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Abstract 

The problem of representation and handling of constraints is here con­

sidered, mainly for picture processing purposes. A systematic specification 

and utilization of the available constraints could significantly reduce the 

amount of search in picture recognition. On the other hand, formally stated 

constraints can be embedded in the syntactic productions of picture languages. 

Only binary constraints are treated here, but they are represented in full 

generality as binary relations. Constraints among more than two variables are 

then represented as networks of simultaneous binary relations. In general, 

more than one equivalent (i.e., representing the same constraint) network 

can be found: a minimal equivalent network is shown to exist, and its com­

putation is shown to solve most practical problems about constraint handling. 

No exact solution for this central problem was found. Anyway, constraints 

are treated algebraically, and the solution of a system of linear equations 

in this algebra provides an approximation of the minimal network. This solution 

is then proved exact in special cases, e.g., for tree-like and series parallel 

networks and for classes of relations for which a distributive property holds. 

This latter condition is satisfied in cases of practical interest. 

-
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1. Introduction 

In writing this paper we had in mind mainly the problems of a particular 

field, namely picture recognition and description. However, the problem of 

proper representation and economic handling of constraints is very general 

and is important in many problems of operations research, engineering and 

computer science. For instance, many practical design problems consist of 

finding any solution which satisfies all topological and geometrical restric­

tions [1]. Even when an optimization problem must be stated, the chosen 

constraint representation is essential in determining the nature of the 

mathematical problem involved and its difficulty. Unfortunately, many prac­

tical constraints are difficult to handle, because they involve in a complicated 

way many variables. For instance, we can mention the noncrossing condition 

among electrical paths in an integrated circuit layout or as a more esoteric 

example, the restriction to be faced in the design of computer rooms that 

all magnetic tape units must be in sight from the operator. 

In picture processing, constraints play an important role, but they 

are unlikely to be representable in a linear or anyway simple form. Here 

constraints are better known by the name of (geometrical, topological, 

structural) properties of the class of picture under consideration. But in 

fact they are present as fixed characteristics in explicit models or are 

implied by recognition routines which do not take into account configurations 

without the desired property. 

However, we believe that an explicit and consistent treatment of con­

straints can bring valuable advantages. To show \*hat we have in mind, we 

present some Scenarios. 



a) Speed up of the recognition process. Often recognition subroutines 

search a picture for specific elements or features. The search space 

is usually more than two-dimensional, because other free parameters must 

be determined at the same time (e.g., the angular position of a stroke, 

the vertex structure in a cube [2]), For efficiency, what we are looking 

for must in general be dependent on what we have already found out about 

the particular picture. More precisely, it is useless to look for features 

which are possible a priori, but are not consistent with the part of the 

picture we have already recognized. For instance, if the problem is to 

recognize human faces [3] we must of course limit the search for particular 

elements (eyes, nose, mouth, ears, etc.) to the areas of the picture where 

they may ever be present. A second step is to establish constraints 

between pairs of elements. If for instance the position of one ear has 

already been determined, the area in which the mouth could be found is 

further restricted. Such binary constraints, if formally stated, can be 

intersected and composed. For instance, if also an eye has been deter­

mined, the allowed area for the mouth can be considered the intersection 

of the constraints given by the ear and the eye. Furthermore, the pres­

ence of elements yet unfound, such as the nose, but for which constraints 

have been defined, could transmit further constraints from determined 

elements to the sough ones. In conclusion, if all those constraints 

are superimposed, the search space can be reduced. Only the first few 

elements will be time consuming. For the others, the recognition procedure 

should be essentially a check of the evidence we have already gathered. 

b ) Optimal recognition. In particularly bad cases, combined evidence from 

all elements is required before accepting a picture, because many acceptable 



candidates are present for each feature. This situation arises mainly 

during preprocessing or anyway during recognition of unstructured 

entities (see [4] for the limit case of optimal detection of curves). 

In this case it is convenient to assign a merit figure to the various 

alternatives, and then to find the best one with an optimization procedure. 

Again, systematic handling of constraints is vital in reducing the combi­

natorics involved. 

c) Imperfect models. A model can be imprecise because it is too simple, or 

because something present in the model is missing in reality. In the 

former case the model will not be as powerful as it could be, but it will 

work; while in the latter case the picture could be rejected as not satis­

fying the model. The missing part could be simply obscured by the noise. 

If the model is organized in terms of constraints, a model without the 

critical part could be systematically built taking into account the 

constraints transmitted from one part of the model to the other through 

the missing part. 

d) Linguistic methods. The application of parsing mechanisms in picture 

analysis is very promising [5,6]. These methods work well if the struc­

ture of the image is mainly topological, as in bubble chamber tracks, 

chemical structures, block diagrams [7,8]. If geometrical information 

is essential, it can be embedded in the syntax rules only in simple cases, 

as in the linguistic description of mathematical formulas [9]. If the 

allowed geometrical relations can be expressed as a set of simultaneous 

constraints, they can be formally added to the rewriting rules of the 

grammar under the form of applicability conditions [10]. In this way, 

perhaps the geometrical consistency of the various rules can be proved 

at a grammar level. This fact would guarantee that all the pictures 

generated by the grammar are consistent and representable on the plane. 



In this paper we have limited our formalization to binary constraints. 

On the other hand, they are represented in the most general way, i.e., as 

algebraic relations between sets of possible values of pair of variables [14]. 

For many variables, a constraint is then represented as a network of simulta­

neous binary relations. 

Of course, an n-ary constraint cannot always be represented exactly by 

an n-vertex network of binary constraints. However an optimal approximating 

network can be given easily. On the other hand, many different but equivalent 

networks can represent the same n-ary constraint. All the networks equivalent 

to a given one can be ordered by set inclusion. A least element is proved to 

exist and it is called the minimal network. Minimal networks are shown to 

have all the constraints as explicit as possible. 

The problem of the determination of the minimal network from a given 

one is then shown to include most of the practical problems mentioned above 

about constraint composition and transmission. Unfortunately, no general 

algorithm was found. This is not surprising, since very tough problems, 

like the graph coloring problems, fit this scheme. 

Approximate solutions are considered instead. In those networks (which 

are called closed) all those global constraints are explicit that can be 

transmitted through all the possible paths in the network. The problem of 

determining a closed, equivalent network is then stated algebraically. If 

the operations of intersection and composition of constraints are defined, 

the above problem can be shown equivalent to the solution of a system of 

linear equations in this algebra. Since composition does not distribute, 

in general, over intersection, an iterated Gaussian elimination algorithm is 

required for finding the solution of the system. 



In the last section, some special cases are investigated, in which 

closed networks are minimal, i.e., in which our algorithm computes the 

exact solution. If the topology of the network is restricted, tree-like 

and series-parallel closed networks are proved minimal. The same result is 

also achieved if we restrict the class of allowed relations to a class where 

composition distributes over intersection. This is the case when the sets 

of possible values of variables have a lattice structure and the relations 

satisfy a monotonicity assumption. This condition is satisfied in some 

cases of practical interest, such as the shortest path problem in a graph 

(possibly with negative weights) and its multimensional equivalents. Here 

our algorithm becomes the well-known Floyd algorithm [13]. 



2. IMMUJLlit^^ 

In this section a constraint between two variables is represented, in 

complete generality, by a relation between two sets. Elementary algebraic 

properties of relations are then recalled. 

If a constraint exists between two variables x-̂  and X 2 9 *>±€ X^ = {xi,i>*»>xi, 
x 2 ^ ^ ~ { X2,1 , # # #* X2,N } "then in general not all possible pairs ( x ^ r 9 ̂  g ) 

are allowed. The set of allowed pairs is called a relation between sets and X 2. 

In general, it is convenient to consider ordered pairs and thus to distinguish 

between a relation R ^ &nd & relation R 2]_. For instance, if X]_ - {^,^J a n c* 

Xg = jl,2,3] then R 1 2 = j(l,l),(2,l),(l,3)j- is a relation. Any relation 

is thus a subset, proper or improper, of the product set X » X^-x Xg of all the 

pairs. A standard way of representing subsets is to use the characteristic 

function F: 

F : X X x {o,l] ; F((x 1 > r , x^g)) = 1 iff ( x ^ r , x ^ ) £ 

In other words to each pair in X a binary digit is associated, which is 1 if 

and only if the pair belongs to the relation. Being characterized by a binary 
Ni.No 

number of N]/N 2 digits, 2 different relations exist between X 1 and Xg. 

Usually, these digits are arranged in a N]_ x N 2 matrix C%2,rs-' w h o s e r o w s 

correspond to the elements of set X^ and columns to set X 2. Thus we have: 
H12,rs = 1 i f f (xl,r > x2,s> € al2 

In our example, the characteristic binary matrix is: 
R 1 2 = 

10 1 
10 0 

In what follows, relations will be mainly represented in matrix notation. 

