NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

510.7808
C28r
71-2

c.2

L*(F)
Final Version

by

A, Newell

D. McCracken
G. Robertson
L. DeBenedetti

Department of Computer Science
Garnegie-Mellon University

January 25, 1971

This work is supported by the Advanced Research Projects

Agency of the Office of the Secretary of Defense
(F44620-70-C0107) and is monitored by the Air Force Office
of Scientific Research, It may not be cited or reproduced
without the written permission of the authors.

T

TABLE OF CNNTENTS

Sections Start-Page

1-8 1 Introduction

9 2 Symhols

1~ 3 Types

1 4 Cells (7/C)

12 4 Integers (T/10)

13 4 Characters (T/K)

14 4 iLists (T/L)

15 5 Machine Code (T/M)
16 6 Proaram Lists (T/P)
17 & The L*1L Lanquage

18 6 Working Cells

10 6 Operand Communication
20 6 Interpretation

21 8 . ‘Control

22 8 aExternal Tnterface
23 9 Name Table

24 Q Read

25 1 | Vrite

26 11 Assembiv

27 11 Operating Systenm

28 12 Structure of Kernel Processes

17
1
12
13
4
15
16
17

18

TABL® OF CONTENTS

LIST OF APPENDICES

Memory Map of L*x(F32) Kernel

Functional Outline of Kernel

Eernel Processes

Kernel Data

Bootstrap Processes

Bootstrap Data

Tabtle of System Names

Abbreviations Used in Names

Outline nf Bootstrap Seaquence

Detailed Kernel Process Descriotions
Detailed Kernel Nata Descriptions
Operaticnal Notes

Listing of Bootstrap File BOOT,.LSF
Listing of EBEditor File FDTTP,LSF

Listing of Stepping Monitor File STPMP,LSF
Listing of UJtility Poutine Pile UTILF,LSF
Listing of Dictionary rile DTCTF,LSF

Changes from Version 37 to Version 32

1.

2,

L*(P) 1

L* is a system on the PDP1" for constructing software
systeas, which is under development at CMA hy A, Newvell,
D. McCracken, G, Robertson and P, Preeman. This version,
I*#{(F), is the sixth to be designed and the third to beconme
a running system., It is not the final version, by any
matter of means, PBach of these versions involves radical
redesign of one or more aspects of the system, Thus, L*(G)
(the next one, novw in the process of heing developed) is
not merely a polishing of T.*#(P), but differs suhstantially
From it. We are making L*#(F) available in a complete form
with documentation ton let others see wvhat we are doing, to
let them plav with it, and to submit a version to the
discipline of being completed and exposed to external
users. At some stage we will simply ahandon L*(F) and it
will have to live or die on its own,

This document provides a descriotion of L#(P) without a
detailed design rationale, A few principles are given when
they are appropriate to orient the user toward the systen.

L* intends to be a complete system for running and
constructing software systens., It does operate within the
limits of the 17-52 nmonitor systen of the PDP 1),
Completeness implies that one should be able to perform and
to construct systems for performing:

Processing of arhitrary data tvpes,
e,q9., symbolic structures, lists, numbers, arrays,
bit strings, tables, text.

Editing

Compiling and asserbling

Language interprating

Debugging

Operating systems (within the PDP12 monitor),
e.9., resource allocation, space and time
accountina, exotic control {parallel and

suparvisory control).

Communication between user and systen,
e.q., external lanquages, dyramic syntax, displavys,
etc.

L* is a kernel system, It starts with a small kernel of
code and data and is grown from within the system. Thus,
I+ does not perform all the functions above when it exists
only as a kernel. Tt does have means to construct systeams

5.

L*(™) 2

for them all. Whether gracefully or not we’ll +just have to
see,

L* is for the professional vprogrameer, It assumes
someone sophisticated 1in systems proaramming vho wants to
build up his own system and who will modifv any presented
system to his own requirements and preijudices,

IL* can be used with onlvy a small amount of
sophistication in list processing, but this 1is mostly
just for plav.

L* is intendel to be transparent. All mechanisms in the
total system are open for understanding and modification.
¥o mechanisms are under the floor.

L* is intended to provide coaplete access to the machine
(the PDP17), sSo0o that all the 12’s facilities can be
utilized (except, again, what the monitor prevents).

The memory lavout of the L«(F) kernel 1is shown 1in
Appendix 1. The kernel consists of a collection of
routines, a few small tables, a large symbol table, and an
initial allotment of available space. There is also a high
segqment (not shown) that contains one word for each symbol
in the main segment., These are for symbol descriptions and
will be dascribed 1later. The rontines cluster into a
series of subsystems, which are used in ippendix 2 to label
areas of the kernel, Appendix 2 aqives the names of
routines and Adata for each of these subsystems. There are
248 names in all, and Appendix 3 and Appendix # 1list then
all in alphabetical order with one line definitions.

These names are those chosen by us, the designers.
However, the names can all be changed,

The kernel 1is writtep in MACRD-17 , A listina may be
obtained from disk (see Appendix 12 for details).
(The names in the MACRAN-1T code are not changeable,
of course, unless yon want to build vour own kernel
-- which is 0K with us.)

Symhols, There are symbols in 1%, which are addresses
{18 bits) and serve to name all the data structures, The
symbol for a structure is invariably the address of the
first word of +the structure. Symbols may be tested for
equality (=S) or inequality (<S5, >S). New symbols may be
obtained by adding an increment to a ngiven symbol (+IS).
Conversely, the difference between two symbols {(an inteqer)

1.

L& (F) 3
may be obhtained (-5S5),

Symbols mav be created (C) or erased (E), and are always
tied to the creation or destruction of the structure named
by the symhol. That is, symbols 4o not exist in
abstraction from ¢the structures they name. (This follows
from the fact that a svmbol is the address of some word of
the structure it Adesignates,)

Types. Every symbol has a type, which determines the
structure of the data object the symbol desiqnates. There
are originally 6 types : cells (T/7), integers (T/7),
characters (T/K), lists (T/1), machine code (T/4) and
program lists (T/P), Hovever, other tvypes may bhe created
ani typaes may also be destroyed. only the minigum
necessary tynes have heen set up initialiy. For 1instance,
there are many kinds of structures in the kernel that do
not have tynes of their own, even though it mright he
appropriate (e.qg., external interfaces, tables of various
sorts).

The type itself is abstract, That 1is, there 1is no
symbol 1in the system that designates the type., For each
type there is a characteristic symhol, which is a sysbol of
the given type and designates a null structure of that
tyre. These are the symbols /¢, 7/%t, /K, T/L, T/M and
T/P ; they serve as names of the types,

To each type is associated a type index, which is an
inteqer that 1is wused to access tables organized by type
(called type tables). The type tables initially hold space
for 15 types, but it is possible to extendl the tables to
more types,

Symbols can be compared on +ype (=T), the characteristic
symbol of the symbol’s type can he obtained (T) or the type
index can be obtained (TT), A svymhol can also have its
type replaced (RT).

The type system for L=*(F) 1is mechanized by having
associated with each address a second cell which holds the
type index for the given address, hence effectively making
it of a given tvpe. These extra cells constitute the high

seqment. By convention of the ppo1” moni tor the
relationship between an address ¥ and its corresponding
cell in the high seqment is an increment of U47°703% octal

(called TD), The symbol description word for a symbol
holds the type index in the address field of the cell
(called the S-field in L#), The hiqh order 18 bit field
(called the N-field in L*) is not used for anything imn the
kernel. However, it 1is available for any use the user
vishes to make of it (e.g., as the holder for an
attribute-value association list for each symbol),

The main import of having tvpes is that (1) a process

11.

12.

13.

14,

L*(F) 4

may tespond differentially to the types of its operands and
(2) the availability of type information does not impose
structural constraints on the data structures, either by
pre-empting bits in the structures themselves or forcing
type indicators to be given explicitlv with operands. A
price is paid, of course, in taking half the total memory
to contain the ¢type information, {More exotic wvays of
holding the type information, which would conserve memory,
require more processing to determine the type, There are
Leasons to prefer the extreme point on the
memory-processing exchange to make type determination as
fast as possible).

Cells (T/C). A cell is simply an isolated word with no
specified internal structure, The two operations
performable on cells are tests for equality of contents

=C) and replacing the ceontents of one cell by another
(RC). This is the residual ¢type, in that anything not
otherwvise tvyped is considered to he ™/C

Integers (T/I). BAn integer is a full word 1integer in
the PDP1) format, i.e,, two’s-complement, The operations
that can be performed on integers are tests for equality
(=T} and for 1inequality (<I, >I), the replacement of one
integer value with another (RI), and the standard four
arithmetic operations (+I, =X, *I, /I, /RT), where there
are two division operations, one for the inteqer part, one
for the remainder,

Since integers are simply bit patterns in full cells, =T
and RY are identical with =C and BC . However, hoth names
are included in the kernel to wmake clear +the sets of
operations for each data type,

While internally integers are binary two’s-complement,
for external communication they must be taken to some base,
There is a c¢ell, WIB , that holds the base for the
integers,

Characters (T/K). Fach of the 128 characters in the
PDP10’s 7-bit ASCII character set has a corresponding
internal symbol in L*, These make up a separate type. No
operations are proper to this type. Vames have been given
to all non-printing characters; printing characters can use
their own print name (with some addition to distinguish the
character from a symbol with a one character name),

Lists (T/L). The main operating data type initially
available in L* is the list. The structure of the lists is
entirely conventional. ®Rach list cell holds two symbols,
the symbol (or content) of the list cell (S) and the name
of the next list cell (¥):

15,

L= (F} 5

il P P SR mp e g W VR o

The null list is NTL, which is T/L 1like any other 1list
cell:

NTL :] NIL } NIL 1

—— =y -

Howevar, the routines that erase symbols recognize N¥TL and
will not let it he erased. NIL in the W field of a list
cell terminates the list.

The name of the list is the address of the first cell of
the list, Thus, there is no way to name a list wvwith no
cells on it, The “most null™ list possible is:

e o W e v AR G W v e b e

—— M e W e -

The basic operations on a list are finding the symbol in
a list cell (S), finding the next list cell (W), replacing
the symbol in a list cell with another (®), and revlacing
the 1list c¢ell to be next (RN). Besides these there are
processes for insertinag a symbol into a list at a point (I)
and 1inserting it after the point (IA) ; also, for deleting
a list cell (D) and deleting the cell after (DRA).

Two proc=a2sses exist in the kernel for c¢reating and
erasing T/L (C/L, ¥/L). These illustrate a point about the
kern=2l: that all the processes in the kernel are made
available to the user. The two routines above are used in
other parts of the kernel, so are made available, They
conld easily be coded within 1* itself using C and E ,

Machine code (T/M)}, All the machine cole used in the
kernel is T/M , which allows it to be recognized, No
operations exist initially for wmwanipulating wmachine code
directly, though of course it can he processed by
operations of other types (e.q., =C, RC, R, RN, etc.).
Create (C) and erase (F) of course work on T/M, just as
they do on any type,

L& {F) 6

16. Program lists (T/P), Program lists are distinct from
lists of /L (i.e,, from data lists), which permits one to
be executed as program and the other haniled as data.
There 1is no reason why there should not be many data types
which are structurally identical bnt are typed separately
for some particular purpose.

17. The L*L language, The kernel comes with a single
programming language, called L*1. , ready to function with
ease, The kernel also has T/M, of course, but it is not so
easy at the start to create new programs of T/M or modify
existing onss, Lx*7. is a list language in the sense that
the program structures arec 1lists (i.e., 7/P). It also
pereits the processing of lists (i,e., data structures of
T/L or T/P), but it equally permits processing of all other
data types, What determines the efficacy of its processing
of particular data tvypes 1is onrimarily whether the
operations are available for the data types, The kernel
comes with a good basis for list processing, a reasonable
basis for integer processing, and only mimimal or indirect
bases for the others (including the as-yet-uncreated
types).

L*l. is 2 very simple 1language. It is not the only
language that can be created in Ls, nor does it even occupy
a privileged position, except that one is forced to start
with it. It should be possible to construct a second
lanquage within L#, such that L*L remains only as a command
language, or even is excised from the system entirely,

1R, Working cells, In setting up the system a number of
cells are required tco hold symhols, either temporarily or
to define the current context, All these cells are called
W cells and their names start with ¥ (mnemonic aid, no
structural significance). These cells are T/L, since they
are all stacks (i.e.,, 1lists which can be pushed and
popped).

19, Operand zommunication. When processes are executed they
must acquire their operands and provide their results in
some fashion so that the appropriate data can flow within
the entire set of processes makinag up a total activity. 1In
L*L this communication takes place via a single symbol
stack of T/L , called W (for the working stack). Thus,
each process expects to find its operands in the W stack,
and pushes its results into the W stack (after removing its
inrputs, naturally), Of course, processes can comnmunicate
with each other in any other way they wish (e.q,, via sonme
set of mutually understood <cells or 1lists), but such
arrangements are not part of the conventions of L=*1,,

27, Interpretation, Tach type has an interpreter for svambols of

L* (F) 7

that type that are to be interpreted, Thus, to define a
system of interpretation it sufficns to ajive the
interpreters for each type., The initial interpreters are

as follows:

Type Interpreter

T/C I/S
T/1 .1/8
T/K +I/S
T/L +I/8
T/M «I/M
T/P I/

Action

push symbol into

Push symbol into

Push symbol into

Push symbol into

Fxecute symbol as machine lanquage
subroutine.

Sequence down program list, interpreting
each symbol in turm,

e QK

Thus, the distinction between proagram and data 1is carried
by the type of the symbol -- data (T/C, T/I, T/K, T/L) qets
put into the operand stack, oprogram (T/M and T/P)}) qets
interpreted further.

The L*L lanquage is essentially as simple as it can be
and =still orovide unrestricted phrase structure. There is
no syntax in the program list other than sequencing. %ach
symhol is interpreted in isolation from its fellows, fore
and aft, though of course it is interpreted in the context
of the data stack, W, and all the other cells and lists
with their current values. ut these constitute the

semantic context,

not the syntactic context, of the symbol.

The act of interpretation occurs not only on a symbol of
some type, bhut in the context of some symbholic structure,
For exanmple, a program list can occur for interpretation

within another

progran list, or it can occur for

interpretation within a machine 1language routine, The

interpretation

to be the same in some abtract sense,

But the total processing is not the same, for the symbolic

context 1is not

the same, In particunlar, the interpreter

(for T/P, the type of the symbol in question) cannot find

the symbol to

symrbolic context,

interpreted without knowledge of the
Thus, there must he senparate

interpreters, not only for each type, but for each context
in which 1interpretation can occur, In the initial
situation this is only T/P and T/%, although the number of
such contexts could increase, For example, one might have

L*ALGOL and want

to exyecute T/P programs in it as

procedures, The set of contexts in which interpretation
can occur is not even necessarily limited to one per type:;
one could have a polish prefix language (e.g., T/PP) in
vhich routipes were written as (F X Y Z) so that the first
position (where the F is) is a distinguished context Ffron

the others (vwhere

the X, Y, Z operands are). Different

interpreters would be required for the tvo contexts, (The
remarks of this paragraph may seem abhstruse; they are meant

to explain the

double sets of interpreters that occur

throughout Appendices 2, 3 and 17,)

21,

22.

L*(TF) 8

The above intorpreters are not the only ones that occur
in the kernel. Sp=cial interpreters are used for T/K for
both reading and writing to an external 1interface, These
operate in conjunction with interpreters for other types,
since interpretation is always the result of a set of
interpreters (over types and contexts of interpretation).

Control. Control operations manipulate the sedquence of
symbhols ultimately interpreted, Thevy do this by
manipulating the stacks which contain the information about
vhat symbols and lists remain to be interpreted (WXS, WXN,
WHS, WHN)., These stacks are T/1 and are open to inspection
and modification by the user, as well as by the initial
control operations vprovided in the kernel, As a mnemonic
guide, all (and only those) routines that affect these
stacks start with a period (.). 211 of these control
actions occur in program lists. Control in T/M code occurs
according to the conventions of machine codinag,

The control actions make use of the structure of the
program in terms of lists and sublists, and there is no
conditional transfer to ancother location. Termination (.)
stops interpretation of the current program list and
ascends to the next higher list. Double termination (..)
stops 1interpretation of hoth the current prograr list and
the one immediately ahove it, thus ascending two levels,
Repeat (.R) starts over on the present program list (at the
same level, thus forming an iterative loop). These control
actions can be devendent on data, to wit, on whether the
symbol in ¥ is NTL {(-) or not NIL (#). (Note: the symbol
in W is an input to these processes; hence, it is no longer
in W after they have been interpreted.)

Besides termination and repeat, there are two execute
operations, . X exerytes the symbol in ¥ (after popping it
to make the operands for it available); ,.YCY executes the
symbol one down in W after qgoing into a new context given
by the symbol in the top of W,

The last control action 1{is .9 which is the gqguote
operation, It is the one kernel operation that is not
totally context free., Tt outputs to ¥ +the symbol that
follows it (the occurrence of ,(, that is) in the proqgran
list. Thus, the symtol following a .,Q in the program list
is never interpreted,

External interface., The PDPI" Monitor provides a way
for data to move across the interface to and from the
various peripheral devices of the PDP1P, To use this way
requires accepting the data formats specified by the
monitor. Thus there are small tables, called interfaces,
and buffers to receive and hold seguences of bits for
transmission. The kernel comes provided with two such

23,

24,

L*x{F) 9

interfaces, TTY for communicating with a teletype, and DSK
for communicating with the disk. Additional coomunication
{to printers, Adectapes, etc.) takes place outside of L»,
via say PIP, Bt a later stage of development newv
interfaces can be built; but the two provided wmake it
possible to get started conveniently.

The DSK inter face is set up to read a file called
BOOT.LSP and to write a file called PILT,.LSF . The TTY is
set up to read and write the user’s teletype.

Name table. & mechanism must he vbrovided right at the
start for making corresponiences hetween external names and
intermal svnhols, This 1is the name table (NT), It
consists of a sequential table with pairs of words, the
first holding a string representation of the external nanme
in 7-bit characters, the second holdinag the corresponding
symbol (in the S-field). The limitation to one word for
the name 1implies a limitation to S characters, where any
7-bit characters are permissible, The three operations
that are anpropriate with the name table are locating the
symbol given the name {(LSNT), locating the name given the
symbol (LNNT), and creating a symhol given a name (CSNT).
Tn the latter case the type of the new structure must bhe
given (in WTC)}),

The kernel itself is coded in MACRO- 17 assemhbhly
langquage, so that its symbols (on the MACRO-T{ listing) are
in the MACRD-19 symbol table, *11 of the symbols of
interest in this table are mapped into the initial L#* name
table (NT1), and appecar in Appendices 2, 3 and 4.

Read, In reading from an external interface, the
interface itself is 4ctivated, filling the buffer, as
dictated by the PDP17 Monitor conventions. This buffer is
scannad to create a list of characters {according to the
specifications of the interface). RD, the basic read,
simply creates this list (of type in WTCKL) and outputs it
to W. Reading of this list in order to extract information
from it is done by interpreting it in Read Context with the
reading interpreters (.I/K and .TP/K) for T/K . These
interpreters execute an action associated with each
character., The actions are processes stored in a character
table (in WRKT), wvwhich has an entry for each of the 128
characters, Thus, reading the list is an active process
that executes an arhitrary process for each character
(including blank), What actually happens depends entirely
on the nature of these actions.

AKT1 holds a set of character actions which serves as
the initial interpretation of the input stream. These
actions are described in Appendix 10. Essentially they
produce the following:

La(F) LES

(1) Strings of characters corresponding to names result
in their corresponding internal symbols being
pushed onto W.

{2) Strinas of Jdigits (possibly precerde2d by + or -)

result in an irteger heing defined according to the
hase in WTBR, with its name input to ¥,

(3) Semizolon (;) immediately terminates the line, after
which normally the next 1line 1is read in and
interrreted,

4) Exclamation mark (') imrediately executes the
process in the top of W, i.e,, it does a .Y .

(5} QDuotz2 (*) immediately executes .0, so that it puts
into W the next character (even if it is the space
character) in the input stream,

It can be seen that the last three actions are simply the
irmediate evocation of three of the control actions
available for a program list. The character actions taken
together essentially define a simple postfix system, such
that one puts the operands first into W following with the
process to be excecuted and then fires it {(!). Comments can
he hidden behind the semicolon,

The executive (FYXFC) continues to real 1lines from the
input interface until an end-of-file is reached, RD itself
breaks the input stream into shorter lists on the
occurrence of a break character (in WPDRK), This is
initially the line-feed character {(KLF). (This is needed
to avoid aqgetting an entire disk hufferful back as one 647
character 1list, which could cause initial space problenms),

Write. Writing to an external 1interface 1is done by
interpreting symbols im a sppcial context of interpreters,
In this Write ©Tontext, T/L- and T/P symhols are both
interpreted with ,.I/P (or .IP/P). 1i.e., by sequencing down
the 1list interpreting each symbol in turn. T/K is
interpreted by ,TWR (or .TPWHR) which 1lays down in the
output buffer the 7-bit ASCIT code corresponding to the
character symbol being interpreted. Buffers are given to
the PDP1? Monitor for output to the actual interface as
soon as they have been filled up, and also at the end of a
corplete writing operation (interpretation), Thus, lists
of character symbols are mapped by the vwriting interpreters
into the corresponding strings of characters at the actual
interface.

26,

27

L*(F) 11

Assembly. The asserbly operations ar~ oroviied to allow
access to the basic machine by depositing (assembly write)
and extracting (asserblvy read) bit patterns in memory.

Any symhol 2 has associated with it a bhit string defined
as the low order K bits of A - B where " is taken from the
type table in WBTT (the current base type tahle) and K from
the type table in WNRTT (the current number of bits type
table) according to the type of A, This association can be
two~-way, 1i.2., for a given ¢type one can reconstruct a
symbol by adding ® to the value of a bit string of length
Kl

The W cell WPTR is used to hold a machine byte pointer
{(T/C) for assembly operations, Ryte npointers can be
created and initialized to point to a given location (CPTR)
and can be erased (7). Byte pointers can bhe moved a given
number of bits to the right or left within the current word
(MVPTR). There are no special aoperations for changing the
word address of a bhyte pointer; however, the “replace
syabol™ 1list process (RY will accomplish this since the
word address field of a byte pointer corresponds to the
s-field.

The two assembly operations, reading and writing, are
hoth done by 1interpretation in a sprecial context of
interpreters, The key interpreters for "ssembly Read are
ones which extract a bit string according to the type of
the interpr2ted symhol (using the byte pointer in WPTR) and
push the associated symbol into W {.IX and .TPR®X). PFor
Assemhly Write there are interpreters (,IDP and .IPDP)
which deposit the bit string associated with the
interpreted symbnol into memory at the losation specified by
the byte pointer in WPTR .

There are sets of interpreters in the kernel for both
Assembly Pead and Assembly Write, Thev are identical to
those in the initial interpreter set (see section 27),
except that the interpreters for T/K are changed to .IEX
and .TIPR®X for Assembly Read, or .INP and ,TPDP for Assenbly
Write,

Operating system. Grouvped under what we <call the L#
operating system are processes which perform the following
functions : :

(1) ®rror handling and recovery (ERROR),
(2) Debugginqg cavabilities (DERNUG).

(3) Saving of core images for later restarting (SV),.

(4) Resettina I/0 interfaces for reuse (RSIFP, TRSIFB,

28.

T+{(F) 12
RSIFR).
{5) Zntering monitor mode from L*x (HALT).

() Entering L* from monitor mode (™CONTINUP™ , ™START
147% (STI47) , “START™ 141% (ST1471) , ®START 142"
(s™142)),

(7Y Context-<hanainqg (PCX, RCY, NCX, SAPCX),.

{8) Obtaining core from the Monitor, and returning core
(cse),

{3) Space-exhausted condition handlinag (routines 1in
SPYXTT),

See Appendix 17 for detailed descrintions of the processes
appearing ahove within parentheses.

Definition of the space-exhausted processes (function
{(9) above) is dAelayed until the bhootstrap; initial
available space lists for each tvpe suffice until the
bootstrap sequence can dafine CSP/7 , TSP/T , CSP/L , CSP/M
and CSP/P and store them into typne table sPXTT , See
Appendix 12 for details of these create-space processes,

Under function (5) ahove, there are sevaeral other ways
of getting into monitor mode from L%, and users may very
well discover yet others, The following is a 1list of
conditions we know will canse entry into monitor mode fronm
L= @

(a) Control-~, 0Ope will suffice if Ls 1is doing 7T/0,
othervise two are required,

(b) A PDPI? monitor-detected error. TFT.q., “ILLEGAL UNQO
AT USWR nNanTIdw,

(c) The L% process HALT .,

(1) The L* process 5V .,

(e) Returninag from the call on DERUG in STI41 ,

(f) Returnint from the call on ®Y®C in ST140 |

(g) Exiting from the very first call on TXZC rmade by L+#

wvher it first comes up.

