspondence with the subsets of the
second set. Actually, in what follows we will always assume the existence of a
fictitious one-element set Xy, to have an homogeneous way of representing
subsets. Especially useful in our formalism are the fundamental vectors
VOlland Vip, i.e., the vectors with only one nonzero element. For instance,
the image in Ry, of the element xl,r can be defined as represented by the vector:

Roz = Vo1 ° Ri2
where V5y is the fundamental vector corresponding to element X1,rd

VOl;t =1 ifr t=r

A relation Ryp is called itotal if every element of X, and X5 is in rela-

tion with some other element. In our formalism, Ryjo is total iff
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Vo1 * R12 # do2 and Rip * Voo # %o
for every fundamental vector vOl and Vog « Given any total relation R12’
it is easy to see that Ryp Ug3 = U13 and Uy ~» R12 = U12.

In what follows we are mainly interested in the operations of intersec-
tion and composition, so we will use the symbol + for intersection and the
simpleconcatenation for composition. Unfortunately, composition does pot
distribute over intersection. In general

[ n \ "

Rip (Rg3 + Rp3) # R1o R + R12 Rog

For instance, if
11 ' 0 0f " 10

Riz = lo o| 3 Fpg = '1 oI 3 Ry = ,o ol

then

" t L
Rip (Ro3 + Ro3) =013 R121"23“1*121"23',%8'

A special case arises when distributivity does hold. In general, we say
that the relations

Rik, Ill(i i=l,.-o,n;i}[k. |
form a distributive set of relations with respect to set Xk if

(2.1} (% Vo1 Ryy) (.2'!: Ryy Vig) = mz g;: Voi Ryy Rkj V30
i e 7

for every set of fundamental vectors V01 s Vio (1 # lyeee,m ;,i#k) and for
every m . In (2.1) the indexes of the sums go from 1 to m. Actually, the
ordering is immaterial and thus we require (2.1) to hold whenever the indexes
assume any set of m values. Note that distributivity defined in terms of

fundamental veéctors is more general than simple distributivity. For instance, from

t t ' u t ] " "
Vor Fip (R23 V30 * Ry3 V30) = Vo Ryp 223 V30 + Vo Ryz Ro3 V30
for every Vy » V;O and Vgo , {2.2) follows, but not conversely.

(2.2) Ry (Ry + Ryg) = Ry, R-"ZB- * Ry By
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3. Ketworks_ of constraints

In this section, constraints among n (n>2) variables are considered.
A straightforward formalization of such constraints as n-ary relations is
possible, but the quantity of information involved grows exponentially with
n, and so no hope exists to handle it for any practical n. Networks of binary
relations as defining an n-ary relation &re then introduced. An optimal approxi-
mation theorem is proved, and just one minimal network is shown to exist.
Finally, a problem is stated, called the central problem, which embodies
most practical problems poased by networks of constraints.

Generalizing the approach followed in sectioﬂ 2, it 13 clear that an
n-ary constraint can be considered to allow some (or none or all) among the
possible n-tuples of values of n variables. Thus an n-ary relation P is
any subset of X = Xy x X3 X +ese x X o The set X can be visualized as an
n-dimensional spape. An n-ary relation {3 thus represents a "solid™ in this
space. Given an m-dimensional subspace S = Xil X esa X Xim s any n-tuple a
and any n-ary relation rb in X can be projected on 5 yelding thg m-tuple ag
and the m-aﬂy relation fs . The number of distinet n-tuples is Nyj...N, and
thus 27" ig the number of distinct n-ary relations. If Ny = e = N_= N
then N" bits are required on the average for storing a n-ary relation.Practical
values for N and n in picture processing applications are 1000 and 20, and thus
the information involved is enormous. One way out is to consider a restricted
class of n-ary relations.
| A petwork R_of binary relati ons is defined as a set of sets X = {Xl,...,){n}
plus a relation Rij from every set £y to every set Xj (i,j = L,ese,ni)e Furthermore,

T
Riy § Ijg (= lyeeepn)e If Ryg = Ryy the network will be called symmetric.




The network of relations R can be thought of as representing an n-ary relation:

P= {a|a€X=Xlx “ea xxn ; (Vi,j) S-'=Ki.1\'.}(3 5 aSE Rij}

In other words an n-tuple a is allowed by {3 iff its projections on all the
two-dimensional subspaces S of X simultaneously satisfy the binary constraints
of the network R. Note that if some Rij = gij then F = (@, while if (’= X then
Rij = Uij (i’j =, 1,..-,1’1 ; i#j) and Rii = Iii (i = l,-.-,n)-

An obvious way of visualizing a network is by & directed graph. Vertices
V1seee,Vy correspond to sets Xl,...,Xn, and an arc viVj is present from Vi to Vj
10f Ry # Ugy (1 # 3) or Ry # Ij3. Relation Ry is then associated with the
direct arc Vivj. For instance the following n-ary relation f> is represented
by the network R in Fig. la:

(" = {(xl,l » X301 x3,1) ’ (x]_,]_ » X2,1 » x3,2) ’ (xl,2 » X2.3 3‘3,1)}

or, in a more compact notation,
112

(3.1) P= (113}
121
where +the indexes of the allowed n-tuples form the columns,
i A network R is determined by giving in orderly fashion all its binary rela-
tions, and this requires roughly B = n? N2 bits. Clearly B < N except for very small
values of N and n. This argument shows that the class of n-ary relations
representable by networks is narrower (in fact, much narrower) than the class
of all n-ary relations.
Given an n-ary relation P the simple projection formula (3.2) generates
a network R' which is, in a sense, the best possible excess approximation of‘o.
(3.2) R, = {‘aslaEP and $ = X, x Xy ]
In words, if (5 is expressed in column form, Rij is obtained by taking the i-th
and the i~th rows (and merging repeated pairs). Note that R&i € T and that

' tT ' )
Ri; = Ryy » i.ee R 1s symmetric..
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t
Some properties of R are proved by the following theorem.
'
orem The network of relations R defined by (3.2} represents an
rn-ary relation r.)' such that

(3.3) Pgr

i n
Furthermore, no network R' exists, which represents an n-ary relation (5

such that

pepter
Thus,in particular, (J"-—- () if (5 is representable by a network.
Proof Formula(3.3) is easy proved, because n-tuples a e() satisfy network R
by construction. We will prove the second part by contradiction. let a be an
n-tuple such that a @ r" but a ¢ (D" « Thus some projection b of a does not
satisfy a relation of R", say b=ag , S=X; x Xj » b %R:j , while b € le.
But if the pair b was included in R;_ 3 it means that an n-tuple a £ P exists,
such that ;S = b. This is a contradiction’ because thenE¢ (J“ while we

"

assuned f)'_’-:-r . LE.D.