The inverse R ^ of a relation R-ĵ  is defined as the transpose: 
- 1 _ T 

R 1 2,rs " R 1 2,rs " R 2 1,sr 



= # = 

For relations, being sets, we can define the usual operations of negation 
R12 l12 i f f R12,rs = n R12,rs (r « 1,...,N̂  ; s = 1,...,K2) 

union or logical sum 
R12 " RL> ̂  4 %2,rs - ^ R12, rs 

intersection or logical product 
R 12 - ̂ 2 n %2 i f f

 h 2 , r s
 = R12,rs A R12,rs 

and the partial ordering relation of set inclusion 

R12- R12 i f f R12,rs C R12,rs 
An empty relation 0^ a n c* an universal relation can be defined 

012,rs = 0 U12,rs * 1 

such that 

*12 U 012 = %2 i
 R12 ft U12 = R12 

for all R^2# ^ m s relations between two sets form a complete lattice with 

greatest element U and least element 0 and where the operations of sup and 

inf coincide with union and intersection respectively. 

Next step is to consider a constraint R-ĵ  between variables x^ and X 2 

and a constraint R23 between variables xg and x ^ . There will be an induced 

or transmitted constraint R ^ between variables x^ and x^ : a pair ( x ^ r > x3, s) 

is allowed, if at least one value *2,t e x i s t s > s u c ^ that both ( x ^ r , ^ 2 , 0 

and (x2 t , x^ s ) are allowed by R ^ and R23 respectively. This requirement 

defines the operation of composition of relations: 

R 1 3 = Ri2 • R23 i« % 3 , r s -\T R12,rt A R2 3,ts 
Note that composition, in matrix notation,is just binarjr matrix multiplication. 
For example, we may have 

R-12 10 1 
10 0 R 2 3 = 

I 0 
II 
0 1 *13 R-12 ' ̂ 3 " 

1 1 
1 0 



It is very easy to see that composition is associative, and that an identity 

relation exists, defined only between a set and itself, 

^ r s = 1 i f f r = 3 

such that 

R12 # J22 " J l l
 # R12 = R12 

for every relation R]^. 

The defined operations of union,intersection and composition have an 

useful monotonicity property* If f(R;jj?) is any expression involving the opera­

tions of intersection, union and composition among relation and any number 

of constants, from R ^ £ fi!^ we have f i R j g ) £ ^(^12)* T h i s Property 

is obvious if we notice that function f, written in binary form, contains 

binary sums and products, but no negations. 

A particular case of a relation happens when one of the two sets (say the 

first) has just one element. These relations, in binary form, are re presentable 

as vectors and are in a one-to-one correspondence with the subsets of the 

second set. Actually, in what follows we will always assume the existence of a 

fictitious one-element set Xq, to have an homogeneous way of representing 

subsets. Especially useful in our formalism are the fundamental vectors 

Vq^ and V^q> i.e., the vectors with only one nonzero element. For instance, 

the image in Rjg of the element x^ ^ can be defined as represented by the vector: 

Rq2 -• Vqi # R12 

where Vqi is the fundamental vector corresponding to element xi^ r: 

V01,t = 1 i f f t - r 

A relation R ^ is called total if every element of and X2 is in rela­

tion with some other element. In our formalism, R ^ is total iff 



v0i * R12 / #02 and R 12 '20 i 010 
for every fundamental vector Vq^ and V20 • Given any total relation R-̂ , 
it is easy to see that R-̂  • U23 « U13 and Un • Rl2 " Ul2» 

In what follows we are mainly interested in the operations of intersec­
tion and composition, so we will use the symbol + for intersection and the 
simple concatenation for composition. Unfortunately, composition does npt 
distribute over intersection. In general 

R^ (R23 + R23) $ R12 R23 + Rl2 R23 
For instance, if 

R12 
ll 1 
10 0 %3 

0 0 
1 0 

then 
R12 ( R23 + ^3) " % 

I. H23-

t ft 
R12 ̂ 3 + R12 ^3 

1 0 0 0 

1 0 0 0 

A special case arises when distributivity does hold. In general, we say 
that the relations 

Rik ' ^ 1 * 1»««" n > 1 7* k 

form a distributive set of relations with respect to set if 
(2.D ( E V Q i Rik) R l d V i Q) - Z . J . V 0 i R i k R k j V j 0 

i $ i$c 
for every set of fundamental vectors , V̂ q (i - l,...,m }- i^k) and for 
every m . In (2.1) the indexes of the sums go from 1 to m. Actually, the 
ordering is immaterial and thus we require (2.1) to hold whenever the indexes 
assume any set of m values. Note that distributivity defined in terms of 
fundamental vectors is more general than simple distributivity. For instance, 

v01 R12 (̂ 3 v30 + ^3 V3Q) " V01 R12 R23 v30 + v01 R12 ̂ 3 V30 
for every V 0 1 , and V^Q , <2.2) follows, but not conversely. 

(2.2) R^ (Rj3 + R^3) - R u 4 3 + R" 23 



3* NetwprKs Pf cppsfrraipts 

In this section, constraints among n (n>2) variables are considered. 

A straightforward formalization of such constraints as n-ary relations is 

possible, but the quantity of information involved grows exponentially with 

n, and so no hope exists to handle it for any practical n# Networks of binary 

relations as defining an n-ary relation are then introduced. An optimal approxi­

mation theorem is proved, and just one minimal network is shown to exist. 

Finally, a problem is stated, called the central problem, which embodies 

most practical problems posed by networks of constraints. 

Generalizing the approach followed in section 2, it is clear that an 

n-ary constraint can be considered to allow some (or none or al]) among the 

possible n-tuples of values of n variables. Thus an n-ary relation p is 

any subset of X « X^ x X2 x ... x X R . The set X can be visualized as an 

n-dimensional space. An n-ary relation p thus represents a "solid" in this 

space. Given an m-dimensional subspace S « X^ x ... x X. , any n-tuple a 

and any n-ary relation p in X can be projected on S yelding the m-tuple a g 

and the m-ary relation Pg . The number of distinct n-tuples is Ni...Nn and 

thus 2 is the number of distinct n-ary relations. If « ••• * N « N 

then N n bits are required on the average for storing a n-ary relation.Practical 

values for N and n in picture processing applications are 1000 and 20, and thus 

the information involved is enormous. One way out is to consider a restricted 

class of, n-ary relations •• 

A_network R of binary relatL ons is defined as a set of sets X = j X i * " * ^ } 

plus a relation R ^ from every set to every set Xj (i,j = l,...,n). Furthermore, 
T 

£ Iii (i • l,...,n). If R^j = Rjjl t h e network will be called symmetric* 



The network of relations R can be thought of as representing an n-ary relation: 
f> » {a | a £ X » X 1 x ... x X R ; ( V if J) 3 - X ± x X j ; a s € R^} 

In other words an n-tuple a is allowed by p iff its projections on all the 
two-dimensional subspaces S of X simultaneously satisfy the binary constraints 
of the network R. Note that if some R̂ j « 0jj then |? - 0., while if p « X then 
Rij s Uij B ; 1 ^ M > n J î J) a n d Rii 38 ^i 58 If ••*n)# 

An obvious way of visualizing a network is by a directed graph# Vertices 
Vi,...,Vn correspond to sets Xj,...,Xn, and an arc VjVj is present from to Vj 
iff R̂ j ̂  UjLi (i ̂  j) or £ 1^. Relation R^ is then associated with the 
direct arc VjVj. For instance the following n-ary relation p is represented 
by the network R in Fig. la: 

C * {W,l > *2,1 > x3,l } ' ( x l A > *2,1 ' *3,2> * <xl,2 * *2,3 ' *3,1>} 
or, in a more compact notation, 

1 1 1 2 
(3.1) P - 1 1 3 

' 1 112 1 
where the indexes of the allowed n-tuples form the columns. 

A network R is determined by giving in orderly fashion all its binary.rela­
tions, and this requires roughly B - n 2 N 2 bits. Clearly B < N11 except for very small 
values of N and n. This argument shows that the class of n-ary relations 
representable by networks is narrower (in fact, much narrower) than the class 
of all n-ary relations. 