Structura of the kernel processes, In order that they
might be used in many different contexts, most of the
kernel processes were coded as independient 1little units
vhich obtain their inputs and pass back their outputs via
machine registers, We call these units the stems of the

L*(F) 13

processes, Calls on the processes from machine code (e.q.,
from other processes in the kernel, or possibly fron
compiled code) are made directly to the stams with
registers (®1,R2,etc.) used for input-outont communication.
(Ré 1is the highest recagister available for this purpose;
hence, it would not be possible to have a process expecting
more than six inputs without adortina some adAditional
comventions), These process stems are 2a1ll called via a
PHSHI MSTKP,<stem addr> instruction, anrd return to their
caller with a “POPJ MSTRP,™ instruction; i.e., the linkage
is always done through the machine stack MSTK

When kernel processes are called by the wmachine code
interpraters .I/F and .IP/M , input-ontput communication
must be done throuagh W . To handle this, the kernel
processes must have “prefixes™ which surround the process
stem to transfer inputs from W to registers for the sten,
ant outputs from registers back to W when the step has
completed, (*prefix™ is actunally somewhat of a misnomer
since the prefix does often surround the stem),

The input-outout characteristics of the kernel processes
are such that only 8 diffoarent tynes of prefix are needed.
To conserve space, 8 prefix subroutines (P21, P12, P11,
P12, p2¢, D21, D22 and P33) were created which take a
nonstandard input (in R6) telling which vprocess stem is
being interfaced with, These prefix subrountines operate by
first transferring inputs from W to registers (R1 for W(2),
R2 for W(1), etc.). 7Tf no output handling is necessarv {(as
it is not in P17 and P20), the process stem (address in BA)
is transferred to, and it will return to the caller of the
entire process, When output handiing is necessary, the
stem 1is c¢illed as a subroutine of the prefix subroutine,
Then when the ster returns control, outputs are out back
into W from the registers, and control is returned to the
caller of the entire process.

The name of a kernel process names the entire process
including the preofix., The name of the stewm in the MACRO-1D
listing is obtaired by puttina a “3* in front of the
process name, Below 1is an example of the code for a
typical kernel process with a orefix :

<prefix> RN Jsp 86,P20 : call prefix subroutine P29
: Wwith ™6 pointing to stenm

<stem> ZRN: HRLM R2,{R1) ; rnrplace next of W(") input
H bv W{") input

<stem> RITURN 3 raturn to caller

Note that prefixes of kernel processes are in a
preferred position in that they always immediately precede
their stem. This will of course not always be the case,
particularly if a stem is ever to have more than one
prefix.

Pecimal Octal

~

9+

417

51@

6h7

814

N

189

641

g7

1233

1856

Appendix 1 - Map of L% Kernel

- — . e A W TN e A A R e

| Operating System {
| start locations i
| error locations |
] syster initialization }
H prefix routines 1
| operations }

| Symbol Operations
i symbols
types

]

|

!

|

|

! Data Type QOparations |
| cells T/7 |
| inteqers T/1 |
! lists T/L T/P |
U |
[L«I. Operations |
| control |
! operand communication !
| interpretars 1
UG |
| ¥xtarnal Intarfaca Operations |
| name table i
I read |
1 write |
|

|

Assembly Operations

[
e e
!

|

m/C (except NIL, WPTR,

¥yITT, WIDTT, W, WXS,

WHS, WH™Y : T/1)

<~ _START 140 {(return)

== ,START 141 {(debnq)

== ,START 142
{continue after save)

T/ M

Appendix 1 - Map of L* Kernel

S SR, J

1174 2226 | Symhols of Various 7Tvoes \ =T/C,T/1,"/K,
] T/C,T/T ,"/K,T/L, T/, T/D) /L ,T/M,T/P
S |-

1366 252h Interfaces

DSK TTY

2322 3722 -EEEEE;"-—Q--—q_--__*-_-““_-~~-

T/C

action character table
name table

save areas

machine stack

| e e e
3683 7143 | T/C Tnitial Available Space

!
|
|
|
| type tables
!
|
]
]

| 256 {decimal) cells | T/C

e e e e m |
3939 7S43 t T/® Tnitial Availabhle Space |

| 256 {decimal) cells] T/N

e I-
4195 17143 + T/I Initial Available Space |

| 256 (decimal) cells | ™Y

b e e e e -
T/L TInitial Available Space |

1282 (decimal) cells | /1
+ 64 reseorved cells |

4451 17543

5725 12243 */P Tnitial Available Space |

1384 (decimal) cells | T/P

e e e I~
7139 15743

!
!
i
ORI I
!
!

Appendix 2

Punctional Outline of Kernel

SYMBOLS -
SYMBOLS -
OPFPATIONS: =3 <8 >S5 +I8& -85 © E
SYMRNLS: TR NIT
TYPES -
OPTBATINNS: =T T TI RT
SYMBOLS: T/C T/ /K T/L T/M T/P TD TTN TTT
W CELTS: wrTT
DATA TYPES -
TFLLS T/C -
OPRERATINNS: = RC
SYMROLS: T/C R1 R2 R3 RU RS RA
INTEGTZRS T/T -
OPRRATTONS: =Y <T >T +T -T I /7T PI
SYMROLS: T/71
CHARACTERS T/K -
OPERATIONS: {NONR)
SYMROLS: T/K KRFTLL KBSP KLF KVT KFF KTAB
KCR KSP KALT KTN KES
LISTS T/L -
OPERATIQONS: S NR BN TTIADDAC/L B/0 7L
SYMBOL=: T/L
MACHRIXE COD® T/M -
OPERATIONS: (NONE)
SYMBRDOLS: T/7M P21 P17 P11 P12 P22 P21 P22 PN
PROGRAM LTSTS T/P - .
OPZRATIONS: {SAME AS FOR LISTS)
SYMBOLS: T/P
L%L: INTTTAL LANGUAGF AVATIABLE TN L=
CONTEROL -
OPFRATTONS: » o+ + T e oo"' ' -R n?"’ .B- .x
NOP
OPERAND COMMUNICATION -
OPERATIONS: POV
W CELLS: W
TNTERDPRETERS -
OPERATIONS: I/ .T/P .I/S IP/M TB/P LIP/S
SYMBOLS: » IT? ,IPTT STOP
W CELLS: WXS WXN WHS WHN WITT WIPTT

EXTERNAL INTERFACE -

NAME TABLE -

Apnpeniix 2 - Functional Outline of Kernel 2

OPERATIONS: LSNTW LNNTW CSNTW LSNT LNNT CSNT

SYMBOLS: NT1 NTI1T KTIN
W CTLLS: WNT WTC
READ -
OPERATIONS: RD .T/K . IP/K ABND ANK ADX A+K A-K ACCD ACCK
SYMBDLS: AKTT NACC ISGN INUM TINUMF OCTAL DECML
RNCY RDpT™ RDPTT
W CPLLS: ¥nD WTCKL WPDBRK WK WAET WIR
WRITE -~
OPRRATIONS: W? CUYNKL CVIDL , IW? ,IPHR
SYMEDLS: DZTRL DECML WRCX WRTT WRPTT
W CELLS: WWP WTCKL WIRB
IRTFRFACES AND FILES -
SYMBOLS: TTY DSK
ASSEMBLY -
OPEPATIONS: . IDP ,IEX .TIPDP ,IPRYX CPTR MVPTR
SYMRBROLS: ARTT AEPTT AWTT AWPTT RTT NRTT SEVEN
W CFLLS: WPTR WRTT WNBTT

NPERATING SYSTEM -

OPERATIONS: FYEBC DFRUG ERROR PCX RCY "CY SWPCX HALT
5V RSTF RSTFB RSIFR (CSP

SY¥MBOLS: DRCY SPTT SPXTT ST14" ST141 ST™142
N/7C N/I N/L N/M N/P N/PRL
MSTK MSTKP MSTKN MSTXM
R1SV »28V R3SV RUSV RRSV w5pSY

W CELLS: WDBC ¥DBCX WSPTT WSPXT WSPRL

Appendix 3 - L#(F) Kernel Processes 1

In the coluern following the name 1is the name of the prefix
subroutine used by the proress, indicating the number of standard inputs
and outputs the process has, Although there 1is no prefix subroutine
named P2 , it is wused ¢to indicate a process has no inputs and no
outputs. { sSuch processes actually have a no-op as a prefix). A blank
entry indicates that the process does not have a prefix for standard
handling of ianputs and outputs.

+T P31 MULTIPLY % (1) TIMES W(2), RFSULT TO W(M) (T/1)

+T P31 ADD W(1) Tn W(2), PRSULT TO W(Y) (T/T)

+1S P21 ADD INTEGRR W() TO SYMBNL (1), SYMBOL PFSULT W(9)
-1 P31 SUBTRACT W(1) FROM W(2), FESUL™ 70 W{?) (/1)

-S§ P31 STRTRACT SYMBOL W(1) PROM SYBOL W(2), RESULT TO W(?) (T/I)
. POf EXTT UNCONDITICNALLY

L+ P17 FXTT IF ¥(*) NNT = NTL (POP W)

.- P10 EXIT TF W(') = NTL (POP W)

- PAC EXIT THO LIVELS MNCONDITTIONALLY

o # P1f EXIT TWO LEVELS TF W({) NOT = NIL (POP W)

e P17 FXTT TWO LEVELS IF W{)) = KTL (POP W)

LI/K INTERPPFTE2 FO? PEADING (T/K)

LI/ INTTIAL TNTERPRETER FOR T/M

.I/p INITI?T, INTERPRRTER FOR T/P

LI/8 INITIAL TNTERPRETER ®0P T/C,T/T,T/L

. TDP TNTERPRETER FO® DEPOSITING (T/K)

. I°X INTERPOFTER FOR? SXTRACTING (T/K)

.IP/K INTTRPRETED® FO™ BEADTNG IN T/P CONTEYT (T/K)

LTo/% INTTIAL INTERPRETER FOR ™/4 TN T/P CONTEXT

.12/P INTTIAL INTFRPPETER FOR T/P TN T/P CONTEXT

.IP/S INTTTAL INTFRPRETER FOR T/C,T/T,™/L,T/K TN T/P CONTEXT
.IPDP INTERPRETER FO? DEPOSITING IN T/P CONTEXT (T/K)
LIPEX INTERPPETER FOR RXTRACTING TN T/P CONTEXT (T/K)
.IDWR INTFRPRETER FOR WRITING IN T/P CONTEYT (T/K)

L TuR INTERPRETER FOP WRITING (T/K)

.0 P}1 TINPUT NEXT SYMROL TO W AND ANVANCF PAST IT

R PNY PREPEAT CURAENT LWVEL

R+ P10 PEPEAT CURRENT LEVEL IF W(2) NOT = NTL, POP ¥

JR- P17 RWPEAT™ CURRFNT LEVFL IF W(") = NTL, POP W

X P1Y EXFCUTE W(?) AFTFR REMOVING IT

.XCX P2C EXFCOTE W(1) IN CONTEXT W(")

/T P31 DIVIDE W(2) BY W(1), INTEGER QUOTIENT 70 W(0) (T/I)
/RI P31 DIVIDE W{(2) BY W(1), REMAINDER TO W(") (T/I)

<1 P21 TEST INTEGTR H(2) < INTEGER W(1)

<8 P21 TEST SYMBOL W(?) < SYMPOL W(1)

=C P21 TEST CONTENTS OF CFLL W(%) = CONTENTS OF CELL W(1)

= P21 TEST INTEGER W(D) = TINTRGER W(1)
= P21 TEST SYMROL W(') = SYMROL %(?7)
= P21 TEST IF ®W(?) IS SAMFE TYPE A3 W(1)

>T P21 TEST INTEGER W(2?) > INTEGER W{(1)
>8 P21 TEST SYMBOL ®{(") > SYMBOL 9(1)
A+K ACTION FOR CHARACTER +

A=K ACTION FOR CHAPACTER -

ABND BOUNDARY ACTION,

ACCD P1N ACCUMILATE DIGIT CHARACTER INTO T/T INUM
ACCK P10 ACCUMULATE NAME CHARACTER INTO T/C NACC
ADKR ACTION FOR DIGIT CHARACTERS

Appendix 3 - L*(F) Kernel Processes

ANK RCTION FOPFP NAME CHARACTERS
C P11 COPY W(l)
C/L PY1 CREATE T/L SYMROL

CPTR P11 CRPATE BYTZ POINTER ROP LOCATION W(Z)

CSNT P11 CREATY SYMROL WITH NAME W(%) TN NAMT TABLE

CSNTW P21 CREATT SYMROL WITH NAME W(1) IN NAME TABLE W({Z)

ZSP P2t CREATE SPACF PROM MONITOR OF LENGTH W(1) OF TYPE OF W(7)
CYIDL P11 CONVERT INTEG2R W(") TO DIGIT™ LIST

CYNKL P11 CONVERT NAME W{2) TO CHARACT®ER LIST

D P12 DELETE CRLL W(7)

DA P17 DELETF CELL AFTRR W(l)

DERIJG PO TFNTER DEBUGRGING MODE

= P12 ERASE SYMBOL W (M)

/L P10 ERASE T/1 SYMROL W(3)

EL P17 ERASE LIST W (M)

Z]R) MACHINE STACK UNDERFLOW ERRORN

TRR1 CENTRAL PROCESSOR TRAP ERROR

TRA2 FON-BXISTENT ,TPTT ENTRY ERROR
ERR3 NON-EYTISTENT ,ITT ENTRY ERROR

TRTY NON-EXISTRENT ARPTT EWTRY ERROR
nR15 NON-EXISTRNT ARTT FNTRY ZRROR

TRR6 NON-EYISTENT AWPTT ENTPY ERROR
BRR7 NON-EYXTSTSNT AWTT ENTRY ERROR

FRRB NON-FYISTENT RDPTT SNTRY FRROR
ERR9 NON=-EXTSTENT m»NTT ENTRY ERROP
FR?17 NON-EXTSTENT SPXTT ENTRY FRROR
»RR11 NON-EXTSTRNT WRPTT ENTRY ERROR
2RR12 NON-FXISTENT WRT™ ENTRY ERROR
TRO13 SETHWP FRRFOR RETURN DURING A RESTACT
TRR1U CORE 000 ERROR RETHRN IN CSP

TPR15 OUT O SPACE TH NAME TABLE - CSNTW
ERR1#£ ERRDOR RETOS¥ FROM OPEN - RD

ERR17 ERROR RETURN FROM LNOKOP - RD
Enn18 ERROR RETIHRN ¥ROM IN - RD

TRR10G RRROR RETURN ¥70M OPEN - WR

anp2l FRROR RETHRN FROM FNTER « WR

mRR21 ERROR RETHRN FROM QUT - WR

ERR22 ERROR RETURN FROM OUT - |, IWR 07t ,I2W7

FRRIR PR TNTERPRET TRROR ROUTINT IN WERR APTER NERNG SWAP
EYFC P20 MATN BXRECOUTIVR : READ AND INTERPRET LINES FPOM TTY
FA LT POC GO INTO MONITOR MOLR

I P27 INSERT W(1) AT W(?) (PUSH AND REDPLACT)

I P20 TNS®RT W(1) AFTER W(C) (DPUSH, ADVAMCT AND REPLACE)
LNNT P11 LOCATE NAMZT FOR SYMRBOL W{D) TN NAMP TABLR®S

LNNTW P21 LOCATE NAME FOR SYMBOL W(1) TN NAMZ TASLE W(3)

LSNT P11 LOCATT™ SYMBOL TOF NAME W(0) IN NAMZT TARLES

LSNTW P21 LOCATE SYMBOL FOF NAMF W(1) TN NAME TABLE W())

MVPTR P20 MOVE BRYTF POINTER W{(?) W(1) BITS WITHTN CUPRENT WORD

N P11 GET NEXT OF ()

NOP P3N NO OPERATINN

P P12 PUSH W

pI1 PREFTX =TN FOR PPOCESSES WITH NO INPUT AND 1 OUTPUT
P17 PREFIX RTN POR PROCESSES WITH 1 INPUT AND NO QUTPUT
p11 PREFIX RTN FOR PROCESSES WITH 71 INPUT AND 1 OUTPUT
P12 PREFIY RTN POR PROCESSES WITH 1 INPHT AND 2 QUTPUTS

p2°7 PREFIX BTN FOR PROCESSES WITH 2 YNPHUTS AND NN OQUTPUT

p21
P22
P31
BCY

R

RC
RCY
2D

RTY

Yy
RSYF
RSTFRB
RSTFR
RT

s
ST
ST
ST142
5V
SWPCX
T

TI

n

ncx

v

KR

p1°
p2¢C
P27
PG
P11
pan
P29
pir
P10
P12
P20
P11

PO

P10
P11
P21
pPiC
P10
P22
P20

Appeniix 3 - L*(F) Kernel Processes

PREFIX RTY¥ FOR PROCESSES WITH 2 INPITS AND 1 OUTPNT
PREFIY RTY¥ FOR PROCISSES WITH 2 TNDPIUTS AND 2 OUTPUTS
PREFIX RTN FOR PROCESSTS WITH 3 INTPHOTS AND 1 DUTPNT
PUSH ZONTEYT ACCORDING TO TONTRYT LIST W(")

REPLACE SYMBOL OF W(7) BY W{(1)

REPLACE COMTENTS OF CTLL W(T) BY CONTENTS OF CELL W(1)
REPLACE CONTEXT ACCORDING TO CONTEXT LIST W(})

RFTAD FROM TNTERFACT W(2). PESHLT ¥W(*) = CHARACT®R LIST
REPLAC® VALUE OF INTEGER W(?) BY VALUE OF INTEGER W(1H)
REPLACT NEYT OF W{(7) BY W(1)

RESET INTERFACT W(")

RESET TNTFRFACTE RUFFERS (W(") IS RUFFER HFADER)
RESET TNTERFAC® RING (W(3) POTNTS TNTO BUFFRR RING)
REPLACE TYPE OF SYMBOL W(2) WITH TYPE TNDEX W (1) (T/1)
GET SYMROL OF % (.)

REENTER FEXEC

ENTER DEBUGGING MODNE

CONTINNE ASTER S3VE

SET UP TO SAVE FOR RESTART

SWAP CONTEXT ACCCRDTNG TO CONTEXT LIST W{(()

QUTPHT CHARACTZRISTIC SYMBOL FOR TYPT OFP W(M)

SET VALUE OF INTEGFER W(7) = TYPE INDEX OF ¥W(1)

POP W .

POP COMTEXT ACCORDING TQ CONTEXT LIST W(9)

PEVERSE W{?) AND W()

WRITE (1) TO INTERFACF W(1)

Appeniix 4 - L*{F) Kernel Data

. TPTT STANDADRD INTERPRETRER TYPF TABLE FOR T/P CONTEXT

LI BASIC INTERPRETTR TYPR TARLW™

AKT INITIAL ACTION CHARACTER TABLE

ARPTT ASSEMPLY PRAD INTERPRRTFR TYPE TARLE FOR T/P CONTEXT
ARTT ASSEMRLY REZAD TNTERPRETER TYP® TABLE

AWPTT ASSFMBLY WRIT® INTEPPRETEF TYPF TABLE FNOR T/P CONTFXT
AWTT ASSEMPLY WRITE TNTEFPPRETER TYPE TABLE

R/K INTEGER WHJSE VALUE TS BASE OF CHARACTE® SYMBROLS
RTT BASE TYPF TABLE .

PDECML T/T CONSTANT FQT DECIMAL PADIYXY

NSK INTERFACE FOR DISK

TNM T/7T NUMBER ACCUMULATOR FOR DIGIT CHARACTER BRCTION
INMF T/T NUMBER FLAG FOR DIGIT CHRPACZTER ACTION

TSGN T/ SIAN INDICATOR FOR DTIGIT ACTION

JBAPR
JACNT
JRCOR
JBFF
JBHRL
JBOPC
JAREL
JRREN
JBSA
JITPC
KALT ALTMODZE CHARACTCR
KBFLI. BELL CHARACTER

KBSP BACKSPACE CHARATTER

JOB DATA AREA LOCATIONS
SEE PDP-17 RETFERENCE HANDBOOK
{LONK IN TNDEY),

e of a8 0 44 83 gk HE g b

KCH CARRIAGE RETURN CHARACTER
KPR FORM FZED CHARATTER F

KLF LTINE FREED CHARATTER

K5n SPACE CHARACTER

KTAR TAB CHARACTPR

KTN CHARACT®R TABLE NUMNER (SI7ZF)
KVT VERTICAL TAR CHARACTEP

M5PSV CELL FOR MSTKP CONT®ENTS AT TINE 0T IZRROR
MSTK MACHINE STACK

MSTKM MACHINE STACK MAXTMIM

MSTKN MACHINE STACK N'TMRER (OPERATING QI"E)
MSTKDP MACHINE STACK PNINTER

N/C NUMBFR OF TNITIAL T/C AV.SP. CELLS
N/T NTMBEP OF INITYAL T/T AV,.5P, CELLS
N/L NUMRER OF TNITIAL T/L AV.SP, CELLS
N/M NIIMBER OF INITIAL /M AV.SP, CPRLLS
N/P NUUMBER OF INTTIAL T/M AV,.SP. CFELILS

N/RL NUMBER DOF INTTIAL T/L RFSERVED AV,SP, TELLS
NACCT NAME ACCUMHLATOR TOR MAME CHARACTZR ACTION
NBTT NUMBER OF RITS TYPP? TARLPE

NTT NOTLL LIST (LIST TERMTINATOPR)

T INTTIAL NAMF TABLE

NTIT INITIAL NAME TABLE TND®RY (NQ. OF ENTRITS)
NT 1N TNITTAL NAME TARLE SIZE

OCTAL T/I CONSTANT FOR OCTAL RADIX

R1 MACHTNE RESTSTER 1
RISV CELL FOR R1 CONTENTS AT TIME OF ®RROFR
R2 REG, 2

R25V CELL FOR R2 CONTENTS BT TIME OFP FRROR

n3
RISy
34
RUSY
RS
RSV
R6
LLARISS {
RDETT
kDTT
S®VEN
SP/Z
/T
SP/L
SP/M
sp/p
SP/RIL
3PTT
LRLA S §
SPYTT
sSTOPp
T/C
T/
/K
T/L
/M
T/P
n
T™ar
™y
T™T
TTY

W
WAKT
wBTT
DR
WDRCX
4RER
WERRL
WHYN
wHS
WIR
WIDPTT
WTTT
WK
WNRTT
¥MT
WPTR
WeCy
WRD
WRDRK
WRDPET
WRTT
WSPRL
wspTT
WSPYT

tppendix 4 - L«(F) Kernel Data

REG. 3
CRLL FOR RI CONTENTS AT TIME OF ERROR
REG. 4
CRLL FOP RU CONTENTS AT TIME OF ERROR
REG, S
CELL FOR PS5 CONTRANTS RT ™TMR OF TBRROR
REG, 6

CONTEXT LIST FOR RFEAD INTERPRETATION

READ TNTERPRETER TYPE TARPLE FOR T/P CONTEXT

RTAD INTERPRETER TYPE TABLE

T/ CONSTANT =7

INITYAL T/C AVAILABLFE SPACE LIST

INITIRAL T/7 AVAILABLE SPACE LIST

INITTAL T/L AVATLABLE SPACE LIST

INITIAL T/M AVATLABLE SPACE LTST

INTTIAL IT/P AVATILABLE SPACE LIST

INITTAL T/L TESIRVED AVAILABL®Y SPACE LIST

SPACE TYPE TABL™ (HOLDS AV.SP. LTSTS)

SPACE FRYXHAUSTED CONTEXT SWAP LTST

SPACE ZYHAISTED TYPT TABLF (HNLDS SPACE ®YHAUSTED PRNOCTSSES)
T/P EXECUTION ZONTRYT DELIMITHER FOR WAN STACK
CHAPRPACTERISTIC SYMBOL FOR TYDPE CELL (=)
CHARACTERISTIC SYMBOL FOR TYPT TNTEGER (= N)
CHARACTRRISTTIC <YMBOL FOR TYPT CHARACTER (NULL CHARACTER)
CHARACTTRWRISTTIC SYMROL POR TYPT LIST (= NTL,NIL)
CHARACTERISTIC SYMBOL PO% TYDP® MACHINT (RETARN)
CHARACTRRISTIC SYMBAOL FOR TYPR PRNGPAM { {nom™)
TYPE NISPLACEMENT (= 4207107 OCTAL)

SYM301, FNR POSITIVE B=SULT FROM TESTS

TYPE TARBLY SIZF (ALSO MAXTIMUM NO, OF TYPES)
CHARACTERTISTIC SYMROL TYPF TABLT

INTERFACE FOR ISFR’S TELETYPE

OPERAND COMMUNICATION STACK

CELL ¥YOPFP CHARACTEP ACTION TABLE

CFELL F¥OPR BASF TYPT TABLF

CELL FTOR DEBHNG ROUTINF

CELY FOP DEBUG CONMTEXT SWAP LIST

CRLL FOR ERROR HANDLING ROUTTNT

CELL FOR FEPROR LOCATION

FIGHER RONMTINE NEXT STACK

HIGH=R ROUTTNFT SYMRBOL STACK

W CPLL ¥FOR TNTEGFR RADIY

W CELL FOR PROGRAM CONTEYXT INTERPRSTER TYPE TABLY
W CZLL FOR TNTERPRTTER TYDPE TABILE

W CELL FOR CHARACTER REING THTERDRETRED

W CELL POPR NIJMBTR OF RITS TYP® TARLT

W CELT. FOR NAME TRARBRILES

W CELL FNP BYT® POINTFR

CONTEXT LIST TOR WRITT INTERPRETATION

W CELL FOR READ INTERFACE

W CELL FNR READ EBRTAK CHARACTTR

WRTTE INTERPRETZR TYPR TABLE FOR "/P COVTRXT
WRITE INTFRPRETZR TYPF TABLE

W CELL FOR RESERYED T/L SPACE

W CRLL FOR SPACT TYPT TARLE

W CELL FOR SPACE EXYAUSTED TYPE TABLF

(]

EERLExx

¥
WTOK L
yTTT
RUR
WXN
WYS
2ERD

Appeniix 4 - L«(F) Kernel Tata

CELL ¥0OR
CELL FOR
CELL ¥OR
CETLI FOR

o u X E

TYPE BYING CREATED

TYPE OF CHARACTE® LTSTS REINS ZREATED
CRARACTERISTIC SYMBOL TYPE TARLT
WRTT™ TNTRPPACE

CURRENT INSTRUCTICN NEFXT CE®LL
CTRRENT INITRUCTINN SYMBOL CFLL
T/ TONSTANT =4

tonandix & - Lx{(F) Bootstrap Procensas

AR ASSEMBLY BRZAD STARTTING AT W(M) ACCORDTNA 0 LIST W{1)
L ASSEMRLY WRITE STARTING AT W{7) ACCORDIHG TO LTIST W(1}
AWARY ASSEMRLY-WPITT STYRIT IMITIARLTZATION

