NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CONVERSATIONAL PROGRAMMING -- LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR
CONVERSATIONAL COMPUTING

J. MITCHELL
J. NEWCOMER
A. PERLIS

H. VAN ZOEREN
D. WILE

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pa.
June 1971

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F46620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. This document has been

approved for public release and sale; its distribution
is unlimited.

EREEACE

PURP

--B-Q$EE PURPOSE OF THE LCC EFFORT WAS TO STUDY AND CREATE A
CONVERSATIONAL LANGUAGE. TIME SHARING 15 NOW ACCEPTED AS AN
EXCELLENT WAY TO PROVIDE COMPUTER RESOURCES FOR PROBLEM
SOLVING. YET, WITH FEW EXCEPTIONS, THE LANGUAGES IN WHICH
PROGRAMS MUST BE COUCHED WERE DESIGNED FOR BATCH PROCESSING
ENVIRONMENTS. IF ONE IS TO INPUT PROGRAMS FROM A TERMINAL
AND THE OUTPUT {OR SOME PART OF IT AT LEAST) 1S TO RETURN TO
THE TERMINAL, IT IS NATURAL TO CORRECT (EDIT) PROGRAMS FROM
THE TERMI NAL. .

WHAT THEN ARE THE CONSEQUENCES OF PROGRAM CREATION AT
THE TERMINAL? CERTAINLY INTERSPERSING EDITING AND EXECUTION
SHOULD BE ENCOURAGED. 1F THE PROBLEMS TO BE PROGRAMMED ARE
¢SMALL® -- SO RESPONSE WILL BE GOOD == THEN THE PROGRAMS
SHOULD BE RUN INTERPRETIVELY, ESPECIALLY IF FREQUENT
MODIFICATION IS TO BE EXPECTED., THUS THE COMBINATION OF
SMALL PROGRAMS AND FREQUENT MODIFICATION LEADS TO AN
I NTERPRET I VE PROCESSOR,

WHAT ARE THE CONSEQUENCES OF [NTERPRETATION? THE
REJECTION OF THE COMPILER APPROACH SURELY MUST HAVE SOME
IMPORTANT EFFECTS ON THE LANGUAGE BEING PROCESSED., ONE
EFFECT TO BE DESIRED IS AN [INCREASED ABILITY TO INTERLACE
EXECUTION AND CREATION, ALGORITHMS DO NOT SPRING INTACT
FROM THE MIND BUT EVOLVE -~ BOTH OVER THE SHORT TERM AND THE
LONG TERM, MUCH OF THE DEVELOPMENT OF A PROGRAM SPRINGS
FROM EXPERIENCE -- THE ACTUAL BEHAVIOR OF THE PROGRAM UNDER
EXECUTION,

ONE 1S STRUCK WITH THE POSSIBILITY OF EXECUTING
INCOMPLETE ALGORITHMS AND LETTING THE FLOW OF COMPUTATION ON
DATA SAMPLES AID IN THE SEQUENCING OF PROGRAM PREPARATION,
IT 1S TRUE THAT PROGRAMS ARE DECOMPOSED INTO PARTS OR
MODULES FOR A VARIETY OF REASONS: LOGICAL DECOMPOSITION OF
A TASK INTO ITS SEPARATE PARTS; DECOMPOSITION IMPOSED BY THE
LIMITS OF HUMAN ATTENTION (NOT EVERYTHING CAN BE PROGRAMMED
AT ONCE); DECOMPOSITION IMPOSED BY THE UNEVEN UNDERSTANDING
OF THE MECHANICS OF MODULES EVEN WHEN THEIR LOGICAL FUNCTION
IS UNDERSTOOD (PROGRAMMERS TEND TO DO FIRST WHAT THEY KHOW
HOW TO DO BEST). WHAT IS MORE NATURAL THAN HAVING THE
COMPUTER, THROUGH THE PROCESSOR IN WHOSE LANGUAGE ONE IS
WRITING, ASSIST IN THE SCHEDULING OF THE TASKS?

IT 1S NOT ONLY THE PRESENCE OF THE PROGRAMMER IN THE
LOOP BUT THE WHOLE STYLE OF PROGRAM PREPARAT{ON THAT CAUSES
THIS KIND OF PROGRAMMING TO BE CALLED CONVERSAT IONAL. ONE
MUST NOT CLAIM TOO MUCH. THE PROCESSOR [S A WEAK ALLY IN
THE PROCESS OF CREATION AND THE BURDEN OF PROGRAMMING 1S
STILL IN THE PROGRAMMER®S HANDS. LET US SAY THAT A MORE
WILLING ASSISTANT 1S BEING FASHIONED THAN WAS EVER PRESENT
IN THE OLD STYLE COMPILER-DOMINATED ENVIRONMENT.

i

APPRO

---B.%g% APPROACH USED FOR THE DESIGN AND CONSTRUCTION OF
THE LANGUAGE FOR CONVERSATIONAL COMPUTING WAS QUITE
SIMPLE, THE COMPUTER ON WHICH LCC WAS TO BE FASHIONED =--
THE IBM 360/67 =- HAD AN AMBITIOUS TIME SHARING SYSTEM UNDER
DEVELOPMENT =-TSS~- AND IT SEEMED REASONABLE TO UTILIZE THAT
SYSTEM AS THE UNDERLYING TIME SHARING SYSTEM SUPPORTING OUR
CONVERSATIONAL LANGUAGE AND ITS SYSTEM. THE ONLY AVAILABLE
TOOL FOR CONSTRUCTING THE LCC SYSTEM WAS THE TIS8§ ASSEMBLER
AND IT WAS IN THAT LANGUAGE THAT THE SYSTEM WAS BUILT, IT
WAS BELIEVED =-- AND STILL IS =-- THAT THE USE OF ANY
PROGRAMMING LANGUAGE LEADS TO THE DEVELOPMENT OF A STYLE OF
PROGRAMMING AND THAT EACH LANGUAGE HAS A ¢CONVERSATIONAL
ANALOGUE®. THE DESIGNERS OF LCC HAD THE GREATEST AFFINITY
FOR THE SYNTAX AND STYLE OF ALQQL 60 AND SO IT WAS CHOSEN AS
THE BASE FROM WHICH TO DEVELOP A CONVERSATIONAL ANALOGUE,
MANY OF THE CONSTRUCTIONS WERE BORROWED FROM JOSS, THOUGH
LCC ATTAINS A POWER FAR BEYOND THAT OF J0S$S. IN RETROSPECT
IT PROBABLY WOULD HAVE BEEN BETTER TO HAVE CHOSEN {VERSON'S
APL AS THE BASE SINCE THE ARRAY PROCESSING OF APL 1S SO MUCH
MORE NATURAL THAN THE ALGOL SCALAR PROCESSING.

“THIS REPORT 1S THE END PRODUCT OF TWO YEARS WORK BY A

gR?UP AT CARNEGIE~-MELLON UNIVERSITY'S DEPARTMENT OF COMPUTER
CIENCE.

THE LANGUAGE AND SYSTEM DESIGN EFFORT WAS DONE BY E.
MCCREIGHT, J. MITCHELL, A. PERLIS, H. VAN ZOEREN AND D.
WILE, H. VAN ZOEREN WAS LARGELY RESPONSIBLE FOR THE
DETAILED SYNTAX SPECIFICATION,

THE SYSTEM ORGANIZATION AND PROGRAMMING EFFORT WAS DONE
MAINLY BY J. MITCHELL, J. NEWCOMER, AND D. WILE., H., WACTLAR
WAS RESPONSIBLE FOR FINAL EDITING AND CORRECTION OF ERRORS
WHEN THE SYSTEM WAS FIRST BEING USED. J. NEWCOMER HAS
PREPARED A DOSSIER OF SYSTEM ROUTINES AND INTERNAL DATA
STRUCTURES NECESSARY FOR ANY REAL UNDERSTANDING OF THE
INTERNAL MECHANICS OF THE SYSTEM.

THE USER®S MANUALS (ISSUED UNDER SEPARATE COVER} WERE
WRITTEN BY A, LANKFORD (VOLUME | AND VOLUME 1) AND W,
MULLINS (VOLUME 1). THE EXAMPLES AT THE END OF VOLUME 1!
WERE WRITTEN BY: J. MITCHELL =~ ¢TREE DISPLAY PROGRAM?’;
DIANA BUTRICK == ¢SIMULA/LCC®; A, LANKFORD =-- <‘ALGEBRAIC
EQUATION SOLVER?; D. WILE -- ¢AN {INFORMATION RETRIEVAL
SYSTEM®. THESE PROGRAMS WERE ALL EDITED BY A, LANKFORD TO
IMPROVE THEIR READABILITY,

THE LANGUAGE DEFINITION DOCUMENT WHICH FOLLOWS WAS
PREPARED BY H. VAN ZOEREN.

i

IABLE QF CONIENIS

Introduction

LCC Statements

ALTER
ARRAY
BEGIN ... END
CASF
COMBINE
COPY
DELETE
DISPLAY
EXIT
FOR
GO
GQOTO

IF

LINE
LOAD
NEW
NUMBER
OFF
PART
PAUSE
PRINT
RECOVER
RETURN
SAVE
STEPS
TYPE
UsSE
WRITFE

?