Given an n-ary relation p , the simple projection formula (3*2) generates 
a network R? which is, in a sense, the best possible excess approximation of p. 
(3.2) r!̂  « îas | a € p and S - X i x Xjjl 
In words, if p is expressed in column form, R̂ j is obtained by taking the i-th 
and the j-th rows (and merging repeated pairs). Note that Rj^ £ I and that 
i ?T t Rij » R^ , i.e. R is symmetric 



f 
Some properties of R are proved by the following theorem. 

t 

Theorem 3.1 The network of relations R defined by (3#2; represents an 

nary relation pf such that 

(3-3) p S P 1 

ti it 

Furthermore, no network R exists, which represents an n-ary relation p 
such that 

Thus,in particular, p « if ̂  is representable by a network. 
Proof Formula(3«3) is easy proved, because n-tuples a e p satisfy network Rf 

by construction. We will prove the second part by contradiction. Let a be an 
• i it 

n-tuple such that a © p but a ^ JO • Thus some projection b of a does not 
ti J ii y t 

satisfy a relation of R , say b « a g , S « » X ^ x X j . b C Rĵ j , while b t R ij. 
t ' — 

But i f the pair b was included in R ij it means that an n-tuple a £ p exists, 
— ' i ii such that a g « b. This is a contradiction because then "3 ft p while we 

ii 
assumed |5£ p . 

Q.E.D. 

As an example of the projection procedure let us consider the following 

relation: 

(3.4) f . (x||) 
The approximating network is: 

t |112\ jl 01 » 112 2\ 
1̂2 = |l 2 2l = 11 l| * |l 2 l| -

I 01 
II 

The induced n-ary relation is : 
. U 1 2 1\ 

2 (3.5) P - 1 2 2 
' \l 2 1 

A partial ordering among networks of constraints having the same number n 

of vertices can be introduced in a natural way. The ordering relation is defined 



as follows: 

(3.6) R £ r" iff R[j 9 R^j (i,j - l,...,n) 

The reflexive, weakly antisymmetric and transitive properties for network inclusion 

descend from the same properties for set inclusion « It is also clear that 

the set of all networks with n vertices is a lattice under £ because a least 

(Rij » 0ij) and greatest (Rij « U^. if i ^ j ; R ^ » I) networks exist. Thus 

union and intersection between two networks are defined. It is also immediate 

to see that 

(3*7) R f £ Rff implies p's p " 

where R f and R,! represent p* and p". 

We have seen that not all the n-ary relations are representable by a net*-

work of constraints. It can also happen that an n-ary relation p is representable 

by many distinct networks. For instance, relation (3.1) can be represented 

by the networks in both Fig.la and Fig. lb. Two networks R ? and Rlf which repre­

sent the same n-ary relation p are called equivalent. 

The next theorem proves the existence of a jnipima], network M representing j ? . 

Theorem 3.2 Let Sp be the equivalence class of all networks representing 

the same relation p • If 

R f £ Sp and R M € Sp 

also 

r = R f f| rI! € Sp 

(See for instance Fig la,b,c). As a consequence, a minimal (with respect to Q ) 

network M representing p exists, and can be obtained from p by the projection 

formula (3.2). 
t J! 

Prppjr To prove this theorem, we first notice that R £ R and R £ R , and 



thus an m-tuple a satisfying R satisfies also R ? and R™ for (3*7). Conversely, 
if a satisfies R* and Rft it satisfies also R • In fact, for each subspace 

t tt • t u 

S • Xi x Xj , if a s £ R ^ and a g 6 R ^ then a s £ R 0 R - R by the definition 

of intersection* Finally, the network obtained by formula (3«2) must be mini­

mal: if any pair b is erased by any relation , the represented 

relation p is changed. 
1 Q.E.D. 

Given an n-ary relation p representable with a (minimal) network of 

constraints M, and a subspace S«Xx x x X m of X, one could ask if the pro­

jection |>g of p : 

(3.8) p s = { a s | a £ p ) 

is representable with a network of m nodes. Interestingly enough, in the 

general case the answer is no, and a counterexample is given in Fig. 2. 

There, relation p is 

P = { ( xl,l ' *2,1 ' x3,l ' x4,l^ ' (xl*l ' *2,2' x3,2 9 x4,2^ ' 
( xl,2 > *2,i > *3,1 9 x4,3 }) 

If S X j ^ x X 2 x Xy pg is given by (3.4)« But, as we saw, (3*4) is not 
representable with a three-vertex network. If is representable for all S, 

then p and all networks representing p are called decomposable. If not, the next 

theorem gives the best approximating network for p^. 

Theorem 3.3 The best, minimal approximating network of pg is the complete 

subnetwork M^- of M corresponding to the set of vertices S « |x i , ... , X^ . 

P£2o£ This property descends immediately from theorem (3.1) and from the fact 

that if T = X^ x X^ is any bidimensional subspace of S, we have: 
( p s ) T - p t . 

' I Q.E.D. 



In the remainder of the paper we will be often concerned in proving that 

a network R is minimal: M * R. The next theorem gives a characteristic 

condition for R to be minimal. 

Theorem 3*4 A necessary and sufficient condition for a network R to be 

minimal, is that if a pair b satisfies the generic reletion R^, an n-tuple 

a satisfying R exists, such that a g « b , S - X^ x X^ • 

Proof Necessity. If R is minimal and b € R^j, an n-tuple aep must 

exist such that a g * b, because otherwise R with R^j * R ^ - j b | would 

be equivalent to R and smaller. 

{Sufficiency Under our assumption, no pair can be erased from any R^j still 

obtaining an equivalent network. Thus R is minimal. 
Q.E.D. 

The last theorem can be modified as follows. 

Corollary Given any relation R^. of R, if whenever a pair b belongs 

to R. . , an n-tuple a satisfying R exists such that as = b , S « X^ x X. , 
ij 3 

then R. » Ma a . 
ij J 

Proof This statement follows from the previous theorem and from the 

equivalence of R and M. 

Q.E.D. 

The above theorem shows that a minimal network of constraints is perfectly 

explicit: as far as the pair of variables and x^ is concerned, the rest of 

the network does not add any further constraint to the direct constraint VL^y 

Minimal networks are likely to represent an n-ary relation in a redundant 

way. In our application, for instance, we expect to define constraints almost 

only between geometrically adjacent elements. As a result, the density d of 

connections (defined as the average number of arcs per vertex) should be bounded,like 



that of a planar graph, d < 3 or at most should grow logarithmically 

with the number of vertices, but not linearly like in a complete graph. 

From the above reasoning should be clear that^in our applicationfnet­

works of constraints will never be given or stored as minimal networks. 

Furthermore, the trivial way of getting the minimal network, i.e., generating 

the n-ary relation p from the given R, and then M from p with (3.2) will be 

impossible in continuous cases and always practically infeasible. Therefore 

the problem of computing M from R in an economic way is nontrivial. On the 

other hand we can show that most of the practical problems arising from the 

use of networks of constraints can be naturally reduced to the central problem of 

deriving M. In fact, in the first scenario described in the introduction, if 

^Ok ^ = ^'•••>m) a r e the fundamental vectors corresponding to the already 

determined values of the first m variables, the intersection of images 

clearly represents the set of allowed values for the p-th variable. In 

scenario b), if we want to eliminate a variable (related to m others variables) 

using a sequential optimization method, we must optimize the objective function 

separately for all the feasible m-tuples of related variables. The set of those 

is the best approximating network of p^. Finally, in scenario (c) the 

minimal subnetwork K* corresponding to the parts which are not missing con­

stitutes the best reduced model. 

In a planar graph, the number n of vertices is related to the number a of 

arcs by the relation 

a < 3n - 6 
Equality is achieved if all the faces are triangular. 

k=0 

m-tuples is , if S is the subspace of the related variables. By theorem (3.3) 



4* Approximate solution of the central problem 

In this section we consider the problem of computing the minimal network 

equivalent to a given network. No exact general algorithm, besides complete 

enumeration, was found. However, an approximate solution is given, which 

generates an equivalent "closed11 network. 

In a generic network of constraints, a certain pair (x. , x. ) can be 

allowed by the direct relation R^j (or also by Rj^ t R±± and Rjj) but can be 

actually forbidden because it is not possible to give to all the other variables 

any set of values allowed by all the constraints. To recognize such pairs and 

erase them, namely to make explicit the global constraint, is the essence of the 

central problem. The central problem, in its generality, is very difficult. 

Graph coloring problems, for instance, are very neatly represented by networks 

of constraints: relations are all of the type U - I , i.e., all pairs allowed 

except those of the same colour. The number of allowed colours (i.e. the cardi­

nality of sets X^) and the topology of the graph characterize the particular 

problem. For instance, Fig. 3 shows the network of constraints representing the 

problem of coloring a tetrahedron with three colours: an impossible task* 

However, it is difficult to recognize it with a sequence of local examinations 

of the network, and without "higher order" reasonings. Needless to say, no hope 

exists to extend such tricks to the general case. Therefore we look for an 

approximation of the minimal network M, i.e.*a network Y which is as explicit 

as possible and still computable with local operations. 