As an example of the projection procedure let us consider the following

relation:
112
(3.4) (7 = (1 2 2)
121
The approximating network is:

Bp= 122 = (
ro_ (112 lo ﬂ oot
R13'(1:21 = h Ry = Bp =
The induced n-ary relation is
. 11217
(a5) P = 11222
121 ~
A partial ordering among networks of constraints having the same number n

' 112 llo '
11

e

of vertices can be introduced in a natural way. The ordering relation is defined




as follows:

(3.6) R €8 Af RI; € Ryy (4,3 = 1yeeem)

The reflexive, weakly antisymmetric and transitive properties for network inclusion
descend from the same properties for set inclusion ., It is also clear that

the set of all networks with n vertices is & lattice under € because a least

(Rij = @;5) and greatest (B3 = Uy if 4 #3; Ryy = I) networks exist. Thus
union and interseclion between two networks are defined. It is also immediate

to see that _

(3.7) R €R'  implies p'S r:”

where R' and R represent (3' and (—‘".‘

We have seen that not all the n-ary relations are representable by a net~
work of constraints, It can also happen that an n-ary relation (3 is representable
by many distinct networks. For instance, relation (3.1) can be represented
by the networks in both Fig,la and Fig. 1b. Two networks R' and R' which repre-
gent the same n-ary relation P are called gquivalent. |

The next theorem proves the existence of a minimal network M representing F
Theorem 3.2 Let Sf’ be the equivalence class of all networks representing
the same relation P » If

R € sp and R € sp
also

R=R N R € 5p
(See for instance Fig la,b,c). As a consequence, a minimal (with respect to C )
network M representing (‘) exists, and can be obtained from () by the projection

formula (3.2).

) 11
Proof To prove this theorem, we first notice that R & R' and R€ R » and
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thus an m-tuple a satisfying R satisfies also R' and R for (3.7). Conversely,
1
if a satisfies R and R it satisfies also R . In fact, for each subspace
. t n ] 1
S5=XixXy,if ag€& Rij and ag & Ry; then ag & R 0O R =R by the definition
of intersection. Finally, the network obtained by formula (3.2) must be mini-

mal: if any pair b is erased by any relation Ri s the represented

J

relation P is changed.
Q.E.D.

Given an n-ary relation (3 representable with a (minimal) network of
constraints M, and a subspace 5=Xj X .. x Xy of X, one could ask if the pro-
jection (75 of P H
9 s = {a5] aep)
is representable with a network of m nodes. Interestingly enough, in the
general case the answer is no, and a counterexample is given in Fig. 2.

There, relation () is

P - {("1.1 P %210 73,10 %00 5 (00 X000 %50 0 %, 0)

(xl,2 ) 3‘2’1 ) x3,]_ s xll-:s)}
If S=X] x X x x3, PS is given by (3.4). But, as we saw, (3.4) is not

representable with a three-vertex network. If PS is representable for all S,
then (J and all networks representing () are called decompogable. If not, the next
theorem gives the best approximating network for {Js.

Theorem 3,3 The best, minimal approximating network of PS is the complete
subnetwork MS. of M corresponding to the set of vertices S = {Xl 3 wee g Xm} .
| Proof This property descends immediately from theorem (3.l1) and from the fact

that if T = X; x X; 1is any bidimensional subspace of S, we have:

( ()S)T ) FT ) Q.E.D
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In the remainder of the paper we will be often concerned in proving that
a network R is minimal: M = R. The next theorem gives a characteristic
condition for R to be minimal.

Theorem 3.4 A necessary and sufficient condition for a network R to be
minimal, is that if a pair b satisfies the generic reletion Rij’ an n-tuple
a satisfying R -exists, such that ag = b, 8= Xi x Xj .
Proof Necesgity. If R is minimal and b € Rjj, an n-tuple a€ must
exist such that &g = b, because otherwise R with Rij = Byy - { b)- would
be equivalent to R and smaller.

ngﬁigigngx Under our assumption, no pair can be erased from any Rij still

obtaining an equivalent network. Thus R is minimal,
Q-E.D.

The last theorem can be modified as follows.
Corollary Given any relation Rij of R, if whenever a pair b belongs
to &, ., an n-tuple a satisfying R exists such that ag =b , S = X; x xj' ,

1

J
then R, = Ms: &
en R, 13

J
Proof This statement follows from the previous theorem and from the

equivalence of R and M.
Q.EDD.

The above theorer shows that a minimal network of constraints is perfectly
explicit: as far as the pair of variables x; and x5 is concerned, the rest of
the network does not add any further constraint to the direet constraint Mij‘
Minimal mnetworks are likely to represent an n-ary relation in a redundant
way. In our application, for instance, we expect to define constraints almost
only between geometrically adjacent elements. As a result, the density d of

connections (defined as the average number of arcs per vertex) should be bounded,like




= 17 =

that of a planar graph, d <3 * or at most should grow logarithmically
with the number of vertices, but not linearly like in a complete graph.

From the above reasoning should be clear that,in our application net-
works of constraints will never be given or stored as minimal networks.
Furthermore, the trivial way of getting the minimal network, i.e., generating
the n-ary relation ( from the given R, and then M from P ith (3.2) will ve
impossible in continuous cases and always practically infeasible. Therefore
the problem of computing M from R in an economiec way is nontrivial. On the
other hand we can show that most of the practical problems arising from the
use of networks of constraints can be naturally reduced to the central problem of
deriving M. In fact, in the first scenario described in the introduction, if
Yok (k = 1,...,m) are the fundamental vectors corresponding to the already
determined values of the first m variables, the intersection of images

Rop = i Vox Yep

k=0
clearly represents the set of allowed values for the p-th variable., In

scenario b), if we want to eliminﬁte a variable (related to m others variables)
using a sequential optimization method, we must optimize the objective function
separately for all the feasible m-tuples of related variables. The set of those
m-tuples is PS ; if S is the subspace of the related variables. By theorem (3.3)
Mg-is the best apprOf;mating network of ‘)S' Finally, in scenario (c) the
minimal subnetwork MS corresponding to the parts which are not missing con-

stitutes the best reduced model.

In a planar graph, the number n of vertices is related to the number a of

arcs by the relation
a € 3n -4

Equality is achieved if all the faces are triangular.
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Le o) te ut, (o) t lem

In this section we consider the problem of computing the minimal network
equivalent to a given network. No exact general algorithm, besides complete
enumeration, was found. However, an approximate solution is given, which
generates an equivalent "“closed" network.