3
. e }

- . 4
[]

A
Assignments
Procedure calls

ifi

LCC Metavariables

expression
extractor
for-clause
group
identifier
logic-literal
nuaber-literal
operand
pointer
primary
procedure
statement
save—-obhiect
string-literal
structure
subscript-1list
type-object
variable

LCC Operands

BEGIN ... END

CASE
STEPS
?
2%
!
{ . P }
- * 08 d
Appendices
A. Explanation of Syntax Notation
B. LCC Syntax
C. Logging On at a 2741 Terminal
D. Typing LCC Text at a 2741
E. FError Messages
F. LCC syntax (SX) Error Descriptions
G. Antomatic Reload FPile
H. Standard Functions
I. Built-in Functions and Procedures
J. Example LCC Conversation

iv

38

30
34
35
35
36
37
8
39
35
4
4o
41
42
42
44
44
45
45

E1)

46
46
46
47
48
49
49
49

51

51
53
59
61
62
63
64
65
66
70

-=--=- Introdnction -==--

LCC is a language for conversational computing which operates
within the T5S monitor system on the IRM 360/67 computer at
Carnegie-Mellon University. Tn its fundamental design, LCC began
as an amalgamation of (1) the basic elements and statements of the
algnrithmic language ALGOL 60 and (2) the input-output, control,
editing, and filing statements of the conversational language
JOSS, but extensive modifications have been made to exploit as
fully as possible the dynamic nature of conversational computing.
The resulting language, with its underlying processing systen,
gives you, the LCC user, a very high degree of power and
flexibility.

The working sentences of the LCC language are statements, a
statement (abbreviated s) being a command which causes LCC to
perform an action (e.g., a modifijication of data, an input/output
operation, a modification of control). You may type an arbhitrary
number of statemants, separated from one another by semicolons
(;), on a single line. Such a statement list is called a step, and
LCC will execute the statements within it from left to right.

Steps in LCC may be used in two different ways, either dalayed
or immediate. Delayed steps are translated and saved by LCC, and
they may later be recalled and executed urder programmer control.
A delayed step is distinquished by the presence of a preceding
decimal step number which indicates its relationship to other
steps. A step number must lie between 0001.0001 and 9999.9999, and
it is separated from the step text by either a colon (:) or a
comma (,). Both its integer portion, from whick leading zeros aay
be omitted, and its fractional portion, from which trailing zeros
may be omitted, must lie between 0001 and 9999, A step number
serves both as the editing designator for a step and as a control
designator for the first statement in the step. In addition to the
step number, any statement in a delayed step pay have one or more
labels associated with it as control designators, a label teing an
identifier which ipmediately precedes the statement and is
separated from it by a colon (:). If a step has multiple step
numbers, all must precede its first statement or label, and only
the riqghtmost number will be used; if a statement has multiple

labels, each will be significant. Some examples of delayed steps
are:

3.7, GO TO 3.5;
3125.0042: A « B+1; 1LB06: C « D#F; LBL: F « G/3
27.85: 27.830, L: M: TYPF Y,Z; RETURN T
Delaved steps will be ordered according to their numbers, and

they may be inserted, modified, or deleted freely while
conversing. They may be typed in any order, and a newly typed step

Introduction

will replace any previously saved step with the same number. For
execution purposes, steps are grouped into parts, with a part
being the orderel set of all steps whose numbers have the same
integer portion. When executed, a part will be treated as an ALGOL
block, 1i.e., vartables which are declared and labels which are
used in it will have local meanings which are valid only when it
is active (i.e., it is being executed). A1]l such local meanings
vill he erased when execution of the part is completed.

An immediate step, which is distinquished by the absence of a
step number, 1is translated and executed when typed and is then
discarded. Immediate steps are used to perform one-time or “desk
calculator” calculations, to control the execution of the delayed
steps of a program, and to perform various editing and debugging
operations. An explicit transfer of control (GOTO) to an immediate
statement 15 not allowed, and consequently immediate statements
cannot be labelled.

Svyntactically, any LCC statement may be used in either an
immediate or a delayed step. When executed, however, each
statemenrt will be checked for validity in the currently existing
context, and at that time, some statemants will be treated as
no-ops (e.9., an immediate ‘*PAUSE’, a delayed ‘507), and some will
lead to errors (2.q9., a global *G0T0’, a global *RETURN").

An LCC statement rmay be empty, in which case it contains no

non-hlank c¢haractars and it performs no action, The various
non-empty LCC statements are listed alphabetically by their
initial keywords or metavariables and described below. Following

the statement descriptions are descriptions of the subsidiary
motavariables (expressions, literal constants, etc.) used in the
lanquage. The abbreviated syntax notation which has been used is
described in Appendix A, and the complete syntax for LCC is
sumnarized in Appendix R,

statenment

=== LCC Statements ===-

$e= (one of the following -- pp. 3-29)

ALTER qroup | = | e.1 =e_2 , e_3 = e_U4 , coo , _(2%N=-1) = e_{(2Y)

The expressions e_I should evaluate to character strings. LCC
will search the text of the group for substrings which match the
given pattern strings e_1, 2_3, ... , e_(2«N-1)., Each substring
which matches an e_(2+J-1) will be replaced by the corresponding
e_(2#J3), and the group will be retranslated with its altered text.

LCC will perform the search as in the following pseudo-LCC
code:

FOR (each step in the group {ordered on step numbers)) DO
{ FOR I FROM 1 BY 2 TO 2«N-1 DO
{ START_OF_SEARCH_POINTER « 1;
AGAIN: T* (search finds substring e_I) THEN
{ (replace substring by e_(I+1));
START_OF_SEARCH_POINTER -« (position of
tst char after replaced substring);
G0 TO AGATINK } 1}
IF (any replacements were made) THEN (retranslate) };

Por the search LCC will treat both text and pattern strings as
sequences of either contiguous letters ands/or digits or individual
non-blank, non-alphanumeric characters, with blanks being ignored
except 1insofar as they separate alphanumeric sequences from one
another. As an example, the step

4.8: X«IF PQR THEN (TEMP+1) FLSE ‘*15.64 PFF’;GO TO 4.41;
will be found to contain the substrings (among others)

‘X-f, “{TEMP’, *+’, 157, “FF’, ‘G0 TO0?,
*41; *, and .’ (tvice)

but it will not contain the substriags
\8" \Ql' \.6" \GOTOI’ or \Toul
Examples:
ALTRER STEP 1.6 = ‘X’ = “AX’ , ‘Y’ = ‘py~/

ALTER PARTS, ‘P + O’ - R
ALTER 4,77 , ‘A’ = ‘7

ARRPA

BEGI

CASE

LCC Statements

Y .“"i"lent'l.'. [’_e< : E)"‘ .l }[|¢] —'-'-
e

LCC will assign to each ident in a list the multidimensional
array structure specified by the bounds list which immediately
follows it. Bach 1item in a bhounds list gives the limits on one
subscript of an array structure. The number of items is thus the
number of dimensions of the array. An item in a bounds list can he
eithar a pair of expressions specifying the lower and upper limits
on the subscript for that dimension or a single expression
specifying the upper limit on that subscript (the lower limit will
be implicitly 1).

Storage will not be allocated for an array until the array is
usad, and even then it will only be allocated for a given row when
an element from thait row is first accessed.

Examples:

ARRAY LAl1:N, -3:8%K]

ARRAY JTrM, JOR[10,15,20), DAVE[O:8]1([41[-6:-11]
N s 4 .;. END

The keywords “REGIN’ and ‘END’ delimit a ™“block?®, whose list
of arhitrary LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it will execute the
statoments from the list in sequence. This ™“block statement® will
normilly be terminated by “running off 1its end”. A RETURN
staitement within it will first terminate the context of the block
statement and then return from the context in which the block was
enbaddead,

Pxamples:

BEGIN STEP 4.B; PART 251; S -« T END
BEGTN NEW A,B; PART 6; PART 8 EXND

@ OF [s5_1; s5_2

-8
.
L]
L]
L1
]
!
-
)

The expression e will be evaluated and rounded to an integer
Je. Tf 1 € J €N, 1LCC will give control to statement s_J, fron
which control will normally pass to the successor of the CASE
statement, It is an error if J is out of the range 1 to V.

LCC Statements 5

Examples:
CASE J+1 OF { X - F(A,B) ¢+ C ;
X « SQRT(Y) + D ;
GO TO 6.2 ;

X = SIN(Yt2) ;
GO TO 6.2 ;
X « 0}

CASP e OF { s_1; s5_2 ; ... ; S_N ; OTHERWISE s_(N+1) }

The expression e will be evaluated and rounded to an integer
J. If 1 € J < N, action is as in the simple CASE statement without
an OTHFRWISFE. If J is out of the range 1 to N, control will be
given to statement s_(N#+1).

Examples:)
CASE I OF { X+5; OTHERWISE X « 45 }

COMBINE € STEPS > num_1 TO num_2 AS e

A single string will be constructed by concatenating, in step
number order, the text portions of all steps with numbers between
num_1 and num_2 inclusive, During this concatenation process, a
semizolon (;) character will be appended to any step which does
not already terminate with one. LCC will then retranslate the new

string as step e. Steps num_1 to num_2 will not be deleted and
will be unaffected by the COMBINF statement {(unless num_1 <€ e <
num_2). As 1in a group, it is an error if num_%t > num_2 {unless

num_2 < 1).