AWRS ASSEMBLY-WRTTE RESET

CP.LF WRITP KZR AMD KLF TO CHURRENT WRITT INTETFACTS

7sp/C ADD 270070 CELLS NF T/C AVAILABLE SPACE

CSP/T ADD 2757 CPLLS OF T/ AVAILABRLE SPACE

CSP/I, ADD 2077 CELLS OF T/L AVAILARLE SPACH

T8P/s% ADD 2707 CTLLS OF T/M AVATLABLE SPACE

CsSp/P ADD 2002 ZTELLS N% T/P AVATLABLFE SPACE

CSpT ADD 27230 CELLS ™0 AVAILABLE SPACE FOR TYDPR W(")

cvsI CONVRRT SYMBOL W(") TO TNTEARER

DCKA DPLETE ZURRENT CHARACTRR ACTION FOR CHAZACTRR W{(")
DEF/T SET WTC TO T/I FOR NEFTINTNG INTEGIRS

DEF/L SET WTC TO T/L TFOPF DFREFINING LTSTS

NET/E . SET WTC TO T/7P FOR DEFINING PROGAAM LTS™S

DETT DELETE =NTRY FOR W(1) IN TYPF TABLFE ¥ (")

RNPKI END CHARACTER LIST

TNDL ACTTON POR ™)™ - FND LIST

ENDL?Y SURBPROGRAM NT¥ TNDL

ENDL2 SUBRPROGRAM OF RMDL

ENDL3 SURPROGRAM OF ENDL

TTKEA THS®RT W{1) RS CURRWN™ CHYARACTER ACTION FTNR CHARACTRR W(")
TIZTY INSERT W{2) AS CORPTNT FNTRY OF TYPT TANLR W({7) FOR W(1)
L¥KIP LTNE 0P W{1) CELLS STARTING WITH %w(7) I¥®™) 34 LIST

PR PRINT ®w{™)

PRT PRINT TNTEGERP W(Q)

PRPL PRINT LIST W(M)

DPRLS PRINT LIST YUSINA PRSTY FOR FITMENTS
PRN PRINT NAME W (")

nENT SUBPRNAGRAM OF PN

PRN2Z SIUBPROGRAM OF PN

PRS PRINT SYMROL w()

PRST?' PRSTY ROATTHE (JSED FOP PRSTR

PRSTR PRINT STRUCTURE W(D)

PRSTY CUPPENT PRINT ROITINE MSFD RY PRLS TO PRINT LIST FL=MPNTS
RCKR REPLACE W(1) AS CURRENT CHARACTRER ACTTON TOR CHARACTER W(M)
"DF¥ READ DSK FILE NAMTD W(7) (WITH EYXTEYNSION “1SF*%)

rETT REPLACT EBNTRY FOR W(1) IN TYPT TARLE W() RY W(2)

RSTRW RRSTORE R(7) FROM WSAVE

SAVE SAVE ¥QR PTWETART

SAVEW SAVE ¥W(2) I¥ ¥SAve

SCKA GET CURRENT CHARACTER ACTION FOR CHARACTER W ({7)

SETRD SPT DSK THPRPIOT THD DREAD FROM FTLE N2MZD W{") (EYTENSION “LSF"“)
STTT GET ENTRY OF W(1) IN TYPE TABLE W ()

SFTWF SET DSK QUTPUT 70 WRITE TO FILE NAMED W{") (EXTENSTON “LSF“)
SPAZ® WRITE A BLANK CWARACTRR TO CURRENT WRITT TINTIERPACTS

STRKL START CHARACTTR LTST

STRL ACTION FOR “(™ - START LIST

STRL1 SUBPEOGRAM OF STPL

STRL2 SUBPROGRAM OF STRL

ISFN ACTTON FOR ®:™ - USE NAME IN W (D)

WRF WRITE DSK FILE WAMED W{C) (WITH EYTEINSION “LSFW)

WRWWP WRITE W({D) TO CHURR¥NT WRITE INTERWACRS TN STACK WWER

LT0X
ARCX
AWCY
NRCX
DNTL
PWTPT
DWIP™
NHED
DW 20 B
NWWER
TT7
SPOLY
m1

T2

T3

T

TS

™Y PL
Yo

w1

w2

W3

Wi

w5
WARPT
WARTT
WAWPT
WAWTT
we
WFLR
WSAVE
WISEN

Bppendix 6 - L*x(F) Bootstrap Data

COMTEXT LIST FOR STANDAPD INTEFPRETATTON

CONTEXT LIST FOR ASSFMBLY ETPADN INTERPRUTATION
COMTEXT LIST POT ASSEMDLY WNRITE INTERPRITATTON
DERUSG SWAP CONTIXT LIST (TN WDRCY)

CELL FOR DERNG 3WREP OF RTL

CELL ¥NP DEBRUG 3WAP OF WIDTT

CELL FOR DTRUG SWAP OF WITT

C2LL FOR DERIG H{WAP OF WRD

CELL FOR DRRIG SWAP OF WRDRK

CELL FOR DIDRIIG SWAP OF Wyr

TEMPOPRRY T/T CFLIL

T/ WORK CTLL U3SED RBRY CSP/L WHFN PIESTORING RESWRVED SPACE
TEMPORARY WORK CELL (UNSAFD)

TEMPORARY WARK 7TPL], (IINSAFS

TRMPORARY WOPK TFRLL (MINSAFT)

TTMPORARY WORK CELL {UINSAFT)

TEMPORARY WOPK CFLL (UNSATFE)

TEMPORARY WORYK CTFLL (UINSAF®)

ASSOCIATION LIST QOF TYPES POP “g™ ACTION

WORK CTLL (SAFF)

WORK CELL (SARE)

WORK CFLL (SATR)

WORK CELL (SAFE)

WORK CWLL (SATE)

WORK CRELL (SAFE)

C2LL FOM T/P TOHNTIXT™ ASSEMBLY RTAD TNTEFRRRETER TYDPT TABLE
CELL POR 3SSEMBLY RFAD TNTERPRETIR TYPFE TABLW®
CELL FOR T/P ZONTZYT ASSEMRLY WOTITS INTTRPRETRR TYP™ Mp3LF7
CRLYT, FOR ASSEMBLY WRITE INTIRDRETER TYDER TARLE
CELL TO HOLD CURETNT LTST BWING CRTATID

CELL TO HQLD W FLNOR

CELL 7"SED BY SAVREW

CFLT. TO HCLD USEN STGNAL

g T

ropendix 7 - Comnlete List of System Names

Maaning of Code Tetters: X=Kernel, B=Rootstrap, P=Process, D=Data .

*T KP MULTIPLY W(1) TIMES W(2), RESULT Tn w(") (T/1)

+7 KP ADD %(1) T0 w(2), RESULT TO ¥(7) (T/7)
+I5 KPp ADD INTRAER 9(7) TO SYMAQL W(1), SYM3NL RESULT W(7)
-T KP SUBTRACT W(1) FROM W(2), RESILT TO W(?) (T/T1)
~S3 KP SURTRACT SYM30L W (1) PPOM SYMROL W(2), RESHLT TO (1) (T/T}
. KD =YIT UNCONDITIORALLY
. ¥ KP EXIT IF W(2) NOT = NIL (POP W)
.= XKD EXIT IF W{?) = NIL (POP W}
. KP RYIT TWO LFV7LS ONTONDITIYONALLY
.o Kp EXIT TWD LFVELS IF W(2) NOT = NIL (POP W)
.= KP ZXTT TWO LEVILS TF W(") = NIL (POP W)

I/7K KP INT®RPRETER ¥OR READING (T/K)

LI/M KP INITIAL INTR2?PRFPTER FOR T/Y4

LI/P KP INTITIAL TNTERPRETER ¥OR T/D

. 1/5 KP INITTAL INTERPRTT®R FOR T/C,7/I,T/L

» ITX BD CONTEXT LTST FOR STANDARD INTERPRETATION

.TNP KP TNTERPRETER POR NEPOSITING (T/K)

LIFY KP INTERPRETER FOR TYXTRACTING (T/K)

.IP/K KP TNTERPRETRR FOT READING TN T/P CONTEXT {(I/K)
+ID/M KP INITTAL TMNTERPRETER FOR T/% TN T/P CONTEXT
sIP/72 KP INITIAL INTERPRETER FOR T/P IN T/P CONTENT
LITP/S KP INITIAL INTERPEFTER FOR T/C,T/7,T/L,7/% IK T/7P CONTEXT
LTIPHE KPP INTERPRETEP FOR DEPNASTTING IN T/D CONTRYT (T/K)
LIPEY KP TNTERPRETEP FOR ZYTPACTING IN T™/P CONTEXT (T/K)
LIPTT KD STANDARD TINTEZRPRFTRR TYPE TARLI FOR T/P CONTEXT
LIPAR KD INTERPRETER FOR WRITING IK T/P CONTEXT (T/K)

., ITT KD STANDARD INTERPRETER TYPF TABLFR

.IWR KP INTERPRETER FOR WRITING (T/K)

0 KP TNP{T NRXT SYMBOL TO W AND ADVANCE PAST IT

.B KP REPEAT CURBENT LEFVEL

LR+ KP REPEAT TURFENT LFVFL TF W{Y) NOT = WIL, POP W

«R- KP REPFAT CURBENT LIVEL IF W{3) = NIL, POP W

« X KP EXECUTE W{(C) AFI'SR RFMOVING IT

JXCY KP FXECUTE W(1) TN CONTEXT™ W(Y)

/1 KP DIVIDE W(2) BY W(1), TNTEGER QUOTTRNT TO W{(Y) (T/71)
/R1 KP DIVIDE % (2) BY W{(1), REMATNDTR TN W{) (T/7T)

<T KP TEST TNTEGER W(l) < INTEGER W(1)}

<5 KP TEST SYM3OL W{(7) < SYMBOI ¥(1)

= KP TEST CONTENTS OF CELL W({Z) = CONTENTS OF CRLL wW{(1)
= KP TEST INTEGER W{2) = INTEGER wW(T)
=f KP TEST SYMBOL W{N) = SYMRBROIL ¥ (1)

=T KP TEST TIF W(C) IS SAME TYPE AS W(1)
>1 KP TEST INTFGER W (") > INTEGFR W{(1)
>3 KP TEST SYMPBOL W(2) > SYMBOL W(1)

A+ K KP ACTION FOR CHARATTER +

A-K KP ACTION FOR CHARACTYR -

ABND KP BOUNDARY ACTIOW
ACCD KP ACCOUMULATE DYGIT CHARACTER INTO T/ TNUM
ACCK KP ACCUMILATE NAME CTRARACTFER INTO T/C KACC

ADK KP ACTION FOR DIGIT CHAPRACTERS
AK™ KD INITTAL ACTION CHARACTER TABLE
ANK KP ACTION FOR WAME CHARACTERS

AR BP ASSEMBLY READ STARTING AT W{2) ACCORNDING TO LIST W(1)

ARCY
ARPTT
ADTT
L")
AWA3T
AR CYX
AWPTT
AWRS
AymTT
B/7K
BTT

C

C/L
TRTR
CR.LF
CSNT
CSNTW
csp
cse/C
ceprl
CSo/L
TeD/M
CSP/P
CSPT
CvIDL
CVNKI
cver
™

D&
DBCX
DCKA
NENGG
DFECMT.
NEF/T
nE¥/L
DEFR/D
DETT
PDNTL
DSK
NRIPT
NWITT
W RD
DWRDH
NWWR
®/L
L
“NDKL
ENDL
ENDL1
ENDL?Z?
TNDL 3
ERR)
RRE
FRR2
ERR3

RN
KD
KD
Bp
BP
BN
¥D
BP
KD
KD
KD
Kp
KP
KP
BP
KP
Kp
Kp
BP
B
BP
BP
BP
BP
KP
KP
RD
Kp
Kp
BD
BP
KP
KD
BP
BP
BP
BP
BD
KD
BD
BD
BD
BD
BD
KP
KP
KP
EP
BP
BP
BP
BP
Kp
Kp
KP
Kp

tppeniix 7 - Complete list of System Names

CONTEYT LTST FOR ASSPMRLY TEAD THTTRORITTATION
RSSEMBLY RTAD TNTEPPRRETER TYPE TARLE *OR T/P CONTEXT
ASSEFBLY READ TNTEPPRETER TYPE TARLE

PSSEMBLY WRTTF STAPTING AT W({") ACCOPRTNS T0 LIST «(1)
ASSTMBLY-WRITF SIXDIT TNITTALITATTON

COMTEYXT LTST FOR ASSFMELY WRITT INTECPRETATION
ASST¥BLY WRITFE THTWRPPFTER TYP® TABLT ¥O™ T/P TCONTEXT
ASSEMBLY-WRTTE RES®T

ASSEMBLY WRITFE INTERPRETER TYPT TARLT

INTEGER WHOST VALUT TS BASE OF CHARAUTRER SYMBOLS

BAS?T TYPE TABLF

CNPY wW({™)

CRTATE T/L SYMROT

CREATE BYTF POINTER FOR LOCATTON W{(()

WRITE KCR AND KLF TO CURRENT WRTTE TWNTHRFACES

CRFATE SYMROT, WTT™H NEMT wW(") IN NAME TABLE

CRREATE SYMBOL WTTH NAM® w(') TN NAME TARLE W(?)

CRTATFE SPACE FRO™M MONITOR OF LFNGTH € (1) NnF TYPT OF W(7)

ADD 200" CELLS OF T/C BAVATLAGLT apACT
ADD 201" CELLS OF 7/T AVATLABLY SDPACT
ADD 2007 CELLS OF T/1, AVAILARLE SPAC?
ADD 297" CFLLS OF T/M AVAILRARL®T SPACT
ADDY 2907 CPLLS OF T/P AVAILAWLY SPACT
ADPD 2007 CRLLS T0O AVAILARLE SPACE POR7 TYPE W(")
CONVERT THTEGER W({) TO DIGTT LIST
CONVERT VAMF W{N) TO CHARACT?R LIST
CONVERT SYMBAL W({3) Tn TNTEGER

DELETE CFPLL @ (7)

DELETF CFLL AFTRE W{")

DEBUG SWAP CONTRYT LTST (IN WDRCY)
DELETE THRRENT CHARACTER ACTION FOR CHARACTEP W(D)
ENTER DFBIGGING MONF

/7 CONSTANT FOR DFCIMAL RADIY

SET WTC TO T/I FOR DEFPINTNG TNTEGFPRS
SET WTC ™0 T/L FOR DFFININR LISTS

SET WPC TO T/P FOR DEFTYTING PRNAGRAM LISTS
DFLETE TNTRY FOR W(1) IN TYP® TARLF Ww(")
CFLL FOR DERIG SWAD OF NTL

INTERPACT FOR DISK

CFLlL FOR DERIG SWAP OF WIDTYT

CELL FOR DFBNG SWAP OF WITT

CFLL FPOR DERUG SWAP NF WRD

CELL POR DERIG SWAP 0OF WERDBK

CPILL FOR NERNG SWAP OF WHR

FPASE SYMROL W ({N)

ETASE /7. SY¥BOL W)

FRAS® LIST R(N)

FNN CHARACTE™ LTST

ACTION FOR %)™ - FMD LIST

SURPPOGRAM N F FNDL

SUBPROGRAM OQOF ENDL

SUBPROGRAM DF TWNDNL

MACHINE STACK TNDERFPLOW FRROR

CENTRAL PROCFSSOR TRAP TRROP
NON=-ZXISTENT ,TPTT ENTRY ERRNT
NON-RYXTSTENT _YTT TNTRY TERROR

Appeniix 7 - Complete List of System Names

RPRY KP NON-ZYXTISTENT APPT™T ENTRY FPROR

TRPR KP NON-RYTISTITNT ARTT ENTRY FREOR

ERRA KP NON-=YXTSTENT AWPTT ENTPY ERRNPR

PRRY KP NON-TSXTSTENT AWT™ ®NTRY FERROR

mRRA KP NON-EXTSTENT RDPTT ENTRY FPROR

IRRO KP NON-ZXTSTZENT RDTT™ ENTRY F¥RPOR

ZTRR1” KPP NON-EYTSTENT SPXTT FNTRY ERROR

PRR11 KP NON-ZXTSTENT WEPTT ENTRY FRROP

PRR12 KP NON-EXISTENT WRTT FNTRY ERROFP

TRR13 EP SFTOWP FRROR RFETURN DNRING A RTSTAPRT

"RR14 KP COPE UUD ORRNAR RUTHRN TN CSP

BERR15 KP OUT OF SPRCF IN NAME TABLE - CSNTW

ERR16 KP EPROR RETURN FROM OPEN - RD

ERR17 KP ERROR RETUPN FEROM LOOKUP - RD

FRR1R KP ERPOR RETURN PFROM TN - RD

TPR1Q KP FRROR RETURN FROM OPEN -« WP

mRR2" KP FRRPOP RETIRN FROM PNTER - WR

FRE21 FRKP ERROR RETURN FROYM NUT - WR

FPR22 EKP ERROR RETIRN FRO® QUT - _TWR NP ,TIPHR

FRRIR KD INTERPRET TRROR POUTINE IN WERD AFTEP DERDG SWAD
EXIY KP MAIN EXTCUTTVE : READ AND INTERPR¥YT LINFPS FPOM TTY
HALT EP GO TNTO MONT™OR MODE

I KP INS®ERT W{1) AT W(") (PUSH AND REPLACE)

IA KP INSRRT W (1) AFTER W({) (PUSH, ADVANCE 2NN RRPLACE)
TCKA BP INSERT W(1) &S CUFRENT CHARACTER ACTION FOR CHARACTER ¥(T)
IaTr BP INSFRT W(2) AS CUPRENT EZNTRY NF TYDPE TARBLE W(?) FOR ®R(1)
TNITH ED T/7 NUNMRFEP ACCUMOLATOR PFOPR DIGTT CHARACTER ACTTON
TNUMF KD T/T NIJMBEP FLAG FOP DIGIT CHARACTER ROTTAN

ISGN KD T/I SIGN INDTICATOR FOR DIGTT RITION

T ED TFMPORARY T/T7 CELL

JBAPR KD

JBECNT KD @

JBCOP KD 3

JRFR KD : JORm DATA ADEMA T.OCRTIONS
JRERL KD : SFE PDP-17 RFFFRIENCE HANDROOK
JROPC KT : (LOOK TN INDEX),

JBRRL KD :

JRDEN KD

JBSA KD 1

JBTPC KD ¢

KALT KD ALTMODE CHARACTER
KBELL KD BFRIL CHARACTFR
KBsSP KD BACKSPACE CHARACTER

KCR KD CARRTAGY RETIRN CHARACTFEW
K¥F KD FOFM FEED CHARACTER

FL¥ KD LINE PERT CHARACTER

Ksp KD SPACE CHARACTER

KTAB KD TAR CHARACTER

ETH KD CHAFACTER TARBLE NUMBER (SIZF)
KVT KD VERTICRL TAB CHARACTER

LNKJP BP LINK UP W(1) CELLS STARTING WITH W()) TNTO A LIST
LNNT KP LOCATE NAME FOR SYMBOL W{() IN NAME TARLTS

LNNT® KP LOCATE NAME FOR SYMROL W(1) IN NAME TARL® W())
LSNF KP LOCATE SYMBOL POR NAME W(0) TN NAME TABLFS

LSNTW KP LOCATE SYMBOL FOR NAME W(1) TN NAMP TABLE w(M)
MSPSV KD CELL FOR NMSTKP CONTENTS AT TIME OF ERROR

Appeniix 7 - Comnlete List of System Yames

MSTK KD MACHINE STACK

MSTKM KD MACHINE STACK MAXTIMUM

YSTRKN KD MACHINE STACK NOMBRER (OPERATING STZF®)

MSTKD KD MACHINE STACH POTNTEPR

¥WPTR KP MOVE BYTT POTNTER W(?) W{(1) BITS WITHIN CUPRENT WORD
N RP GET NEXT OF W({?)

N/C KD NOMBER OF INTTTAL T/C RBV,.S5P, CELLS
N/1 KD NOMBER OF TINTTTAL T/1 AV.S5P. C(ELLS
N/L KD MOMRER OF TINITIAL T/L AV.5°P. CFLLS
N/7M KD NUMBZER 2% TINITIAL T/M AV.SP. CELLS
N/P KD NOMRER nF INITIAL T/M AV.5P, [TLLS

N/RL KD NUMBER 3F INTTIAL T/L RESERVED AV,.SP. CELLS
NACC KD NAME ACCHMULATOR POR NAME CHARACTFER AC™ION
NBTT KD NIUMBER OF BTTS TYPT TADLF

NIL ED NULYL LIST™ (LTST TERMTWNATOR)
NOP KP NO NDPERATTON
NT1 KD INITTAL YAMT TABLE

NT1T KD INTTIAL NAMFE TABLE INDEXY (NO, OF "NTRITS)
NTIN KD INITTAL NAME TABLE STZIW
OCCTAL XD T/T CONSTARNT FOR OCTAL PRARIX

p KP DPUSH W
P~ KP PREFIX RTN PNR PROCESSES WTTH NO TNPUT AND 1 OQUTPUT
RIS KP PREFIX RTN FNR PROCESSES WITH 1 INPI™ AND NO QUTPUT
P11 KP PREFIX RTN FAOR DROCESSTS WITH 1 INDIO™ AND 1 oUTPHT
P12 KP PREFIX PTXN FNOR PROCESSFS WITH 1 TNPIUT AND 2 NOTPIUTS
p2r KP PREFIX RTN POR PPOCESSFES WITH 2 TNPTUTS AND NN NMTPUT
P21 KP PRT?TX RTN POR PROCESSES WITH 2 INPUTS AND Tt QUTPUT
p22 KP PROFIX BTN FNP PROCRESSES WITH 2 TNPOTS AND 2 OUTPUTS
P31 KP PRTFIX RTN FOR PROCESSES WITH 3 INPUT™S AND 1 onuTpy?
pCY KP PUSH CONTEXT ACCORDTNG TO CONT®RYT LIST W()

PR BP PRTNT W(2)

paT BP PRINT INTEGRY W(")

PRI BP PRTNT LIST W(0)

PRLS BP PRINT LIST UWSING PRSTX FOR ELEMENTS

PRN BP PRTINT NAMZ W(9)

PRV BP SUBPROGRAM OF DRN

PRN2 BP SUEBPROGRAM N PRW

PRS BP PRTNT SYMBOL W({D)

PRST1 BP PRSTYX ROUTIN® USED FQR PRSTR

PPSTR RP PRTNT STRIUCTHRE W{")

PPSTX BP CURRENT PRINT ROUTINT USFTD BY PRLS TO PRINT LTST ELEMENTS

B KP REPLACE SYMBOL OF W{C) BY Ww(1)

R1 KD MACHYNE REGISTER 1

R13V KD CFLL FOR RY1 CONTENTS AT TTME OF RRROP
B2 KD BFG, 2

P25V ED CFLL FOR RZ2 CONTTNTS AT TIME 0OF ERPON
R3 KNh RRC, 3 :

RISV KD CFLL POR R3 TONTENTS AT TTME 07 =RROP
RY KD REG. U

RuU Y KD CELL POR P4 CONT NTS AT TIME OF RRROR
Rr5 KD BEG, 5

RGSY KD CELL POR RS5 CONTENTS AT TIMF OP RRROR
RA KN REG. &

RC KP BEPLACE CONTRNTS OF CELL W({) BY CONTENTS OF CELL W(1)

RCKA BP RFPLACF W(1) AS CURRWNT CHAPRACTER ACTION POR CHARACTER W(])
RCX KP REDLACE CONTEYT ACCORDING TO CONTEXT LIST W(?)

ep
BRDCX
RDF
RDPTT
BRDTP
RETT
RY

N
EERAS
RSTRR
RSIFPPR
RSTRW
RT

g
SAVR
SAVEW
SCKRA
SETRN
SETT
SIPTHR
SEVEN
sp/C
Sp/1
SP/L
Sp/M
sp/sp
SP/RL
SPATFH
SPCLI
spTT
SPYXTX
SPYTT
ST14?7
ST141
ST142
5T0P
STPKL
STRL
STnLI
STRL2
sY
SWpCX

T/
/1
T/K
T/L
/M
T/P
T'\
™
T2
T3
T4
e
™D

Kp
KD
BP
KD
KD
BP
KP
KP
KP
kP
P
RP
KP
KP
BP
BP
BP
BP
BP
BP
KD
KD
KD
RD
KD
KD
KD
BP
BD
KD
KD
KD
Kp
Kp
Kp
KD
BP
BP
np
BRP
Kp
Kp
KPp
KD
KD
KD
KD
KD
KD
BD
BD
RN
BD
BD
BD
KD

Appeniix 7 - Complete List of Systenm Names

RFAD PROM TNTERPACT W(%>), PRFTSULT W(") = CHARACTRR LIST
CONTEXT I.IST FOR R=AD TNTERPRETATION

PEAD DSK FIL™ NAMED W(") (WITH EXTENSION ®“LSF¥™)

RPAD INTERPPITER TYPE TABLE FOR T/P CONTRXT

READ INT®ERPRET®R TYPE TARLS

PEPLACE RNTRY FOR W{1) TN TYPT TARL®Y ®R(0) RY W({(2)
REPLACE VALUS OF TINTEGER W(0) BY VALUE O7 INTEGER W(1)
REPLACE NEXT OF wW{") BY R(1)

RESET INTERFACE W(7)

RESET INTERPACT PUFFERS (®W(?) TS RUFFER HEADETR)

RPSET INTERFICE RING (W () DOTNTS INTD RUFRFER RTNG)
PESTNORP W{l) FROM WSAVR

RTPLACE TYPE OF SYMBOL W(7) WITH TYPF YND®Y Ww(1) (2/1)
GET SYMBOL O° W{(")

SAVE FOR PESTART

SAVE W(?) TN WSAVY

GF? CHRRENT CHARACTER ACTION FOR CHARACTER W(?)