Let us consider an ordered pair of values 



« 19 a 

and a path 

P « (Vi - V ± , ... , V i p , ... , V l m « Vj) m > 1 

in the complete network R from vertex to vertex V • The pair b is 

alloyed by the path, P if the variables 

*i - x i Q , ... , x i p , , x i m = X j 

can be given suitable values 
xi,r " xio,r 0 > ••• > x i p . r p > ••• > x i m > r m

 = xj,s 
which satisfy the relations 

V i ' # # # ' 9 " # 9 

along the '̂ path P. Note that the same vertex V k can occur in a path any number 

of times, and different values can be given to its variable x^ for each occur­

rence. A pair b is called legal if it is allowed by all the paths P from 
V i t o V j * W e s e e t h a t t h e P 1* 0^ 1*^ o f be:*-n£ legal is decidable in a finite 

number of steps• Finally, a network is called closed if any pair b which is 

not legal is also not allowed by the direct relation R^j • 

It is clear from the definition that minimal networks are closed• The 

converse is, in general, not true. For instance, the network in Fig. 3 (repre­

senting the uncolorable tetrahedron) is closed but not minimal. This also 

means that many closed networks equivalent to a given network may exist. Given 

a network R, its closure Y is defined as the largest closed network not larger 

then R but equivalent to R. The next theorem proves the uniqueness of the closure. 

Theorem 4.1 The set of closed networks not larger than R but equivalent 

to R (which is ordered under S ) has a largest element Y. Therefore Y is the 

only closure of R. 

* A path in R is any sequence of vertices. A vertex can occur more 

then once in a path, even in consecutive positions. 



Proof We must prove that the union of two closed networks Y * and y " both 

not larger than R but equivalent to R is a closed network Y not larger 

than R but equivalent to R. In fact from R 2 Y ? and R 2. y " we have 

R ^ Y f U Y M * Y . From R 2 1 2 Y ? , R equivalent to Y l *nd (3.7) twice, 

we have Y equivalent to R. Let ^ ± ^ r 3 * !• Then for X « Y U Y either 

Yij,rs = l o r Yij,rs " 1 o r b o t h ' s a y Yij,rs " ^ T h * n t h e ^ ± r b 1 8 ^ l ' r> x 

is allowed by P in Y ? for closure. Thus b is allowed by P also in Y , because 

the same set of path values satisfying Y f satisfies also Y , for Y * Q Y . 

Q.E.D. 

The closure Y of a network R can ^ characterized as being the solution 

of the following system of equations. 

( 4 . D Y±. = , £ H i k Y k . + d i j 

where 

d^j » I j l j if i • j ; d ij = Uj[j otherwise. 

A network of relations Y is called a solution of sysftpm ( 4 * 1 ) iff: 

i ) The relations Y ^ satisfy equations ( 4 * 1 ) • 

ii) No other network Y f exists, such that Y f satisfies equations ( 4 » 1 ) 

and Y f 3 Y . 

Note that condition (ii) is necessary for ruling out solutions which are 

not equivalent to R (like the trivial case » 0^) and that it does not 

imply uniqueness of the solution a priori. We can prove the following 

theorem. 

Theorem Lf2 Any network Y which satisfies system ( 4 * 1 ) is: 

a) Not larger than R. 

b) Closed. 



If furthermore Y is a solution of system (4*1)$ then Y is: 

c) Equivalent to R 

d) The closure of R 

Therefore only one solution exists. 

Ecssf a) From (4-1) we have 

V s
 h i 

Thus, by the mono tonicity property of composition: 

And finally, from (4*1) 
T« s "u h i £ h i 

b) Given any path P we will prove that if Y i j ^ r s
 s 1 a n d Y satisfies equa­

tions (4.1) then the pair b « (xi, r * xj/s^ i s a l l o w ® d P in R, i.e. 

the relations of R along P can be satisfied. We will prove this result by 

induction on the length m of the path P. If m=l the proof is trivial, 

because Y-jj is the only relation which must be satisfied. If the result is 

true for every path of length (m-l) it is true also for paths of length m. 

In fact, from (4#l) we have: 
Yii = Y. . G R i i Y i L 

Therefore at least one value x*„ - must exist, such that R̂- ~ ~ « 1 and 
T-l^l ^ L0 1l , rO rl 

T i l W l ? m " 1 # ^ r e l a t i o n Rioii i s s a t i s f i e d b y (xio,r0 > xii,ri ) ' 
while Y-. * ~ _ « 1 implies that the m-1 relations R 4 . , ... , R. 

can be satisfied according to the induction assumption. 

c) If an n-tuple satisfies Y, it satisfies also R, because Y £ R for a). 

Conversely, let a « (x,. , ... , x ) be an n-tuple satisfying network 
L ' r l n > n 

R, namely = 1 (i,j « l,..,n). We will prove that a satisfies 
J ' i J 

network Y too. In fact, if we assume Y. . = 0 for some i, j , it is possible 
1 J ' r i r j 



t 

to find a larger network Y Y (against ii)) satisfying (4#1) and 

such that Y.. » 1. For proving it, let 

Yij,rr - 1 J Y°5, r s - Y i < 3 , r s i* r ^ r ± and s ^ 
It is immediate to see that equations 

YWj k=l til * - " ' V ' 1 '^""j ' 7 > ^ ' V j 
are satisfied, while from Y satisfying (4*1) we have* 

c A 2 (^ A } A (i,J • : 3* rO 
from monotonicity of union and intersection. So we have J 

0 A 0 

rr. s T~ r . , t , , 

Now, if we compute iteratively 
P p-i 

we will have 

Y° G Y 1 £ ... S Y p 

from monotonicity of intersection and composition. Thus for some q we will have 

Y q „ y q + 1 . Y
T 

satisfying (4.1) and such that Y 1 2 Y° r> Y. 

d) Let Y be the closure of R« From the definition of closed network, applied to paths 

of length two, we have: 

*u * Yik \ i +
 d u 

Then from I £ R 

Y. . £ R., Y, . + d. . 

Summing up, we have:: 

5 « s £ ^ * d^ 
Actually, we must have equality, i.e.f(4.1)> because otherwise with the iterative 

method shown in part c) a network Y* can be found which satisfies (4*1)• Then 



—it — t — 
the proof of part c) shows that a network Y £ Y ^ Y can be found which 

satisfies (4*1) (and thus is closed and not larger than R) and is equivalent 

to R. The existence of Y would contradict the maximality of Y proved in 

theorem(4.l). Thus Y satisfies i). On the other hand, if Y is any solution, 

we must have Y £ Y for the same reason. Thus Y satisfies ii) and is 

the only solution. 
Q.E.D. 

The next corollary gives a simple way for characterizing a closed network. 

Corollary A necessary and sufficient condition for a network Y to be 

closed is to satisfy the following system of equations: 

(4.2) Y ± J = f Y i k Y k . + d i j (i,j - l,...,n) 

Proof. According to theorem (4.2b), if Y satisfies system (4*2) Y is closed. 

Conversely, if Y is closed, it must be the closure of itself and thus by 

theorem (4.2d) must satisfy equations (4*2). 
Q.E.D. 

The next theorem proves a useful property of closed networks. 

Theorem 4.3 In a closed network Y, the loop relations and the relations 

among different vertices satisfy the following equation: 

(4.3) - Y ^ U. ± • I±± (i,j - l,...fn) 

Proof From (4.2) we have 

T i i s *ijYji • i n 
and from monotonicity 

Yii a Yu uji + i n 

Furthermore, from (4.2) We have 

Y. £ Y.. Y, . 

In binary form we haves 
Yij,rs ^ Yii,rr A T l j f B 8 (r = 1,...,N± ; a - l,...,Nj) 



or, from a truth table 

Y. . C Y.. ij>rs 11,rr 
Making the union with respect to s: 

Vr' Y i j , r s ^ *ii,rr (r = 1,...,N.) 
s=l 

Equivalently we can write 
Yu uji +

 h ±
 Yii 

Therefore we have 

y " • ^ * 
Given a network R with n vertices we can give an algorithm for computing 

its closure Y. 

Algorithm Q 

Step 1 Y° - R 

Step 2 Execute next step for k = l,...,n 

SiepJl (4-4) Y*. - Yij 1 + Y ^ yJJ1 Y ^ 1 (i,j = l,...,n) 

Step 4 If Y 3 1 1 Y° then let Y° - Y* and go to step 2 j else let Y - Y 1 1 and stop. 