Examples:
COMBINE STEPS 6.7 TO 6.83 AS 6.7

COPY group AS =

If e evaluates ¢to an 1integer, the set of steps from the
speci fied group will be copied and retranslated as a new gqroup,
with the integer portion of each step number being replaced by the
value of e (which must not he zero). If e does not evaluate to an
integer, this statement is equivalent to the statement

COPY group AS e BY .01

LCC Statements

All steps in the original group must be in the same part. The
source text for the group will not be modified by the COPY, and
the original group will not be deleted.

Examples:
COPY PART 3 AS 43
coPY STEP 5.61 AS 12.074

COPY group AS e_1 RY e_2

LCC will copy, renumber, and retranslate the ordered set of
steps from the spacified qroup. The renumbering will start with
e.1 (or, 1if e_1 i5 an integer, with (e_1 + e_2)) and successive
step numbers will be incremented by e_2 (vwhose value nmust lie
between ,000% and .,9999). The original group of steps will not be
deleted hy a COPY statement (though it may be changed if some of
the new steps fall within the group). The source text for a copied
step will not be modified during ¢the COPY, and it is your
responsibility to make sure that the renumbered steps do not
contiin spurious references to steps in the original group. To
insure this, vyou should use labels rather than step numbers to
refer from one statement in the group to another.

Examples:
COPY ST®PS 4.371 TO 14.4305 AS 814.001 BY .002

DELFETE FILE e

The expression e must evaluate to a string, which will be used
as a file name. LCC will delete that file from your file catalog,
and it will take back any storage which that file used.

Fxamples:
DELETE FILE “AB'

DELETE ALL
This statement 1is effectively eguivalent to (but slightly
slower than) the step
EXTIT ALL; DPRLFTE STEPS; DELETE VALUES
Your working storage will be completely erased, and LCC will be

re-initialized, just as if you had logged off and then logged back
on.

LCC Statements 7

DELETE | PARTS |
| STEPS |

L.CC will erase from working storage both the source and ohject
codes for all steps (only values will remain).

DELETE VALUES

LCC will erase froo working storage the current
incarnation-value for each of your 1identifiers, giving every
identifier in your program the meaning “undefined”.

DELETE < STEPS > num_1 TO num_2

LCC will erase from working storage all steps whose numbers
lie between num_1 and num_2 inclusive. As in a group, it is an
error if num_1 > num_2 {unless num_2 < 1).

Fxamples:
DELETE 151.42 TO 151.536

DELETE < STEP > nunm

Zquivalent to
NELETS STEPS num TO nun

Examples:
DELETE STEP 4,231

DELETE PARTS num_1?1 TO num_2

Equivalent to

DELETR STEPS (num_1 + .0001) TO (num_2 + .9999)

LCC Statements

DELETFE PART nunm

Equivalent to

DELETE PARTS num TO num

DELETE | < STRPS > | + num_1 < TO nun_2 > 4 .,.
| PARTS |

4, DFRLETE statement may include a group list. LCC will then
delete all steps in each of the specified groups.

FExamples:
DELETE PARTS 4, 7 TO 10, 153, 48
DRLETE 3.71, 3.814, A4 TO (A4 + P - .9)

DELETE F varid 4 .,.

I.CC will replace the current incarnation-value for each varid
in the 1list by “undefined”, Tf a varid referred to a string or
array (or any other item for which storage was allocated), the
internal links to that storage will be cut, but the storage will
not be taken bhack until the block within which it was allocated
has been terminated,

Note that an array <=lement can be deleted. This feature will
be necessary before you can change the meaning of an array element
vhich is a procedure, a reference pointer, or an array name.

Exanples:
DELETE A,B
DELETE CII,J,4)

DISPLAY FILE < CATALOG >

LCC will type out a 1list of the names of all of your LCC
files, The names will be the full TSS names of your files, «hich
are gualified by your user number and the internal name LCCFILE.
Thus the file *SAVAL’ of user XYZ1ZZ13 will have the full nanme

XYZ1ZZ13. LCCFILE.SAVAL

LCC Statements 9

DISPLAY RETURN < STEPS >

LCC will type out a list of the currently active steps, thus
giving a map of the present control status. Step designators will
be typed one per line, and the list will be ordered so that the
innermost (most recent) step will be typed tirst. For steps inside
parts, ILCC will type the step number; for immediate steps LCC will
t ype the characters “»##%’; for a procedure call LCC will type the
procedure name. Thus LCC might type the lines

337
17.3

FUNCT
k%

4.3
%%

in response to your ‘*DISPLAY RETUBRN’ statement.

DYSPLAY ALL

Equivalent to

DISPLAY PARTS; DISPLAY VALUES

DISPLAY | PAPTS |

| STEPS |

Equivalent to

DISPLAY STEPS 1.0001 TO 9999.9999

DISPLAY VALU®S

LCC will type, in alphabetical order, the names and current
meanings of all of your defined identifiers (i.e., the meanings

atop each of your variable stacks). Appropriate formats will he
ugsed for values (numeric, logic, aand string) and references
(labe), array, prozedure, and pointer). Rach displayed line will

also include a prefixed level number which indicates the level of
the block in which that 1identifier was declared, i.e., the
outermost block level in which the current meaning will hold. For
3lobal variables, the level number of zero will be suppressed. An
exanmple of the displayed output is:

LCC Statements

2 ARRA ARRAY [1:5,3:10,-2:6)
3 LAB IN 3.6
1 LV £000000FF
3 NAN SABC
NV -1.234567,15
PROC PROC EDURFE
2 SV ‘ST

DISPLAY < STEPS > nup_1 TO num_2

LCC will type in order the source images for all steps whose
numbers are hetween num_1 and num_2 inclusive, As in a group, it
is an error if num_1 > nuam_2 (unless num_2 < 1). Bach step will
begin on a new line and will include hoth its number and its text.
Except for possible minor differences in the format of the step
number, a displayed step will look exactly as it did when you
typed it in.

Exanples:
DISPLAY 415.3 TO 415.7

DISPLAY < STEP > num
Equivalent to
DISPLAY STEPS num TO num
DISPLAY PARTS num_1 TO num_?

Equivalent to
DISPLAY STEPS (num_? + .0001) TO (num_2 + .9999)

Examples:
DISPLAY PARTS 4 TO 6

DISPLAY PART num

Equivalent to

DISPLAY PARTS num TO num

LCC Statements 11

DISPLAY | < STEPS > | I pum_1 < TO num_2 > + .,.
| PARTS i

A DISPLAY statement may include a group list. LCC will then
display all the specified steps or parts, ordering the groups for
typing from left to right in the list.

Fxamples:
DISPLAY 3.4 TO 3,43, 3.8 TO 4.2, 4.513, 4.902

BISPLAY + varid 4 .,.

LCC will type out the current meaning for each varid in the
list. PBach displayed “meaning” will take up a single line, and it
will include exactly the same information that would be typed for
that variable by a “*DISPLAY VALNUES’ statenment. If no meaning has
heen assigned to a listed varid, the varid will be displayed as
*undefined”.

Fxamples:
DISPLAY A, C, », X[1,1], XI[4,7,3]

FYIT

An FXIT statement is used to delete the context of the part or
step group vwhich is currently active and give you control in the
context of the part or step group which called it. A more precise
description of an EXIT is as follows:

EXIT recognizes only contexts involving explicitly numbered
steps and those involving the user (it regards you as the numbhered
step 0.0). An EXIT statement will delete all execution contexts
down to and including that for the first non-zero numbered step on
the context stack. It will then delete all contexts down to but

not including the first numbered step. If that is a step 0.0, it
gives you control; if not it adds a new step 0.0 context, which
also gives vyou control. Thus an EBXIT deletes all execution

contexts down to, but not including, the first numbered step helow
the first non-zero numbered step, and it then gives you control.

12

LCC Statements

EXTT ALL

LCC will perform successive FXITs until the global state is
reached {i.e., there are no remaining group contexts) and it will
then give control to you.

Fxamples:
IF RRROR6 THEN EXIT ALL

EXIT < TO > < PART > e

<

If part e 1is not currently active, LCC will type an error
messaqge and give control back to you. Otherwise LCC will verfornm
an EXIT. Tf the resulting context is that of part e, control will
be agaiven to you. If not, LCC will perform another EXIT, etc.

Examples:
EXIT TO PART 3
EXIT 703

FOR ident <|FROM| e_1 >|> <|BY e_2 < T0 e_3 >|> < WHILE e_4 > DO s
R] !]TO e_3 < BY e_2 >|
FROM e_1 {

The statement s will be executed repeatedly as long as the
expression e_4 is true and as long as the value of the controlled
ident 1is within the specified range. #ith each repetition, the
value of the explicit {ident) or implicit control variable will be
nolified as specified by the controlling for-clause. The phrase
YFROM e_1’ may be omitted if e_1 = 1, *“BY e_2’ may be omitted if
e_2 =1, 70 e_3’ may be omitted if the loop is to be terminated
in some manner other than that of the controlled variable reaching
a final value (i.e., if e_3 is infinite), and “POR ident’ mav be
omitted if ident does not appear in e_4 or in s (in which case an
implicit controlled variable will be used}.