SFT DSK TNPU™ TO RTAD PROM FILT NAMED W(") (TXTENSION “LSF"™)
GET T©NTRY OF W(1) 1IN TYPE TABLT W()

SET DSK QUTPAT TN WRITE TO FILT NAMED W({") (EXTENSION “LSF™)
T/ CONSTANT =7

INITTAL T/C AVATLARBLE SPACF LIST

INTTIAL T/I AVATLABLE SPACE LIST

INTTIAL T/L AVAILABL®Y SPACE LTST

TNITTAL T/M AVATLABLE SPACE LIST

INTITTAL T/P AVAILABLF SPACE LIST

INITIAL RRSERVED T/L AVATLABLY SPACF LTST

WRTTE A RLANK CHARACTER TO CUPRRNT WRTTE INTERVACES

T/I WORK CFELT USEZD BY ZSP/L WHEN RESTORING RESERVED SPACE
SPACF TYPE T:BTE (HOLDS AV,SP, LTSTS)

SPACE EYHANSTED CONTEX? SWAP LIST

SPACE EYHAUSTED TYPE TABLE (HOLDS SPACR EXHAUSTED PROCESSES)
REENTER EXEC

FNTER DERUGGTING MODE

CONTINU®E AFTTIR SAVE

T/P EXECUTION CONTEXT DRELTMITFR FOR WHN STACK

START CHARACTER LIST

ACTION POP “{™ - START LTIST

SURPROGRAM OF STRL

SUBPROGPAM OF STRIL

SET P TO SAVE FOR RESTART

SWAP CONTEYT ACCORDING TO CONTEXT LIST ¥{(0)

OUTPIT CHARACTERISTTIC SYMBOL FOPR TYP™ OF W(")
CHARACTRRISTIC SYMBOL TOR TYPT CRILL (= Y)
CHARACTIZRISTIC SYMNDOL FOR TYPFE INTRGTR (= 7)
CHARACTTRISTTC SYMBOL FOR TYPF CHARACTTR (NULT, CHARACTER)
CHARACTERTSTTC SYMBOL FOR TYPE LIST (= NIL,MIL)
CHARACTFRISTTC SYMROI FOR TYPE MACHTNE { = RFTHRN)
CHARACTERISTIC SYMBOL FOR TYPE PROGERAM (= (NOP))
TFMPOPARY WORK CTPLI (UNSAFFR)

TEMPORARY WOTK CELL {(UNSAFT)

TEMPORARY WORK CWLL (UNSAFF)

TEMPORARY WORK CELL (UINSAF®)

TEMPORARY WORK CTLL (UNSAFE)

TEMPORRRY HWORK CELL (UNSAFE)

TYPE DISPLACEMENT (= 40JCCD OCTAL)

TT
TROE
™ N
TTT
TTY
TYPL
3]

IR0 {
JSTN
v

W

W

w1

w2

W3

wa

w5
WAKT
WARPT
WARTT
WANPT
WAWTT
WRTT
WC
WDR
WNBZX
WERR
WERRT,
WFLR
WHY
WHS
WIB
WIpTT
WITT
WK
WNRBTT
WNT
WP TR
WwR
WECY
¥rD
WRDNBK
WRF
WRPPT
WRTT
WRRWR
WSAVE
WSPRL
WSPTT
WSPYT
WTC
WTCKL
WTTT
WIISEN
WWR
WIN

Kp
ED
KD
KD
KD
BD
KP
Kp
BP
KP
KD
BD
BD
BN
BD
BD
BD
KD
BD
BD
BD
BD
KD
BD
KD
KD
KD
KD
BD
KD
KD
KD
KD
KD
KD
KD
Kb
KD
Kp
KD
ED
KD
BP
KD
KD
ap
BN
KD
KD
KD
KD
KD
KD
BD
KD
KD

Pppendix 7 - Complete List of System Names

SET VALUF OF TNTREGER W(Z) = TYPE INDEX OF W(1)
SYMBOI, FOR POSTTIVE RRESULT FROM T™FRSTS

TYPFE TABLE STZE (ALSO MAXIMUX NO, OF TYPES)
CHARACTFRISTTC SYMROL TYPE TABLE

TNTERFACE

37 USFR’S TELETYPR

ASSOCTATTON LTST QF TYPES FOR “g™ ACTION

POP W

POP CONTRXT ACCOPDING TO CONTFYT LIST %(7)

ACTION FOR

- USE NAME IR W{(0)

REVERSE W({N) AND W(1)
OPERAND COMMINICATION STACK

WORR CELY,
WORK CELL
WORK CFLL
WORK CFELL
WORK CFLL
WORK CELL
CFLL FOR
CELL FOR
CELL FOR
CELL ¥OR
CELL FOR
CELL FOR

CEXODED DS SN 8% s

(SAFE)

(SAFF)

(SAFE)

(SAFR)

{(SAFF)

(S5AFE)

CHARASTRER ACTION TABLPF

T/P CONTEXT ASSEMBLY RTAD INTERPRETER TYPE TARBRLE
ASSEMELY READ TNTERPRETPR TYPY TABLE

T/P CONTEYT ASSFMBLY WRIT® INTERPRETFR TYPE TABLE
ASSEMBLY WRITF INTERPRETFR TYPE TABLE

B*SF TYPE TABLE

CELL TC HOLD CURPENT LIST BETNG CRTATED
CFLL FOR DTBUG ROUTINE

CRELL FOR DEBUG CONTRYT SWAP LTIST

CELL FOR ERBOR HANDLING ROUTINE

CELL FCR FRROR LOCATION

CELL TO HOLD W FLOOR

HTIGHER ROUTINE NEXT STACK

HIGHER RONTIN® SYMRBOL STACK

INTEGER RADIX

PROGRAY CONTEXT TMNTERPR?THZR TYPF TARLY
INTERPRETER TYPE TABLE

CHARACTER BTTNG INTERPR®TRED

NOMPRER OF BITS TYPE TABLE

NAME TABLES

BYTE POINTER

TO INTERFACE W(")

CONTEXT LTST FPOR WRTTE TNTERDRPTATTION

¥ CELL FOR RZAD INTEFFACF

W CILL FOF RTAD RREAK CHARACTER

WRITE DSK FILE WAMED W(?) (WTTH TXTFHSTON “ILSFP%)
WRIT® INTFRPRETER TYPF TABLE FOR T/P CONTEXT
WRYTE INTERPRETRR TYPE TABLE

WRITE W{) TO CURRFNT WRITR INTERFAC®S IN STACK WWPR
W CELL USFD RY SAYFW

RTSFRYED T/L SPACT

SPACE TYPT TARLE

SPACY EXHAUSTED TYPE TABLF¥

TYPE REING CREATED

TYP® OF CHARACTER LTISTS BRI¥G CREATED
CHAPACTERISTIC SYMBOL TYPE TARLE

CELL T™0 HOLD USFEN SIGNAL

CELL FOR WRITE INTERPACE

OFRENT INSTRUCTINN NEXT CFLL

¥ CELL FOPR
W CELL FOR
¥ CTLL FOR
W CELL FOPR
W CFLL FOFR
W CELL ¥OR
¥ CRLL FOR
WRITFE ®W{(1)

W CFLL FQP
W CELL FOR
W CFLL FOPR
W CELL FOR
W CELL FOR
W CELL ¥OR
L
|
c

Appendix 7 - Complete list of System Names

wXs KD CURRENT TINSTRUCTTION SYMBOL CPLL
ZER) KD T/7 CONSTANT =9

ACC
AKT
ALT
AR
AW

RND
Rsp

TR
v
X

3J3)
Dp

3

)

EY

FF

TF
JR

KT

LF

NF’!
N

pPTR

RD
RS

SGN
Sp

Ll
3L

STK
|v
SWP

T
n

vT
WR
7%
o I

.IP
ZX

ppendix 8 - Ahhreviations Used For Names

AFTER ACTINN ASSEMBLY
ACCUMULAT® ACCHMULATAR
ACTION-CHARACTE™-TARL?Y
ALTMODE

ASSEMBLY-READ
ASSEMBLY-WRTTE

BASE ®IT PRPEAK RUPFER
BOUNDARY

BACKSPACE

CELL CO™Y CREATFE
CARRTAGE-RETURN

CONVERT

CONTEXT

DEL®TE DISPLACEMENT DIGTT
DERUG

DEPOSIT

ERASE

EXTRACT

PLAG

FORM~-FRED

HTGHER

INTEGEP INSFRT INDEX
INTRERVACE
JOR-DATA-APEM-LOCATTON
CHARACTER
CHARPACT®R~-TABLF

LIST LOCATE LOCATION-
LINF-FRF¥D

MACHINE MAYTIMITH

NEXT NAME NTIMAER
NAMT-TABLF

NOMREP

PROGEAM PUEE PREFTX POINTFR
POTHNTFER

QUOTH

REPLACE REPVAT PESERVY REGTSTEHR
RERD

RESET

SYMBDL STACK

SIGN

SPACE

START

STACK

SAVE

SWAP

TYPE TABLE

TYPE-TABLE

POP-UT

REVERSE

VERTYICAL-TAR
WORKING-CELTY

WRITF

EXECUTT EXHAUSTED
OF-TYPE-X

INTERPRETER
INTERPRETER~-FOR-T/P-CONTEXT
STEM~0OF-PROCESS-X

RTINS

Apendix 9 - Bootstrap Ontline 1

I. OUTLINE OF INTITTAL BOOTSTRAP

1.

173,

11,

12,

III

N e O

‘@\-‘ ok oy RD

DEFINE RTCKA - PBTPLACE CZURRPENT CHARACTER ACTTON
W(?)=CHARRCTFR, W(1)=ACTTON

DEFTNE® R:(...,) BY CHARACTFR ACTTONS FOR

()

UUSEN STRL ENDL

ADD ABND TO CHARACTER ACTIONS FOR ! : ()

SET 0P DERUG SWAP LIST

DEFPINE WIRKING CELLS (T'S AND W’S) AND SAVE AND RESTORE
PROCESSFES (SAVEW RSTRW).

DEFTNE TYPE DECLARATION PFROCESSES AND & ACTTON
DEF/P DEF/L DEFV/TI
A@T TO MAKE A OF TYPE T BY CHARACTRR ACTION FOR &

DEFINE %, ,." TO CR®WATE ILTST OF CHARACTERS {(NF TYPE WTCKL.S)
BY CHARAITER ACTION POR ™

DEFIN® DPRINT PRNCESSTS
WRWWR SPACE CR,LF PRN PRT PRS PR PRL

DEFINF TYP® TARLE 2N TURRERNT CHARACTER ACTION PROCHESSES
PETT TRETT DETT SETT

ICKA

DEFINE
CSPT

NCKA SCKA (RCKA DEFINED TN 1,)

ELEMPNTARY SPACE PROCESSES
LHKUP CSP/I CSP/L C3P/M CSP/P CSP/C

DERINE ASSEMBLY PRNOCESSES
AW AR

DEFINE FTLF NAMING PROCRSSES
AWSBY AWRS
SETRD SETWNR (W(D)=SYMBOL AND TUSES WXTFRNAL NAME OF IT ,LSP)
RDF WRF¥ (READ AWD WRTTE FROM DSK PTLE W({"))

CHARACTER ACTIONS AFTER BOOTSTRAP

-~ 2
- 9

- ANK - NAMY ACTION

- ADK - DIGIT ACTION

A+K =~ PLUS ACTTION

A-X - MIKUS ACTION

+0 = QUOTE ACTION

« = COMMENT ACTION (®=XITS LINE)
(ABND ,ICX ,XCX) - EXECUTE ACTION (ALSO BOTUNDARY ACTTON)
(ABND USEN) - NAMING ACTION
{(ABND STRL) - START LIST ACTION
(ABND ENDL) - END LIST ACTTON
TYPE ACTION

CHARACTER LIST ACTION

KSP,RKCR, KLP,RKPF,KVT,RTAR - ABND - BOUNDARY ACTTOW
OTHER PRINTING CHARACTERS - 1ANK
ALL OTHERS -~ NOP

JI/P

Appendix 17 - Detailed Descriptions of Kernel Processes 3

character action table (in ¥ cell WAKT)Y with the 7-bit code
for the character bheing interpreted. .I/K exits upon
return from the character action.

.I/® is the internreter for T/ used in all
interpretation contexts def ined in the kernel and
bootstrap. Tt appears as the entry for T/ in all the
followina interpreter type tables: .¥TT, ARTT, AWTT, RDIT
and WRTT., ,I/M’s only action is to call the symbol to be
interpreted (input in 1) as a machine code subroutine,

+I/P is the interpreter for /D used in all
interpretation contexts defined in the kernel and
hootstrap, 7T+ anpears as the entry for T/P in all the
followina internreter type tables: .ITT, ARTT, AWTT, RDTT
and WRTT. .I/P operates as follows:

Descend: Push WY5 onto WHS and ¥XN onto WHY,
Put STOP into WXN to Aelimit scope of current T/P
execution,
Put symhol to be interpreted {irput to .I/P in R1)
into WYS,

Interpret: Interpret symbhol in WYS by calling the
apnropriate interpreter obtained from the current
interpreter type table contained in W cell WIDTT,
(This is 1interpretation within the scope of a T/P
list, hence WIPTT is used rather than WITT).

pon return, continue,

Advance: If WXN.5 = YIL, go to Ascend,

If WXN,S= STOP, dn to Exit,.

Otherwise, nut the symbol of thr cell pointed to
by WXN into WXS, and advance WXN to noint to the next
cell or the list (hy putting the 1link of the cell
pointed to by WX¥ back into WXW),.

Then go to Interpret.

Ascend: Pop WHS into WYS and WHY into WY¥N,
Go to Advance,

Exit: Pop WHS into WXS and WHN into WYIN,
Exit from T/P execution context by returning to
the original caller of .I/P.

Appendix 1 - Nhetailed Descriptions of Kernel Processes 2

+1s +IS adds the value of 4H(3) to symhol w{(1), The symbol
result is output wW(n),

-T -T subtracts the value of W(1) from the value of W(2),
storing the resnult as the valunr of W{{Yy, %(?) is left as
output,

-85 -¢% subtracts the symhol W®W(1) from the symbhol ®(2),

storing the integer result as the value of W(), W() is
left as outnut,

. . exits one level unconditionally by putting NIL into
WXN,
.t .+ exits one level if input W(") is not NIL by putting

NIL into WYX%¥. The input is alwavs removed,

. .- exits one level if input W(%) is NTL by putting NIL
into ¥wXN, The input is alwavs removed,

.o o exits two levels unconditionally by putting WIL into
both WXN an? WHN,

et ot exits two levels if the input W(0) is not NTL by
calling .. . The input is alvays removed,

- o~ @xits tvwo levels if the input W(7) is NTL by calling
+¢+ « The input is always removed.

JT/K +I/K is a reading interpreter used for T/K in Read
Context, Tt apperars as the entry for T/ in the
interpreter type table RDTT. .I/K obtains the ({(character)
symbol to be interpreted from R1, stores it in cell WK, and
then interprets the appropriate character action, The
character action is obtained by indexing into the current

LI/P

Appendix 17 - Detailed Descriptions of Kernel Processes 3

character action tahle (in W cell WAKT) with the 7-bit code
for the character bheing interpreted, .I/¥ exits upon
return from the character action.

+I/® is the interoreter for T/™ useqd in all
interpretation contexts def ined in the kernel and
bootstrap, It appears as the entry for 7T/M {in all the
followina interpreter type tables: ,¥TT, ARTT, AWTT, RDIT
and WRTT., ,I/M’s only action is to call the symbol to be
interpreted (input in 1) as a machine code subroutine,

+I1/P is the interpreter for T/ used in all
interpretation contexts defineAd in the kernel and
hootstrap. It aopears as the entry for T™/P in all the
followina interoreter type tables: ,IT™, ARTT, AWTT, RDTT
and 4RTT, .I/P operates as follows:

Descend: Push WX5 onto WHS and WXN onto WHN,
Pyt STOP into WXN to deliwit scopa of current T/P
execution.
. Put symbol to bhe interpreted (input to ,I/P in 21
into WYS,

Interpret: Interpret symhol 1in W®WY¥S by calling the
aporopriate interpreter obtained from the current
interpreter tyne table contained in W cell wIPTT,
(This 1is 1interpretation within the scope of a T/P
1list, hence RYPTT is used rather than WITT),

Ypon return, continue,

Advance: If WXN.5 = NIL, go to Ascepd,

If WXN,S= STOP, go to Exit,

Otherwise, nut the symbol of tho cell pointed to
by WXN into WXS, and advance WYN to noint to the next
cell onr the list (hy putting the 1link of the cell
pointed to by WX¥ back into ¥XN),

Then go to Interpret,

Ascend: Pop WHS into WXS and WHNY into W¥XN,
Go to Advance,

Exit: Pop WHS into WYXS and WHN into WIN,
Exit fror T/P execution context by returning to
the original caller of .I/P.

Appendix 1) - Detailed Descriptions of Kernel Processes 4

I/5

.IDP

.IP/K

JIP/Y

.I/S is the data interpreter and appears in .IT™T for
/L, ?/1, T/F and T/C, and in ARTT, AWTT, RDTT and WRTT for
/L, ™/I and T/C. The operation of ,I/S5 is simply to opush
onto W the symbol being interpreted,

.IDP is the interpreter for depmositina, and appears as
the entry for T/K in interpreter type tabhle AWTT., Iet A be
the symhol heing interpreted (input to .IPP in R1M),

LINP first obtains the entry for A in the current bit
number tvypce table (in 9 cell WUNRTT). This entry is an
inteqzr whose value is nov deposited into the S-field (bits
6-11) of the PDPI1{ Byte pointer in W cell WPTR,

Next the entry in the current hase type table (in W cell
WRTT for A is obtained, (Tr is an inteaqer; call its value
B).

Finally, the value 2 - B is deposited using an IDPB
(Increment and DnNePosit Pyte) instruction on the byte
pointer in WDTR,

.JEY is the interpreter for extracting, and appears as
the entry for T/X in interpreter tvpe tahle ARTT. Tet A be
the svabol being interpreted {input to .TEY ig %1},

LI first obtains the entry for A in +the current bit
number type table (in W cell WNBTT), This entry is an
integar whose value is now deposited into the S-field (bits
£=11) of the ™"NP1Y hyte pointer in W cell WPTR,

Next, a bhit pattern 1is extracted using an ILNA
(Increment and Loa% Byte) ipstruction on the hyte neointer
in WPTR, Then the entry in the current hase tvype table (in
¥ cell WBTT) for A is obtained, (It is an inteqer; call
its valune R).,

Finally, the symbol obtained by adding to 8B the bit
nattern extracted above is pushed onto W.

.IP/K is the reading interpreter that appears as the
entry for T/K in interpreter type table .TPTT. .IP/K is
identical to .T/K except that it gets its input {(the symbol
to bhe interpreted) from WXS rather than 7?1 since ,ID/K is
used within the scope of T/7P interpretation,

«IP/M is the machine code interpreter for interpreting
T/M symbols appearing in T/P lists, Yt is the entry for

Appendix 1) - Detailed Nascriptions of Kernel Processes 5

.TP/P

. IP/S

LIPDP

JIPEX

.IP¥R

+IWR

T/ in all the following interpreter type tables: ,TPTT,
ARPTT, AWPTT, RDPTT and WRPTT, 7Tt operates identically
with ,L,I/M excent that its inpnt (the symhol to be
interpreted) is gqotten from WXS rather than R1,

.IP/P is the interpreter for T/? symbols appearing in
/P 1lists, It is the entry for T/P in all the following
interpreter type tabhles: ,IPTT, ARPTT, AWPTT, RDPTT and
WRPTT.

Its operation is not like the operation of ,I/P; 1in
fact, all .JTP/M" Adoes is to push WYXS onto WHS and WXN onto
WHYN, move the contents of WXS to WXN, and then exit.

In the initia) L* system, .TP/P will always be called by
the *®Interpret™ part of .I/P, and hence vhen ,IP/P returns
to .I/7P, WXN will be set up so that ™Advance* will start
down the new T/P list,

.IP/S is the interpreter for data aprpearing in T/P
lists, It appears in ,1PTT fOUr T/L, T/T, P/K and T/C, and
in ARPTT, AWPTT, RDPPTT and WRPTT for T/L, 7/T7 and T/C. It
operates identically with ,7/S except that its input (the
symbol to be intarpreted) is obtained from WXS rather than
R1. : .

JIPDP is the interpreter for depositing within the scope
of a T/P list, and is the entry for T/K in interpreter type
table AWPTT, It operates identically with .TDP except that
it obtains the synmhol to interpret from WXS rather than R1,

+IPEX is the interpreter for extracting within the scope
of a T/P list, and is the entry for T/K in interpreter type
table ARPTT. Tt operates identically with .TEX except that
it obtains the symbol to interpret from wXS rather than R1,

+IPWR is an interpreter for writing and is wused to
interpret T/K appearing in T/P lists when in Write Context.
It avpears in interpreter type table WRPTT as the entry for
T/K. +IPWR 1is identical with .TW? except that its input
{the symbol to be interpreted) is gotten from WXS rather
than R1,

+IWR is a writing internreter used for T/K in Write

R+

Appendix 1? - Detailed Descriptions of Kernel Processes 6

Context. Tt appears as the entry for T/K in the
interpreter type table WRTT,

+INR subhtracts the base for the svmbol heing interpreted
(obtained as an inteager from the type table in W cell WRTT)
from the symhol itself, The resulting bit vattern is
deposited into the appropriate output buffer if there is
room, otherwise an output operation is done first,

There are two implicit inputs to ,IWR, hoth related to
the particular interface being written to., These are the
channel number (from the right half of the first word of
the interface block) and the buffer hoader address (fron
the left half of the fourth word), and thev are set up by
WR before it interprets its Ww(1) input.

Note that the size of the above bit pattern deposited in
the buffer is determined by the particular output
interface, and not by any T.* mechanism,

If .IWR rust 2o an output operation (because the buffer
is €full), and an error return occurs, error location TPR22
is called.

+Q {(Quote) ocoutputs the next symbol in the current
program list and causes interpretation to skip over it., TIf
+0 appears as the last symbol on a proqram 1list, it will
cause control to ascend until the following symbol is
found,

R repeats execution of the current lovel by putting the
top element of WHS5, which 1is the higher routine symbol
stack, into WXN, which holds the next operation on the
current level.

+R+ repeats the current level if inout W{(") is not NIL
by putting the top element of WHS into WXN. The input is
always removed.

.R- repeats the current level if input W{Y) is NTYL by
putting the top element of WHS into WXN. The input is
always removed,

.X interprets (eXecutes) the symbol W(0) (after removing
it from the stack) by calling the appropriate interpreter
obtained from the interpreter type tahle contained in W

Appendix 17 - Detailed DPescripotions of Kernel Processes 7

cell WITT,

. XCX +XCX interprets (executes) the syabol W(1) in the
context specified by context 1list W{), which is in the
form expected by PCY, RCX, and UCX.

The operations PCY and then RTY are performed on the
context 1list W("), The svymbhol W(1) is then interpreted by
calling the appropriate interpreter from +the interpreter
tvpe table contained in W cell WTTT, Onon return from the
interpreter, the oriaginal context is restored by performing
NCY on the context list which was input wW({"),.

/T /1 divides the value of W(2) by the value of ¥W(1),
storing the quotient as the value of W{(2). W(I) is left as
out put.

/R1 /PT divides the value of W(2) by the value of W(1),

storing the remainder as the value of ¥w{("), W(") is left
as output,

<1 <I tests if the value of R(") < the value of W(1), If
not, the output is NTL. If so, the outpnt iz ¥(1) (unless
¥(1) is NIL, in which case the output is TRU%),

<5 <S tests if the symbol W(?) 1is 1less +than the symbol
W(1), If not, the outnmut is NTL. If so, the onutput is
W{1) (unless W{1) = NTL, in which case the output is TRUT
).

=C =C tests if the value 0f W(") = the value of WwW(1), If
not, the outnut is NIL. 7Tf so, the output is W(1) (unless
W(1) is NTL, in which case the output is TRNR),

=T =I is identical to =C .

=5 =S tests if the svmbol W(") = the symbol W(1)., If not,
the output is NIL, If so, the output is W{(1) (unless W{(1)
= NIL, in which case the output is TRUE),

>T

>S

A+K

ARND

Appendiix 17 - Netailed Descriptions of Kernel Processes

=T qgets the tvpe indexes of W(>) and W{1) which
storel as the contents of the cells whase addresses
W{2) ¢+ T™D and W{1) + TO respectively. Then it tests if
typa of W{) is the same as the type of W(1), 1If not,
result is NIL. If so, the output is ®W{(1) (unless W{1)
NIT, in which case the output is TROZ).

»T tests if the value of W(7) > the value of WwW(1),

A

are
are
the
the

Tf

not, the output is NIIL. TIf so, the output is W{1) (unless

W(1) = NIL, in which case the output is TRIE),

>S tegts if the symhol W(") is greater than the svymbhol

W(1)., If not, the output is NIIl. 1If so, the output is

the

symbol W{1) (unless W{(1) is WNIL, in whirch case the output

is TRUF®),

A+K is the initial character action (entry in AKTY)
the character '+, Tt operates by first testing if

for
the

pumber flag integer TNUMF = 1 {indicating that only digit
characters havn nccurred since the last Dboundary
character), and if sn sets INUMF = -1 ¢to indicate a naae

rather than an inteaer 1is to be recoqnized, Thus,

for

example, a string like *_13+_" (vhere 7_* igs a boundary
character) will be recognized as a name ™*13+™ rather than
the integer +13. A+K completes its operation by always
calling ACCF to accumnlate the current character heing
interpreted (obtained from cell WK) into NACC, the nane

accumulator cell.