Theorem 4.4 Algorithm C computes the closure Y of R. In particular, if 

Y?, „ = 1 in the network Y 3 1 obtained at the end of the first iteration, then 

pair (x- . , x. ) is allowed by all the paths from V. to V. in R. 1 > r J>s 1 j 
Prppf We will prove that i) Y is not larger than and equivalent to R; 

ii) Y is closed ; iii) for every closed network Y 1 equivalent to R and not 

larger than R we have Y* £ Y ^ R. 

i) Each application of step 3 produces a network Y equivalent to the prece­

dent Y k~ X. In fact, clearly Y k Yk""1. On the other hand, if the second 

term in the right member of (4#4): 

\/k Y k 1 A Y k _ 1 A Y k _ 1 = 0 V Yik,rt '» Ykk,tt , l xkj,ts u 

XJ —1 
is zero for some r,s it means that no value for x^ can be found which 



satisfies relations Y k 1 , and Y, . for x. * x. ^ and x* =x, . 
ik ' kk kj 1 J 0>s 

k k-l 
Thus no n- tuple is excluded by Y which is not excluded by Y . Therefore, 

from transitivity of equivalence and inclusion, Y is equivalent to R and Y £ R. 

ii) We will prove that if a pair is allowed by Y then is allowed by all paths 

in Y°. We assume that when step 3 was executed (k-l) times, if a pair 

(x, , x. ) is allowed by the relation Y ^ 1 , then it is allowed also i,r j,s' * 
by all the paths in Y° with extrema in and V. and having all the inter-

mediate vertices with indexes < k-l. If k « 1 the assumption is trivially 

true. We will prove the same property for k after the k -th execution. Let 

us consider any path P from to having intermediate vertices with indexes 

< k. If vertex does not belong to this path, the induction step 

is proved. If it does, path P can be decomposed in three paths: 

a) a path from V.̂  to V k 

b) a finite (possibly zero) number of circuits from to 

c) a path from V k to 

All those paths have intermediate vertices -with indexes < k-l. 

According to the step (4*4) , if Y ^ r s = 1 , then a value x ^ t can 

be found such that Y*" 1
 x « 1 , Y^f 1 = 1 and Y ? 4 = 1 . Thus by 

ik,rt kk,tt kj,ts 

the induction assumption we can give to all the intermediate variables of 

paths a),b) and c) suitable values which satisfy the corresponding constraints 

in tP. When the algorithm stops, we have Y n » Y^ = Y and thus Y is closed. 
iii; Let Y £ R be any closed network equivalent to R. We will have 
* k i 

Y £ Y for all k and for all iterations of algorithm C. Thus also Y- g Y. 

Inductively, let us assume that Y 1 ~ Y k 1 before the execution of step 3. 

This is certainly true for the first execution of step 3 in the first itera­

tion: t° = R • Then Y * ^ Y k . In fact, if network Y* is plosed, it satisfies 



equations (4.2) for the corollary to theorem (4.2). In particular, we have: 

and therefore for the monotonicity of composition and intersection: 
' *i f f 1 

xij xik Ykk ^kj + aij 
and thus 

f t ? T t (4.4) Y±i - Y.. + Y i k Y ; k Y k . . d i J 

But from the induction assumption and monotonicity we have: 

(4.5) Ij, . 4 Y ^ Y ^ . S Y * f . Y ^ Y ^ 1 Y^; 1. d 4 J 

Now note that the d^j term in the right member is redundant because if i ^ j 

then d ^ - U ± 1 and if i - j then d ± i * I ± i and Y ^ 1 £ R ^ S j 

Thus from (4.3) (4.4) and (4.5) we have 

Y T C- Y k 

« ~ ^ Q.E.D. 

It is interesting to see how the number of iterations required by algorithm 

C is dependent on the order of vertices in step 2. For instance, in network R 

in Fig.(4a), if k « 1,2,3,4 then only one iteration is necessary for finding 

the closure Y ( Y ^ » $ij) # ^ k = 4,1,2,3 then two iterations are necessary. 

Fig. (4b) shows the network Y ? obtained at the end of the first iteration. 

According to the above theorem, if Y?* ^ 0 in the network Y obtained 

at the end of first iteration, then the pair (x^ - , x. _) is allowed by 

all paths in R. For instance in the above example for i = 1 , j = 2 and r - s.» 1 

and for path P » (Vi , , , V 2 ) values x ^ i , ̂ ,1 ' x 4 1 a n d x 2 1 

satisfjr the three relations R ^ , R^4 , R ^ along P. Note how this condition 

is not sufficient for Y T being closed. Thus in general one iteration of 

algorithm C is not sufficient. On the other hand, each iteration of algorithm C 

produces an equivalent, strictly smaller network, and thus convergence is assured. 



5. Fxact solution of thg central problem for particular classes of networks. 

In the last section we have been able to give only an approximate solu­

tion to the central problem in the general case. A closed network instead of 

the minimal network was obtained. We can now ask if there are particular 

cases in which a closed network is always minimal. 

In general, given a network R and a pair of vertices V i , Vj we are inter­

ested in knowing if the relation Y. . of the closure Y of R coincides with 

the relation M . o f the minimal network equivalent to R. In this case, net-

work R will be called regular with respect to pair VjVj* If R is regular with 

respect to all pairs of vertices, it will be called regular. Thus for a 

regular network R we have Y = M . In this section we will see that interesting 

classes of networks are regular. 

We can determine regular classes of networks in essentially two ways: 

either constraining the topology of the network or restricting the type of 

allowed relations. We will consider the former case first. 

A symmetric * series-parallel network (spn) with respect to a pair 

of vertices V.V. is usually defined recursively as follows: 

a) A complete symmetric network with two vertices and Vj is a spn. 
X f r t? « 

b) Given two spn fs with respect to V-̂ V.. and , the network obtained 
letting V* and V? coalesce is a spn with respect to V-jv" . 

In what follows, symmetry will be almost alwaj^s required, since a mini­

mal network is obviously symmetric, while symmetry is not assured for a closed 

network. On the other hand, an equivalent, symmetric and not larger network R T 

can be immediately computed from any R with the formula: R! . = R. . + RT.0 

-̂0 J j i 
Its closure Y is then symmetric, as is obvious from algorithm C. 



c) Given two spn fs with respect to V^V^ andvVv^ , the network obtained letting 
f 11 t ft 

V I « V± « VJ L and Vj = Vj « Vj is a spn with respect to • 

As usual, all missing arcs VjV. are assumed to correspond to the universal 

relations U^j. 

In the last section we saw that in a closed network Y a relation Y^j makes 

explicit the constraints given by all the paths from to Vy The next lemma 

proves that a closed network has the same property for all the subnetworks which 

are series parallel with respect to VjVj. 

Lemma 5.1 Let Y be a sjnnmetric closed network, and let R be any subnetwork 

of Y which is a spn with respect to V^Vy Let M be the minimal network 

equivalent to R. We have: 

(5.D T i t J C 

Proof According to the corollary to theorem (3*4) we must prove that if 

1ij,rs * ^en an m-tuple satisfying R (R has m vertices) such that x^ * x±fr 

and x^ = xj,s can be found. We will use induction applied to each step of the 

recursive definition of a spn: we assume that the property is true for the 

component networks and we prove it for the resulting network. For steps of 

type a), if Y . j ^ r s « 1 then ^^±sST

 8 5 1 for symmetry, while Y ^ r r * 1 and 

Yjj^ss -1 for (4*3)• For steps of type b), let be the vertex in the middle 

of the series. If Y^j^g =1 and Y is closed, then a value x^ » xk,t e x i s t s 

such that Y., . * 1 and Y, . . »1 and therefore the recursive assumption can iic,rt Kj,ts 
be applied because no constraint exists in R between two vertices in different 

components. In definition c), the recursive assumption can be directly applied 

to both components. 
Q.E.D. 

As an example of application of this theorem, let us consider again the 



coloring problem represented by the closed but not minimal network Y in Fig. 3* 

In Fig. 5a we have a subnetwork R which is a spn with respect to all pairs 

of vertices except V 2V^ . In Fig. 4b we have the minimal network M equivalent 

to R. Mote that Y ^ £ (in fact, Y ^ = M ) for all pairs except V 2
Y y 

The next theorem proves the regularity of some classes of networks. 

Theorem 5.1 a) Tree networks are regular. 

b)Symmetrical series-parallel networks with respect to a pair V.V., possibly 

with trees rooted at a.ny vertex,, are regular with respect to YaJ . 

Proof a) Let R be a tree network, and let Y be its closure. Given a 

pair VjVj, let P be the only connecting path in R,If Yij^ r s
 = suitable 

values can be given to the vertices of P which satisfy the relations of Y 

along P, since Y is closed. It is now easy to see that suitable values can 

also be given to the other variables. It is sufficient to evaluate them 

following the tree structure of R, i.e.,in such a way that each new vertex 

to be evaluated is adjacent in R to one already evaluated vertex (more than 

one vertex is not possible: a circuit woiild be present). Inductively, let 
xh,t b e t h e v a 3 - u e already assigned to x^. To x̂ ^ we can assigne any value 
xk,s s u c ^ ^hk,ts ~ ^* Such a value must exist, because otherwise 

Yhh,tt * 0 f o r t h e o r e m (4#3) and thus Yp h tt = 0 f o r a 1 1 p ( a& a i n f o r t h e 

same theorem) so that the value x^,t could not have been given previously 

to x^ according to this procedure. At the end, all the variables have been 

evaluated and satisfy the Y constraints along the tree, and thus also all 

the R constraints, because Y £ R for theorem (4-la), and R has constraints 

only along the tree. Therefore also Y is satisfied , because Y and R are 

* As with spn, the branches of the tree correspond to symmetric, 2-vertex networks. 



equivalent. Thus Y is minimal and R is regular. 

b) Let R be the spn and let Y be its closure. Let Y* be the subnetwork of Y 

topologically equivalent to R. We have Y £ Y* S R, But Y is equivalent 

to R and thus also Y f is equivalent to both Y and R from (3*7) twice. Now let 

M be the minimal network equivalent to Y* and thus to Y and R. For Lemma (5»l) 

we have Y^* £• K^j . But M and Y are equivalent and M is minimal. Thus 

*'i j * ^ij a n c* ^ -*-s regular with respect to VjVj. If trees are present 

at some vetices of the spn, we can find a feasible n-tuple evaluating the 

vertices of the spn first, and then evaluating the vertices of each tree as in 

in part a) of this theorem 

Q.E.D. 