Operation of a complete iteration statement is equivalent to
that of the LCC bhlock

REGIN NEW RYE « e_2, TOE « e_3; ident « e_1;
L: IF IF BYF > 0 THEN ident € TOE ELSF ident > TOE
THEN IF e_4 THEN { s; ident - ident + BYE;
GO TO L 1} END

whare the identifisrs L, ©0YE, and TOF do not occur within any of
the e_T or in s. Note that, unlike ALGOL 60, the increment and
terminal expressions e_2 and e_3 are evaluated only once, when

GO

|
!

IF

LCC Statements T3

execution of the iteration statement begins, and subsequent
changes to any variables used in e_2 and e_3 will not affect the
control of the iteration.

Examples:
POR I FROM 1 BY G TQ H¢1 WHILE N # 3 DO ST
WHILE B « € DO PART 2
TO T DO PART 345
DO PART 6543
FOR J « XK TO P BY -2 DO F(J,K)

LCC will return control to the context from which you were
called, resuming execution from the point of the call. A GO has
meaning only after you have been called via a statement (PAUSE) or
action (pressing the ATTN or BREAK key) which expects you to
eventually return control to the caller.

GO < TO >) e
GOTO I

If e is a label, it must be that of a statement in a currently
active qroup. LCC will then EXIT to that group and transfer
execution control to the labelled statement. If e is not a label,
it must evaluate to a step number in a currently active group. If
thn step number 1is in the range of the group currently being
executed, LCC will transfer control to the first statement in the
designated step., If the number is not in range, LCC will EXIT fron
the current group context and repeat the above process.

Examples:
50 TO LABL3
GOTO 6.1
GO 1243.0001 + 7

e THEN s

If the expression e evaluates as true, execution control is
transferred to s (from which control will normally pass to the
successor of the IF statement). If e evaluates as false, s is
skipped. If e has a 1logic or arithmetic value, it will be
considered as trye if it is non-zero or as false if it is zero;
strings will be converted to their equivalent arithmetic values.

14

IF

LCC Statements

Examples:
IF X < 4 THEN PAUSFE

e THEN s_1 ELSE s_2

If e evaluates as true, execution control will be transferred
to s_1, from which control will normally pass around s_2 to the
successor of the TP statement. If e evaluates as false, execution
control will pass around s_1 to s_2, from which control will pass
to the successor of the IF statement.

Examples:
IF ~P v Q THEN Z - S ELSE { T « T ¢ 1; TYPE T }

IINE < & >

LCC will upspace your paper {(at your terminal) by one line or,
if an expression e is supplied, by e lines.

Examples:
LINE
LINE 4-0

LOAD < FILE > =«

LCC will open file e and, if the file was created by one or
more SAVE statements, load into working storage whatever was SAVEd
there. This is done hy treating the information in the file as a
set of 1lipes of input text, each of which will be read and
translated just as if it had heen typed in by you.

LCC treats all files alike, regardless of whether they were
created by SAVE or WRITE statements. Thus a file may contain
immediate statements which vwere written (as strings) by a WRITE
statement, These will be both translated and executed during a
LOAD of that file. Any immediate statement may be vritten and
LOADed, including another LOAD statement.

Examples:
LOAD FILE ‘0013¢

REW

NEW

LCC Statements 15
ARRAY ¥+ + jdent 4 .,. {(Fe < :e>4 .| 1L 4{. 1 4.,.

This statement acts just like an ARRAY statement except LCC
will construct a new incarnation-value for each ident before
assigning it its specified array structure.

Fxamples:
NEW ARRAY A3, A4[10, 20, 5:301, ASI5)

- ident 4 .,.

This declaration statement causes a nev¥ incarnation-value (IV)
with the meaning ™“undefined®” to be constructed at the current
nesting level for each ident in the list. In the usual case that
the old YV is on a lower level, this nev IV will be linked to the
old one, which it will temporarily supersede. In case the old IV
is on the current level (i.e., the ident is being redeclared in
this block), it will be replaced by the new one.

A declaration holds only within the scope of the block in
which it 1is executed. When that block is terminated, all IVs
declared in it will be erased, and the meanings which the
corresponding idents had before their declarations were executed
will be restored.

Examples:
NEW A,B

+ ident - | e 1 4 2pn
] pointer {
| procedure |
| structure |

This statement acts much like a simple NEW statement, but
instead of giving each newly constructed IV an undefined wmeaning,
LCC will assign it a specified initial “value~®. Declarations and
assignments will be made from left to right in the NEW 1list, but a
“value” will he constructed before the ident to which it is to be
assigned is declared. Thus, for example, in the statement

NEW A « B + A

the o0ld value of the variable A will be added t0o B to oktain the
initial value of the new A.

LCC Statements

Examples:
NEW S « *5S8’, T « U - V¥, W « oX
NEW F « 9(A,B) PART 9 ({(NEW P « 9Q+R9?, 5 « §}v
NEW A « ARRAYI(3,0:5]), B, C = 26, D = ARRAY[X:Y]

NOUMBER AS e_1 < BY e_2 >

LCC will auntomatically type out for you at the beqginning of
each input 1line a step number followed by a colon (:). Before
translation, the supplied number will be appended as a prefix to
whatever step text you type. The numbering sequence will normally
start at e_1, with successive step numbers being incremented by
e_2, but 1if any numbers in the segquence (including e_1) turn out
to be inteqers, they will be skipped. Thus it is quite acceptable
for the numbering to cross part boundaries. If e_2 is given, its
value must lie between .0001 and .9999; if the “*BY’ phrase is
rissing, e_2 will be assumed to be .01,

LCC’s automatic numbering will continue until you turn it off;
this 1is done by inputting an empty step, i.e., by pressing the
RETURN key immediately after the step number.

Fxamples:
NUMBER AS 17.3 BY .002

NUMBER group AS e_1 BY e_2

LCC will renumber and retranslate the ordered set of steps
from the specified group. The renumbering will start with e_1 (or,
if e_1 is an integer, with (e_1 + e_2)) and successive step
numbers will be incremented by e_2 (whose value must lie hetween
.0001 and .9999). The original group of steps will be deleted by a
NUMBFER statement (otherwise this statement acts exactly the same
as the corresponding COPY statement, which Jdoes not delete the
group). The source text for a step will not be modified by a
NUMBER statement, and it is your responsibility to make sure that
the renumbered steps Ao nct contain spurious references to steps
in the original group. To insure this, you should use labels
rather than step numbers to refer from one statement in the group
to another,

Examples:
NUMBER STEPS 7.7 TO 8.2 AS 25 BY .02

LCC Statements 17

NUMBER group AS e

If e evaluates to an integer, the set of steps from the
specified group will be renumbered and retranslated as a new
group, with the integer portion of each step number heing replaced
by the value of the expression e {(vhich must not be zero). If e
does not evaluate to an integer, this statement is equivalent to
the statement

NUMBER qgroup AS e BY .01
All steps in the original group must be in the same part. The
source text for the group will not be modified by this NUMBER
statement, but the origiral group will be deleted (otherwise this
statement is identical to the statement *“COPY group AS e”’).
Exanples:

NUMBER 8.07 AS 14.253
NUMBER STEPS 6.4 TO 6.5 AS 1016

NUMBER group BY e

Equivalent to
NUMBER group AS X RY e
where X is the truncated value of the first step number in the
Jroup. This statement is used mainly to tidy up the fractional
step numbers for a part without changing its name (i.e,, its part
number).

Fxanmnples:
NUMBER PART 803 BY (INC # ,.0001)

NUMBER group

Equivalent to

NUMBRER group BY .01

Examples:
NUMBER STEPS 43.001 TO 43.18

18

OFF

OFF

LCC Statenents

LCC will perform an “EXIT ALL’ and it will then log you off. A
ressage will be written to indicate the elapsed time and the
processor time wused Aduring your conversational session. Your
antomatic reload file will be erased by this OFF statewment (see
Appendix G).

Frxamples:
IF DONE THEN OFF

SAVE

This statement acts just like a simple OFF statement except
for its treatment of your automatic reload file, which will not be
erased and thus may be reloaded when you begin your next
conversational session (see Appendix G).

PART num

A new block context will be set up for the sequence of steps
from num+.0001 to num+,9999. Execution will then begin within that
context at the first step whose number is 2 nym+.0001 and it will
normally continue through successively higher numbered steps.
Control! will be returned when the part ™“runs off its 2nd” or when
it executes a RETURN statement, an EXIT statement, or a GOTO which
transfers out of its range.

A part may be called either as an operand in an expression {in
which case it should return a result) or as a statement. In the
latter case it should not return a result, but if it does, LCC
will type the value of the result at your terminal.

Examples:
PART 5
TO PART 17 DO PART ABACAD

PART nam § s_1: S_2 5 +=-»- ;3 S_N1}

A new block context will be set up for the seguence of steps
in part num. Execution control will then be transferred to
statement s_1, from which control will normally pass to s_2, s_3,
ee. in order up to s_N, from which control will pass to the lowest
numhered step in part nunm. Thus the statement list within the

1LCC Statements 19

braces is treatel as if it were a step numbered num+.0000% in a
part context which is expanded to include that step.

Examples:
PART (J + 2) { NEW A«aBICl; TYPE D + A; E«16 }
PART 3 { WEW A < G-H ; NE¥ D - v R / PART 2 v }

PAUSE

LCC will type a message giving the step number of the PAUSE
statement, after which it will give control to you.