A-K is the initial character action (entcy in AXT1)

for

the character ’-f, Tt operates identically to A+K except
for the additional action of updating the integer sign
indicator ISGN. ISGN is used to keep a (mod 2) count of
the number of ’-7 characters since the 1last boundary

character, and thus represents sign for integers.

ABND is the initial character action (entry in AKT1)

for

tah (KTAB), line feed (XL?), vertical tab (KVT), form feed
(KF?), carriage return (KCR), and space (KSP). These

characters are called “houndary characters™ since they
as boundaries for the recognition of names and integers.

ABND first tests the name accumnlator cell NACC to
if the previous character was also a houndary action,

act

see
and

ACCD

ACCK

ADK

Anpendix 1" - Detailed Descriptions of Kernel Processes 9

if so it exits., V¥ext it tests the value of TNUMF to see
vhether it 4is a name or an integer that should be
recoanized,

If INUOMF = 1, a nevw T/ cell is created and given the
value of the integer INTM if TSGY = ", or the complement of
that value if ISSGN = 1,

Tf INUMP doesn’t = 1 (hence is -1}, then ABND calls LSHNT
(Locate Symhol in Name Tahle) with the address of the name
accumelator cell NACC as input, If the symbol is not
located, C3SNT™ (Create Symbol in Name "able) is called to
create an entry for the name accumulated in WACC,

Finally, ABND pushes onto W as output the integer
created in the first case, or the symbol 1located or
created, Then the contents of the four cells NACC, INUM
INOMF and TSGN are set to zern, and ABND exits,

ACCD is used (by ADK) to accumulate digit characters for
recoaqnition of integers, Tt has one standard input which
is a Adigit character sypbol whose digit value (2,1%,...,9)
it arccumulates into inteqer INUM by first multiplying INUM
hy the current radix in W cell WIR and then adding to TNI'M
the new diqgit value. 1A special check is made for overflow
in the multiplication, and the high order hit of INTM |is
set. on if overflow occurs. This was necessary to make
recoanition of nogative numbers written in twos complement
form work (e.g. octal 40GEA0CA0GNTT).

ACCK is used hy ANK, ADK, A+#K and 323-X to accumulate
characters into the name accurulator cell NACC., It has one
standard input which is a character symbol whose 7-bit code
is shifted into the low order position of cell NACC., T£
more than five characters are accumulated (between houndary
actions), the first ones are shifted onut the left of the
accunulator and are lost. Bit " (leftmost bhit in cell) of
NACC is not reset after the shift so that it may retain a
spurious setting if characters are shifted out the left of
the accumulator,

ADK is the initial character action (entry in ARKT1) for
all the digit characters (0,1,...,9). Tts ovaration is as
feollows:

If INOMF = N, indicating that the previous character was
a boundary character, TNUMF is set = 1 to indicate that an
integer is provisionally to be recognized, Then ACCE 1is
called, with the current diqit character being interpreted
(from cell WK) as input, to accumulate the character into

Appendix 1" - Detailed pPescriptions of Kernel Processes 1
the name accumulator NACC.

Next, a test is made to see if TNUMF = -1, and if so,
APDF exits since there is no chance for an integer to be
recoanized: otherwise ACCD is called to accumulate the
current diagit character into the integer accumulator THIM,

ANK A¥K is the “name"* action, and is the initial character
action {(entry in 2KT1) for all printing characters except :
(TAB,LF,VT, FF,"R,SP,¢,%,",1,2,3,4,5,6,7,3,9,+,-,1). It
operates bv setting TNUMF = -1 to indicate a name is to be
recoanized and then calling ACCK to accumulate the currvent
character (from cell WK) into name accumnlator NACC,

)

C {(Copy) first accesses the space type tabhle in W cell
WsPTT to find the availahle snace list for the type of
input wW{M),

If the availabhle space list is KTL, C first checks to
see if idinput w{3) is T/L, and if s0 stores the reserved
space list from ¥ cell WSPPL as the availahle space 1list.
(This 1is necassary for execution of the space-exhausted
routine, which is responsihle for testoring the reserved
space after it has allocated more list space), VNext, C
swaps into smace-exhausted context by calling SWPCY with
context swap list S3PYXCY as 1input, Then it executes
(interprets) the space exhausted process obtained as the
entry for the tvpe of W(2) in the type table in W cell
WSPXT, Upon return, SWPCX is called again with inpbut SPYCX
to swap kack to the previons context, and rcontrol transfers
to the heginning of C for another trv,

If the available space 1list is not found to be
exhausted, C unlinks the top cell, copies the full-word
contents of input W(’) into it, andi leaves it as output
W,

C/L C/L (Create type List) is similar to ¢ except that it
has no input +telling what tvpe of cell to obtain fronm
available space and bhow +to initialize it. It alwvays
outputs a T/L «cell which bhas not heenrn initialized (and
hence still links into the available space list for T/L).

CPTR CPTP is to be used to create PNPI® hyte pointers and
initialize them to point at the start of a given location
{input ¥(2)). MHMost common usage of CPTR will be to create
a pointer to oput into W cell w°TR for use with .IDP and
. TEX.,

Appendix 1" - Netailed Descriptions of Kernel Processes 11

CSEYr

CSNTW

£Sp

CPTR calls C with the symbol T/C as input to obtain a
cell for the npointer, Tt initializes 5=", P=34, I=¥=",
Y=(W(Y) input) in the pointer and leaves it as output W(7).

CSNT is nsed to add a new entry in the current name
table (specified by ® cell WNT) for an input name W({d), It
perely calls CSNTW to create the svmbol for the input name
in the name table residing in WNT,

CSNTW adds a new entry to a particular name table {(input
w{*)) for an 1input name W{1), The name input is a cell
containing right-justified ASCTIT characters (as in the nare
accnmnulator NACT into which ACCK accumulates characters),

CSNT first aets thke current index for the input name
table, which 1is located in the word immediately preceding
the table itself, The index is compared with +the tahle
size from the next vreceding wnrd, and E®PR15 is called at
this point if the index 1is not 1less than the size,
Ntherwise, the table is not full, so the new entrv is made
as follows:

C is called with input WCT.S to create a new symbol of
the type of the svymhol in W cell WCT. At the location of
the new entry, which is determined hy adding twice the
index to the input table address, are stored the packed
characters of th= input name in the first word and the
newly created synhecl in the second word (right half). Then
the index of the table is incremented by one, and CSNTW
exits with the new symbol as output W("),

CSP is the routine which allows additional space to be
allocated from the monitor, or space to be returned, TInput
W(1) is the =size (T/IY of the change 1in allacation;
positive if space is to he obtained, negative if space is
to be returned to thes monitor, Since the monitor only
allocates in 1% blocks (2720 octal), the value of W(1)
should be a multiple of that size, Any new space obtained
from the monitor is made to have the same type as that of
input W("), W(0) is not used if the value of W(1) is
negative.

Output from TSP is the address of the block of space
obtained from the monitor if the value of input wW(1) was
positive, otherwise the output is NIL since no space was
obtained.

CSP does some housekeeping in updatina the Job Data Area
locations JORBFF, JOBSA and JOBHRL {L* symbols JBF®, JBSA

Eppendix 17 - NDetailed Descriptions of Kernel Processes 12

CVIDL

CVNKL

DA

DERIG

and JBERL) to ensure that the monitor SRAVE function =saves
the cotrect amount of core in both the low and high
seqments.

If an error return from the CNRT MU0 occurs, indicating
that the regquestel additional core is not currently
available, error location ERRMY is called,

CVINL expects an inteqer (T/I) as input W(N) and outputs
a list of the same type as WTCKL.S of character symbols
which are the digit characters for the representation of
the integer 1in the current radix {(in ¥ cell wWT8), If the
value of integer W{(") is negative, CVTD! outputs a list
with a minus sigqn character followed by the Aigits of the
absolute value of the input,

CVIDL operates by successive divisions by the current
radix (from ¥ cell 9IR)}, using the remainders to build the
list of digit characters.

CVNKL expacts a cell containina packed rigqht-djustified
ASCIT characters as innut w(.), {(The same form as the name
cells in the name table)., By successive shifting, masking,
and testing for null characters, CVNKL bnilds a list of the
same type as WTCKL.S of character symhols for the packed
characters (irn left to riaght order from the packed cell)
and outputs it,

D delates the svymbol in list cell W{(M, TITf W(*) is not
the last cell in a list, then the fiyll-word contents of the
next cell is copied into it, and the next c¢ell 1is erased
(usina E),. TE W(') 1is the last cell in the list, the
symbol in that c~ll is replaced hy NIL,

NA (Delete After) deletes the symhol in the cell after
(")} Ly replacing the link of W{(") by the link of the cell
after W(?). ™hen it calls B to erass the cell vwhich was
previously after W{("),

DEBUG is used to swap into ™“dabugaing context* for
execution of diaanostics, etc, when something has gone
wrong. It operates as in the followina T/P list:

(WBDCX S SWPCY WDB S ,X WBDCY S SWPCY)

B/L

g

2

Appendix 17 - Detailed Descriptions of Kernel Processes 13

T.o., it svaps into Debug Context, ex~cutes the contents
of cell WBD, and then upon return swaps back to the
previous context.

DEBNG is called when a “START 141" is done in monitor
mode,

¥ (®rase) first checks if wW(M = "IL, and if s0 exits
without erasing., nNtherwise it returns W({3) to the front of
the avatlable space list which is the antry for the tvpe of
W(3) in the type tahle in W cell WSPTT.

F/L {(Erase type List) assuymes that input W(?) is T/L and
returns it to the front of the available space list which
is the entry for T/L in the type table in W cell WSPTT.

PL assumes that input ¥(") is a4 list an1 1iterates down
the list erasing (via %) each cell on the list.

- T®RN22 Those error locations are called at the site where
an error is detectod in a kernel nprocess to initiate
handling of the error. There is a unique error location
for each of the 23 Aifferent errors which can be detected
in the kernel. Tack error lacation is a “JSP RA,TRROR™
instryctionn which transfers control to the central error
routine ®RPNDP with RA retaining the ideptity of the
particular error location,

Pelow are listed the separate error locations with a
description of the conditions causing each error,

TRRT This symbnl is put on +t+he hottom of the machine
stack (MSTK) so that an attempt to 40 a P7TURN with an
empty stack will give coentrol +to the TRR arrcor
location., Of course, the 7PN at the hottom of the
stack will not ba “geen™ if it is popped off as Aata
rather thap heino treated as a return link,

FRR1 This syrhol sits in the right half of Job Data Area
location JORAPRP (L*x symhol JRADPR)Y, and thus is where
control is passed when one of the conditions enahled by
an APRENB 700 1is detected by the monitor. The traps
enabled by L* are pushdown overflow, memory protection
violation, and non-existent memory flag.

Appendix 17 - Detailed Nescriptions of Kernel Processes 14

when an E3R1 occurs, the Job Data Area locations
JIBRCNT and JnNRTPC (L* svmhols J3CNT and JRTPC) contain

useful information.

JRCNT contains the state of tha APR (Arithmetic
PRocessar) when the trap ocecurred, and can be used to
Aiscover whichk of the threo vossibhle conditions
actually caused the trap, as fnllows:

Irn the right half of the JRCNI word,

bit 19 (272077 octal) indicates pushdown overflow,
bit 22 (27777 octal) indicates memorv protection flag,
bit 23 (12707 octal) indicates non-existent memorv,

JATPC contains the PC (Program Counter) of the next
instruction to be exccuted when the trap occurred.
(Thus the right half 1is the address of the next
instruction). This will help 1locate the offending
instruction,

ERR2 - ERR12 These are error locations called hy an
interpreter when 1t attempts to interpret some symbonl
with a type table which has no valid 1interpreter for
the type of that symbol, Frror locations ERR2 - FRRI2
are mer=aly used to fill in the unused entries in kernel
tvpe tables, one error location nper type table as
follows:

INR2 « IPTT
ERR3 JITT
TRPY ARPTT
TPR5 ARTT
FRAA AWDPTT
TRR7 AWTT
TRRR RDOTT
mRpRQ RDTT
WRR12 spYTT
ERR11 wBnTT
ERR12 WRTT

SPYTT is really an exception since {i% is not an
interpreter type table, but hold=s processes, Thus
ERR1Z will be interpreted as a T/™ process, while the
other error locations above will he called directly as
if they were interpreters.

ERR13 A part of the cleanup SY has to do after return from
the SAYV®T in monitor mode is to reissue the STETHWP UD
to reenable writing in the high scament (the monitor
SAVE command sets write protection back on as a side

Appendix 1 - Detailed Descriptions of Xernel Processes 15

effect), Trror location %RR"13 is called if an error
return from the SETHWP MU0 occurs, which is an
indication that either the monitnr svstem does not have
a two-register cavabilitv (impossible on our svstem) or
that the user has heen meddling without write
privileqes (see pnr-1"* reference Handhook, under
meddlina).

PRR14 This error location is called in CsP if an error
return occutrs from the CORE UMD attempting to allocate
core from the monitor. This 1indicates that the
additional amount of cote reqdquested is not available,
either because of hardware limitations or because a
larage 1oad of other users is on the =system,

FRR15 Thisgs is the “out of space 1in name tahle™ error
detected hy CSNTW (Create Svmbol in Name Table W(7))
when the index for the input name table is pot less
than the size of the name table,

PRR16 This error occurs if BN gets an error return when
attempting to NPEN the interface to be read from,
indicating that the device (specified hy the dJdevice
name in word 3 of the input interface hlock) dnes not
exist or is allorated to another -Hob.

FRR17 This error occurs if BD gets an eorror return when
attenptina to LOOKUP the file to he read fronm,
indicating that the user’s directory was not fount? or
that the file (specified 1in words S5 and f of the
intecrface block}) was not found or was vread protected,

FRR18 This error occurs if RD gets an error return while
doing an input (IN instruction) from the iaterface,
The error detected will he one represented by one of
the file status bits (see PNP-12 2eference Hanlhook,
under ®*Pile: status hits™), Due to an oversiacht in the
L«F system, the file status i3 not made readily
availahle whon an ERR1R does nccur,

ERR19 This is an error Aetected bhv WR which corresponds to
BERR14 Adetected hy RD, i.e. it indicates the specified
device tryina to he O0OPFVed d4does not exist or is
allocated to another -obh.

Appendix 17 - Netailed Descrintions of Kernel Processes 16

PRR2NT This error occurs if WR qots an error return from an
ENTFR U0 (which is analogous to LOOXNP, but for output
files), Tt indicates one of several nossible arror
conditions:

The user’s directory was not founil (if ¢the device
has a directory),

The file to be written was found to alreadv exist
and was bheina currently written or renamed, or was
wWrite protected,

FRR21 This error occurs if WR gets an e~orror Teturn from
doing the final output (DI instruction) of a write
oparation, The possible errors are those which can be
reflected in the file status hits (see PNP-17 Reference
Handbook, under “*Pile: status bhits™), although due to
an oversiqght the status is not readily available when
an DTRR21Y occurs.

PPR2? This errvor ocrurs if LIWR or L,TPRP (the writing
interpreters) gets an ercror r~turn from output
operations., The conditions are identical to those for
ERR21,

)24 FRROR uniformly handles kernel errors reprasented by
error locations TWRRI =~ FARR22 by initiating appropriate
context-swapping and executing an arbitrarvy user-written
ercor routine, while preservinag the identity of the
particular error. Tts detailed operation is as follows:

ERRCR expects a non-standard input in R¢ which is the
address of the rcurvent error location +1, PRROR nses this
innput to store the current error location in W cell WERRL,
Next, the contants of R1 - B5 and MSTKP are copied into
cells R1S5Y - RSSY and MSPSV rospectively, and reserved
machine stack space 1is opened up by increasing effective
stack size from %STKN to MSTKM, Then th~ symbol FPRPOR is
replaced by HALT 1in the current error location so that a
recursive error will execute HALT rather tham call =RROR
recursively. Noxt, a swap into Dehug Context is made hy
executing SWPCY with inoput ¥WDRCYX.S, and then the symbol 1in
W cell WERR is executed, Upon return, SWPCY is called to
swap back out of Debug Context, the symbol ERROP is put
back into the current error location, and P1 - R5 and MSTK?
are restorel from the save cells R1SY - RS58Y and MSPSYVY,
{Note that this effectively closes off reserved machine

Appendix 17 - Detailed Descriptions of Kernel Processes 17

stack space since MSTKP was copied into MSPSV hafore
reserved space was opened ahove,) Control will return to
the caller of the current error 1location (errors are
initiated by calling the appropriate errtor location),
unless of course the machine stark pointer was altered in
cell MSPSV hefor» it was restored from there,

job.gore PXEC is *he main oxecutive which is ¢alled when the L+
kernel is run for the first +tinme. It reads from tha
current read intorface (WRN,S) and executes the resulting
list in Read Context. If an end-of-file is detected fron
the read 1interface, it |is reset and BXRC exits,
Specificallv, ZX7TC operates as in the following 7/P list:

({ ¥BD S BRD P ,- P WZIXEC I RDCX ,XCX WEXYTC 5 WEXEC D EL .R)
WRD S RSIF)

where WEXEC is a save cell private to TYIC,

Calls on EXET can of course he nested within other
executions of EY®T to any level, In fact, the “START 147"
command in monitor mnde causes such a nested call or EYEC,

HALT HALT goes into nmonitor mode (without releasing 1I/0
devices currently in use). A PCONTINUE®™ command from
monitor mode will canse control to return to the caller of
HALT., A “START 140%™ or “STAPT 141™ c~command mav also he
issued from rmonitor mode. (Sea ST14Y anl ST141).

T I inserts symbol W(1) in front of the svmbol in cell
W(?), It creates a new cell of the same type as W{(?), The
full-word contents of ¥({7) is copied into the new cell,
then the 1link of W%(?*) is linked to the new cell, and
finally the symbol ¥(1) is stored as the contents of W().

A TR inserts symbol W({1) after the svmbnl 1in cell W(3).
Tt first creates a new cell of the type of W(Y)., Then it
stores the link of W(J)) as the link of +he new cell and
stores the address of the new cmll in the link of W(V),
Finally the symhol W(1) is stored as the contents of the
new cell,

LNNT LNNT searches the current name tables for symbol W(2) by
calling LNNTW to search for W(0) in particular name tables
from W stack WNT, Tt starts with the top name table in WNT
(UNT.S) and will continne to make calls on LNNTR for

Appendix 17 - Petailed Descriptions of Kernel Processes 18

LNNTW

LSNY?

LSNTW

MVPTR

successive name tahles from the WNT stack until either the
symhol is located, or all the name tables in WNT have heen
searched in vain. TIn the formwer case, the address of the
name cell in the name tahle for the located symbol is
output; in the latter case, the output is NTL,

INNTW searches backvards through the entries of nanme
table 4(") for one with the symhol #(1). By searching
backwards, LNNTW will find the most recent entry for the
symbol wW(1) if more than one exist, If the search is
successful, LNYTW outputs the location nf the name cell
found (i.2. the cell containing the packed ASCTT
characters of the e¢xternal name). If the search 1is
unsuccessful, L¥YTW outputs NTL,

LSNT is directly analngous to LNNT, except that it has a
name cell as input ¥(")Y and4 1is searching for a
corresponding symhol, rather than vice-versa,

LSHTW is directly analoaous to LNNTW, axcept that its
input W(1) 1is a name cell and it searches for the svabol
with that name in name table W(l), rather than searching
for the name aiven the symbol as LSNTW does.

MVPTR is an operation on PDP1? bhyte pointers (which are
just T/C initially in L*), to be used in contunction with
CPTR and the deponsiting interpreters (,IDP and ,IPDP) and
extracting interpreters (,.IEX and .IPEY), The input cell
W(?) is the hvte pointer; the W(1) 1inpnt 1is an integer
which “dYesignates the nurher of hit positions (within the
current word) the pointer is to he moved (positive for
right, neqative for left), Therc is no nrimitive process
in the L* kernel for movinag a byte pointer a numher of
words, but this mavy be accomplished hy ovperating on the
right half of th~ pointer (which corresponis to the address
field for byte pointers) with inteaer-symhol conversion and
integer processes,

MVPTR operates hy subtracting the valne of W(1) from the
value of the P field of the bhyte pointer W(%), 7Tt checks
for one special case: if the P value comes out negative, it
is zeroed instead,

MYPTR has no nuinut,

N outnuts the next of cell W(7) (W(D).N).

Appendix 17 - Netailed NDescriptions of Kernel Processes 19

NOP Mo oneration,

P ™ Pushes 4.

P P)tT is th~ nrofix routine for processes with nn inputs
and 1 outpnt, Tt has a nonstandard inpat in ®6 which is

the location of the stem of the calling process. (The sten
is the central machine code portion nf the nrocess divorced
from special input-output considerations. It accepts
inputs and returns outputs in reqisters). P71 operates by
first callinaga the nrocess stem as a suhroutine, then upon
return it pushes the outpat in RY into W and returns to the
caller of the prncess.

PG P19 is the profix routine for prorcesses with 1 input and
no outputs. Tt oparates by first popping ¥{?) into input
register ®1, then passes control to the nrocess stem (input
to P12 in RGY, which will itsalf return to the caller of
the process,

P11 P11 is the prefix routine for processoes with 1 input and
1 output. It overates by copying %W{?) into inont register
R1, callina the orocess stem {(input to P*'1 in RA), and upon
return copying the output from register R! into ¥ and
returning to the caller of the process.

p12 P12 is the prefix routine for processes with 1 input and
2 outputs, Tt operates by first copyinag W(?) into input
register R?1 and calling the process asatem (iaput to P12 in
R6) . Opon return it copies the outpnt from register R2
into W, pushes the outout from register "' onto W, and then
returns to the caller of the process.

p2° P22 is the prefix routine for processes with 2 inputs
and no outputs. Tt ovnerates by popping W(?) into input
register R1, W(1) into input register R2, and then npassing
control to the nprocess stem (input to P27 in RA), which
itself returns to th2 caller of the process,

P22

3t

PCY

RC

RCX

Appendix 12 - Detailed Descriptions of Kernel Processes 2%

P21 is the pr=fix routine for processes with 2 1inputs
and 1 output, Tt ooerates by first nopping W{") into input
register R2, and calling the process stem {(input to P21 1in
RA) ., Tpon Tetnrn, P21 copies the outout from register R1
into W and returns to the caller of the process.

P22 is the prafix routine for processes with 2 1inputs
and 2 outputs, It operates by first copying W(") into
inpnt register RV, W(1) into input register R2 and W(D)
with the ountput from register 21, and calling the process
stem (input to P22 in RA), Upon return, P22 replaces W(1)
with the outout from register 22, and returns to the caller
of the process.

P31 is the prafix routine for processes with 3 inputs
and 1 output, It oporates by first ponping W{?) into input
register R1, popning W again into reqister R2 to get the
W(1} 1input, and then conving the W{2) input from W into
register R3, P31 then calls the process stem (input to P31
in ER6)Y, and upon return copies the output from reaister R1
into W and returns to the caller of the process.

PCYX {(Push ConteXt) nushes every other symrhbol in the
input list W{(”) starting with the second.

Tf the inout list wi{®) is (A1 21 .,. An An) , each Bk
is operated on as in the program : (B%Y S 7%k T) ., The 3k
are normally thouaht of as «c¢ells whose contants snecify
current context 1in some way, hence PCYX is a process which
saves the current context prior to chanaing to a new
context.

R replaces tha contents of W{*) by the symbol ®W(1),

RC (Replace Cell) replaces the full-word contents of
W(C) by the full-word contents of #(1),

The input to PCXYX (Replace ContaXt) skould be a 1list of
pairs : (A1 P1 ... An Bn) . Each pair is operated on as
in the program : (Ak S Bk R) , i.e, the contents of each
Bk is replaced by the contents of the corresponding Ak,

The Bk are normally thouqght of as cells whose contents
specify current context in some manner, hence RCX is one of

Appendix 10 - Detailed Tescriptions of Kernel Processes 21

the basic context-chanaing mechanisms in the system (see
also SWPCY).

np Reads charactars from interface W(") and produces a list
of the type of WTCKL.S which it outputs, 7Tt opens the
interface and selects a file for the input if necessary.

As each character is read in from the buffer, RD adds
tte base for the characters %o the character conde to nhtain
a chararter symbol. {Null characters {code=) are
ignored), Tt then finds the type of list to be created
from W cell WTCKL and calls C to create 3 cell. The svmbol
is put into the new c¢=ll and the new cell is linked to the
raest of the list,

Characters ar~ read until the current “*break™ character
(in W cell WPDKB, initially KLF) is encountered, At this
point readiinrg is terminated and the “next™ of the last
list cell is set to NIL. The created list (whichk contains
the *hreak™ character as its last symhol) is outnut W{7),.

?1 RT (Peplace Integer) is identical to ®C .,
oN 2N replaces the next of cell ¥(7) by the symhol W({1),
RSTF RSTF resets an I/0 interface and will be used most often

in the following situnations:

(1) ™o reset interfaces closed hy the nmonitor when a
SAVE was done,

(2) To reset an interface that has qotten an end-of-file
indication and is now to he reused (ZY®C dnes this),

(3) To reset the NS¥ interface when a new file is to he
read or written (see BRDF, WR® in the PRootstran Process
Descriptions).