In a generic network of constraints, a certain pair (x._-L s X, _) can be

sT Jss
allowed by the direct relation Rij {or also by Ryg » Ry3 and Rjj) but can be
actually forbidden because it is not possible to give to all the other variables

any set of values allowed by all the constraints. To recognize such pairs and
erase them, namely to make explicit the global constraint, is the essence of the
central problem. The central problem, in its generality, is very difficult.
Graph coloring problems, for instance, are very neatly represented by networks
of constraints: relations are all of the type U - I , i.e., all pairs allowed
except those of the same colour. The number of allowed colours (i.e. the cardi-
rnality of sets Xi) and the topology of the graph characterize the particular
problem., For instance, Fig. 3 shows the network of constraints represgnting the
problem of coloring a tetrahedron with three colours: an impossible task.
However, it is difficult to recognize it with a sequence of local examinations
of the network, and without "higher order” reasonings. Needleas to say, no hope
exists to extend such tricks to the general case., Therefore we look for an
approximation of the minimal network M, i.e.,a network Y which is as explicit
as possible and still computable with local operations.

let us consider an ordered pair of values

b o= (x5 .5 xj,s)
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and a path *
P = (vi = vio y ses vip y oo Vim = VJ) m> l
in the complete network R from vertex Vi to vertex Vj. The pair b is
allowed by the path P if the variables

Xiax10, -.-,xib, o.o,Xim=Xj

can be given suitable values

xi,r = Xio,ro y see g xip’rp 3 vee Xim,rm = x‘j,s

which satisfy the relations

RiOil s ese Rip—lip y see 3 Rim—lim
along the #path P. Note that the same vertex Vk can occur -in a path any number
of times, and different values can be given to its variable x) for each occur—
rence. A pair b is called Jlegal if it is allowed by 2ll the paths P from
Vi to Vj. We will see that the property of being legal is decidgble in a finite
nunber of steps. Finally, a network is called g¢losed if any pair b which is
notllegal is also not allowed by the direct relation Rij' -

It is clear from the definition that minimal networks are closed. The
converse is, in general, not true. For instance, the network in Fig. 3 (repre-
senting the uncolorable tetrahedron) is closed but not minimal. This also
means that many closed networks equivalent to a given network may exist. Given
a network R, its closure Y is defined as the largest closed network not larger
then R but equivalent to R. The next thecrem proves the uniqueness of the closure.
Theorem 4.1 The set of closed networks not larger than R but equivalent
“to R (which is ordered under & ) has a largest element Y. Therefore Y is the

only closure of R.

EJ

A path in R is any sequence of vertices. A vertex can cccur more

then once in a path, even in consecutive positions.




Preoof We must prove that the union of two closed networks Y' and Yp both
not larger than R but equivalent to R is a closed network Y not larger

than R but equivalent to R. In fact fromR 2 Y and R 2 Y we have

R27Y U Y =Y.From R2 Y2 Y, R equivalent to Y' and (3.7) twice,

we have Y equivalent to Re. Let Y = 1. Then for Y = T U Y" either

ij,rs

= 1 or both, say Y!

t 17T
Yij,rs = 1 or ¥; ij,rs

13,8 = 1, Then the pair b = (x, r, xj,s)

is allowed by P in Y' for closure. Thus b is allowed by P also in ¥, because
the same set of path values satisfying Y' satisfies also Y, for Y'SE Y.
Q.E .D.
The closure Y of a network R can be characterized as being the solution

of the following system of equations.

n
k=1
where
dij = Ijy ifi=] H dj5 = Ujj  otherwise.

A network of relations Y is called a_solution of system (4.1) iff:

i ) The relations ¥, satisfy equations (Lel)

ii) No other network Y exists, such that Y satisfies equations (4.1)
and Yﬂ 2 Y.

Note that condition {ii) is necessary for ruling out solutions which are

not equivalent to R (like the trivial case Yij = gij) and that it does not

imply uniqueness of the solution a priori. We can prove the following

theorem.

~ Theorem b.2 Any network Y which satisfies system (4.1) is:

a) Mot larger than R.

b) Closed.
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If furthermore Y is & solution of system (4.l), then Y is:
e) Equivalent to R
d) The closure of R
Therefore only one solution exists.
Proof a) From (L.1) we have

= Iy
Thus, by the monotonicity property of composition:

s Y., € . -
Riy ¥y 3
And finally, from (4.1)
s c
YlJ < Rij ij < Rij
b) Given any path P we will prove that if Yij,rs = ] and Y satisfies equa~
tions (4e.l) then the pair b = (xi’r , xj,s)_is allowed by P in R, i.e.
the relations of R along P can be satisfied. We will prove this result by
induction on the length m of the path P. If m=l the proof is trivial,
because Yjj 1s the only relation which must be satisfied. If the result is
true for every path of length (m-l) it is true also for paths of length m.

In fact, from {h.l) we have:
Yi: = Y. & Ry i Yi.i
1] ioin oty “hlm -
Therefore at least one value xil’rl must exist, such that Rioil’rorl = ] and

Yilimsrlrm = 1. Thus relation Rioil is satisfied by (x; ,To * xil,:l) ,

while Y = 1 implies that the m-1 relations R, . s R ;
ity hip ’ T Hipaly
can be <atisfied according to the induction assumption.

c) If an n-tuple satisfies Y, it satisfies alsoc R, because Y & R for a).

Conversely, let a = (x1 r 1 e 2 X ) be an n~tuple satisfying network
Ly n, I

R, namely Rij,r » =1 (i,5=1,..,n), We will prove that a satisfies
1]
network Y too. In fact, if we assume Y,

= 0 for some i,3, it is possible
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T
to find a larger network ¥ Y (against ii)) satisfying (4.l) and

such tgat Yij,rirj = 1, For proving it, let
A 0 .
1ij’rirj 1 ; Yij,rs = Yﬁj,rs if r# Ty and s # rs
It is immediate to see that equations
0 \/( _ 0
Y. . = (R A Yxier ) d
SRRS k—l Ly ik,rit Js 3 /\ i,j,rir"j
are satisfied, whlle from Y satisfying (A 1) we have:
0 \lk
Yij,rs k"l L 1 ( le rt /\ ij ts ) A dij rs (i:j = lyee,n ;

i#ri’j#r‘j)

from monotenicity of union and intersection. BSo we have

n 0
Y?. = E: R, Y . +

ik x5t Y4y

1J k=1

Now, if we compute iteratively
P p-l
iy - 7: e g T %

we will have

e e < YP

from monotonieity of intersection and composition. Thus for some q we will have

ya*1 '

va = v

1
satisfying (4.1) and such that Y 2 YO =

d) Let Y be the closure of R. From the definition of closed network, applied to patha
of length twe, we have:

o -
Y., & Yik Y,. + d

15 kj 1J
Then from Y € R

s = -

Yij == Rik ij + dij

Summing up, we haves::

- n -
Y6 2Rk Yoot

q, .
11 k=1 kJ 1]
Actually, we must have equality, i.e.,(4.l), because otherwise with the iterative

method shown in part c) a network .Y can be found which satisfies (4.1). Then
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-1t

-t -
the proof of part c¢) shows that a network ¥ € Y & Y can be found which

satisfies (4.1) (and thus is closed and not larger than R) and is equivalent

=1t -_—
to R. The existence of ¥ would contradict the maximality of Y proved in

theorem(4.1). Thus T satisfies i). On the other hand, if Y is any solution,
we must have Y € Y for the same reason. Thus ?_ satisfies ii) and is

the only solution.
Q.E.D.

The next corollary gives a simple way for characterizing a closed network.
Corollary A necessary and sufficient condition for a network Y to be

closed is to satisfy the following system of equations:
n
(l}'z) Yij = kgl Yik ij + dij (i’j = l,.oo,n)

Proof. According to theorem (4.2b), if Y satisfies system (4.2) Y is closed.
Conversely, if Y is closed, it must be the closure of itself and thus by

theorem (4.2d) must satisfy equations (4.2).
Q.E.D.