Examples:
IF X < 4 THEN PAUSE

PAUSE e

LCC will ¢type out the string supplied by the expression e,
after which it will give control to you.

Examples:
PAUSE “HALF DONE’

PRINT < FILE > e

$.CC will print (on the line printer in the computer room) the
contents of file e, which must have been generated by an LCC SAVE
or WRITE statement. File e will not be changed by heing printed,
but if you PRINT a file during a conversational session, you will
not be allowed to delete it later on in that same session.

Exanples:
PRINT FILR “PRNTFIL’

RECOVER < & >

LCC will treat a RECOVER statement as a dummy statement unless
you give it from a user state which was entered because of an
error in a delayed step. In the latter case, vyour furnished
expression e, which will only be acceptable if the operation which
caused the error halt should have produced a result, will be used
as that result, and LCC will resume execution from the point of

20 LCC Statements

the error as if the operation had been completed. As an example,
if your program halts with the error message

ERROR OROT AT 4.1 DIVISION BY ZERO
you may resume execution by typing the statement

RECOVER 3,20

Execution will then continue just as if the divide operation had
been completed normally and had yielded the result 3,20.

In some cases it is possible to resume execution after errors
vhere no explicit result is involved. ¥n those cases you may use a
simple RECOVER statement which furnishes no result expression. As
an example, if vou attempt to call part 3 when part 3 is empty,
LCC will halt execution of your program with an error message such
as

ERROR PCO2 AT 5.2 PART 3 DOES NOT RXIST, YOU CANNOT CALL
You could then resume execution by typing the lines

3.1: LOAD STUFF
RECOVER

Examples:
RECOVER X + Y

RETHRN

LCC will delete the current execution context and return
control to its caller, resuming execution from the point of the
call.

RET{RN e

This statement acts just like a simple RETURN statement except
the value of e is computed before the RETURN is performed, aand
that value is the result of the call.

Exanples:
RETURN X - Y ¢ 3

-,

nJ

LCC Statements 21

RETURN pointer

This statement acts just like a simple RETURN statement except
the specified reference pointer is constructed before the RETURN
is performed and that pointer is the result of the call.

Examples:
RETURN > VBLII+1]

RETURN procedure

This statement acts like a simple RETURN statement except a
reference to the given procedure is constructed hefore the RETURN
is performed and that reference is the result of the call. Thus if
a procedure PR, which is called via the statement

RED « PR(X,Y,7)
returns with the statement
RETNRNY ¢ (A,H) PART &6 ¢

the effect (except for possible side effects) is to perform the
assignment

RED «- v (A,H) PART 66 ¢

Fxamples:
RETURN ¥ STEPS 4.8 TO AZ ¢
RETURN ¢ (B,C) { PART 7; PART 25 } ¢

SAVE save-object

LCC will ©put the save-ohject (a list of steps and/or values)
into the currently open file. A step will be SAVE]d in the sanme
form that would be used to DISPLAY it, which is, except for
possible ainor differences in the format of the step number, the
same form that you used to type it in. The current meaning of a
variable will be SAVEd as an assiqnment statement which assigns
that meaning to the variable. Thus a SAVEd file can be reloaded
merely by executing it; this is done by means of a LOAD statement.
Note that no context information will be kept with a SAVEQ
variable, and it will be up to you to recreate the proper context

into which to later load the file. Only variables whose meanings
are values (numeric, 1logic, or string), pointers, or arrays will
be SAVEd. &n array will be saved as a structure assignment

followed by assignment statements for each of its SAVE-able

LCC Statements

elaments,

A SAVE statement does not save numeric values to their full
precision (about 17 dJdigits) but only to the precision of the
printing routines (10 digits)., Thus a SAVEd and relOADed proqranm
may mnot function exactly the same as if it had been run in a
single session, This will not usually be noticeable, hut it will
show up if numbers such as PI and EE (which are initially accurate
to the last bit) are saved or if, for example, X = 1/3 is SAVEd.
In the latter case we would normally get 3 * (1/1) to print as 1
(due ¢to rounding in the output routines; 3 * (1/3) = 1 is PALSE,
however), but after saving and reloading X we would get 3 & X to
yield .9999999999,

Any number of SAVE statements can be executed to generate a
given file; each will append its lines at the end of those already
in the file,

Fxamples:
SAVE STEPS 35.6 TC 35.8
SAVE X, Y(I,1), YIT,2}, 2

SAVE save-object AS < FILE > e

Equivalent to
USE FILE e; SAVE save-object

Fxamples:
SAVE PARTS 45 TO 493 AS FILE “CAT’

STEPS num_1 TO num_2

This “step call®” is an “execute” statement, which may be usedq
to perform steps from scme other portion of your program as if
they had been copied in-line in its place. As in a group, num_1
must be < num_2 (unless num_2 < 1). LCC will set up a new group
context (non-klock) for the sequence of steps from num_1 to num 2.
Pyxecution will then begin at step num_1, and it will continue

througk successively higher numbered steps. This step c§11 will
normally be terminated either by a RETURN statement without a
value or hy *“running off the end” of the stefp group. An BXIT

statement will terminate the step call and return control to you
in the context of its calling group.

Examples:
STEPS 3.8 TN 3.93

STEP

TYPE

USF

LCC Statements 213

num
Eguivalent to the statement
STEPS num TO nun
b type-obdiect 4 .,.

For a type-object consisting of an expression e, LCC will type
the value of e, left-justified on a line. A numeric value will be
roundied to 10 significant decimal digits and typed as an integer
or a decimal number, with an exponent part heing appended if
necessary. A logic value will be typed as TRUF or FALSFE or as an
B-digit hexadecimal nnmber (i.,e,.,, it will have the form of a
logic=-literal). A string value will be typed as is without
surrounding quote marks.

LCC will ignore an empty type-object in this unformatted TYPE
statement,

A for-clause in a type-object merely specifies control over
another type-object, but the controlled objects will be typed just
as 1f the for-clause were outside the TYPE statement insteald of
inside. As an example, the type-obhject

{ for-clause e_2 , e_31)
will, under control of the for-clause, type values for e_2, e_3,
a_ 2, e_3, ... , one per line.

Examples:
TYPE A + B, , C
TYPE P, (FOR I TO 19 DO I, CABITIIJI))

< FILE > e

The expression e must evaluate to a string whose body will be
used as a file nane. L.CC will open that file and use it in any
subsequent SAVE or WRITE statement which does not mention a file
explicitly. Only one such file can be open at any time, so file e
will be closed either by a logoff or by executing any filing
statement (including anotber USF) which explicitly mentions a
different file.

A file name must be an identifier (ident) of length < 8 which

24 LCC Statements

does not contain any lover case letters or underline ()
characters.

Fxamples:
USF FILE “CWIC’

WRITF F+ type-object 4 .,.

This statement is just like a TYPE statement except the
type-obhjects will be written on the currently open file instead of
at your *terminal. Any number of WRITE statements can be executed
to write a given file; each will append its lines at the end of
those already written,

Fxamples:
WRITE A, BsC
WRITE (FOR T TO 10 DO (FOR J TO 10 DO FISHII,J)))

WRITE + type-object 4 .,. AS < PILE > e

Fgquivalent to

USE FILE e; WRITE + type-obiject 4 .,.

? + < string-literal > varid 4 .,.

For each varid in the list, the following process will be
performed: LCC will type either a standard identifying message or,
if vou preceded the varid by a string-literal, the string which
you supplied., It will then give control to you. You must type the
text for an exoression and return control to LCC (by pressing the
RETURY key). Your expression will then be evaluated and assiagned
to varid.

Fxamples:

?%,B
? “TYPE RANK’ RNKI[31, RNKI[4]

? $§ + < string-literal > varid 4 .,.

This statement acts like the regular ? statement except LCC
will treat each of your typed expressions as the body of a string

- eyt

LCC Statements 25

(i.e., it will surround each expression by quote marks). Thus the
value assigned to each varid will always be a string.

A slight variation is possible here in the use of single-guote
marks, which need not be doubled to appear in your requested
string body. Thus if you type

AB’C™D

in response to the statement

?3 ST
tha effect will be exactly the same as if you had executed the
statement

ST « “AB"‘C*D’
Examples:

?2%8 S, T STRING * T

f 54 .;. 3}

This *™“compouni statement” will be treated as a single control
unit whose sub-statements will be executed sequentially from left
to right. A compound statement is not a block and it may not have
its own local variables; therefore its nmain use is within a
controlling statemant such as ap IF, CASE, or iteration.

Examples:
IF ~P v 0 THEN 2 - 5 ELSE { T «~ T 4+ 1; TYPE T }

The expression e mwmust evaluate to a string, whose contents
will be treated as statement data to the LCC translator. When a !
statement is executed, the string wvhich it supplies will be
processed Jjust as if it were a step which was just typed in. 1If
the string turns out to be an immediate step, it will be executed
as the current statement, If not, it will be stored as usual for a
delayed step and control will pass to the successor of the !
statement, This statement is useful mainly in programs which
7Jenerate nev program text during execution.