The operation of PSTF is as follows:

First the three flag bhits (OPTN done, TNTFR done, LONKNOP
done) 1in the leaft half of the first word of the interface
hlock are set off, the project, programmer numbers are
zeroel (indicatinag user’s own are to he used), the channel
number used for the interface is "PELEASed4 (thus ensuring
that a file previously open on the interface 1is now
closed), and finally both input and output buffers for the
interface are reset using RSTPH,

Aprendix 17 - NDetailed Descriptions of Kernel Processes 22

RSIFR

RSIFR

RT

sT14°

ST14 9

The input to RSIFB is the address of a three word block
called a buffer header {input or output), {The input and
output huffer header addresses are contained in the
interface bklock, TTY and DSK are the two interface blocks
defined in the kernel). RSIFP sets the use bit on in the
buffer header {high order bhit of first word), and then
calls PRSIFR to reset the buffer rina vhose address 1is
contained in the right half of the first word of the buffer
header,

The input to RSIFP is the address of the second word of
one buffer in a ring of buffers, (I.a, a circular list of
buftfers, The right half of the second word of each huffer
is a link to the next buffer in the rimng). FRach buffer in
the ring is reset by zeroing its flag bit, which is the
high order bit of the second word in the buffer,

RT (Replace Type) takes as input a svmhol W(7) and a
type index as the value of W({(1) . It sets the tyne index
of W(Z) to the value in W(1) by replacina the contents of
the cell whose address is W(?) + T2 by the low order half
of the value of W(1),

S outputs the symbol of cell W(') (W(Z).S),

ST14G is the entrv point at which L#* is entered vwhen a
"START 147" comman? is issued in monitor mode. Entry at
ST14" causes a recursive call on BEY®C; extting from this
call on FYRC returns one to monitor mode. If then
YCONTINDZ™ is tyned, control returns to the caller of the
routine which caused the original entrv into monitor mode
(i.e. Dbefore thsa “START 14°%), Normally, this routine
vhich caused the oriainal entrv into monitor mode will be
HALT,

ST141 is the point at which L* is entered when a “*START
141* commarnd 3is issued in monitor mode, Entry at ST141
causes the following to happen:

The contents of working registers R1 - RS are copied
into cells R1SY =~ R5SV, and MSTKP is copied into cell
MSPSV. Then reserved machine stack s«pace is opened up
(i.e, the effective size of the machine stack is increased

Aprendix 17 - Petailed NDescriptions of Xernel Processes 23

ST142

5v

from MSTKN to MSTKM), and DEBUG is called, lpon return
from DERNG, the machine stack space is closed off again
(i,e, the offective size reduced €from MSTKM back to
MSTKN), and monitor mode is entered, Tf then “CONTTNNOR®™ is
typed, control returns to the caller of the routine which
causel the original entry into monitor mode (before the
®START 141%),

Note that due to an oversight, chanaginqg the inteqgers
MSTRKN amd MSTK™ will not affect the wav ST141 manipulates
the machine stack pointer since ST141' obtains the size of
reserved stack space fraom a source other than “STKN and
MSTKNM,

ST142 is an entry point to the middle of the SV routine
which is meant to bhe nsed vhen saving for restart to
reenter L#* after the monitor SAVE command has been
completed. Tssning a “STAPT 142" outside of an nexecution
of SV will result in an unpredictahle context switch since
the register contents are clobbered.

SY Adpes the set-up work to allow the monitor SAVE
command to be used, then does the necessary cleanup to
continue after the SAVF is done,

Tt first saves the registers (NTl, R1 - R6, WPTR, WIPTT,
WITT, W, WXS, WXN, WHS, WHN, MSTXP) and the first eight
vords of tha2 high seament (the “Vestiaial Job Data Area®,
clobbered by the monitor), and then goes into monitor mode,
At this point the user is expected to issue a SAVE command
le.qa. "SAVE DSX LSFR®) and then reenter L* by the monitor
command “START 142%™, The reentry point is inside SV where
a SETOWNP 0A0 is issued to reallow writing in the high
segment, the first eiaht words in the hiadh scament are
restored from their save area, an APPENR N0 is issuyed to
reenable central processor traps, the PC (Program Counter)
flags are reset with a ™JFCL 17,.#%1"* instruction, the
registers are restored from their save area, and control
returns to the caller of S¥ with the output TRUT in W{?) to
indicate execution is continuing after a save,

If the saved files are FU¥ at some later time (e.q,
“RUN DSK LSFR"“), the same cleanup occurs as above after the
“START 142", except that the output in w(3) is NIL to
indicate a saved proaram is heing restarted,

one of the side effects of the monitor SAVE command not
handled by SV’s cleanup is that all the I/0 interfaces
currently in use are closed, The 1I* prcqram mnust teset
those interfaces (with RSTF) bhefore attempting to use them
again,

Appendix 17 - Detailed Descriptions of Kernel Processes 24

sSWrCcY SWPCY (SVWaAP ConteXt) expects a list of pairs (A1 B1 ...
An Bn) as input (') and exchanges the full-word contents
of each Ak with the full-word contents of the corresponding
Bk, SWPCX is used instead of PCYX, RCY and UCY in cases
where full-word contents must he changed and where context
changes with respect to the particular context cells (the
Ak’s and Bk’s) are not potentially recursive,

T T ontputs the characteristic symbol for inout w(3),
which is the eantry for W(?) in the type table in W cell
WITT,

TI TT outputs the type index of symbol W{1) as the value of

wim), The type index is found as the contents of the cell
whose address is W(3) + TD .

] M (Up {(pop)) pops W (i.e. it removes W(0)),

nex fIcX (Up {(pop) ConteXt) is the inverse of PCYX, I+ npops
avery other symbol in the 1list W(f) starting with the
second,

If the input list W(?) is (A1 11 ... An Bn) , each Bk
is operated on as 1in the program : (®"k D) , The Bk are
normally cells whose contents specify current context in
some wav, hence TTX has the effect of restoring some
previously pushed context,

v V reverses ¥(*) and w(1) in W,

WR WR writes the 1list in W(1) to ¢the 1interface W(Z),
opening +the interface and selecting a file for the outpu®
if necessary. Writing to the interface 1is done by

interpretiny W(1) in Write Context (via .¥CX)

The interpreters .IWR and .IPWR do the actual work of
depositing characters into the output huffers and writing
them out whan they become filled, WR docs one last output
operation to write out the last partially filled bhuffer
when control returns from interpretation of % (1),

LIPTT

JITT

AKT1

ARPTT

ARTT

AwPT?T

AWTT

Appendix 11 - Detailed Descriptions of Kernel Data 1

Standari interpreter type tables for execution
(interpretation) of symbols appearing within T/P lists.
Tnitially contains the following entries : ,TP/M for T/ ,
.Ipes/p for T/P , and ,1P/S for T/C, T/T, "/K and T/L .

Standard interpreter type table for execution outside of
T™/P 1lists (e.qg., bty .Y and ,¥CY apd from T/ routines),
Initially contains the following entries : ,7/7M for T/M ,
.1/p for T7p , and .7/s for T/C, T/, T/K ani T/L .,

The character action tabhle which is initially in ¥ cell
WAKT . It +initiallv contains the following character
actions :

ABND for KCR KLP KVT EKFF KCR KSP

S 4 for !

AVK for s () x, ./

: < =>2e@ [N] ¢t -~

all uvrper and lower case letters
[4

» Q for

ADK for "n123456K7809
A+ K for +

A-FK for -

. for H

NOP for all others

Interpreter type table to be used when in Assembly PRead
context to interpret symbols occurring within a program
list, 1Its initial entries are : .IPEY for T/K, .IP/M for
T/%, .IP/P for 7/7, and ,IP/S for T/C, T/T and T/1 .

Interpreter tvpe table to be used when in Assembly PRead
context to internret svmbols not occurring within a proagranm
list, 1Its initial entries are : .IEX for T/K, .I/Mm for
T/#, .I/P for /7, and ,1/5 for T/C, T/T and T/L ,

Interpreter tvpe tahle to be used when in Assembly Write
context to intarpret symbols occurring within a proaranm
1list, 1Its initial entries are : .IPDP for T/K, .TP/M for
T/M, .IP/P for T/P, and .In/Ss for ™/C, T/I and T/1 .,

Interpreter type table to be used when in Assembly Write
context to interpret symbols not occurring within a proqranm
list., 1Its initial entries are : .IDP for T/K, .I/M for

R/K

RTT

DECML

DSK

NI

IN'IMF

TSGN

JBAPR

Appendix 11 -~ Detailed Descriptions of Fernel Data 2

t/M, .T/P for T/P, and .1/5 for T/C, T/T and T/L .

Inteqger whose valune is the null character symbol (T/K)
which 1is the bhase of the 12R cell block of character
symbols., Apvears as the entry for T/K in the bhase type
table BTT .,

Tnitial current base type table in W cell WRTT. Its
only 1initial entry 1is integer B/K for T/K . The current
hases avre accessad via WBTT by ,1DP , ,TI®DP , ,I®RX and
.IPEX . The current character base is accessed via WBTT by
LIWR , .TPW¥W?” and RD .

An integer (T/I) with value = AHdecimal ten. Not
initially used anywhere in kernel, hut intended to be used
to change current integer radix in W cell WIB to decimal.

Interface block for reading and writing the disk, Nses
tvo 272 octal “wordi buffers €for both input and output,
Initially set to read from file “BOOT,.LSF* and vwrite to
file “PILE,.LSP™ ., 1lses channel 1 .

Integer accumulator used hy ADR (the diqit character
action) to accumulate a value (via process ACCD) as digit
characters are baing interpreted, Also referenced by ABND
{the boundary action) to actuallv create an integer (when
appropriate), and to clear the integer value,

Integer flag used by ABND, ANK, ADK, A+K and A-K to
distinguish bhetween integers and names heing accumulated,
Cleared by ABND .

Integer flag used by A-K and ARND to record whether an
integer 1is positive or negative when one occurs, Cleared
by ABND .

PPP1C Job Pata Area 1location (JOBAPR) which contains
trap 1location for central processor interrupts. Initially
set by L* to contain ERR1T .,

JRCN I

JRCOR

JRFF

JBHRL

JBOPC

JBREL

JAREN

JRSA

Appendix 11 - Detailed Descriptions of Kernel Data 3

Job Data Area 1location .JORCNT, ~ontains state of
arithmetic processor as stored by CONT APR when an enahled
trap accurs. (See process description for ZRR1),

Job NData Area location JOBCOR. Laft Half contains
highest location in low segment with non-zero data (set hy
TOADER), Pight Half contains nger arqument on last SAVE or
GET command (set by Monitor). Not referencedi by kernel.

Job Data Area location JOBFF, Right Half contains
address of first free location following the lovw seqment,
Maintained by CSP to point to the top of core in the low
segment so that the SAVE command will work correctly,

Job Data Area location JORHRL, Left* Half contains first
free 1location in high segment relative to high seqmeant
origin, Right Half contains highest legal user address 1in
the high segment. Left Half is updated by CSP when
additional core is obtained so that the SAVE command will
work correctly, Right Half is used by £SP to locate the
current top of the high segment when additional core is to
be obtained.

Joh Data Area location JOROPC, Msed by monitor to store
previous contents of the user’s program counter when a DDT,
RTENTER, START or CSTART command is issued.

Job Data Area location JOBRRFL, Contains higqhest 1low
seqment core addAress available to the user,

Job Data Area 1location JOBREN, Contains starting
address used by RTENTER command. Can be set hy user to
provide an alternate entry point.,

Job Data Area location JOBSA. TLeft Half contains first
free location in low segment. Right Half contains starting
address of user’s program, Left Half is updated by CSP to
ensure that the SAVR command will wor¥ correctly. Right
Half is set by L* to start execution at the proper location
within the process SV so that saved segments will continue

Appendix 11 - Detailed Nescriptions of Kernel Nata

when they are RUN ,

4

JBTPC Job Nata Area location JORTPC, WVhere Monitor stores
proaram counter of next instruction to he executed when an
enabled central nrocessor trap occurs.

KALY Altmode character. Code = 175 octal.

KBELL Bell character, Code = "7 octal.

KPpSp Backspace character, Code = 71° octal,

KCR Carriage return character. Code = "15 octal.

KFF Form feed character, Code = T14 octal,

ELF Line feed character. Code = 212 octal.

KSP Space character (blank)., Code = 247 octal,

KTAB Horizontal tab character, Cole = 711 octal.

KTN Integer whose value is the size of character tables
{initially 128 decimal). WNot referenced by kernel.

KVT Vertical tab charactér. Code = 213 octal.

MS PSSV Cell used by ST141 to read out and by EPROR to fead out

and restore the contents of the machine stack pointer MSTKP

MSTK

MSTKM

MSTKN

MSTKP

N/C

N/T

N/L

N/M

N/P

Appendix 1%t - Detailed Descriptions of Kernel Data 5

Contiaguouns blnck of cells of length MSTK® appearinag in
the kernel immediatecly before initial T/C available space.
Used throughout the Fkernel for ™/¥ routine linkage and
saving of register contents over machine code suhroutine
calls.

ITntegaer whose value is the actual maximum size of the
machine stack MSTK ,

Inteqer whose value is the stack size used in the
machine stack pointer MSTKP under normal conditions, When
an attempt is made to push more than MSTXN entries onto the
stack, a pushdown overflow error trap nccurs (see Process
description €for EPR1), ST141 and FFPOR increase the
operating stack size in MSTKP from MSTKN to MSTKM over the
scope of their ewecution to provide reserved stack space
for temporary use,

Register (17 octal) containing the PDP1Y stack pointer
for the machine =stack MSTK, The Left Half contains the
negative count of unused words left in the stack, the Right
Half contains +he address of the current top entry on the
stack,

Integer whose valune is the count of cells on initial T/C
available space,

Tnteger whose value is the count of crlls on initial T/1
available space.,

Inteqger whose value is the count of cells on initial T/L
available space (not countina reserved T/L space),

Integer whose value is the count of cells on initial T/M
available space,

Integer whose value is the count of cells on initial T/P
available space.

N/ RL

NACC

NBTT

NIL

um9

NT1r

NTIN

Appendix 11 - Netailed Descriptions of Kernel Data 6

Inteqer whose value is the count of cells on initial
reserved T/L space {in W cell WSPRL).

Cell used by *CCK to accumnlate characters being
interpreted into packed form for use by ABND if a name is
to be looked up or entered into the name table. ABND also
clears NACC hefore exiting,

Tnitial current number-of-bits type table in ¥ cell
WNBTT , TIts initial entries are SEVEN for T/K and 77RO for
all other types. The bit sizes for =ach type are used via
WNBTT by the Deposit and xtract interpreters ,7TDP , ,IDPDP
¢ «IEX and ,IPEX .

Special T/1 symbol used throughout the kernel as the
list terminator and as the neqative signal from tests, NIL
happens to be the symhol ¢ (register =zero), but this 1is
mainly for convenience.

The ipitial name table in W cell WNT which contains all
the names listed in 2ppendices 3 and 4 ., The name table is
a contiguous block of cells of length twice the value of
integer NTIN , Each name entry 1is two cells long and
contains the right-justified packed ASCIT characters of the
external name in the first cell, and the corresponding
internal symbol in the right half of the second word, NT1I
. which is an inteqer whose value agives the currant number
of entries 1in the table, iz assumed to he the cell
imnmediately preceding the first cell of the table itself
(NT1), NTI¥ , which is an inteqger whos=e constant value
aives the maximum number of entries the table will told, is
assumed to occupy the cell immediately preceding »T1I .
The current name table is accessed via W cell WNT hy the
kernel processes LSNT , LNNT and CSNT .

Tnteger whose value specifies the current number of
entries in name table NT1 . Used to locate the current
last entry in the table for searching and wmaking new
entries , Occupies cell immediately preceding NT1 .,

Inteqer whose value specifies the maximum number of
entries name table ¥T1 will hold. Compared with NT1I when

OCTAL

P

R2

R25V

R3

R3Sy

ru

R4SV

RS

Appendix 11 - Detailed Descriptions of Kernel Data 7

new entries are heing made to detect overflow of ©NTT'
Occupies cell immediately preceding NTYT .

Integer (™/1) with wvalue = decimal =aiqght, Used as
initial contents of ¥ cell WIR to indicate octal integer
radix .

Register 1, Used in the kernel as an input-output
reqister for machine code subroutine calls, and as a work
reqister ,

Cell used by ST141 to read out and by WREOR to read out
and restore the contents of ?1 ,

Register 2 , fised in the kernel as a second input
register for wmachine codle subroutine calls, and as a work
register .,

Cell used by ST147 to read out and by RRPOR to read out
and restore the contents of P2 .,

Pegister ? ., Used in the kernel as a third input
register for machine code suhroutine calls, and as a work
register,

Cell used hy S5T141 to read out and by ERFOR to read out
and restore the contents of 73 ,

Register 4 . U0Osed in the kernel as a work register .

Cell used by ST141 to read out and hy ERROR to read out
and restore the contents of R4 ,

Register 5 , Used in the kernel as a work register .

RS SY

il

RDCX

RDPTT

ROTT

STVURN

sp/C

Sp/Y

Appendix 11 - nNetailed Descriptions of Kernel Data R

Cell used by ST141 tn read out and by RRROR to read out
and restore the contents of RS ,

Register 6 , Used in the kernel as a work register, by
the error locations EPR? -~ TRR22 to transmit to the common
error routine FRRO® the identity of the particular error,
and by machine process prefixes to transmit the location of
the process stem to the prefix subroutine (P71, etc.).

Context list used by EYRC as inout to .¥CYX when
executing the character list obtained from RD . RDCY is
defined as : ((*DTT) WITT (RDPTT) WIPTT) , which causes
the current interpreter type tables +to become PRDTT and
PDPTT over the scope of the execution of the character
list.

Tnterpreter tvpe table to be nsed when in Read Context
to interpret svymbols occurring within proqram lists, 1Its
initial entries are : ,IP/X for T/K , .TP/¥ for T/74 , .TP/D
for ™~ , and .IP/S for T/C, T/I, and ™/L , The context
list RDCY , when used as innut to ,¥XCY , will cause
interpretation to occur in %ead Context (i.c., using °"DPTT
and RRTT).

Tnterpreter tvpe table to he used when in Read Context
to interpret svymbols not occurring within a program list,
Tts initial entries are : . I/K for T/K , ,T/M for T/ ,
+T/P for P , and .I/S for T/C, T/T and T/L . The context
list RDCX , when used as input to ,.vYCX , will cause
interpretation to occur in Read Context (i.e., using RDTT
and EDPTT),

Integer (T/I) constant with value = 7 . !Ysed as initial
entry for T/K in tvype table NRTT .,

Initial available snace 1list for ™7/C . Appears as
initial entry for 7T/C in tvpe table SPTT .,

Tnitial available space 1list for T/1 ., Appears as
initial entry for T/I in type table SPTT .

SP/L

SP/M

sp/spP

SP/RL

3pTT

SpYTT

sTOP

Appendix 11 - Detailed Descriptions of ¥ernel

Tnitia)l available space

Data 9

initial entry for ™/L in tvpe tabhle SPTT ,

Tnitial available snace

initial entrv for T/% in tvpe table SPTT ,

Initial available space

list €for T/L . Appears as
list for T/ . Appears Aas
list for T/P . Appears as

initial entry for T/7 in type table SPTT ,

Tnitial reserved available svace list for T/L .

Aopears

as initial contents of W cell WSPRL .,

Initial available space
Tts initial entries are
sp/s1. for T/,

Context list usaed
is defined as :

that the standard

ses% for T/M

by cC
space-pxhausted routines in Svace-Zxhausted Context,
((.TTT) WITT (.IPTT)
interpreter tvype tables ,IPT and ,IPTT

tvpe tahle in W c¢ell W®spT™™ |,
: Sp/C for T™/7C , 5p/7 for T/1 ,
, and SP/P For T/P ,

C/1. execute
SPYXCX

which means

and to

WIPTT) ,

are used in Space-Fxhausted Contaext,

Tnitial space-exhausted

WSPXT . SBXTT thas no
responsibility of the
space-exhausted routines

initial availahle space of

T/L sympbol used to mark
stack WHNW
T/" list was interpreted.

routine type table in W cell
entriers 1initially ; 1t is the

1% bootstran to define
and put them into SPYTT before

any type is exhausted,

the level in the higher routine

where a 7/0 symbol occurring cutside of another

Fach STOP mark in ¥WAN parallels

a return link in the machine stack MSTK to the point where

a T/? symbol was interpreted fror a machine
to
then watches for the STOP each time it Ascends
Teappears,
symbols within other T/P lists is donre by ,.TIDP/D
subroutine which causes a Descend and returns to

. I/P causes the STOP

called,

exits when the STOPD

code routine.
pushed onto WHN when first
and
Interpretation of T/P
s & closed
+1/7P

be

/T

T/T

™L

/M

T/P

Appendix 11 - Detailed Descriptions of Kernel NData 11

Entty for Type Cell in the initial characteristic symbol
type table TTT . Represents a null symbol of Type Cell ;
its initial full-word contents are =zero . Can be used
vhere some arhitrary symhol of Tvype Cell is needed, or for
creating null Type Cell symbols with process C (as in CPTR
).

Fntry for Type Intedaer 1in the initial characteristic
symnbol type tahle TTT ., Represents a null symbol of Type
Integer ; its initial value is zero . Can be used vwhere
some arbitrary symbol of Type Tnteger is needed, or for
creating null Tyoe Tnteger svymbols with process ¢ (as in
ABND when an integer is recognized).

Entry for Type Character in the initial characteristic
symhol type tabhle TTT , Also symbol for null character,
and base svmbol for characters, Not used for creating Type
Character symbols since that is normally not allowed.

Fntry for Type List in the initial characteristic symbol
type table TTT . Represents a null symbol of Tyne List ;
its initial svmbol and next (T/L.S and T/L.N) are both =
NIL . Can he us2d when an arhitrary symhol of Type List is
needed, or for creating null Type List svymbols with process
C . (Note that process C/L does not create null Type List
synhols since it doesn’t initialize the cells it outputs).

Entry for Type Machine Code in the initial
characteristic symbhol type table TTT , PRepresents a null
symbol of Type Machine Code ; 1its initial contents
(full-word) are a RFTURN (POPJ MSTKP,) instruction., Can
he us2d where an arbitrary Type Machine Code symbol 1is
needed, or possibly for creating null Type Machine Code
symbols with process C ,

Entry for Typa Proqram List in the initial
characteristic symbol type table TTP ., Pepresents a null
Program List ; its initial contents are T/P.S = NOP and
T/P.N = ¥TL (i.e., T/P : {(NOP)), TUsed as initial contents
of W cells WTC and WTCRL , Can be used when an arbitrary
Type Program List symbol is needed, or for creating null
program lists with process C .,

TRUD

TTN

T

TTY

Appendix 11 - Netailed Nescriptions of Kernel Data 11

Tnteger whose value is the Type Displacement, which is
the displacement from a symbol to the symbol-Aescription
word for that symhol (i.e., the word holding the svmbol’s
Type Index). The value used for Lx(T™) is 270775 octal,
which nputs all the symbol-descrintion words into the hiqgh
segment provided hy the PNP1™ Monitor. Changinag the value
of TD will not effectively change +the Type Displacement
since it is assembled into machine c¢ode instructions
throughout the kernel,

T/L symbol output as a positive result from kernel test
processes when the W{1) input was NTL and merely leaving
the W{1) input as output wonld result in confusion, The
processes which 1o this are : =5 , «§ , »§ , =T , =C , =1 ,
<I and >I , TRUZ is also output hy SV when continuing fust
after a SAV® has been done.

Tnteger whose valune is the size of existing tvpe tables
{number of cells) , which is also the maximum number of
types allowed, The value does not control anvy processing
in the kernel (e.g.,, no checks are made when accessing type
tables to see if an index > the value of TTN is being used)
; it is only for information.

Initial characteristic symbol type tahle in W cell WTTT
. Holds null symhols of each type, initially as follows :
T/C for Type Cell, T/ for Type Integer, T/F €for Tyne
Character, T™/1L for Type List, T/M for Type Machine Code,
and T/P for Type Program List, Msed via WTTT by kernel
process T ,

Interface bhlock for reading and writing the user’s
teletype. Ilses two 27 octal word hnffers for both input
and output., Operates on channel 2 in ASTTI Line mode.

T/L cell used to communicate inputs and outputs between
successively intaerpreted processes. The prefix subhroutines
{P?1 - P31) hanile the transfer of 1inputs from W to
rege List ind outputs from reqgisters back to W for calls on
machine cod» processes., The processes .T/5 , .TP/S , ABND
e +IEX and .TPEX are all rrocesses which don’t use the
standard prefixes and thus push their outputs directly onto
W .

WAKRT

WRTT

WDR

WDRIY

WERR

WERRL

WHN

WHS

Appendix 11 - Detailed Descriptions of Kernel Tata 12

¥ cell which holds current character action table
(initially a%xT1) used hy .T/¥ and ,IP/K

W cell whirch holds current hase type table (initially
3TT) used by ,IDP , .TIPDP , .I%X , .TPRX , ,IWR , ,IPWP and
RD

W cell which holds Dehug routine (initially =®XEQ)
executed by DEBIAG

W cell for holding current Debuqg Context Swap List used
as inpugt to SWPCY by DERUG to swan contexts before and
after executing the Dehug routine in WDB, ani by ERROR to
sWwap contexts bafore and after executinag the error routine
in WFRR , WDBCY is empty in the ketvnel ; the L* bootstrap
is responsible for setting up a swap list and putting it
into WDRCY .

W cell for holding the current general error handling
routine executed 1in Debua Context hy FRRAR ., Tnitially
holds HALT .

W cell set by FPROR to hold aildress of particular error
location which wmade call to =nRnP |, Used to identify
nature of error when one occurs,

W cell (register 15 octal) used in L*! interpratation as
stack to hold adAress of next cell in program list to he
interpreted at each higcher level. W®hen a Descend occurs
{as in L.I/P and ,IP/P) the current next program contained
in W cell WYX is pushed onto WHN to prescrve it. When an
Asceni occurs (as in .Q and .I/P) the contents of WAN is
popped into WXN , Setting the contents of WHN to NIL
(i.,e,, the contents of the ¢top cell) has the effect of
terminating execution of the next higher program 1list,
This fact is used by .. , ..+ and ,,- .