The next theorem proves a useful property of closed networks,
eorem L. In a closed network Y, the loop relations and the relations
among different vertices satisfy the following equation:

(h.3) ¥, = LUy * Iu (1,3 = 1,000,n)

Proof From (4.2) we have

Vi3 € Yyy Yy o+ Ly

and from monotonicity

Yii = Yij Uji + Iii

Furthermore, from (4.2) we have

[
Tig= Yy Yy

In binary form we haves

Y < Y.

ij,rs ii,rr A Ti3,rs (r=1,000,l; 5 8= l”“’Nj)
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L}

or, from a truth table

R <
Ylj,rs Yii,rr-
Making the union with respect to s:
N s
Sy;. Yij’rs g Yii,rr (I‘ = lgooo’Ni)

Equivalently we can write
Therefore we have

Tyg = Y33 Uy ¢ Iy Q.E.D

Given a network R with n vertices we can give an algorithm for computing

its closure Y.

Algorithm C

stepl Y = R
Step 2 Execute next step for k = l,usesyn
k k-1 k-1 k-1 k-1 .
Step.3 (Aeh) Y5 = Yigb o+ Ty Vi Yy (i,5 = 1,400,n)

Step & If 7" # YO then let YO = Y and go to step 2 ; else let Y = Y* and stop.

Theorem_&.h Algorithm ¢ computes the closure Y of R« In particular, if

'

ij,rs = 1 in the network Y obtained at the end of the first iteration, then

pair (xi,r , xj,s) is allowed by all the paths from V, to Vj in R.

Proof We will prove that i) Y is not larger than and equivalent to R;
ii) Y is closed ; iii) for every closed network Y' equivalent to R and not
larper than R we have ¥ & Y & R.

i) Fach application of step 3 produces a network Yk equivalent to the prece-

dent Ykhl. In fact, clearly Yk <= kal. On the other hand, if the second

term in the right member of (L.4):
1N ‘
ko k-1 k-1 k-1
g!l it NV T te 1Y Yk, ts
is zero for some 1r,s it means that no value for Xy can be found which

0




satisfies relations YI:;]' s Y;'cd; . and Y}}z;l for x; = X3 p and X3 "Xy g

Thus no n-tuple is excluded by Yk which is not excluded by Y . Therefore,
from transitivity of equivalence and inclusion, Y is equivalent to R and Y & R.
1i) We will prove that if a pair is allowed by Y™ then is allowed by all paths
in YO. We assume that when step 3 was executed (k-1) times, if a pair

(xi’r , xj,s) is allowed by the relation Yﬁgl, then it is allowed also

by all the paths in YO  with extrema in V; and V, and having all the inter-
rediate vertices with indexes < k-1, If k = 1 the assumption is trivially
true. We will prove the same property for k after the k¥ -th execution. Let

us consider anyr path P from Vi to Vj having intermediate vertices with indexes

< k. If vertex Vy does not belong to this path, the induction step

is proved. If it does, path P can be decomposed in three paths:

&) a path from V4 to Vy

b) a finite (possibly zero) number of circuits from v, to Vk

¢) a path from Vy to Vj

All those paths have intermediate vertices with indexes < k-1l.

According to the step (4.4) , if ng,rs =1, then a valve x, , can

be found such that Y?;?rt =1 , Y:;Ttt = 1 and Yi;?ts = 1. Thus by

the induction assumption we can give to all the intermediate variables of
paths a),b) and ¢) suitable values which satisfy the corresponding constraints
in YO. When the algorithm stops, we have Y = YO = Y and thus Y is closed.

' :
iii) Let Y € R be anr closed network equivalent to R. We will have

1
v < ¥k for all k and for all iterations of algorithm C. Thus also v & Y.

L]

Inductively, let us assume that Y = Yk_l before the execution of step 3.
This is certainly true for the first execution of step 3 in the first itera-

. ' k 1
tions YO =R, ThenY & Y . Infact, if network Y is closed, it satisfies
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equations (4.2) for the corollary to theorem (4.2). In particular, we have:
L t '
Yis3 = Yo N

and therefore for the monotonicity of composition and intersection:

t

' -~ f
4 . P Ny S Yy Y

1 * 1 t

< v
Ty Tiw Tee Ty * Y4
and thus '
A ' 1 t \J
(heb) g3 = Ygs+ Ty Y Ty + 4y

But from the induction assumption and monotoniecity we have:

' oot -1 k-l k-1 k-1
. Y, L. = Y .
(4.5) Yiao * Yy e iy * 955 Yigo o+ Y5 Yo ij + dij
Now note that the dij term in the right member is redundant because if i # j
- s | k-1 & c
then dij = Uij and if i = j then dii = Iii and Yii = Rii = Iii-
Thus from (4e3) (4.4) and {4.5) we have
t k
C
Yij S Yij

Q+E.D.

It is interesting to see how the number of iterations required by algorithm
C is dependent on the order of vertices in step 2. For instance, in network R
in Fig.(4a), if k = 1,2,3,, then only one iteration is necessary for finding
_the closure Y (Yij = gij)‘ If % = 4,1,2,3 then two iterations are necessary.
Fige (4b) shows the network Y' obtained at the end of the first iteration.

According to the above theorem, if Yg in the network Y obtained

j,rs
at the end of first iteration, then the pair (x; . » x; .) is allowed by

sl Ja3
all paths in R. For instance in the above example fer i =1, j=2andr=s5=1
and for path P = (V1 , V3 » Vy s Vs) valges X1,1 5 %31 2 X, 3 and %501

satisfy the three relations 313 ’ R3h s along P. Note how this condition

L2
is pot sufficient for 1’ being closed. Thus in general one iteration of

algorithm C is not sufficient. On the other hand, each iteration of algorithm C

produces an equivalent, strictly smaller network, and thus convergence is assured.
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5. Exact_solution of the central problem for particular classes of networks

In the last section we have been able to give only an approximate solu-
tion to the central problem in the general case. A closed network instead of
the minimal network was oBtained. We can now ask if there are particular
cases in which a closed network is always minimal.

In general, given a network R and a pair of vertices Vi » Vj we are inter-
ested in kmowing if the relation Yij of the closure Y of R coincides with
the relation Mij of the minimal network equivalent to R. In this case, net-
work R will be called rggglgr;ﬁi&h_reﬁpegt tghpgig,liyj. If R is regular with
respect to all pairs of vertices, it will be called regular. Thus for a
regular network R we have Y = M. In this section we will see that interesting
classes of networks are regular.

We can determine regular classes of networks inressentially two ways:
either consiraining the topology of the network or restricting the type of
allowed relations. We will consider the former case first.

A symmetric * series-parallel network (spn) with respect'to a pair
of vertices vivj is usually defined recursively as follows:

a) A complete symmetric network with two vertices V; and Vj is a spn.
b) Given two spn's with respect to v;vg and v;v; , the network obtained

letting VB and V; coalesce is a spn with respect to v{vg .