Examples:
! “A -« B + C; A Translate this later’
! S o T
! “STEP B.44*; v Same as the statement STEP 8.44

26

A <

var

var

LCC Statements

+ character 4 ... >

No operation will be performed. The character sequence will be
treated merely as a comment, with all characters following the
first a4 in a step being conmpletely ignored.

Examples:
A THIS IS A COMMENT LINE.

- e

The variable designator var is first elaborated (cycling all
the way down 1its pointer chain if it begins one) to obtain the

*alaborated address” of a value (non-reference) entry. Then the
expression e is evaluated to yield a numeric, 1logqic, or string
value, That value is assigned to the elaborated address of var,

vith no conversions of any sort being performed.

Examples:
K« M A (FO
P{3] « A ¢« (B« 8 + 1) + H(N)
I « J « K « V*

var is treated as in an expression-assignment. A reference to
the 1iven proceduyre will be constructed and assigned to (the
elaborated address of) var, The procedure body is either the
expression e or the statement list, and the listed idents are
formal identifiers in that bodv. When the procedure is called,
actual parameters nust be supplied to replace the formal
identifiers during execution of e or the list of statements s. For
a procedure with no parameters, the formal identifier list is
normally omitted, If so, parentheses cannot be used to surround a
procedure-bedy expression, because they would be treated as
parameter delimiters. To get around this syntactic ambiguity, LCC
allows an empty formal parameter list to precede a procedure-body
expression e (but not a statement list).

Once var has been made a procedure name, any mention of it in
an expression or assignment will cause the procedure to be
evaluated. Thus the meaning of the var cannot be changed unless it
is first redeclared or DELETEA.

var

var

LCC Statements 27

Examples:

PROC « 9(F,G) F + G * HV

G+ 9 PART 81 { NEW 2 = Z + 1; 0« 0O } ¥
clI,J) - 9{(X) PART 371v :

P3 -« v { PART 4; PART 68; I « I + 1 } ¥
F v {) IP X < 48,3 THEN T+1 ELSE T ¥

~« ARRAY [Fe <z e>A .] ¥ f. 1

LCC will! assiqn to var the multidimensional array structure
specified by the given bounds list. The bounds list gives the
nunmber of dimensions of the array structure and the liaits on each
of its subscripts. An item in the bounds list can he either a pair
of expressions specifying the lower and wupper limits on the
subscript for that dimension or a single expression specifying the
upper limit on that subscript (the lower limit will be implicitly
1),

Storage will not be allocated for an array until that array is
used, and even then it will only be allocated for a given row when
an elenment from that row is first accessed. LCC keeps identifying
information for each element in an array, and therefore arrays
need not be homogeneous. Thus, for example, in a given rowvw an
array could contain elements which wvere procedures, pointers,
numeric values, string values, and even arrays.

Note that if the var above is an identifier, this statemsent
form 1is exactly equivalent to an ARRAY statement, Thus the two
statements

A - ARRAY[O0:4,6]
ARRAY A{0:4,61}

are equivalent, However, 1if the var is subscripted, we can with
this statement specify that an array element is to be itself an
array, an effect which is not possible with an ARRAY statepment.

Examples:
LA « ARRAYII3N, -3 : 8#K]
P[2,8) « ARRAYI(S,10,24]

- pointer

var is treated as in an expression-assignment. The specified
reference pointer will bbe constructed and assigned to (the
elaborated address of) var.

28

var

LCC Statements

LCC cannot allow a variable to point tc another which is
declared in an 1inner (higher) nesting level; therefore such an
assignment will lead to an error message and will be redected. An
assignment which would create a circular pointer chain, as in

A+~ >B; B« >}
will also bhe redjected.

Examples:
ND <« oAR[I1,J)

(< F] e]
| pointer {
| procedure |

'lc'. >)>

The procedure referenced by var is performed, using the items
in the list as actual parameters. This is done by setting up a new
hlock context, declaring as NEW all formal idents listed in the
definition of var, assigning, in order, each actual parampeter to
the corresponding formal ident, and then transferring control to
the body of var. Control will be returned when the procedure
executes a RETURN statement, when it “*runs off its end” (vhich
causes an implicit RETURN to be executed), when it executes an
EXIT statement, or when it executes a GOTD which transfers out of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement, A procedurs statement should npot return a result, but
if it does, the value of the result will be typed out at your
terminal.

As an example, suppose we have executed the procedure.
assignment

and we execute the step
R({(X-2Z , 9 (GYG*H/3v, >2%) ;S ;

A new block context will be opened, LCC will perform the
statements

NEW A « X - Z
NER 8 = ¢ (G)
NEW C = > W ;

G

« 4/ 39 ;

and execution will begin in the new block context at the first
step in part 3. After normal termination of the part, the block
context will be closed and LCC will proceed with the successor to

LCC Statenments

the procedure call,

Procedures need not have parameters;

list may be omitted.
supplied,
baing stacked for the

i.e.,

the leftmost actuals will be used,

29

statement S.

thus the actual parameter
If more actual parameters than formals are
with the extra ones
duration of the procedure incarnation. If in

a subsequent nested procedure call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls
will be used, with those from the innermost calls being used
first,
Examples:

FTN

F{(A,X-Y)

"FN(P+1, 2Q, ¥

———— s

R +# PART 2 v)

-=== LCC Metavariables -—=--

binary-operator ::= [=]t|s]/|#]e]+|=f<|S{=|2]|>|#|>>|==]A[V]|EZ]|0]
unary-operator 1=]+ 1 -1 4| ~ |

| primary |
| uwnary-operator e |
| e.1 binary-operator e |
| I b

F e THEN e_1 ELSE 2

_2
e—
An expression (e} 1in LCC is a combination of value entities
(primaries) with operator symbols which acts as a rule for the
computation of a value. Syntactically, an expression may be
degenerate (i.,e., a single primary), it may be a prefixed
unacy-operator acting on a value, it may be the combination of tvo
values with an infix binary-operator, or it may be conditional,

with a distributed operator (I¥ ... THEN ... ELSE ...) which
selects one from a given pair of values.

The value of an LCC expression will normally be used as a
constituent in a statement. Rowever, if an expression appears in
place of a statemant (or if a syntactically correct LCC statement
turns out to have a value), its conputed value will be typed back
to you. This gives LCC its *desk calculator” feature, vwhereby you
need nerely to type an expression to obtain its immediate
evaluation =~- there is no need to write a “program® to do so.
Fote, however, that if LCC, when scanning for a statement, finds
as its first item an IF, ?, or !, it will treat what follows as a
statement, not an expression. If that is not what you mean, you
may use parentheses around your expression, and LCC will then
treat it correctly.

A conditional (IF) expression acts much like an IF statement.

If the expression e evaluates as true, the value of the
conditional expression is e_1; if e evaluates as false, the value
is e_2. Thus, if the variable AVAL = 1, the value of the
expression

TF AVAL € 5 THEN 825 FELSE 839
is 825,

The unary-operators are “+7, ‘-7, 47, and “~’, A unarty *+’ is
redundant, and +e¢ = @ no matter whether e is a number, a logic
value, or a string. A unary ‘-’ is a negation operator which
changes the sign of any non-zero value to which it is applied (a
zero is always positive). “+* is a truncation operator whose
result is the integer portion of the value to which it is applied.
Thus 2.8 = 2, +=3.1 = -3, and #3471 = 341. *—7 and ‘4’ are
arithmetic operators which can act only on numeric values; if they

LCC Metavariables 31

are applied to logic values or to strings, those values will be
converted to numbers before the operations are performed. “*~" 1is a
complement operator whose result is the bit-by-bit 1logical
complement of the 32-bit value to which it is applied (i.e., each
binary 1 becomes a zero and each binary 0 becomes a one). Thus

~TRUE = FALSE (= £0), ~¢(FEDO = (FFPFO12F

Note that multiple unary-operators may precede a primary; if so
the operations which they represent will be performed from right
to left. Thus

-3.1 = +(=-3.1) 3= -3

)—+~(FFFFFFFC = -3

[

Like the unary-operators, the binary-operators can act only on
values with the proper data attributes. If one is used with values
having improper attributes, appropriate conversions (with a bias
from string to 1logic value to number) will be automatically
performed hefore the operator is executed.

The hinary-operators “t7, &%, M/7, 237, Yo’ *4f, apd '-' are
numeric operators; each acts on numeric values to produce a
numer ic result, ‘¢’ denotes exponentiation, with e_1 as the base
and e_2 as the exponent. The operators *+7, =7, and ‘*’ have the
conventional peanings of addition, subtraction, and
multiplication. ‘*/f* is the usual numeric {(real) division, with a
real result; “#+’ (integer divide) and *¢’ (modulus, or remainder
divide) cause a real division operation to he performed, but “#¢
gives only the integer portion of the real result as its value
{i.e., A+ B = 1(A/B)) while ‘o’ gives only the remainder (i.e.,
A e B=A-B * (A¥B)). Thus

3.2+ 2 =1, 3.2 2 =1,
8,7 ¢ =3 = -1, 4,7 « -3 = 1.7
‘ar, ‘wr, and vz are logic operators; each acts

bit-by-corresponding-bit on logic values to produce a logic value.
They have the conventional meanings of logical AND, OR, and
equivalence.

‘o’ is a string concatenation operator which causes the hody
of string e_2 to be appended to that of e_1.