In the remainder of this section, we want to determine a class of regular 

networks by restricting the type of allowed relations. We need the following 

definition. A network R such that relations R ^ and Rj^ (i = l,...,n ; i / k) 

firm a distributive set of relations (see condition (2.1)) for all k, is 

called a distributive network. We can now prove the following theorem. 

Theprgm,5*2 A closed, distributive network Y is decomposable. Furthermore, 

its symmetrization 

is minimal. Thus in particular if Y is symmetric, it is minimal. 

Proof We will prove first that if variables x^, ... , x k ^ can be given 

values x, , ... , x v , ^ which satisfy relations Y±* (i,j = 1 ,...,k~l), U,r x k l,r k_ x ij 
a value x, can be given to variable x, which, together with the previous Tc,rk 

values,satisfy relations Y-n" (i,j » l,...,k). From the assumption we have 

Y i i = 1 or equivalently 
* i j 
Vol ?±i V j 0 = U 0 0 i,j = 1 , ... , k-l 

where the fundamental vectors Vq^ and V^q are defined as 



V 0 i , r «= 1 and V i 0 > r - 1 iff r - r ± 

From the corollary to theorem (4.2) we have 

T^j S Y ^ Jjjj i,j • 1, ••• , k-1 
Prom monotonicity, we obtain: 

V0i Yik Ykj Vj0 = U00 
Summing with respect to i and j: 

k-1 k-1 
Yl v0i Yik Ykj Vj0 " u00 

Applying distributivity (2.1) we have ( F V 0 i Y i k ) ( t Y k j V 0 ) = U 0 Q 

i=l J=l 
Then a value X i . „ can be found, such that 

k-1 k k-1 ( H V 0 i Y. ) = 1 and ( J ~ Y V Q ) = 1 
i=l 0 1 i k » rk j-1 k J J 0 ' rk 

or, completely in binary form, 

Yik,r.r„ - 1 a n d TkJ,r.r. " 1 " 1 . - - » k " 1 

I K K j 

Therefore, from theorem (40) we have 
Ykk,r r = 1 

k k 
Finally, adding the inductive assumption, we have 

Observing that the ordering of variables is immaterial and using the above 

proof as induction step, we have shown that if a k-tuple b satisfies any 

complete subnetwork Y5" of Y , § - { Vi , ... , V, }, at least one n-tuple 
1 k 

a exists, whose projection on S is b, which satisfies Y. On the other hand, 

if b does not satisfy Y ^ y a does not satisfy Y by definition. Thus the 
g 

projection p of the n~ary relation p represented by Y is representable 
by I5" and therefore Y is decomposable. Furthermore, Y is minimal. In 

if Y ! . - 1 the unordered pair b • (x. , x. ) satisfies the two-vertex -J-Jjrs x9v j,s 



subnetwork Y^, S" = ^ X i , X i ^ . Then by the first part of this theorem 

an n-tuple a exists, such that a satisfies Y and ag • b . But Y is 

equivalent to Y f and thus a satisfies Y f as well. Therefore Y* is minimal 

for theorem (3«4)# 
Q.E.D. 

In what follows, it is convenient to consider a particular case in which 

a slightly different distributive property holds. Given a network R, let us 

consider the set D of all the relations equal to all the possible expressions 

obtained by combining relation with the operations of intersection and 

composition. If in D right and left distributivity of composition over inter­

section always holds, R is called star-distributive. In this case, given any 

expression, it can always be reduced to a sum of products using distribu­

tivity. It is immediate to see that each term of the sum is the constraint 

represented by a path between the same pair of nodes. Therefore every relation 

D in D represents the global contraint transmitted by some set of paths 

between vertices and Yy Especially interesting then are the limit relations 
* * 
* representing the global constraint transmitted by all the paths 

ft 
in R between and Vj. D is the corrisponding network, called limit network. 

The next theorem proves some interesting properties of D 
ft 

sm 5.3 Let R be a star-distributive network, let D be its limit net­

work, let Y11 be the network obtained after one iteration of algorithm C, and 

let Y be the closure of R. We have: 
a) D* = ' Y11 

bi D = Y 

Therefore Y « Y n and one iteration is sufficient for algorithm C 

* As usual, we assume D*^ £, 1 ^ (i * l,...,n) 



Prpof a) According to theorem (4*4), if ^ij^rs * 1 >
 t h e n t h e P8^1* 

(xj^ r , xj,s) i s allowed by all the paths in R. Therefore 

On the other hand, Y ^ y is obtained, in algorithm C , with a finite number 

of intersections and compositions of relations of R# Therefore Y ^ j is the 
•ft 

sum of some of the terms of which D^j is the sums thus 

D ! . £ Y » 

Therefore we have 

Dij = Yij < i f J -^•••» n) 
b) It is very easy to see that D* is the solution of system (4«l)» We prove 

first that D* satisfies equations (4»1). In fact, let us consider the rela­

tion Djlj • It is equal to the sum of the terms corresponding to all paths 

between and V*. The first factor of each term must be one of the relations 
Rik ( k ~ ^ • • • > n ) . Partitioning the paths and factorizing Rjj^, we clearly 

obtain the right member 

In fact if i 3 8 j the condition D^ f t 1 ^ holds by construction. Since D 

satisfies (4.1),from theorem (4#2) we have 

D* £ Y 

But we have 

Y £ f 1 

and, from part a) 

D* = Y 

Thus we have also 

D* = Y 
Q.E.D 



It may be interesting to see how in the star-distributive case algorithm C 

is nothing else that the solution by Gaussian elimination of the system of 

equations (4.1). We will show it with an example. If n - 3» we have 

Ylj = Rll Ylj + R12 Y2j + R13 Y3j + 6li 

Y25 ' 2̂1 Y U + %2T2J + ^3*33 + % j - l,...,n 

Y3j = *31J13 + *32Y2j + R33 Y3j + d35 
Now it is easy to see from a truth table that the solution of the single equation 

Z = A Z + B 

is 

Z = A B 

if we are interested (as we are) only in the largest Z. Thus applying 

distributivity,the first equation of our system becomes: 

Ylj = Rll dlj + Rll R12 Y2j + Rll R13 Y3j 
Then substituting in the other two equations, multiplying and factorizing,we get 

Ylj =
 h i

 dlj +
 h i

 R12 Y2j +
 h i h3 Y3j 

Y2j = ^1 Rll dlj + ( R22 + % Rll R12> Y2j + (R23 + *21 Rll R13 ) Y3j + d2j 

Y3j = R31 Rll dlj + (R32 + % L Rll R12> Y2j + (B33 + *31 R H R13> Y31 + d31 
The matrix of coefficients of this new system is exactly equal to Ŷ " 

if we notice that — 1 ^ and thus • a n d furthermore 

^1 Rll = Rkl + Rkl h i ' A f t e r elimination of Y 2^ and Y we obtain: 

Ylj = *11 dlj + A2 d2j + A3 d3j 

Y2o * "4 d U + 4 d2j + Y 2 3 Sj 
Y3J " *31 dU + ^32*3) + *33d3i 

For example, if we write the first equation for j « 2, we have: 

Y2P. " ??1U12 + Y12 + Y13U32 



if 

But it could be possible to see that 

. J£ Y?. U. . 
lj lk kj 

In conclusion we have 

We can also point out that algorithm C is similar to the Warshall algorithm 

[ll] for finding the closure of a relation or to the Floyd algorithm [12] for 

determining the shortest path between all pairs of nodes in a weighted graph, 

or to the algorithm for deriving a regular expression from a left linear 

grammar or from a transition graph [13]• The similarity is not casual. In fact 

all these algorithm can be considered the solution by Gaussian elimination 

of a linear system of equations in a suitable algebra. We can find the same 

analogy in Jordan algorithm for matrix inversion in the usual linear algebra. 