*  In what follows, symmetry will be almost always required, since a mini—

mal network is dhviously symmetric, while symmetry is not assured for a closed

network. On the other hand, an equivalent, symmetric and not larger network R

can be imediately corputed from any R with the formulas R;j = Rij + R?i'

Its closure Y is then symmetric, as is obvious fron algorithm C.
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c) Given two spn's with respect to ViVE andvzvg » the network obtained letting
| n [} "
vy = Vi =Vy and Vj = VJ - Vj

As usual, all missing arcs vivj are assumed to correspond to the universal

is a spn with respect to Vivj'

relations Uij'

In the last section we saw that in a closed network Y a relation Yij makes
explicit the constraints pgiven by all the paths from Vi to Vj- The next lemma
proves that a closed network has the same property for all the subnetworks which
are series parallel with respect to V3Vj.

Lerma 5.1 Let Y be a symmetric closed network, and let R be any subnetwork

of Y which is a spn with respect to V Let M be the minimal network

ivj.
equivalent to R. We have:

(5.1) Yis & My

Proof According to the corollary to theorem (3.4) we must prove that if
Yij,rs = 1 then an m~tuple satisfying R (R has m vertices) such that X4 = X{ p
and xj'= xj,s can be found. We will use induction applied to each step of the
recursive definition of a spnt we assume that the properiy is true for the
component, networks and we prove it for the resulting network. For steps of

= 1 for symmetry, while Y, = 1 and

ii,rr

type a), if Ti5,re = 1 then T4y o

ij,ss =1 for (4.3). For steps of type b), let Vk be the veftex in the middle
of the series, If Yij,rs =] and Y is closed, then a value X = Xy, b exists
k,rt = 1 and ij,ts =] and therefore the recursive assumption can

be applied because no constraint exists in R between two vertices in different

such that Yi

components. In definition ¢), the recursive assumption can be directly applied

to both components.
Q.E.D.

As an example of application of this theorem, let us consider again the
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coloring problem represented by the closed but not minimal network Y in Fig. 3.
In Fire. 58 we have a subnetwork R which is a spn with respect to all pairs
of vertices except V2V3, In Fig. 4b we have the minimal network M equivalent
\f <~
to R Note that Yij — Mij

The next theorem proves the regularity of some classes of networks.

(in fact, Yij = hij) for all pairs except V2V3.

Theorem 5.1 a) Tree networks . are regular.

b)Symmetrical series-parallel networks with respect to a pair ViVj, possaibly
with treesrooted at any vertex,, are regular with respect to vivj.
Proof a) Let R be a tree network, and let Y be its closure. Given a
pair ViVj, let P be the only connecting path in R,If Yij,rs = 1, suitable
values can be given to the vertices of P which satisfy the relations of Y
along P, since Y is closed. It is now easy to see that suitable values can
also be given to the other variables. It.is sufficient to evalugte them
following the tree structure of R, i.e.,in such a way that each new vertex Vk
to be evaluated is adjacent in R to one élready evaluated vertex Vy (more than
one vertex is not possible: a circuit would be present). Inductively, let
Xp,t be the value already assigned to xp. To X, We can assigne any value
xk,s such that th,ts = 1. BSuch a value nust exist, because otherwise

Yhh,it = 0 for theorem (4.3) and thus Y = 0 for all p (again for the

ph,tt
same theorem) so that the value Xh,t could not have been given previously
to %, according to this procedure. At the end, all the variables have been
evaluated and satisfy the Y constraints along the tree, and thus also all

the R constraints, because Y & R for theorem {4.la), and R has constraints

enly along the tree, Therefore alsc ¥ is satisfied » because Y and R are

As with spn, the branches of the tree correspond to symmetric, 2-vertex networks.
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equivalent. Thus Y is minimal and R is regular,

b) lLet R be the spn and let Y be its closure. Let Y' be the subnetwork of Y
topologically equivalent to R. We have Y & e R, But Y is equivalent

to R and thus also Y' is equivalent to both Y and R from (3.7} twice. Now let
M be the minimal network equivalent to ¥ and thus to Y and R. For Lemma (5.1)
we have Yij < Mij' But M and Y are equivalent and M is minimal. Thus

Hij = Yij and R is regular with respect to WviV;., If trees are present

at some vetices of the spn, we can {ind a feasible n-tuple evaluating the

vertices of the spn first, and then evaluating the vertices of each tree as in

in part a) of this theorem
Q.E.De.

In the remainder of tlis section, we want to determine a class of regular
networks by restricting the type of allowed relations., We need the following
definition. A network R such that relations Ry and Rig (i = 1,4ee,n 5 1 # k)
frm a distributive set of relations (see condition (2.1)) for all k, is
called a distributive network. We can now prove the following theorems.

Theorer. 5.2 A closed, distributive network Y is decomposable. Furthermore,
its symmetrization

T . s
= Yij + Y.. (l,J = l,.o-,n)

‘ el Ji

J
is minimal. Thus in particular if Y is symmetric, it is minimal,
Proof We will prove first that if variables X3, ses , X1 can be given
values xl,rl y see 3 xkhl’rk—l which satisfy relations ¥j . (i,3 = 1 ,eeayk-1),
a value X can be given to variable X, which, together with the previous

’rk -
- values, satisfy relations Yy4 (i35 = 1,see k). From the assumption we have
Yij’rirj = 1 or equivalently
voi Yij Vjo = UOO i,j =1 y eee k-1

where the fundamental vectors vOi and Vio are defined as
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VOi,r = 1 and Vio’r = 1 iff r = r
From the corollary to theorem (4.2) we have

Yij g..: Y.'I.k ij i,j = 1, see k-1
From monotonicity, we obtain:

Voi Y1k k5 V30 = Voo
Summing with respect to i and j:

Zl; i Voi Tik T3 V50 = Voo

Applying distributivity (2.1) we have
k-1 k-1

(z:—l Voi 1k)(jlek.jVjo) = Ugo

Then & value xk » €&n be found, such that

c}ifl ) (Z?l )
Vas Yoo ) = 1 and = 1
= 0i “ik Ty | kj jO
or, completely in binary form,
Y = 1 and Y = l ) . i,d = l,ono’k"l
ik,rirk kj,rk 3

Therefore, from theorem (L.3) we have

Ykk,r r = 1
k k
Finally, adding the inductive amsumption, we have

iJ,r r 1l i’j = l, esns 3 k

i
Observing that the ordering of variables is immaterial and using the above

proof as induction step, we have shown that if a k~tuple b satisfies any
complete subnetwork Ysiof Y, g = ( Vi s ses V&_}, at least one n-tuple
a exists, whose projection on S is b, lwhich satis?ies Y. On the other hand,
if b does not satisfy YS,‘a does not satisfy Y by definition. Thus the
projection [DS of the n-ary relation (3 represented by Y is representable
by YS and therefore Y is decomposable. Furthermore, Y' is minimal, In

. t .
if Yij,rs = 1 the unordered pair b (xi,r ’ xj’a) satisfies the two-vertex
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subnetwork Y5, 5 = {X; , X;}. Then by the first part of this theorem
an n-tuple a exists, such that a satisfies Y and ag = b. But Y is
equivalent to Y' and thus a satisfies Y' as well. Therefore Y' is minimal

for theorem (3.4).
Q.E.D.