The operators Ye«’ and ‘==’ will shift a logic value or a
string left or right. e_2, which will he truncated to an integer,
is the length of the shift, while e_1 is the value to he shifted,
Shifts will be by bits for logic values and by characters for
strinas, A shift of a (fixed length) logic value will cause any
bits which are shifted out of the value to be lost; vacated
positions at the other end of the value will be filled in with
zeros. A string, however, does not have a fixed length. Characters
shifted “off the end” will be lost, but there will bhe no “vacated
positions® -- the string merely becomes shorter. Thus ve will get

LCC Metavariables

the following results:

*ABCDEFG’ == 4 = ‘*ABC’
‘*ABCDFRFG’ e 2 = SCDEFG’
Y*ABCDEFG’ =« 2 -+ = '’

The relational operators ‘<’, ‘<f, ‘=f >’/ >7, and “#*' can
act on any operands with matching attributes. The meanings of the
relations are ohvious for numeric operands. Fach produces as its
resnult a Boolean value (TRUE or FALSE). For logic values, ‘=’ and
‘*#7 act Dbit-by-bit to produce 1logic values which will be,
respectively, the 1logical egquivalence and exclusive OR of their
operands (i.e., L. = M 1is the same as L = ¥, and L # M is the sane
as ~(Lz=M)), If the other relations (£, €, 2, >) are applied to
logic values, those values will first be converted to nuambers and
then the wusual rules for relations on numbers will be followed.
Relations on strings will he performed character-by-character from
left to right, with the shorter string being extended, if
necessary, to the right with blanks. The normal 360 collating
sequence will be used in comparing characters. The result of a
string relation will be a Boolean value (TRUE or FALSE).

The assiqgqnment operator *«' in an expression takes as its left
operand a var, i.e., a reference entity which specifies a variable

name, Its right operand can be any expression. The value of an
expression e_1 < e_2 1is the value of e_2, and as a side effect
that value 1is also assiqned to e_1,. Note that a ‘«’ in an

expression takes as its left operand only that entity immediately
to its left, while its right operand is the whole expression to
its right., Thus the statement

Al0] - A[1] « B + C =~ D &« E« F + G
will be performed as if it had been written

RA{0) - (A{1)] « B + (C =« D % (E « F + G)))
Note also that a ‘«’ in an assignment statement is treated
differently from one in an expression in that it does not produce
a result and its right-hand side need not be an expression.

If the sequencing of operations in an expression is.not

explicitly spercified by the use of parentheses, the operations

will be ordered within it from left to right, but with the
following additional rules of precedence:

LCC Metavariables 33

First:
Second:

¢~ +{unary) -{unary)

)
Third: *

&

<

&+ L]
Fourth:
Fifth: = > > #
Sixth: - -—
Seventh: A
BPighth: v
Ninth: =
Tenth: o
I

A 1N

Eleventh:
Twelfth:

(as explained above)
F ... THEN ... ELSE ...

Thus the statement
X« A=-B ¢t 2/ C+ 4D

vill be performed as if it had been written
X« (A - ((B ¢t 2 O + (D))

If a conversion of a value to one of different attributes is
necessary, it will automatically be performed by LCC as follows:

number - logic value: LCC will truncate the number and strip
off its sign; the binary representation of the resulting
integer is truncated to 32 bits to form the logic value.
Thus

-25.7 becomes £19

number - string:

logic value -+ string: LCC will transform the internal
representation of the number or 1logic wvalue into its
external form (that which would bhe typed by an output
statement), That external form will be the body of the
resulting string. Thus

-25.7 becomes 25077
LFF12 becomres Y 4,0000FF127

logic value =+ number: LCC will use the logic value as the
low-order 32 bits of the positive integer result. The
other bits of the result will bhe zeros, and thus its value
will be between 0 and 2#32 - 1, As an example

£L2F becomes 47

string = number:

string - 1logic value: LCC will translate and evaluate the
expression which is the body of the string. This must
yield another value (possibly again a string) which may
need another conversion, etc. Thus if A = “*8B*, B = 3,

1)

extractor ::= | e_1

LCC Metavariables

‘Ao B’ becomes 42.1

If an entity has a logic or string value, it may be followed
by an extractor, which will select a portion of that value for use

.as a primary. An extractor must have one of the forms listed

above, where e_1 and e_2 are expressions which evaluate to
integers, and 1 < e_1 <€ e_2 £ N (N is the number of bits or
characters in the original entity wvalue), If e_1 is missing, it is
assumed to be 1; 1if e_2 is missing, its assumed value is N. VNote
that an extractor can follow any operand or parenthesized
expression; it is not restricted to variables.

A logic value is a gquantity whose 32 constituent bits are
numbered, starting with 1, from left to right, #hen a subfield is
extracted from a logic value LV, the result is a logic value
consisting of those bits of LV with indices from e_1 to =_2

inclusive, right Justified in a field of zeros. Thus 1if
LV = ¢(FFOOFF00, then

LY [5:12)] = (000000F0 (= (FO)

The constituent characters im a string are also numbered,
starting with 1, from left to right, When a substring is extracted
from a string SV, the result 1is a string consisting of those
characters of SV with indices from €_1 to e_2 inclusive. Thus if
SY = “PORCUPINEY, then

Sv {6: 1 = ‘PINE’

If an extractor follows a subscript, the character pair *} [’
may be replaced by the single character %,”. A value may not he
extracted from an extracted value, and thus it is an error to
follow one extractor with another. '

Fxamplas:
YELLOW[3:10] o RED
Ql3, NN, I:31 - RI[:18]
(A ¢+ B + C)[5:81]
P{x, T+1)(35,14)(23:)

LCC Metavariables 35

for-clause ::= <|FOR ident <|PROM[e>|> <|BY e <TO e>|> <WHILE e> DO
[< 1 | |TO e <BY e>|
| FRONM e .

See the iteration (FOR) statement description on page 12 for
an explanation of the control exercised by a for—-clause.

Examples:
POR I PROM 1 BY G TO H WHILE N # 3 DO S
TYPE P,(FPOR I TO 10 DO(FOR J TO 5 DO C[I,J]),P[I])

group :t= { | PART | < num < TO num > > |
| | PARTS | |
| { STEP | l
| | STEPS | |
| num < TO num > 1

A group is a specification of a step or a contiguous set of
steps. A single step is normally specified by the keyword ‘STEP’
followed by a num, but if the group scanner finds a num without a
preceding keyword, it will assume the presence of the word “‘STFP’.
A set of steps is specified as one of

STEP num TC num
STEPS num TO hum

or merely as
nur TO num

A part or set of parts is similarly specified as
PART num

or as one of

PART num TO num
PARTS num TO thum

(the keywords *PART” and ‘PARTS’ cannot be omitted).

In scanning for a group, as well as everyvhere else in LCC,
the trapslator always considers the keyword ‘*STEP’ equivalent to
“STEPS’ and the keyvword ‘PART’ equivalent to “PARTS’. Thus, for
example, you can write

DISPLAY PARTS 6
DFLETE STEP 4.7 TO 5.3
IF 8 < B THEN PARTS 6

LCC Metavariables

Whenever the construction ‘*num_1 TO num_2’ is used in LCC, you
@ust have num_1 € num_2, wunless num_2 < 1, in which case LCC will
increment it by the integer portion of num_1. Thus, for example,

DISPLAY STEPS 3.6 TO .9
is equivalent to

DISPLAY STEPS 3.6 TO 3.9

Examples:
ALTFR STEP 1,6 3 ‘X’ = “AX’ , *Y’” = “RY’
COPY PART 3 AS 43
“STEPS U.5 TO 4.73*
NUMBER 7.7 TO 8,2 AS 25 BY ,02
digit ::= 101 1] 2} 3]u4)S5]16]17]81]9]
letter ::= |A|B|CID|{E|P{G|H|I|I{K|LIM|{NIO|PIQIR|SITIU|VIN|{X]Y|Z]|
lajblcldleifig|hii]ilk)l{min|olplgic]s|tiujvivix]y|z]
ident $1= letter < F | digit | A ... >
| letter |

Tdentifiers (idents) are used to name entities in LCC. An
identifier consists of a sequence cf one or more letters, digits,
and/or underline(_) characters, the first of vhich must be a
letter. Some identifiers are keywords in LCC and are reserved for
that purpose; you cannot use them as names. fithers, such as the
names of the standard functions (see Appendix H) and the other
built-in LCC functions and procedures (see Appendix 1I) are
privileged 1identifiers in the sense that they are given meanings
wher LCC is initialized. You may use a privileged identifier as a
variable name by declaring it, but if you do, its original meaning
will be superseded and may be lost.

Even though an identifier can be arbitrarily long, LCC will
retain only its Ffirst (leftmost) 8 characters, with all other
characters being ignored. Thus identifiers must be uniquely
distinguishable within their first eight characters.