W cell (register 16 octal) nused in L#*lL interpretation as
stack to hold addresses of higher level programs being
interpreted. W®hen a Descend occurs (as in .I/P and ,1P/P)
the current prograr being interpreted contained in W cell
WXS is pushked onto WAS to preserve it, When an Ascend

WTH

WIDTT

WITT

WK

WNRTT

WNT

WPTR

Appendix 11 - nNatailed Descriptions of Kernel Nata 13

occurs f(as 1in .0 and .I/P) the contents of WHS is popped
into WXS . .R , R+ and .R- work by copving +the contents
of WHS into %YV , thus making the higher level program next
at the current lovel.

W cell wihiich holds inteaer whose valu= is the current
radix for integers. "sed hy processas ACCD and CVTDL .,

¥ cell (register 1} octal) which holds current
interpreter type tabhle for svymhols neccurring within T/P
lists, Tnitially contains LTPTT . Changes nf

interpretation context are eoffected by changing the
contents of WIPTT (and WYITT)., Referanced in the kernel by
LTI/P

¥ cell (reqister 11 octal) which holds current
interpreter typ= table for interpretatinn of symbols not
occurring within T/P lists, Initially contains ,TTT
Changes of interpretation context are effected bv changing
the contents of WITT (and WIPTT). Referenced in the kernel
by DEPUG , ¥RBROR , C , C/L , X , .XCX , .I/K and ,IP/K .

W cell set by ,I/F and ,,IMK to contain the current
character bheing interpreted. NMsed by character action
rostires to aget the character they are interpreting, (e.q.,
hy ANX , ADK , A+¥ and A-K },

W cell which holds current number of hits type table
{initially NRTT). TUsed by ,IDP , ,IPDP , .TEX and .I™PY ,

W cell for stack of current nrame tables, Initially
contains only *"NT1 , LSNT will search each name tabhle in
the stack starting with the top until it locates its input
symhol or has searched all name tables in vain. LNNT
searches similarly trying to locate its input name, CSNT
creates an entry for its input name in the name tahle in
the top of the WNT stack (i.e., the contents of cell WNT),

W cell (register 7) to hold the address of a PDPIT byte
pointer used for depositing and extracting bit patterns.
When ,IDP , .IPD™ , ,TEX and ,IPZY use WPTR they assume
that it contains a byte pointer which voints to the fielAd

WeCX

e DB K

WRPTT

WRTT

WSPRL

Appepdix 11 - Detailed Descriptions of Xernel Data 14

to be operated upon., WPTR is initially empty, hut pointers
can te created by CPTF and then stored into WPTR for use in
depositing and extractina. Byvte pointers can also be moved
a number of bits within the current word pointed to by
mMypTR |,

Context list used bv WR as input to .XCY when executing
the list input ¢to WR as W{1), WRCY is defined as : (
(WRTT) WITT (WPPTT) VIPTT) ., which causes WBETT and WRPTT
to become the current interpreter tyne tahles over the
exacution of the list being written.

W cell which holds current read interface (initially
TTY). tsed by FYFC to obtain the interface to he read from
{i.e,, the interface to he the W(") isnut ¢to BRN), BXFC
also resets (via RSIT) the current interface in WRD when an
end-of~file is detected.

W cell c¢ontaining current read break character
(initially «L®), sed by RD to determine when to stop
reading characters from the actual external interface and
return with its output character list, "D will continue to
read characters until it encounters onn that is the same as
the one currentlvy in WRDBK ; thus, the last character on
the list output by B will alwavs he the current bhreak
ctaracter, and will be +the onlv occurrence of the break
character on the list,

Tnterpreter type tahle to he used when in Write Context
to interpret svmhols occurrina within program lists, Tts
initial entries are : ,IPWR for T/%X , ,IP/M for T/M , .TPB/P
for T™VP , and ,TP/S for T/C , T/1 and T/L . The context
list WRCY , when used as input to ,.¥CY , will cause
interpretation to occur in Write Context (i.=., using WRPTT
and WRTT),

Internretar type table to be used when in Write Context
to interpret symbols not occurring within a nroqram list.
Its initial entries are : ,I®WR for T/K , .I/M for T/M ,
+I/P for T/P , and .TIr/s for T™/C , T/T and T/L . The
context list WRCYX , when used as input to .¥XCX , will cause
interpretation to occur in Write Context (i.e., using WRTT
and WRPTT).

W cell to hold the reserved available space list for T/L
{necessary since execution of space-exhausted routines

WSPTT

WsPXT

L

wur

WXN

Appendix 11 - DNetailed Descriptions of Kernel Data 15

requires some T/7. space as working space before additional
space can be obtained from the moniter), When C or C/L
detects that T/L space has been erhaustel, it will make the
reserved space list from ¥SPRL the curront available space
list for T/L in the type table in WSPTT hefore calling the
space-exhausted process from the type table in WSPYT . The
space-exhausted process 1is qiven the responsibility of
building a fresh reserved available space list and storing
it into WSPRL .

W cell for current available space type table {(initially
contains SPTT), Msed by ¢ and C/L for obtaining cells
from available space lists, and by E and E/L for returning
cells.

¥ cell for current space-exhausted process type table
{initially contains SPYXTT)., TUsed by C and C/1L to obtain
the current space-exhausted process when available space of
some type is exhausted,

W cell which specifies current tvpe heing created
{initially contains T/P). HUsed by CSNTW¥ which is called by
CSNT , which is called by ABND when a name has come across
the input interface which isn’t defined in the current name
tables, CSNTW creates a new symhol of the same type as the
symbol currently in WTC to go with the naw name it enters
into the name table,

W cell which contains the type to be used for creating
character 1lists (ipitially contains 7/DP). fsed by RD ,
CVYNKL and CVIDL .

W cell which holds the current characteristic symbol
type table {initiallv ™7TT). 1lised by process T .

¥ 2ell which holds current output interfaces (to bhe
treated as a stack of interfaces, all of which vwould
receive output)., Not referenced in kerncl, but to he used
by print routines defined in bootstrap,

W cell {(register 14 octal) which holds next oreration at
current level during L=*L internretation. When an Advance

WX S

Apoeniix 11 - Jetailed Descriptions of Xernel Data 16

nccurs, the contents of WXN is replaced hv the link aof the
cell pointed *to by the original contents, During a
Descend, WXN is nushed onto WAY ; during an Ascend, WHN is
popped into WXWN . In ,T/P , WXN = NIT when attempting to
ddvance sianals the end of the current lewvel and triggers
an Ascend; WXN = STOP when attemoting an Advance triggers
an Ascend followed by a return to the caller of .I/P .
Setting WYN = NTL has the effect of terminating
interpretation of the current level; this fact is used by
the control operations . s oF 4 o= 4 s 4 e.* and ..- .,
The repeat overations .R , .%+ and ,R- operate by copving
the current contents of WHS (the higher rcutine cell) into
WIN .

W cell (register 13 octal) which holls current symbol
being. interpreted, During Advance, hefore WXN is stepped
ahead, WYS gets the symhol of the cell pointed to by the
contents of WYN (i.,e,, the next svmbol *o be interpreted),
During a Descend, WXS 1is pushed onto WHS ¢ during an
Ascend, WHS is popped into WXS . Interpreters for symhols
occurring within program lists (,IP/K , .IP/M , .IP/P ,
JIP/ss , JIPDP , ,TIPEX and ,TPHP) all get the symhol tn be
interpreted as input from WXS (The remaining
interpreters receive the symbol to be interpreted in R1),

T/ constant with value = 7., tUsed as initial entry 1in
type tables BRTT and NBTT for all types except T/K ,

Appendix 12 - Operational Notes 1
(1 T RUN THE VIESTOM OF L«{(F) WHICH TNCLUDES T™HE BONTSTRAP, DO
(IN COMMAND MODTZ)
P LSFA

THE SYSTEM WILL RESPOND WTTH “vXY RESTARTED™ AND PUT YOU IN
CONTROL BY READING FROM TH® TTY ,

(2) TO GET A COPY OF TH® L*(F) KEPNEL MACRO-17 LISTING, USE THER
FOLLNWHING PIP COMMAND:

LPT:«+NDSK:LSP.LSTI167,77374}

(3) TO GET COPIFES OF THF BOOTSTRAP FTLE, ON-TINFE EDTTOR FTLE RAND
STEPPTNG MONITOR FILT TNTO YOUR DSK APFA SO THAT YOU CAN
RUN THROUGH THE DBOOTSTRAP, USE THE FOLLOWING PIP COMMAND:

PSK:/X+SYS:RCOT,LSF, "DYTF,LSF,STPNT,LSF

{4} TO RUN THROUGH THE LOADIYG OF THE BOOTSTRAP DO:
R LSP
NSKX WRD 7 0
THZ SYSTFM WILL RPSPOND WITH “INITIAL COOTSTRAP LOADED™,
IF YOU THEN DO IN L& THT FOLLOWING:
EDTTF RDF?
STPMT BDF!

THIS WILL BRING YOU TO THE SAME POINT WHERE YNU WOULD BFR
AFTER RUNNING LSTF2 ,

(5) TO DO A SAVE FOP RZISTA®T (ONLY TIF YO HAVE THE ROOTSTRAPD
RONMTINES LOADED) DO:

SAVE!

THIS WILL PUT YOU INTC MONITOR MODE, NOW DO:

Appeniix 1? - Operational Notes 2

SAVE DSK <FTLE NAME>

THIS WTLL C®=ATE THY TW FILES <FILE NAME>,LOW AND
<FTLE NAME>, HGH WHICH CONSTTTUTE A SAVED VERSION OF YOUR L=x
SYSTEM., NOW DO THY MONTITOP COMMAND:

START 142

THE L=* SYSTEM ({1.F, THE PPNCESS C2ALLED “SAVE®™) WILL
RESPOND WITH *VXX CONTINUING™, AND YOU ARR BACK IN L=*,

AT SOME LATEN TIME YOU MAY RESTART YDUR SAVED Lx SYST®M BY
TYSSUING THF MONITOR COMMAND:

FIIN DSK <FTLE WAMED

WHERE <FILT NAM®> I5 OF COURSE THEZ SAME NAMS YOU USED WHTN
YOU DTD THE “SAVE® CHOMMAND, THR SYST®M WTIIL RESPOND WITH
VXX RESTARTED®™ ANT CONTTNUE WHERR YOU LEPT OFF, THIS IS
IN FACT HWO¥ TH® SYSTWM LSFR IS CREATED: PY RONNING LSF (THE
BARE KERWNFL), LOADINGS THT BOOTSTEAP, "DTTOR AND STEPPING
MONTTOPR, AND THEM SAVING IT WITH <PTLE NAMEZ> LSFA .

tppendlix 13 - Listing of Rootstrap File BONT, LSF 1

INTTIAL BOOTSTPAP - L*(F)

NEFINE ROQUTINE FOR REPLACING CHARACTRER ACTTON
RCKA : (WAKT S .0 T/K T =-S5 *IS P)

LYY]

T™7T WTC R
ITe m v .
T/P WTC R
P RCKA R ! 4TS PCKA I ! -85 RC¥A T ! I PCKA T ' 7T/K RCKA T !
.0 RCKA T ¢ S BCKA I 1! WAKT RCKA T ¢

SFTINE TEMDP TNTEGTR CELL FOR BOOTSTRAP

2

an-cu-

L 1]
—
L

** DEPTNE CHARACTER ACTTONS FOR NANMT e) ®E

; DEFINF ACTION FOR :
; TSEN : (WUSEN S)

T/L WTC R !

™L C ' YUSEN R !

I/P WTC R !

S NSEN R ' WOSEN USEW T
MSEN *: RCKR !

NEFINKE ACTINON FOR (

STRL z (P WUS®EN S =S STRL1T P N FL P NTL V BN WC I WFLR 3)
STRLY = (STRL2Z V)

ST2L2 : (.+ WTC S C ,,)

Wk wy =y W

T/1. HTC & !
T/L C ! WPLR R !
Wwe w1

T/P WTC 7 1

S STRL R ! WFLR STRL T ¢ T STRL I ' WC STRL I 1!

RN STRL T ¢ V¥V STRL T ! NTL STRL T ! P STRL T !

FL sT™@L T ! N STRL T ' P STRL T !

STRL® STRL T ! =5 STRL I ! S STRL T ! WUSEN STRL T !
P STRL T ¢

vV STPFL1 R ' STRL2 STRL1 I !

e« STRL2 » ! C STRL2 T ! S STRL2 T ¢ WTC STRL2 T
.+ STRL2 T !

STRL *(RCKA !

DEPINY ACTION FOR)

ENDL : (ENDL1 # WC S D P WUSFN S =S ENDL2 WC D)
ENDL1 : (P WFL®R 5 =S ,+ WC S Ta ,R)

ENDLZ : (RNDL3 1)

- %h W Wy

Appendix 13 - Listinag of BRootstran Tile BROOT.LSF 2

ENPL3 =« (. +# WC § ,.)

ENPL R ! WC RNDL T ! ENDL2 FNDI T !
=S ENDTL. T ! S ENDL T ' WUSTEN ENDT T !
P FNPL T ' D BNDL T ! S ENDL T !

WC O ENDL T ! {] ENDL T ! RENNTT TINDT T !

=

LR E¥DLYT R ! TR FNDLT T ' S PNOTLY T
WC F¥DLT T ' , 4 ENDLYT T ! =S ENDLT I !
S ENPLT T ! §TLR ENDLT I ! P ENDLYT I

U ™NNL2 R ' ENDT3 ENDL2 T !

o EHDLI R V' S FNML2 T 1 WC FNOL3 T !
.+ BNDLY T 1

ENDL 7)) RCXA !

; ADD BONNDARY ACTTON TO SOMF SPRCTAT CHARACTERS

T/L WTC R !
LICY = (L ITT) WITT (.IPTT)} WIPTT)
/7P WTC R ¢
(ABND ,ICY ,
(ABND UST®N)
(ABND STRL)
(ABND FENDL)

XCX) 7! RCKA !
: RCKA!
(RCKA?

) RCKAY

~
(=
r
r

3 SET UP DEBUG SWAP LIST TO TORCY PEAD TROM TTY

T/L WTC R!

DWRD: (TTY)

DWRD%: (KLF)

NWWR: (TTY)

DNTL: (NTL)

pEITT: (L, TIT™)

DHIPT: (.TPTT)

LRCX: (DWRN WRD DWRNR WRDBK DWWR WWR DNIL MNIL DWITT WITT DWIPT WIPTT)
CRCY WDRCX R!

; DEFINF WORKTNG CELLS AND SRVING UTTLYITY RTNS

WY U WY 0! W2 U W3 U W4 U WS a2
T UL TYT UYL T2 OV T3 UY TYU Y TS O
WSAYR !

/P WTC 2

SAVEW: (WSAVE T)

RSTRW: (WSAVE S WSAVE D)

ippendix 12 - Listing of Bootstrap Pile BONT, LSF

; DEFINF TYPZ DECLAPATION RNOUTINES

DEF/L: (T/1 WTC ®»)

DEF/P: (.0 T/P WTC R)

DEF/Y: (T/I WTC R)

; DEFTNT @ ACTTON - AT MAK®S B OF TYPT T

DEF/LI

TYPL: (Y T/T 'L T/L P T/P M T/M *C T/C)

TEF/P!

(WHN ¥ S S W I WHY N P S N V R : G=T NEXT CHAR, AND ADVANCT
TYPL (P S #7 S =S ,+ N N P R+ HALTY ; FIND CHYAR, SYMROL
¥ 5 WIC T ABND P WTC S YT TT V RT ; MAKE S1URE OF TTS TYPE
¥TC D WO D)

¢ RCKAN

; DEFIN® ™ ACTION - ™, ,.,™ CRFATRS LTS3T OF CHAPACTIPS

STREKL: (WTCKL S C HC T WFLR 5)
ENDKL: (ZNDLT 01 WC S P D WC D)

(AREND WHN ™ P SAVEW S ;s GFT TNPUT LIST
STRKL V¥ y START K-LIST
(P S .0 ™ =5 ,+ P SV ND Ps) ;7 TERMTMNATE ON ™ OR ROL
N RSTRW R TNDKL) : ADVANC™ BRYOND ™ AND FPND LIST

™ RCKM!?

: DEFINE ONTPUT ROUTINES

WRWWP: (W" I WHR (P S WO S V WP N P B¢ 1) WO D)
CVSI: (SAVTWN T/I C P RSTRW V F)
PRN: (P LNNT P PPN1 P WRWWR FL)
PRN1: (PRN2 V I CVNKIL)
PRN2: (.+ U1 CVSI P CVIDL V F ..)
ERT: (.0 “(=" WRWER CVIDL P WRWW2 FL .0 “)™ WRWWR)
TRS: (P PRN P T/T =T (.- PRI ,,) U)
PR: (P PRN .0 ™: ™ WRAWWR PRSTR CR,1.¥)
PRSTR: (P T/I =T (.- PRI ..)
P T/L =T (.- PRLS ..)
P.O TP =7 (,- PRLS ,.)
P .0 T/K =T (.- P LNNT P (.- 0 ,,) 011 ,0 7™ YRWUWR WRWW® .,)
PRN) ; PRINT NAMF ONLY OF ALL OTHTR TYDPRS
FRLS: (.Q (™ WRWWP
(PS PRSTX N P ,- SPACE .R)
0.0)™ WRHWR)
TRST': (P LNNT P (.- V 1 CVYNKY P WRWWR EBL ,..) 0 PRSTR)
PRST* PRSTY R! '
PRL: (.Q PRS .Q PRSTY P PR .Q PRST1 .Q PRSTX R)
SPACT: (.0 ™ ™ WRWWR)
CR.LF: (.Q (KCPR KLF) WRWWR)

Appendix 13 - Listinag of Bootstrap File ROOT, LSF u

; DEFTNE ™YPT TABLE AND CHARACTFR ACTTON TABLE PROCESSES

SETT: (V IT™> TT +I% %)
PETT: (VY IT® PT +7T5 R)
IETT: (V IT" TI +IS T)
PETT: (V TTY TT #1S D)

SCEKA: (WAKT S ,Q T/K IT2 =55 +IS S)
ICKA: (WAKT S .0 T/K TT% -SS +7S 1)
PCKA: (WAKT S ,0Q0 T/K IT” -S5S +IS5S N)
; DEFTNT ELEMENTARY SPACE PROCESSES

; CSPT - ADD 237" CELLS TO AY,SP TPOR TYPE W (")

CsSPT: (P ; SAVE TYPR® SYMBOT
200y ¥ : GET N0, OF CFLIS
¢srp ; GET CELLS OF CORRECT TYPE FROM MONITOR
p ; COPY START ADDR
2000y
LNKOP v LTNK [P THE 2777 CTLLS

V WSPTT 5 RETT) ; PUT IN AV,.SP TYP® TRBLFE

: LNKUP - LT¥K W(1)} CFRLLS STARTING AT W({) INTO A LTST
LNKUP: (P WY T ; SRVF START ADDP

V +TIS W1 T : SAVE END ADDR #1
CRIE ; GTT CURRFNT CFLL
P 1+TS P ; GET NEXT CT@IL
W1S =5 .+ ; FXTT IF END
P W R ; SAVE NTXT AS CURRENT
VN L B) : STORE NEXT 2S LINK OF CHPRENT
7 NTL v BN ; LINK OF LAST CELL NIL
WY D W1 D)
CSP/P: (.Q T/P CSPT) : SPXTT RTN FOR T/P
CSP/L: (T/L CSPT T/L C P WSPRL R N/PL SPCLI&T RI
(P NTL ¥ I SPCLT -1 SPCLI +I ® =I ,®- 0)) ; SPXTT ®TN FOR T/1,
CSP/M: (.0 T/M CSPT) ; SPYTT PTH FOR T/M
CSP/I: (T/I CSPT) ; SPXTT R™N FOP T/T
CSP/C: (T/C CSPT) ; SPXTT BTN ¥OR T/C
CSP/P T/P WSPXT S! RETT! : INSTALL BTNS IN CURRENT SPACZ
CSP/L T/L WSPKT S! RETT! : EXHAUSTED RTN TYPR TABLY®

CSP/7M T/M WSPXT S' RETT!
CSP/T T/T WSPXT S! RFETT!
CSpP/C T/C WSPXT S! RETT!

; DEFINE ASSEMBLY PROCRESSES

Appendix 13 Listing of Bootstrap File BOOT, LSP? 5
NeFr/LY

WART™: {ARTT)
WARPT: (ARPTT)
WAHTT: (AWTT)
WAWPT: (AWDTT)
ARCX: (WARTT WITT WARPT WIPTT)
AWCY: (WAWTT WHITT WAWDPT WIPTT)

CHRRENT ASSEMBLY READ TYIPE TABLE
CURRENT A% T/P TYPE TABLF

we w8

CONTEXT LIST FOR AR
CONTEXT LIST FNR AW

-y we

DEF/P?

; AR - START AT W("), EXFCUTE LIST W(1) INTERPRFETED WRITH

: ARTT™ AND ARPTT, THEN MAKE A LIST OF TYPE

; WTCKL.S OF ALL TH® EXTRACTEDN SYMBOLS.

AR: (CPTR WPTR I ; CRFATE PTR TO LOC ¥{(?)

" STPKL V¥ s START & LIST N® TYPE WTCKL,S
ARTX , XCX ; RXECUT®R LIST W(1) A/C AR CONTEYT LTST
ENDTKL ; BUTILD THE LIST
WPTR S WPTR D E) ; PNP WPTR AND ERASE CREAT®D POINTER

AW - START AT W(®), EXVCUTE LIST W(1) TNTERPRFTED WITH
AWTT AND AWPTT,
W: (CPTR WPTR T
AWTY . XCX ; EXECOT
WPTR S WPT®? D F)

S we wR

CREATE PRT TO TOC W(7)
LIST ®{1) a/C AW CONTFXT LTST
par WPTR AND ERASE CRPATED POINTRER

s 1] ws

; DEFIN® FILE RAMING PROCESSFS

; MIABT - SETUD FOR STYXRIT AW
AWABT: (5 .0 T/K WNRTT S TETT : PNSH 6 POP STYZT
B/ =4 7 +T ,0 T/K WRATT S TIFTT) ; PUSH NULL-47 FnOR RASFE

y MIRS - POP STYBIT SETHP FDOPR AW
AWRS: (.Q T/K WNBTT S DETT .0 T/K WRBTT S DETT)

; SETRD - W(2)=SYMBOL AND USFS EXTERWAL NAME OF TT .LSF

SETRD: (DSK RSTF AWG6RI ; SETHP TOR SIXBIT AW AND RESET TNTERFACE
LNET CVUNKL DSK 4 IS P C v RI AW ; LAYDOWN STYXRIT PTLT NAME
.0 ®ISF® NSK S5 +IS P Y ¥V BRI AW ; TAYDNUN SIYRIT SYTPNSTON
AWPS) ; CLEAN-UP AND EXIT

; SETWR ~ W(I)=SYMBOL AND NS¥S EYT NAMD OF IT .1SF

SETWR: (DSX PITF AWRRI ; SETHP 7OF SIXBIT AW AND RESE™ TNTERFACE
LNNKT CVNKL DSK 17 +IS P 0 V PT BW ; LAYDOWN SIYRIT™ FILF NiINME
Q0 “LSP™ DSK 11 +IS P 7 V RT AW ; LAYDOWN SIXBIT EXTENSION
AWRS) ; CLEAN~-UP AND EXIT

; BDF - SIMPLE VERSION - RFAD FROAM PTLT W(>) INTEETACRK noK
RDF: (SETRD NSK WRD I)

; WRT - STMPLE VERSTION - WPITE FTLE W(7) INTERFACE DSK
WRF: (SETHWR NSK WWNR T)

Appendix 13 - Listing of Bootstrap File BOAT.LST

;7 DFFINE SAVE FOR RESTAPT PROUTINR

’

SAYF: (SV TTY RSIP DSK RSIF ({.- .0 “V32 CONTINUING™ ..)
.0 ™32 PESTARTED™) WRWWDP CR,LF)
;s TND OF TNTTIAL BOOTSTRAP - NOTIFY NSRER AND GO TN HIM

CR.L¥! ™INITTAL ROOTSTRAP LOARDED™ WRWWR!I CR,L¥! CR,LF1}
TTY WRD R!

ME NE A RE ws ma N NE wh wg wE %E wmp N6 w4

3

g
2

tppendix 14 - Listing of Editor File ITF.LSP

¥

SI¥PLE OKN-LINE EDITING SYSTEM FOR T1&(F)
EDT CHANGES KCR TO GET NEXT AND PRTNT SYMBOL TN NEXT,

LEAVING NEXT IN ¥ TN BRE =DTTED 35 DESTRED., EDT STARTS

BY PRINTING FIRST SYMBOL. EDT ALSO PUTS IDTND IN W
AS MARKER, ROTH ®OR USER AND FOR ENRT, (37% BELOW),

DO NOT REMOVE MARKER,

EDT. BEMOVES ATL SYMBOLS TN ® DOWN ™0 (AND INCLUNING) FDTND,

IT ALSO RETORNS ACTTION FOR KCR T0O DPREVIOUS VALNE,
FDTCRA IS ACTION FOR CR,
BDTD BALLOWS USER TO GO DOWN A LEVREL,

NOTE: ONE TS NOT “IN A SYST®M™ QITH =DT, BUOT SIMPLY CAN
STFP THROUGH PROGRAMS AT WILL, DOING WHATLVER
OTHERY PROCESSING STEMS APPROPRIATE, IT 15 A 00D
IDEA, HOWFVRR, Tn LET EDT, CLFAN UP FOR YOI,

EDT: (EDTST&L RN EDTND&L .0 FPTCR .0 KCR ICKA EDTST)

EPT.: {((P EDTND =S5 .+ U ,R) PRS CP,L¥® .Q XCR DCKR)

®»DTCR: ((P EDTND =5 ,- EDT. .