In what follows, it is convenient to consider a particular case in which
a slightly different distributive property holds. Giveﬁ a network R, let us
consider the set D of all the relations equal to all the poasible expressions
obtgined by combining relation R

i3
composition. If in D right and left dlstributivity of composition over inter—

with the operations of intersection and

gection always holds, R is called gtap-distributjve. In this case, given any
expression, it can always be reduced to & sum of products using distribu-
tivity. It is immediate to see that each term of the sum is the constraint
represented by a path between the same pair of nodes. Therefore every relation
Dij in D represents the global contraint transmitted by some set of paths

between vertices V; and VJ. Especially interesting then are the limit relations

4
Ds . * representing the global constraint transmitted by all the paths

1]
in R between Vi and V3. D* is the corrisponding network, called limit petwork.
The next theorem proves some interesting properties of D*
Theorem 5.3 Let R be a star-distributive network, let D% be its limit net=
work, let Y be the network obtained after one iteration of algorithm C, and

let ¥ be the closure of R. We have:

a) p¥ = Y0
+#*
B) D =X
Therefore Y = Y' and one iteration is sufficient for algorithm C.
*

As usual, we assume Dj; < Iy (1= 1,.00,m)




=133 =

Proof a) According to theorem (4.4), if Y? = 1, then the pair

Jyrs

(xi,r s xj,s) 1s allowed by all the paths in R, Therefore

3
iy € D

Cn the other hand, Y?j is obtained, in algorithm ¢ , with a finite number

of intersections and compositions of relations of R. Therefore ng is the

sum of some of the terms of which D§J is the sum: thus

3* n
C
Dij (= Yij
Therefore we have
* )
Dy = Y, (153 =1,000,n)

b) It is very easy to see that D" is the solution of system (4.l). We prove
first that D* satisfies equations (4.1). In fact, let us consider the rela-
tion D?j « It 1s equal to the sun of the terms corresponding to all paths
between V4 and Vj. The first factor of each term must be one of the relations
Ryy (k= 1,...,n). Partitioning the paths and factorizing Ryy, we clearly

obtain the right member
n

3
k);l Rip Dy *+ i3
In factif i = ] the condition D:iéé T4 holds by construction. Since D*

satisfies (4.1),from thexem (4.2) we have
e ¥
But we have

Yy &Y

and, from part a)
n
p¥ = v
Thus we have also

¥ = ¥

Q.E.D
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It may be interesting to see how in the star-distributive case algorithm C
is nothing else that the solution by Gaussian elimination of the system of
equations (4.1). We will show it with an example. If n = 3, we have

Ylj = Ryq Ylj + Ryp Yéj + R13 YBJ + dlj

Yéj = Rzl Ylj + R22 Yzj + R23 YBJ + dzj J= 1,eae,n

T35 7 BuTay * By Ty * Byyiyy * dyy
Now it is easy to see from a truth table that the solution of the single equation

Z = AZ + B
is

Z = AB
if we are interested (as we are) only in the largest Z. Thus applying
distributivity,the first equation of our system becomes:

Yp5 = Ryy dyy + Ryy Ryp Yoy + Ryg Ryg T3y
Then substituting in the other two equations, multiplying and factorizing,we get

37 Pfadyt R1 Fio Yoyt RERECRES
Yys = Byy Byy dyg + (Ryp + Ry Ryy Ryp) Yoy v (Rpg + Ryy Ryy Ryg) Ygy + dyy

Y35 = Rg) Ryy dyy + (Rgp + Ry Ry Ryp) Yoy + (Bgz + Ry Ry Ry3) Y5y + dgy
The matrix of coefficients of this new system is exactly equal to Yl

if we notice that RIISE I,; and thus R,y = Rll Ry; and furthermore

Rq Blp = B * Rpq Rype After elimination of Yzj and Y., we obtain:

33
Ylj = 1 dlj + Yiz d2j + YiB'dBJ
. 3 3
Y5 = Igl diy * Top dpy * Tp5 44,

Gy = Gudy * Ty g ¢ Ty
For example, if we write the first equation for j = 2, we have:

3 3
Yy, = By U, + Y5, + 133 U
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But it ecould be possible to see * that

3
Vi & Yik Vs

In conclusion we have

Yy T Yij | |
We can also point out that algorithm C is similar to the Warshall algorithm
(11] for finding the closure of a relation or to the Floyd algorithm [12] for
determining the shortest path between all pairs of nodes in a weighted graph,
or to the algorithm for deriving a regular expression from a left linear
grarmar or from a transition graph {13]. The similarity is not casual. In fact
all these algorithm can be considered the solution by Gaussian elimination
of a linear.system of equations in a suitable algebra. We can find the same
analogy in Jordan algorithm for matrix inversion in the usual linear algebra.
The only difference is that in this case the solution of the single equation
Z = AZ + B
is
z = (1-M"1s
while in our algebra, as already pointed out, the solution is

Z = AB

In what follows we impose restrictions on our relations for obtaining
distributive and-star-distributive networks.

Let us define a partial ordering < in the set Xy of values of the

< k& R . .
variable xq, ir Xi is finite, a complete lattice structure is thus

¥ Actually, the terms of the type Y3, Ujj would not even exist, if variable

elimination had taken place separately for the different values of index J.
x*%

For notational simplicity we will consider the partial ordering as defined

on the set of indexes as well. For instance r < s is equivalent to X, ﬁ Xi,g¢
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superimposed on Xi together with the operations of sup and inf. A total
relation Rij between a set Xi and a set Xj will be called mopotone if it
has the following properties:

i) (5.2) if Rijps = 1 and t 2r then Ryy o = 1 and conversely

ir Rij,rs = 1 and t < s then Rij,rt a ]l
1) (5.3) if Ryy 09 = 15 Ryy oq = 1 8nd r = inf(p,q) then Rij rg = 1 and
if Rij,rp = 13 Ryjprq=1ands= sup(p,q) then Rijrs = 1
The next theorem will clarify the kind of relations allowed by the above

definition,.

Theorem_5,4 Given a total relation Rij’ a necessary and sufficient condi-

tion for R to be monotone is that a defining function

f3 X,— X,

JioA 3

existsg, such that

(5¢4) Rij,rs = 1 irfe s < fij(r)

and

(505) .fij(inf(rlsrz)) = inf(fij(rl)’fij(rz))

or, by duality, that an jpverse defiping function
i3 .: Xj - X

exists, such that

(5.6) Ris,rs = 1 iff rzgij(s)

and

(5.7) gjj(sup(s1,s2)) = sup(eg(sy)ses5(sp))

Proof We will prove this theorem only for conditions {5.4) and (5.5). The
proof in term of the inverse defining function is exactly dual.
Sufficiency  From equation (5.,5) we have

(5.8) if r)<r, then £540ry) < £54(ry)

1
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Therefore if Rij,rs

s £ fij(r) < fij(t')

=1and t > r from (5.4) and (5.8) we have

and thus

R 1

ij,ts
If Rij,rs = 1 and t < 5 we have
t € 8 < fij(r)

[y —

and thus
Rij,rt

If Rijrp=1 » Rijpq=lands-= sup(p,q) we have
p< fi5(r) and q < fj5(r)

and thus

s = sup(p,q) < fij(r)

therefore
Rij,rs 1

- -—

s < fij(p) and 8 < fij(q)
and thus

s < inf(fij(p),fij(q)) - fij(r)
therefore

R 1

ij,rs
Necessity If a relation Rij is monotone it can be put in the form (5.4).