The only difference is that in this case the solution of the single equation 

Z = A Z + B 

is 

Z = (1 - A ) " 1 B 

while in our algebra, as already pointed out, the solution is 

Z = A B 

In what follows we impose restrictions on our relations for obtaining 

distributive and star-distributive networks. 

Let us define a partial ordering < in the set X^ of values of the 
"kic 

xariable x^. If is finite, a complete lattice structure is thus 

* Actually, the terms of the type Y^ k U kj would not even exist, if variable 

elimination had taken place separately for the different values of index j. 

For notational simplicity we will consider the partial ordering as defined 

on the set of indexes as well. For instance r < s is equivalent to x* ^ < 



superimposed on X^ together with the operations of sup and inf. A total 

relation R^. between a set X^ and a set X^ will be called monotone if it 

has the following properties: 

i) (5#2) if R i j > r s - 1 and t > r then Rjj^ts 8 5 ^ a n d conversely 

if R i j > r s
 8 8 1 and t <; s then R^j^ r^ • 1 

ii) (5.3) if % j , p 3
 = 1 > Rij,qs * 1 a n d r s inf(p.q) then Rij, r s - 1 and 

i f Rij,rp " 1 > Rij,rq e 1 a n d 3 3 sup(p,q) then R i j # r s = 1 

The next theorem will clarify the kind of relations allowed by the above 

definition. 

Theorem 5./l Given a total relation R^j, a necessary and sufficient condi­

tion for R to be monotone is that a defipipg function 

exists, such that 

(5.4) R i > 5, r s - 1 iff 3 < f i ) 3 ( r ) 

and 

(5.5) f^dnfd-!,^)) - lnfCfjLjC^J.fijCrg)) 

2T,by duality, that an inverse defining function 

g i j 8 X j X i 
exists, such that 

(5.6) R i j > r g = 1 i f f r £ g i j (s ) 

and 

(5.7) gij(sup( sits2)) « supCgjjCsjKgjjCsg)) 

Proof We will prove this theorem only for conditions (5.4) and (5.5). The 

proof in term of the inverse defining function is exactly dual. 

Sufficiency From equation (5.5) we have 

(5.3) if r x < r then t^irj) < *ij(r 2* 



Therefore if R. . = 1 and t £ r from (5.4) and (5.8) we have ij>rs 
s < f,,(r) <C f,,(t) 

and thus 

Rij,ts = 1 

If Rij^ r s = 1 and t < s we have 

t < s < f i ( j(r) 

and thus 

Rij,rt = 1 

If Rij, rp ~ 1 » Rij,rq = 1 a n d 8 " s uP(P»q) w e n a v e 

P < fij(r) and q < t ^ ( r ) 

and thus 

s - sup(p,q) < fij(r) 

therefore 

I f Rij,ps = 1 » Rij,qs = 1 8 1 1 ( 1 r = ^ ( P f O w e 

s < fij(p) and s < f ±j(q) 

and thus 

s <: inf(fi(5(p),fi(].(q)) = f ± J(r) 

therefore 
R. . = 1 ij>rs 

Necessity If a relation R. . is monotone it can be put in the form (5.4). 

In fact, given an element r of X^ let us compute the superior f^-Cr) of 

the image of r in R. For (5*3) we have 
j 

Thus, for (5.2), equation (5.4) is satisfied. Function fi;j(r) satisfies 

equation (5#5). In fact, for (5#2) we have: 



^ ^ ( i n f C i y r , , ) ) - 1 a n d
 H t . r J ^ i i i t i r ^ r J ) " 1 

and thus, for the definition of f: 

f^dnfCr^rg)) < t ^ r j ) and f ^ i n f C r ^ ) ) £ 

Therefore 

(5.9) f^ClnfCrp^))- £ infC^ ( r ^ , ^ (r 2)) 

On the other hand, we have 

From (5.2) 

^ ^^^^V^ijC^))88 1 a n d ^j^ginfCf^fr^.f^C^) 
Thus from (5.3) 

%j f i n f ( r l f r 2 ) lnf(f ( r ^ , ^ ^ ) ) " 1 

Therefore 

fijCinfCrx,^) £ InfCfijfr^tf^CPg)) 

Finally from the above relation and (5«9), equation (5«5) follows. 

Q.E.D. 

A few examples will clarify the kind of relations allowed by the mono­

tonicity constraint. For instance, if the partial ordering is also total, 

equation (5*5) can be substituted by equation (5»8), i.e. the defining function 

must be monotone. In Fig. 6a we see a monotone relation represented by a bipar­

tite graph. We have f±j(5) = k , f i ; J(4) * f±j(3) 88 2 , f ± j(2) « f^l) * 1. 

Conversely, gij(l) s 1 , gij( 2) 5 8 3 , Sij(3) - - 5« A special case 

of monotone relation, with infinite sets, is represented by the "shortest path11 

constraint 

s < fjLj(r) 3 8 r + d 

In fact, the shortest path problem in a weighted graph is a special case of 

our central problem. The network of relations R can be obtained from the 



weighted graph as follows. The set of values for each variable is the set of 

integers and all relations R^j (i,j « l,...,n) are monotone. If R ^ is spe-
R 

cified by the defining function f.. we have 

where are the arcs weights : t^j * tj^ , t ^ » 0 

We will see that the minimal network M has the same form: 
M 

*J * f i O ( x i } = * i * d i j 
and thus d. . represents the length of the shortest path from vertex Vjl to vertex 

J 

l y As a check, note that d ^ < t^. and so £ R i j # 

If the sets X^ are finite, the restriction to total relations could look 

heavy. On the contrary, a"floor" value x^ q and a "ceiling11 value ^ can 

always be added to X i such that * 0 q = 1 for all s and R . . » 1 for all r i.l • us ji,ru 
Fig. 5b shows the relation in Fig.5a without ceiling in X i and floor in X.. 

In general, monotone relations are considerably more powerful than simple 

"shortest path" constraints. For instance, the lattice structure of multidi­

mensional euclidean spaces can be used for specifying multidimensional rec­

tangular domains. In Fig 6c we see how defining functions f. . of R . . and 

gjjL of Rjjjl restrict to a rectangle the image of x ^ r in + R ^ . Different 

points x^ r can generate different rectangles, provided equation (5*5) is 

satisfied. 

The next theorem proves the closure of the class of monotone relations under 

the operations of intersection and composition and gives the rules for 

performing such operations in terms of the defining functions. 

JfcgQEgn 5*5 a) If r ! ^ and R^j are monotone relations represented by the 
f t! 

defining functions f^, and f ^ , then the sum: 



Ri.1 - Rij + 

is a monotone relation represented by the defining function 

(5.10) f ± j ( r ) * l n f ( f i j ( r ) . f j j ( r ) ) 

b) Likewise, the product 

Rij 2 8 Rik Rkj 
is represented by 

(5.11) f ^ r ) = f k j ( f l k ( r ) ) 

Proof a) Relation defined by (5*4) and (5*10) is evidently the 

intersection of R^j and R±y Furthermore Rjj is total, in fact we have at least 

Rij ,rf . . (r) = 1 a n d % j , g . . ( 8 ) 8 - * 1 

where g(s) is defined dually. Finally, function £* ̂  satisfies equation (5»5)s 
•*~XJ 

f ± ( inf ( r i , r 2 ) ) - int(£[^int{rltr2)),tn
±i(laf(rltr2))) -

= inf(inf(f' (r1),f^.(r2)),inf(f^.(r1),f^(r2))) = 

- infdnfCf^C^),^ ( r ^ ) , ^ ^ ^ ) , ^ ^ ^ ) ) ) -

- inf(fi.(r1),f..(r2)) 

b)The "if" part of (5.4) is trivial. For the"only if" part, if Rij, r s = 1 then 

an index t exists, such that Rik > rt "-. 1 *nd Rkj,ts " ^* Rik,rt *^ 

implies t < f ^ r ) . Thus from (5.8) we have 

• V t } * fkj< fik< r» - fij< r> 

But Rkj,ts 5 2
 1 i M P l i e s s < ffcj(t) and thus s < fj_j(r) . Relation R ij is also 

total because at least 
Rij,rf i > 5(r) = 1 a n d Rij, g i J(s)s * 1 

Equation (5#5) is proved as follows: 

f ^ l n f C r ^ ) ) = f k j(f i k(inf( r i,r 2)) = f ^ C i n f t f ^ C r ^ . f ^ ) ) ) = 

- ' l a f C f k j < f l k ( r l ) ) ' W P 2 ) ) ) " l a f ( f i J ( r l ) ' f i J ( R 2 » 
Q.E.D. 



Next theorem proves the distributivity of monotone relations, 

im a) Any set of monotone relations 

form a distributive set of relations with respect to set X^, i.e. 