) ;y NUIT IF ¥C MOR®
(NP .~ P S PRS SPACE ..,) PRTNT SYMBOL TF FIND NEYT

.Q 7= WRWWER PRS SPACE)

w4 Wy ®

EDTD: (P S EDTST RN EDTST)

CR.L¥! “FDT LOADED™ WRWWR! CR,LF!
Y WRD R!

PRTNT =NIL AND DREMOVE NII TF

“ND

Appendix 15 - Listing of Stevping Monitor File STPMF.LSF 1

STFPPING MONTTOR FOR L&{(F) - 5STP
ESTPY CHANGES KCR® TO STEP THRONAH A PROGRAM (W{(")).
£3TP TS A CLOSED SURROUTTNE AND CAN B¥ EXCCHTED FRNOM
RITHIN AR PROGRAM,
AT EACH POTNT IT EXFCUTES AN ARBITRARY ROUTINE FROM WESTP,
THF DEFAULT PRINTS W (PRI), WITH THE SYMBOL TO BT
PXECUTED SITTING IN THF TOF OF W,
DCING KCR EXECUTES W(f) AND RDVANCES TQ THT NEXT ONE.
THUS, W(C) CAY BE CHANGRD BRFORE C%, CHANGING WHAT TS TXFCHUTED.
THE SAMY PATH IS FOLLOWFED AS WITH REGULAP "NTERPPIETATION,
THF USFR MAY RLTFR THT™ CONTROL FLOW BY N"STNG ONE OF
TH? FOLLOWING CONTPOL PROCTSS5FS: B, .- S.+
fie s Bau= Boot R,R 5.R- Ff R+
TO EXTIT A LEVEL WHEZN CHDE DORSM'T SHOW TT: Ut £,

g W wmp we

“d wg we W we

55TP,. ! FRMINATES THE STEPWISRT FXNCUTION AND RETIRNS KCR
T0 ITS PRINP STATE®E, SSTP. REMOVES THE ITEM FPOM W, BUT
W WILL STILL HAVE ARGUMENTS IF A BOUTINE WAS
TERMINATED TN MID-STREAM,

EATUTOY CONTINUES THR STEPWISE EXECHTION IN RUTOMATIC MODE
MNTTY. AN EMANU IS EXECUTED OF UVNTIL NORMAL TERMINATTON,

ESTPD! ALLOWS THE TSER TO DESTEND ONE LIVFL TO STEP
THROTMGH A NAMED PROGRAM SUR-LIST,

NOTR: ACCTESSES TO WHS OR WHN AP® CHRNGED TO ACCESSES TO
SWHS DR EWHN, YNU %MAY RON INTO PROBLEMS TIF VYON TRY
TO REACH ACROSS THE ROUNDARY (I,E, THE LEVEL £STP
WAS WNTERED),

WE YE WE N mp %E 4 N N WM N W W NI R 4y w3 NS WE e s

CEF/P!}
FSTP: (RWXSeL R NIL SWYNOL R ,0 5STPY ,Q RCR ICKA .0 NOP §DSC £STPYX &FXFC)

58TPD: (SWYS R ,Q XOP £DSC)
ESTPY: (H,X (SADV .+ £ASC R+ £STP, ..) EWXS § WSSTPeL S .YX)

EATITO: (NIL BAUSYW R (5,X (FANV .+ SASC P+ S£STP, ..) EWXS S WESTP
S X BAUSY S ,E-))

{(w PRL) WESTP B!

E3TP. s ((BASC .R+) .0 KCR DCKA .0 ™, . EEND ™ UBWWR WESTP S ,X TRUF SFXSW R)
EADV: {EWXN S D 5 EWXS R P N AWXN R)

SASC: (ERHSEL ¥ P .- AUHS S AWXS R EWHS D SUHN@T S EBWXN D AWHN D)

EDSC: (SWXS S SWHS T EWXN S RWHN T AWXS S SWXN R)

Appendix 15 - Listing of Stepping Monitar Tile
5.X: (P T SITL&L SBAL .X)
5ITL: (T/P E/P T/M E/M T/L R/L T/T .Y T/K X T/C . YX)
/7P (P LNNT (.- ,Y ,,) EMXS R £35C)

£/7M: (EIL/M SBAL .X)

STPMF,LSF

SIL/M@L= (u e .t 5-"’ = 8.- .. F;oo o ¥ ?'n-'.' ' 5.0—

R E.® R+ E.R¢ . B- F,R= .0 £.0 X 5.X)
s/L: {(ETL/L SBAL)

RIL/1&L: (WHN EWRAN WHS EWHS)

S.: (NTL SWYXN R)

S.%2 (,- &)

Fo=z (.4 §.)

o.2 (NIL EWXN R NIIL EWHN R)
Boeotz (.= &..)

F..=2 (. ¢+ £,)

£.%: (EWHS S WYY R)
. R4 (.- &, R)

FE.R=-2 {.+ Ff_R)

5,0¢: (FWYXN S 5 £ADV 11)

SBAL: {((V W T (P S WY § =5 ,+ N NP ,Pe I} W2 5 ,,.)

EMANY: (TRUE R AUSWeL R)

N Sy WD)

EEXET: (NTL FRYSWEL R (£FXSW S .+ WRND & BRD P ARXSV&L R

DCX L XCX FRXSV S EL .®))
3 RETUFN TN USER

CR.LF! ™STPM LOANEN™ WRHWR! CR,LF?
TTY WRD R !

2

rpoendix 16 - Listinag of Ttilities File NTIL®, LSPF 1

CTY P

CRLK

Mg wme mg WE WE g M wa wE mp SE omg W

LATT - FYXECOTR® W(1) BY TYP® TABL® w(7)
RNNT - BRFPLACE NAME (1) RY SY¥POL W(7) IN NAME TABLE
; CTYP - CREA™E NEW TYPE MAKES (Ww()) THF CHARACTFRISTIC SYMROL
: TOR A NEW TYPE STMILAR T™n (W{(1)). CTYP SETS
: NP THE CUORBRENT TYPE TARLZS WITH THE APPROPRIATE TNTRTES,
H A BLOCK OF SPACE TS 0OBTATNFD BOR THE N=W TYP®, BHT NN
: ATTEMPT IS MADE TO PUTLD A SPACE EYHAOZSTIND ROUTINE,
7 ERR1Y TS USED FOR THT SPACTY PYXHAUSTED 7TV,
; NOTE: AFTTR DOTING A CTYP, YOU MAY WHTCE TO DO ANY OR RLL OF
; THE FOLLOWING:
H T™/=- t (-=~) : DEFTXNE THE CHARACTERTISTIC SYMBOL
H (*/- CSPT)} T/~ WSPYT S! RRTT! . DEFTNR A4 SPACT-TX, RTN,
; (p */« =T .- PR«- ,,) DPPFSTR I! ; DEFPINT A PRINT BTN,
H /- TYPL TV f- TYPL T! : SFTHP &= FNE DIPINTNG T/-
H -=- 5ITL IY T/- ETTL TI! ; SETUD £STP TO HANDLE T/-
6 T.HI&T PI! ¢ TURRENT HIGHEST TYPE INDEX
DEF/P!
CTYP ¢« (WO T #W1 I 3 WleNFW TYPR®, W1+MODNEL
W1 S W §5 R 7 SETHP CHARACTERISTIC SYMBOL
T.HY 1 T.HT +7 : FIND NEW TYPE TNDEX AND BIIMP TNREX CONT
W2 S RT 3 SET TYPE OF CHARACTERISTIC SYMBOL
W1 8§ .7TT SETT W S ,TTT BETT ; CAPRY QYER EMTRIFS FOR TYPR TARLES
#1 S ,IPTT SETT W® £ ,IPTT RTVTT
¥1 S ARTT SETT™ W3 S ARTT pPETT
W1 S ARPTT SETT Wf S ARPTT RETT
1 S AWTT SETT WY S AWTT R™TT
W1 S5 AWPTT SETT W% S AWPTT RRETT
W1 S RTT S®TT W& S BTT RETT
W1 S NRBTT SETT ¥2 § NBTT RETT
+0 ERR1C WD S SPYT™ RETT
W1 S RDTT SETT WX S RDTT RETT
W1 S RDPTT SETT W" S ROPTT RPTT
W1 S WRTT SETT WO S WRTT RETT
W1 S HRPTT SETT WT S WRPTT RETT
W0 S P TTT RETT ; SET CHAR. SYMBOL INTO TYPE TYP® TABLT
W2 S CSpPT ; GET A 3LNCK OF SPACE FOR THE NIW TYPE

NTILITTIES FOPRP L*x(™)

- CREATE NEd TYPE W(") SIMTLIAR TO W(1)

- CREATT BLNACK W(?) WORDS LONG OF TYPE W(1)

CT? - CREATE NWW TYPY T™ABLE

LOPTT - LOAD TYPE TABLE W(*) WITH 4(1) AS ENTRIES

hppendix 1R - Listing of Ntilitieg File ITTL7, LS¥

WY D W1 D) ; CLZAN-UP AND TXTT

; CRLE - CPREAT'T BLOCK W(7) WOPRDS LONG OF TYPE W(1)
CRLFK: (P W™ T W1 T W2 I ; W eW1«LRNG™H, W2+TYPF
(W § 2077 I ,- HALT) FRPOR TP BLOCK TOO TARSE
W2 8§ ¢ P W3 T SAVEW W3i«WSAVECURRENT LOC
(W° S -1 7 +7 P 0 =T ,+ WO R EXIT TZ? WF HAVE FNOUGH
W2 5 C W3S ' +IS T W3 R =5 ,R+ ; REPFAT TF STQUTNTTAL
W1 S WS R W2 5 C P W3R WSAVE 7 R) ; STABT OQVER TF WOT
T WG D W1 D W2 D W3 D RSTRH) CLTAN-UIP AND EXIT,

LY TR

-8

: CTT - CRTATFE NEW TYPE TABLFE

CTT: (T/C TTN CBLK)

3 LODTT - LOAD TYPT TABLE W(~) WITH W(1) AS ENTRIZS

L]

LOPTT: (P W% I TTN +IS W1 T W2 T ; WO-START, W1«END, W2+FNTRY
(W> S W1 S =5 ,+# W2 S WD S R ¥ S 1T 4I5S W2 P ,P)
WD W1 D W2 D)

; JXTT - FYECOUTE W(1) BY TYPE TABLE W(’)

LXTT: (V IT" TI 7S5 S5 ,X)

; PNNT - REPLACE NAMF W{1) BY SYMBOL W({) IN NAME TADLT

r

RNNT: {(V LNNT 1 +IS R)

:; NOTIFY USER AND RETURN TO HTM

CR,L¥Y “UTILYITIES LOADED™ WRWWRY CR,LF!
TTY WRD Ww! ,

Appendix 17 - Listing of Dictionary TFile DTC™F.LSF 1

PTTTTONARY PRTE FOR L#(F) HTTH SYNTAY ACTIONS AND CONTRXTS
ARQNTREMENTS: TTTLF
FORPM OF NONDE OF TREE:
MODE: (CHRRMOTFER REZOG-LIST TP-LINK NODE ... NODT)
FORM OF RECOG-LIST:
RECOG-LIST: (CONTEYXT SYMTOL .,., CONTFEXT SYMROL)
NODE OF DEFINTTION OF A SY™ROL IS PLLCER IN A CONTEXT-NODFR
LIST POTINTRDR TO BY THE NTXT-PART OF SYMBOL-DESC, WORD,
NN TS THFE NAMF NOP¥ ACTIOM YST®D FNP ALY CHATRACTTRS, EXCEPT
THOSE HAVING SPECIRAL ACTIONS,
AB¥DPT1 TS THE ROUNDAFY ACTTON FN®R THE DICTIONARY,

h wh Me %3 NI W) W NG WE Mg we W %s

SYMTAY RCTIDNS APF OF THE PNRM:
(PRECENENCF-0ORDER TMM¥DNIATF-ACTINNY DELAYED-ACTTION)
LZETT POTNTS TO TH™ CURRFNT SYNTAXY MCTION TYPE TABLF:
ZAWN - THDPUT SYMBOL TO W
ZA - SYNTAY ACTINN INTEPPRETEP (FOF T/Z1)

gy B N3 W2

PTREFP&L: (NTI NII NIT) : TNTTTAL RICTTONARY T2EER

ITRE® WN&wI R! ; WN HOLDS POINTER T0 CORPENT NODE IN DT
DEF/D!
NN&: (WN S

N S .= S RN R TRIF) .+ T/L
C P WN SV

N (P ,~TD S =

R P NTL V I VI P WNSNUNIRWNR)

=T .- T/ C P (TSnRN 2 N /97
RT ..,) WN S ¥ S P (,+ 0 T/L
R ABND2 ,,¥ LSCSL P (.- S5 .,.)
ABND2) DTPEF WN R

+ZATT S L¥TT)

ABND1: (WN S DTRTE =5 .+ ((TNOMF
G o=I .+ 7 INTM TINOM -T U) TN(OM
C P WNSNEPWTCS CP SAVPH
U YN S NS P WITC S C P SAVFR V
7 TwOM PT T INUMF RI O TSGW RI

2o I T~ - QY

ABND?: ((WCTY S V I WSAVE S TD +I5 P (N ,+ WN S T/L C P SAVER
R UCTX S WSAVE S I RSTR¥W V BN ,.) N D SAVEW WN S V T WCTY §
RSTRW I) RSTPRW)

ANK1: (—~% INUMF RI NNR)

ADK1: ((INUMF T =T ,- 1 INOMF PT)} NN2 TNUMP -1 =T ,+ WK S ACCD)

H

A-K1: ((INTMF 1 =TI ,- -1 INOMF RT) TSGN 1 TSGN +I I NRA)

A+K1: ((INUMF 71 =T .- -1 TEUMF RT) NNR)
7 DEFINE RONTINES FOR SYNTAY ACTTONS

T/L T/ZA CTYP! ; CREATFE TYPF SYNTAX ACTION (T/2Z7)
T/74: (0) : MAKE T/7ZA THE VULL ACTTONXN
(T/ZA CSPT) T/7ZA WSPXT 5! RETTI
{p T/ZA =T .- PRLS ,.) PRSTR I!
T/7ZA TYPL It *7 TYPL I
+X EITL T! T/ZA EITL It

DEFINE A SPACE-EX. PTN. FOR T/7A
DEFINE A PRINT RTN, FOF T/7R
SFTUP &7 FOR DPFINING T/Z74

SETUP ESTP TO DO T/7ZR PRNPERLY

LT T I PR

tppendix 17 - Listing of Pictionarv File DICTF.LSF 2

CTT! (ZATTEC RY ; CRUATE THE SYNTAX ACTTION TYPE TABLE
7AW ,ZATT S! LODTT!Y AND LOAD TT WITH ZAW (NOP)
ZA T/ZR JZATT S! RETT! SETUP ZA AS ACTION FOR ™/ZA

LI

(ABND .Q ZAW T/ZA ,ZATT S I=TT) *[RCKA! ; SETUP [-) 70 TUPR OFF
(ARND T/ZA .ZATT S DETT) ’] RCXA! ; SYNTAX ACTION FOR -

; ZA - SYNTAY ACTION INTERPRETER

Zh: (WM T ((W2 5 S WZAGL S S >T .#
WZA S N N 5§ X FXSCUTE DELAYED AC
EZ* S S W2A D GET PRRC. NRDEP £ POP

W S 5 =T ,R~) ; ROPEAT OMNLESS PN, SAMT
W) S ¥ P .- S ,X ¢ BXTECOTE 1M, AC

W S NN P,~- ; EYIT T NO DPLRYED AC
W0 8 WwZa TY N ; STACY¥ DFLAYED AC

¥om

FT2X: (377777T77777) : NEFINA POTTOM ACTION WITH D,O.=LAPGEST PNS, NUM
RTAY WZA R! s WZA IS THT DELAYED ACTTON STACK

; DETTNE ROUTINES FOR CONTFYT HANDLING

; BNDT - RIPLACE NAME w(1) WITH STRUOXY W(") IN CURRTNT CONTEXT

ENDT: (W) I P WY T LNDT P SAVEW M S ((LSCST P .+ 1T WSAVE § %
S P WS VI WCTX S VI ..) % SV R WY S TD +#IS5S P W2 T X
((.+ /L. C P BSTRW V R P 9CTY S V T ¥2 S RN ,,) W2 S ¥
({(LSCS1T P .+ 7 W2 S N P PSTRW Vv T WCT™X S V I .,) RSTRY V R))
W D W1 D W2 D)

3 LSZSL — LOOKNP SYMROT IN CONTRYT-SYMROL LTST

TSCSL: ((WT T WCTX ; SEARCH CONTEYT STACK ¥(OR RACH ENTRY T8 LIST
(P S W1 T W2 S (P S W1 S =5™ .« UJNNTP R+ W1 D ,+
ND B+ ,.) VUN ¥ D

: LSTS1 - LOOKUP SYMROI, TN CURREANT CONTEXT ON CONTRYT-SYMBOL LTST
LSCS51: ({(P S WCTX S =S .+ N N P R+ ..} W)

BTCTY@L WCTX&L R! ; WCTY IS CONTEXT STACK (PAS BOTTNM CONTEXT INITIALLY)

NOW, DEFINE ROUTINES TO EFFRECT THE SWITCH FROM NT TO D7

-y

SWPCH PUTS ALL NAME TABLE FNTRTRS INTO THE DTCT, TREE AND

THEN BEPLACFS THE OLD NAMT TATRLE FUNCTTONS WTTH DT FHNCTIONS,
WTCH: (NTMT 2 7 T NT1 Vv IS Wl I 7 ALL NT ENTRT®S TO DT
NT1 (P CVNKL CVEDN W¥SVGL R 1 ¢TSS D S P TD +IS ({(P N .+ T/L C
P WNSY S VR P WCTY S VIV BN ,,) NP KNSV S V T ®CTY S V I)
FNSYV S N ((P S ,+ V T/L C P SAVEW R WCT™Y S WSAVFT 3 T R3TRW

VR ..) STIGHCTX S WNSV S B S T) 1 +IS P W2 S >S5 R+ M)

.Q ABND1 .0 ABND RRTN ,0 ANX? ,Q ANK RRTY .0 A-XK1 .0 R-K RRTN
0 A#KT1 .0 A+K RRTN .0 ADK?1 .0 ADK RRETN ,0 LNDT ,Q LNNT RRTN
+Q CVDNK .Q CVNKL RRTN .Q PNDT ,Q TNNT RRTHN WO 1)

)

Appendix 17 - Listing of Nictionary File DICTP,LSPF

: RRTN - REPTACE RTHN W(J) WITH RTN W(1)
RPTN: (P WY T RC ,Q T/7P 2 TT WO 5 RT H” D)

: LNDT - LOOEKJP NAME IN DT REPLATES TNNT
LNDT: (TD +IS N P .~ LSCSL P .- 5)

; CVEDN - CONVERT K-LIST TO DICT NODE
CVEKDN: (P S WK B NNA N P R+ @1 WY S DTREF WN R)

; CYDNK - CONVERT DYCT NODE TO R-LYST REBPLACFS CVNKL

CVDNK: (P 5 ,J HWKLSV&P R (N N S ®» - P S .0 WKLSY T .R)Y T .0
WKISVY N NIL .0 WELSV RC)

SWTCH! : SWITCH FROM NT TO DT!

s NOW, RETURN T0O USER

CR.LF! “DICT LOADED™ WRWWR! CR,LF!
TTY WRD R!

(1

(2)

(3)

(W)

(%)

(6)

N

{8)

Appendix 13 - V37 to V32 Changes 1

T. Changes +to the Kernel
Machine stack space was doubled from 128 to 256 words.

The size of initial T/L reserved space wvas doubled fronm
32 to 64 cells,

Sizes of hoth initial T/L and T/P available space were
increased by 327 cells to 1287 cells for 7/L and 1348 cells
for T/P,

Processes with no inputs and no outputs were given a
null oprefix instruction { a JFCL) so that the address of
the process ¢+ 1 is the start of +the vprocess sten. This
makes these processes consistent in this respect with
processes of othar input-output characteristics.

A “START *'41* (Debuqg entrance from monitor) now reads
out the contents of R1 - RS into new cells RISV - u%sV ,
and MSTKP into new cell MSPSV bhefore calling DEBURG,

The internal save areas and machine stack have bheen
moved avay from the operating system processes to
immediately before tnitial T/C available space, It would
now be possible to expand the machine stack by ore-empting
T/C availabhle space {(if not already used far other
purposes),

FX®C has been nodified so that the current read
interface 1is reset (RSIF) when an end-of-file is detected.
Tt now operates analogouslvy to the followinag T/P list:

({WRD S 3D P ,~ P WEYFC T RNDCY ,YCY
WEXEC S WEY'C D EL .R) ®WPD S RSIF)

Whan the current read interface (WRD,S) is TTY , this
addition +to EX"C allows one to exit from a nested call on
EXEC with a control-? {(end-of-file signal for TTY) and then
continue reading successfully from the TTY at the outer
level,

ERROR has bheen modified so that the working register
context (R1-R5) and machine stack pointer (MSTKP) are read
into cells R15V-15SV and MSPSV before the swap into debug
context and execution of W”RR,S . After return from WERR,S
and the swan back out of debug context, #1-RS5 and MSTKP are
restored from the cells RISY-R5SV and MSPSV. This makes

(9)

1)

(11

12)

(13)

(1)

(15)

Appendix 18 -~ V3" to V¥32 Changes 2

error recovery mnch more feasible, but is Hust a stopgap

"s8o0lution,

As an error recovery example consider ERR15, the “out of
space 1in name table® errnr. Tf we lock at the point in
CSNTW where the error occurs, vwe see that only the contents
of R1 ({(addr of name tahle) and RS (current name table
index) are meaningful, Thus, We can write an error
recovery routine to bhe placed into WER® which will set up a
nev name table cowmplete with size and index words, insert
it onto WNT, put its address into cell RISV, put an initial
table index of zero into cell R5S¥, and exit, Zxecution
will continue inpediately after the error c¢all location in
CSNTW with the contents of R1 and RS reflecting the new
name table, and error recovery will he complete,

CSP was modified to make it return space to the monitor
if the value of the size W(1) is negative., TIf the value of
W({1) is zero, core allocatiorn is not changed, When no
space is obtained from the monitor, CSP outputs NIL,

< , »> , =€, =I , <T , >I have heen modified so that
if the test succeeds and the W(?) input was NTL, then TRIT
is left as ontput rather than the W(1) input. (This is
how =S and =T already worked in ¢3>),

C (Copy #W(?)) has been nmodified to work as the
documentation says it should; namely, by copving the
contents of input ®W(") into the new cell which 1is output,
In V30 C alwavs created null structures rather than
copying.

C and /L now swap 1into space-exhausted execution
context (SPXCX) before executing space-exhausted routines (
and svap back to the previous context upon return), This
eliminates the ©possibility of space-exhausted routines
failing if sprace is exhausted within some strange
interpreter context (e.g. Write Context),

LNNTW has been changed to search name tables backwards,
so that most recently defined names will be found first
vhen duplicate names exist for a symbol. LSNT¥ was also
changed to search hackwards for consistency,.

BRD was changed to access the character base through the
current base type table in WRBTT rather than directly.

In RD the SETSTS (set status) instruction to reset the
end-of-file flag immediately after an end-of-file condition

(15)

(17

(12)

(19)

()

(1

Appendiix 18 - ¥3" to ¥32 Changes 3

was detected has heen removed since it didn’t really work.
The problem of “permanent™ end-of-file indications from the
TTY has been solved by other means. (See (7)).

.IW? and .IPW¥? were corrected to referenace the current
base type ¢table through ¥ cell WRTT, rather than directly
as BTT.

The space-exhausted context swap list (SPXCX) was added
as an initial T/1 structure, (See (12) 1},

Adlitions were made to the write 1interpreter type
tables:

In ¥RTT: .I7M for T/M
.I/s for T/1,T/C

In WRPTT: LIP/M For T/M
LIP/% for T/I,T/C

Initial T/7M available space was noved from bhetveen
initial ™/L & T/P available space to hetween initial T/C &
T/T available space.

The following names were added to NT1:

MSDPSY
R1SV
R2SV
R3sYVY
rUSY
RSSV
SPYCX

ITI. Changes to the Nootstrap

The character action for ! now qoes 1into standard
interpreter context for execution as in : (ABND ,ICX .XCX)

The Debug swap list was expanded to include DW¥TTT and
DWIPT swapped with WITT and WIP™T respectivelv, DWITT
initially contains .JTT , and DWIPT initially contains

{3

(4)

(N

(1)

(2)

(3)

(4)

(5)

()

1)

{8

Appendix 13 - ¥3° to V32 Chanages 4

LIPTT , so that standard interpretation will occur in bebug
mode.

A bug in PRSTR was fixed. (Named T/K symbols were
being printed incorrectly.)

SAVF was updated to reflect the current version number,

TIT. Changes to the Fditor { 7DT).

The name FDTNN was changed to EDTD (for conrsistency
with £STPD in the stepping monitor).

IV. Changes to the Stepping Monitor (£STP),

ESTP was made a closed subroutine so that it could be
called from within a proaram.

The name £STOP was changed to RSTP, {(for consistency
with EDT. in the editor),

A bug in &/P was fixed so that executina nnnamed progranm
lists with .Y now works.

B bug inp £STPD was fixed so that vou can alter W(2) and
then step down the appropriate routine,

£STP., was changed so that it prints *,.62ND"* and then
executes the routine in WAESTP ,

SBAL was changed so that temporary work cell T™ 1is no
longer clobbered.

EITIL was chanqged so that T/1, T/K and T/C now have
appropriate stepping monitor interpreters.

A routine SMANU was added so that one can go 1into

v
; -

Appendix 1% - ¥3° to V32 Changes 5
automatic mode (SANTD) and then leave it at a specified

1A C L s 0 n 1 = LAY " p
[,"

(MR \ﬂnmn

3 aus2 00b54 4ac