In fact, given an element r of X; let us compute the superior fij(r) of

the imagé of r in R For (5.3) we have

ij®
Myrey () = 1
Thus, for (5.2), equation (5.4) is satisfied. Function fij(r) satisfies

equation (5.5). In fact, for (5.2) we have:
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Rs s = 1 and
13,rlfij(inf(rl,r2)) Rij,rzfij

and thus, for the definition of f:

(inf(rl.rz)) -1

fij(inf(rl:rz)) < fij(rl) and fij(inf(rl’rz)) < fij(rz)
Therefore
(5.9) £, (nf(ry,ra)) < Anf(f, (ry),14(r,))
On the other hand, we have

Ry - = ] and R = ]
iJ’rlfij(rl) ij’rzfij(rz)
From (5.2)
Bigyrpanr(e (r)of (e )7 12N Rigumsns(e, (r)dory () 72
Thus from (5.3) :
Fiint(ry,ry) tnr(fy ,(r))st, (r,)) ~ 1
Therefore

_ fij(inf(rl,rz) b inf(fij(rl)’fij(rz))

' Finally from the above relation and (5.9), equation (5.5) follows.
Q.I.D.

A few examples will clarify the kind of relations allowed by the mono-
tonicity constraint. For instance, if the partial ordering is also total,
equation {5.5) can be substituted by equation (5.8), i.e. the defining function
must be monotone. In Fig. fa we see a monotone relation represented by a bipar-
tite graph. We have fy4(5) = 4 , f35(4) = £55(3) =2, rij(z) = £;4(1) = 1.
Conversely, gi3(1) =1, gij(2) =13, gij(B) = gij(h) = 5, A special case
of monotone relation, with infiniﬁe sets, is represented by the "shortest path"
constraint

s < fij(r) = r+d
In fact, the shortest path problem in a weighted graph is a speclal case of

our central problem. The network of relations R can be obtained from the
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weipghted graph as follows. The set of values for each variable is the set of
integers and sll relations Ry (i,3 = 1,0eeyn) are monotone. If Rys is spe-
R
cified by the defining function fij we have
_ R
where tij are the arcs weights : tij = tji s Yyq = 0
We will see that the minimal network M has the same form:
M
xs £ fij(xi) = x; + dij
and thus dij represents the length of the shortest path from vertex V4 to vertex
VJ.. As & check, note that dij < tij and so Mi;j < Rij‘
If the sets X; are finite, the restriction to total relations could look
heavy. On the contrary, a"floor" value % 9 and a Yceiling!" value X, u can
H 2
always be added to X; such that

Rij,Os = 1 for all s and = 1 for all r

Rji,ru
Fig. 5b shows the relation in Fig.5a without ceiling in Ki and floor in Xj.

In general, monotone relations are considerably more powerful than simple
"shortest path" constraints. For instance, the lattice structure of multidi-
mensional euclidean spaces can be used for specifying multidimensional rec-
tangular domains. In Fig éc we see how defining functions fij of Rij and
gji of Rji restrict to a rectangle the image of X,r in Rij + Rji‘ Different
points X; p can generate different rectangles, provided equation (5.5) is
satisfied,

The next theorem proves the closure of the class of monotone relations under

the operations of interseétion and composition and gives the rules for

performing such operations in terms of the defining functions.

)
lbggrgmli,i a) If Rij and R;j are monotone relations represented by the

1
defining funections fii and -f3. , then the sum:

¥
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[ "

Rig = Rig * Ry

is & monotone relation represented by the defining funetion
7

(5.10) £54(r) = inf(£i4(r),f5(r))
b) Likewise, the product

Rij = Bik Ry
is represented by
(5.11) fij(r) = fkj(fik(r))
Proof a) Relation Ry ; defined by (5.4) and (5.10) is evidently the
. s t o ‘ .
intersection of Rij and Rij' Furthermore Rij is total. In fact we have at least

Rijsrfig(r) =1 and Rij,gij(S)s =1
where g(s) is defined dually. Finally, function fy; satisfies equation (5.5):

£ (inf(r ,r,)) inf(f;j(inf(rl,rz)),f;j(inf(rl,rg))) -

inf(1nt(£y ,(ry )23 5(r,)))ng (2 (ry )25 4(r))))
inf(inf(r;j(rl),f;j(rl)),inf(f;j(rz),f;j(rz)))

inf( Eij(rl)’fij(%))

n

b)The "if" part of {5.4) is trivial. For the'only if" part, if Rij,rs = 1 then
an index t exists, such that Rik,rt =1 and Rkj,ts = 1, But Rik,rt =1
implies t < fik(r). Thus from (5.8) we have

'rkj(t) < fkj(fik(r)) = fij(r)
But Ryj,4e = 1 implies s < fkj(t) and thus s < fij(r) . Relation Ryj is also

total because at least

R. . l and R. 1
1J,rfij(r) ' 1jlgij(s)s
Equation:-(5.5) is proved as follows:
fij(inf(rl,rz)) = fkj(fik(inf(rl.rz)) = fkj(inf(fik(rl),fik(rz)))

inf(fkj(fik(rl))’fkj(fij(rZ))) = inf(fij(rl)sfij(rz))
Q.E.D.
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Next theorem proves the distributivity of monotone relations.
Theorem 5.6 a) Any set of monotone relations
Rik ’ Rkj i)j = 1] s sss 3 N

form a distributive set of relations with respect to set Xk, i.e.

(5.12)(5 v.R-k)(:l v-o)=2§v Ryy I
] 0i ™ £ ij J =14 ik }'kj jo
for all fundamental vectors vOi and VjO'

Proof For theorem(5.4) vectors Rék = V01 Rik and Rﬁo = ij ij repre-—

sent subsets of Xk of the form

J13) R = 1 iff t<¢t and R = 1 4iff t>t
(5.13) 0k, t * = o K0, <

Furthermore, intersection of two subsets of this form produces a subset of

the same form. If
)

ROk=HOk+H;k

we have

-1~
Ro,; = 1. iff t < inf(t ,t )

And it
T "
o = By * B
we have
. -t —n
Rko,t 1 irf t 2> sup(t ,t )

We will prove that subsets of this form satisfy both left and right distributivity:

t " ] i

(5.14) Rgy (Bo + Reo) = Roe Ro *+ Roy Ryo
' 1" t "

In fact, the right member of (5. 1), in binary form, is:

(V %Rt/\RkOt)/\ V HOktA kOt)

Apleln" blnarv distributivity, we have
N M,

VooV« ROk,.tl A-ROk,t2 Y A< R1'<o,tl A R;o,tz)

tl=1 t “—=l




or equivalently
\ T

N N l
k . ' " ' n
(5.16) t\=/=l dOk,t,A(R kO,tA RkO,t.) Vi( -(ROR,tlA ROk,tz)A(RkO,tlARkO,tz)
From (5.13), 1if-

[ L1
R = 1 R = 1 = 1 and R =
Ok,tl ! Ok’tz ? Rl{o,tl ko,tz
tten a value
t = sup(tl,tz)

can be found, such that

1 1"
Rok,t = * ’ Ro,p = 2 and Ro,e = L

Therefore equation (5.14) becomes

\/ A [ RkO . A Rko t
i.e.,the left member of (5.14). Formula (5.15) can be proved dually.
From closure under sum, left and right distributivity we have:

i Iy Egi 53; i
(3;1 %k)(g T0) T 5 T oo

i.e., formula (5.12)
Q.ECD.