(5.22) ( I V Q i R i k ) ( f Rk Vjo ) = ll V Q i R i k ^ V 
1=1 j=l 1=1 0=1 

for all fundamental vectors Vq^ and ̂ jq* 

Proof. For theorem(5.4) vectors RQk = V Q i R±k and RjjQ - R^ V^ Q repre­

sent subsets of of the form 

(5.13) R - 1 iff t < t and R = 1 iff t > t Ok,t kO,t 
Furthermore, intersection of two subsets of this form produces a subset of 

the same form. If 
t « 

^Ok = *Ok + 

we have 

RQktt - 1 . iff t < inf(tT,t") 

And if 

Rko ~ V> + 

we have 

Rk0,t " 1 i f f 1 ^ 8 u p ( t f , t ' ) 

We will prove that subsets of this form satisfy both left and right distributivity: 

(5.U) RQk (Rk 0
 + %)) = *Ok4o + ^k^kO 

(5.15) (Rjk * 4> Rk0 " R0k Rk0 + a0k ak0 

In fact, the right member of (5.1), in binary form, is: 
IIK . . . . N, 

< +V Rokft A \o,t > A ( V* 3ok,t A ak0,t > 
Applying binary distributivity, we have 

Y-i tV=i ( A R ok,t 2 ) A ( H K O , T L A i,t2> 



or equivalently 

t—1 1 = 2 * 2 - 1 2 

From ( 5 . 1 3 ) , if 

tt 
R ™ , 4. = 1 * *U.+ - 1 » . = 1 and - 1 Wj. = 1 ' Rok,t 2

 = 1 ' \o,tx 

then a value 

t « supC^.t ) 

can be found, such that 
t w R A = 1 , R . - 1 and R. .N . - 1 Ok,t kO,t kO,t 

Therefore equation ( 5 . 1 6 ) becomes 

V* Ho k, t A ( Ko.t A \ 0 , t > 

i.e., the left member of ( 5 « 1 4 ) # Formula ( 5 » 1 5 ) can be proved dually. 

From closure under sum, left and right distributivity we have: 

(|: nfc) t f . \ 0
) - t t, ^ k 1 ^ 

i.e., formula ( 5 * 1 2 ) 
Q.E.D. 

The next corollary will be useful in establishing star-distributivity. 
t t t t ti 

Cor.Qll§rx If R ± k > R i k > R i k , R ^ , R ^ and 1^ are monotone relations 
we have: 
( 5 . 1 7 ) R±k(Rl5 * r[5) = R . K < . • 

( 5 . 1 8 ) (4 . R ^ ) ^ - R ; k R k J . R j k R k . 

prppf Equation ( 5 * 1 ? ) can be written as 

V0i Rik < Rkj VJ0 VVjo) = ^ i ^ k ^ j O + V0i Rik Rkj Vj0 
for all fundamental vectors V Q ^ and V . . Q . Therefore it descends from ( 5 # 1 2 ) . 

The same is true for ( 5 » 1 8 ) . 

Q.E.D. 



We can now prove our final result. 

Let R be a network of relations such that: 

i) its relations R.. (i,j • I,..., 

ii) the loop relations Y?. (i « 1, 

,n ; i ^ j) are monotone and 

,...,n) of the network Y 1 1 obtained after 

one iteration of algorithm C are equal to unity. 

We can prove that: 

a) Network R is star-distributive. 

b) Network Y n is equal to the closure Y of R. All relations 

Y ij (i,j =» l,...,n ; i^j) are monotone. 

c) Network Y is distributive. 

d) Network R is decomposable and the symmetrization Y f of its closure Y 

is minimal. 

Pyopf a) From condition ii) and Y n £ R we have R ^ • I ^ . Expressions 

obtained by combining relations (if j = 1, ...,n ; i £ j) with the operations 

of intersection and composition evaluate to monotone relations for theorem 

(5.5)# The unity elements R ^ can be involved in an expression either under 

composition or under intersection. In the former case a monotone relation is 

trivially obtained. In the latter case the unity 1 ^ must be intersected with 

an expression representing the global constraint given by a set of circuits 

from to in R. In fact we can assume inductively that no unity is involved 

in this expression, and in this case distributivity holds for the corollary 

to theorem (5.6), and the expression can always be reduced to a sum of products. 

The result of the intersection operation must be again unity, because Y?. 1 
n $ rr 

for all r, and thus for theorem (4*4) all pairs (x. , x. ) must be allowed 
i,r 

by all circuits from V i to in R. In conclusion, the set D of all expressions 

contains expressions that either evaluate to monotone relations or to identities. 



Left distributivity 

(5.19) E i k (4j • E £ J > = E . ^ + E I K E K J 

always hold. In fact, if all relations are monotone, this property is proved 

by the corollary to theorem (5*6). If E ^ k is a unity, both members evaluate to 
t ft t f t T . 

E, . + E, . • If E, . or E, . is a unity, say E, . #we have k • j and (5«19) becomes 
Eik ( lkk + Ekk) s Eik Xkk + Eik Ekk 

But then E k k » I k k for Y k k « I k k , and therefore both members evaluate to 

Ej_k • The same proof holds for right distributivity. 

b) This part follows from a) and theorem (5»3)» 

c) This part follows from b) and theorem (5»6). 

d) This part follows from c) and theorem (5»2). 

Q.E.D. 



In this paper we have presented a formal treatement of networks of binary 

constraints. The main practical result was the discovery of an algorithm for 

adding to the direct constraint between .each pair of variables the indirect 

constraints transmitted by all the paths in the network. In particular cases 

the resulting constraint was proved equivalent to the global constraint repre­

sented by the entire network as seen by that pair of vertices. This result 

allows the partial or total utilization of the global constraint structure 

for reducing the set of feasible values of a variable to be determined, when 

the values of other variables are known. 

For the practical computer implementation of this method, the following 

requirements can be suggested: 

a) In the application under examination, most constraints must be reasonably 

represented or approximated by binary constraints or simple networks of binary 

constraints. Note that if we allow a constraint among m variables to be repre­

sented by a network of n vertices, with n > m, then the negative result of 

section 3 no longer holds, and many representations of the constraint, trivial 

and not, can be found. For instance, the ternary relation (3.4) which is not 

representable with a 3-vertex network, can be represented by the 4-vertex 

network in Fig. 2, as seen from vertices V^, V 2 and 

b) The resulting binary relations (finite or infinite) must be capable of 

being stored in an economical way in a computer memory. For instance, if the 

variables are points of m-dimensional spaces, a relation IL . could be stored 

Or just one, if all the other images can be obtained from it by a fixed 

procedure (e.g. translation). 



domains. Known tecniques of domain encoding can then be used. For instance, 

two given points are sufficient for determining a rectangular domain: this 

is often the meaning of functions ^ j ( r ) a n c* £ji( r) representing a monotone 

relation . 

c) The operations of intersection and composition must be easily definable 

in the chosen class of relations. In particular, this class must be closed 

\onder those two operations. For instance, this is the case of relations 

represented by domains, convex domains, domains enclosed by polygons or convex 

polygons, rectangular domains. 

d) The closed network is then obtained with algorithm C. The closed network 

should then be close to the minimal. For instance, we have coincidence for 

rectangular domains, and we expect reasonable closeness for convex domains. 

Bad results can be expected if the relations allow most pairs and forbide a 

few isolated pairs, like in graph coloring problems. Anyway, if the addition 

of a further constraint destroys regularity (i.e. closed ^ minimal), it is, 

nevertheless, convenient to add it. Maybe its addition will not be entirely 

exploited, but the monotonicity property of intersection and composition 

certifies that the modified closed network will be more restrictive. 
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1* Examples of networks of constraints. As a graphical convention, if 
both arcs V.V. and exist, but only V.V* is labeled with relation IL.. 
th^n arc Vyji is assumed labelled with J R L . Networks a), b) and cJJ 

are equivalent, and network c) is the intersection of networks a) and b). 





3. In this network, the relation 
10 1 1J 
1 0 1 
|l 1 0| 

is associated to every arc. 

This network represents the impossible problem of coloring a four-vertex 
complete graph with three colors. This network is symmetric and closed 
but not minimal. 



EAEjl&jl *) A symmetric network of constraints. b) The network of constraints Y 
equivalent to a) computed by algorithm C in one iteration, with order of 
elimination (U,l,2,3)* 



E;Ut 5. a) A series-parallel network with respect to all pairs of vertices 
" b ' I t s minimal equivalent network. All nonlabelled arcs 

0 1 1 
except VgV^. 

are assumed labeled with 1 0 1 
1 1 0 



4 

3 

4 

3 

4 

3 

r 

I 

1 
8ji( r) 

Fig. 6. a) An example of monotone relation. b) The relation in a) 
without "ceiling" in X± and "floor" in c) The rectangular 
image of element X j ^ r as allowed by the intersection of two monotone 
relations R ± i and Rj^* 
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