The next corollary will be useful in establishing star-distributivity.
t " t " ]
Corollary Ir Rik s Rik ’ Rik ’-Rkj ’ Rkj and Rkj are monotone relations
we have:!
- ' L ' "
(527) Ry (Rey + Ry = By Ryo ¢ Ry Ry
t 1 t 1
(5.18) (R + Ry ) Ry = Ry By v Ry Ry,
Proof Equation (5.17) can be written as
] n 4 "
Voi By By Vio * By Vio) = Vos Rip By Vio * Vou Rax Ry Vo
for all fundamental vectors VOi and viO' Therefore it descends from (5.12).
Tre same is true for (5.18).

Q.E.D.
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We can now prove our final result,

Theorem 5.7 Tlet R be a network of relations such that:

i) its relations Rij (1,5 = 1,e0eyn ; 1 # j) are monotone and

ii) the loop relations Y?i (i = 1,eseyn) of the network Y? obtained after
one iteration of algorithm C are equal to unity.

We can prove that:

a) Network R is star-distributive.

b) Network Y" is equal to the closure Y of R. All relations

Y (153 = 1,eeeyn 3 i7#3) are monotone.

1]
c) Network Y is distributive.
d) Network R is decomposable and the symmetrization Y' of its closuré Y
is minimal.
Proof a) From condition ii) and Y' € R we have Ry; = Ijj- Expressions

obtained by combining relations R,. (1, j = 1,...,n ;3 1 # j) with the operations

i
of intersection aﬁd composition evézuate to monotone relations for theorem
(545). The unity elements Rjj can be involved in an expression either under
composition or under intersection., In the former case a monotone relation is
trivially obtainea. In the latter case the unity Iii must be intersected with
an expression representing the global constraint given by a set of circuits
from Vi to V; in R. In fact we can assume inductively that no unity is involved
in this expression, and in this case distributivity holds for the corollary

to theorem (5.6), and the expression can always be reduced to a sum of products,
The result of the intersection operation must be again unity, because Ygi,rr=
for all r, and thus for theorem (4.4) all pairs (xi,r , xi,r) must be allowed

by all circuits from Vi to Yi in R. In conclusion, the set D of all expressions

contains expressions that either evaluate to monotone relations or to identities.




Left distributivity

' " ' "
always holde. In fact, if all relations are monotone, this property is proved

by the corollary to theorem (5.6). If Eik is a unity, both members evaluate to

' " ' " 1
Ekj + Ekj . If Ekj or Ekj is a unity, say Ekj,we have k = j and (5.19) becomes

By (Tge *+ B = By Ige *+ Eyy By
But then Ey, = Iq for YEk = Iy y» and therefore both members evaluate to
Eix o The same proof holds for right distributivity.
b) This part follows from a) and theorem (5.3).
¢) This part follows from b) and theorem (5.6).

d) This part follows from ¢) and theorem (5.2},
Q.E.D.
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Conclusion

In this paper we have presented a formal treatement of networks of binan}
constraints. The main practical result was the discovery of an algorithm for
adding to the direct constraint between .each pair of variables the indirect
constraints transmitted b& all the paths in the network. In particular cases
the resulting constraint was proved equivalent to the global constraint repre-
sented by the entire network as seen by that pair of vertices. This result
allows the partial or total utilization of the global constraint structure
for reducing the set of feasible values of a variable to be determined, when
the values of other variables are known.

For the practical computer implementation of this method, the following
requirements can be suggested:

a) In the application under examination, most constraints must be reasonably
represented or approximated by binary constrainté or gimple networks of binary
constraints. Note that if we allow a constraint among m . variables to be repre-
sented by a network of n vertices, with n > m, then the negative result of
section 3 no longer holds, and many representations of the constraint, trivial
and not, can be found. For instance, the ternary relation (3.4) which is not
representable with a 3-vertex network, can be represented by.the L=vertex

network in Fig. 2, as seen from vertices V V, and V..

r 3
b) The resulting binary relations (finite or infinite) must be capable of

being stored in an economical way in a computer memory. For instance, if the

- variables are points of m-dimensional spaces, a relation Rij could be stored

*

representing the images in X, of all elements X; .. of X; as m-dimensional
3

J

3¢
Or just one, if all the other images can be obtained from it by a fixed

procedure (e.g. translation).
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domains, Known tecniques of domain encoding can then be used. For instance,
two given points are gufficient for determining a rectangular domain: this
is often the meaning of functions fij(r) and gji(r) representing a monotone
relation.

¢) The operations of intersection and composition must be easily definable

in the chosen class of relations. In particular, this class must be closed
under those two operations. For instance, this is the case of relations
represented by domains, convex domains, domains enclosed by polygons or convex
polyrons, rectangular domains.

d) The closed network is then obtained with algorithm C. The closed network
should then be close to the minimal. For instance, we have coincidence for
rectangularrdomains, and we expect reasonable closenegs for convex domains,
Bad results can be expected if the relations allow most pairs and forbide a
few isolated pairs, like ia pgraph coloring problems. Anyway, if the addition
of a further constraint destroys regularity (i.e. closed # minimal), it is,
nevertheless, convenient to add it. Maybe its addition will not be entirely
exploited, but the monotonicity property of intersection and composition

certifies that the modified closed network will be more restrictive.
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Fis,_ l. Examples of networks of constraints. As a graphical convention, if
both ares V.V. and V,V, exist, but only vivj ia, labeled with relation R 3
then arc V v{ is as¥umed labelled with Rise Networks a), b) and c}
are equivaien , and network c¢) is the intersec%ion of networks a) and b).
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Fice 2. An example of indecomposable network.




01
Figs. 3, In this network, the relation |1 O 1] 4is associated to every arc.
110 .
This network represents the impossible problem of coloring a four-vertex
complete graph with three colors. This network is symmetric and closed
but not minimal.
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vy

Fig.h. &) A symmetric network of constraints. b) The network of constraints Y"
equivalent to a) computed by algorithm C in one iteration, with order of

elimination (",1’2,3)_0
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O

Fige 5. a) A series-parallel network with respect to all pairs of vertices
except V2V3. . b) Its minimal equivalent network. All nonlabelled arcs
011

are assumed labeled with |1 0 1).
' 110
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1

Fig. 6. a) An example of monotone relation.
without "ceiling" in Xj and "floor" in X

—l

image of element xj r as allowed by the

relations Rys and Ryje.

fiJ(r)

N

g31(r)

-

b) The relation in a)

i;tersec

c¢) The rectangular
tion of two monotone
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