Fxamples:
X
RED
ALGOL_60
RUMPELSTILTSKIN

LCC Metavariables 37

hexr-digit t:= | digit | A | B | C] D | E | F |
logic-literal 1:= FALSE
TRUE

num

— i Ik s

|
l £ €1 L | >+ hex-digit 4 ...
1 }

F-)

A logic-1literal 1in LCC 1is written either as a hexadecimal
value or as one of the Boolean values “TROE’ or ‘PALSE’. The 16
hexadecimal digits are specified by the decimal digits 0 through 9
and the letters A through P, with the “diqits” 10 through 15 being
represented by the letters A through P respectively. A logic value
is represented in - LCC as a 32 bit gquantity; therefore a
logic-literal can contain up to 8 hex-digits, which must be
contiguous, i.e., imbedded blanks are not alloved. The optional
letters L’ and *R’ in a hexadecimal literal indicate left and
right justification respectively. If neither letter is present, an
R will he assumed. Thus :

LLFB1 = (FB100000

The Boolean values are eqgquivalent ¢to hexadecimal values as
follows:

FALSE
TROE

£0 (32 binary zeros)
LFFFFFFFF (32 binary ones)

W

Note, however, that when tested in an IF clause, any non-zero
value will be considered to have the guality “truoe”, Thus the
statement

TYPE IPF 4123 THEN T ELSE ‘P’

will print ‘T/, even though (123 # TRUE.

Examples:
FALSE
L9AB7
LLFPFP
$:= | int F . 4 int |
| ident !

] (e {

A num is used to specify the number of a step or a part. Tt
will wusually be a decimal number, i.e., a number without an
exponent, However, it may alsc be an ident whose value is a step
number, or a parenthesized expression which evaluates to a step
number.

318

int

nunher-literal ::=

LCC Metavariables

A part or step canrnot have a neqative numbher; therefore LCC

will take the absolute value of each evaluated num before using
it.

Examples:
STEP 1420.35
PART (J + 2)
DELETE STEPS A TO B

te= b+ digit 4 ...

nt <+ . A< int >> | < 4 < |
4 int] |
+ | > int

l

A decimal arithmetic constant in LCC is written as a
nunber-literal. A number-literal is a seguence of digits, possibly
including a decimal point, optionally followed by an exponent
part. An exponent part consists of the delimiter character
followed by an optionally signed decimal exponent, As a special
case, if the base value of a number is to be 1, the number-literal
can be written using only an exponent part. Thus

w15 = 1,-15

Blank spaces are not allowed within a number~literal; thus 3.7 ,-5
and 5, 14 are illegal.

Numeric values will be stored by LCC as long (double word)
floating-point System/360 quantities. This allows a precision of
ahout 17 decimal AdAigits, though for output LCC will usually round
a numbher to 10 digits. The maximum absolute value of a number is
approximately 7.237,75; the minimum non-zero absolute value is
approximately ,—75.

Fxamples:
15
7.36
02D
6-2“-5
138,
‘5

LCC Metavariables 39

operand ::= | BEGIN F+ s + .;. END |
| CASEe OF (e Hd .,. < , OTHERWISE e >) |
) PART num < { + s A .;. } > |
}] | STRP | num < TO num > I
] | STEPS | |
| ident |
| logic-literal |
! number-literal |
] string-literal |
] var < (€ + | e | 4 ape >3 > (
|] pointer] i
| | procedyre | |
| 2 €% > < string-literal > < ident > |
Y e |
i { +s 4 .;. }]
| ® group * |

Most of the operands are described individually below

(starting on page U46). For ident and logic-, number-, and
string-literal, see the descriptions of the individual
metavariables, For the part call and the var call, see the

descriptions of the corresponding statements.

An LCC operand may be characterized most simply as an entity
vhich returns a result; a statement is an entity which does not
return a result., In many cases, operands and statements look alike
(e.g., a part or step call, a procedure call, a block) and the
distinction between them must be made by context or it may have to
be made dynamically during execution.

pointer ::= > varid

A pointer is used to indirectly reference an incarnation of a
variable. It 1is thus an object which acts as an alias for the
object to which it points. Whenever a variable containing a
pointer 1is used in an expression or an assignment, the object to
which it eventually points will be accessed or modified, not the
original variable or the pointer. A pointer may point to another
pointer, and thus we may have pointer chains. A pointer chain must
end at a nor-pointer {(cycles will not be allowed) and it is that

- final element to which any pointer in the chain refers. As an
example, after we axecute the statements

A =~ 23B; B+ a3C; C « 17

the value of A ¢+ B + 1 will be 35. If we then execute the
assignment statement

A « *FISH’

40

procedure 3::2= ¢ < (+ ident 4 .,.) >

LCC Metavariables

the value of C will be changed to the string “FPISH'.

Pointers may be assigned, RPETURNed, or passed as actual
parameters., Their main uses are to construct list structures or to
refer to particular incarnation~values which might otherwise be
unavailable in inner blocks of a program. Moreover, if a procedure
is to store a result into a variable which is to be passed to it

as a parameter, that parameter must not he the variable name but
rather a pointer to it.

Examples:
T[O,G] + 23
NEW PTR =« =2(Q, Q « 5§
RETURN =AR3[2,I,-4]
PR(S5, =X, N)
primary ::= | operand | < [| extractor | 1 >

| (e) | | subscript-list < |]I | extractor > |
| e !

A vprimary begins with either an operand or amn expression
enclosed in parentheses, and it may be optionally followed by a
subscript-list and/or an extractor. A primary is a value entity
(numeric, logic, string) as distinguished from a reference entity
(label, procedure, array name, pointer), though this distinction
cannot be checked by LCC until the primary is executed.

Examples:
X[COLOR, SIZE, WT-2]
GREEN
YELLOW[B3:10]
QI3TINIITI:J]
(A + B -~ C)I5, :10]
FN(A,B) IC]

| e | v
| +s5 4 5. |

The procedure body 'is the expression e or the statement list,
andl the 1listed idents are forrwal identifiers in that body. When
the procedure is called, actual parapeters must be supplied to
replace the formal identifiers during execution of e or the
statement list, Por a procedure with no parameters, the formal
jdentifier 1list may be onmitted (see the description of the
procedure assignment statement on page 26).

LCC Metavariables 41

Examples:

PROC « v(F,G) P + G = H¥

G « Vv PART 81 { NEW 7 - Z + 1; NEW Q } ¥
2= | statement |

| ident : s |

Any statement in a delayed step may be preceded by one or more
label identifiers which name that statement and allow other
statements to branch or ‘GG’ to it. Labels are not usually
necessary, because step numbers can also be used as transfer
points for GOTO’s, but they are useful for naming statements
within a step or for naming statements in a part or group which is
to be renumbhered.

Labels do not always work correctly in LCC, and at present
there are some situations which wmust be avoided. The known
incorrect cases (as of October 24, 1969) are listed below.

1. Labels in steps called via step calls (as 1in
STEPS 3.7 T0O 3.8) do not work correctly and if used will
usually lead to errors later on in your conversation.

2. Labels in a (BEGIN-END) block statement or expression do
not work «correctly and the errors they lead to will not
norsally be caught by LCC.

3. If a step containing labelled statements is added to an
active part, the labels will not be declared during the
current activation of that part. In future activations,
however, they will operate correctly.

4. Labels in the statement list of a procedure or inside the
braces of a part call do not work correctly and will
nermally be ignored by LCC.

Examples:
3.7: A: B = 3
13.452, I « 1 + 1;
F:s Gz H: K « J + 1

LCC Metavariables

save-ohject ALL

PARTS
STEPS
VALUES

]
|
|
|
| <} PART | > ¢+ num < TO num > +H .,.
|
I
]
|

49
[1]

| PARTS |
| STEP |
] STEPS |
F varid 4 .,.

i save~-obiject, which may be either SAVEd, DELETE4, or
DISPLAYed, can be a set of contiguous steps (as in a group), a
list of sets of steps or parts, a list of the meanings associated
either with selected variables or with all the variables in your
program (VALUES), or a combhination of all of your steps and all of
your values (ALL). As in a group, if the word ‘PART’ or “STEP’ is
missing before a num in a save-object, the word “STEP’ will be
assumned, Note that if a save-object begins with an identifier,
that identifier will be treated as the first such in a varid list
rather than the first num in a step list.

Examples:
DISPLAY VALUES
DISPLAY X, Y, Z[4,J]
DELETFE S$TEPS 4.6, 7.1 TO 10.6, 15.3, 4.8902
SAVE PARTS 45 TO 493 AS PILE ‘CAT’
statement

See the descriptions of the individual statements, starting on

page 3.
string-character ::= | any~CMU-character-but-a-quote |
A
: rrs '
string-literal ::= “ & + string-character 4 ... > '

A string-literal in LCC is written as a sequence of zero or
more string-characters enclosed within left and right single-quote
characters, The legal string-characters are the 88 characters on
the “CMU Type-Ball”

LCC Metavariables 43

plus the 26 lower case letters and the space (blank) character. In
order to avoid ambiguity, you must type in two successive left or
right single~quote characters to get one inside your string. Thus
if you execute the step

S « “ABf’*’CDM?; TYPE S
LCC will type back the value

AB?fCDY
which is the body of S. An exception to this rule is the treatment
of a string body which is typed in response to a string read (?$%)

reguest. Single-quotes need not be doubled to appear in such a
string.

The lower case letters cannot be typed out at your terminal by
a CMU type-ball, although they can be printed by the line printer
in the compruter room (via a PRINT statement). A lover case letter
can be typed in from your terminal by preceding the corresponding
upper case letter by a vertical bar (]) vwhich acts as an “escape
character®”. Thus the string

“|AB|C]D| EPGH”
will be printed on the printer as
aBcdeFGH

Lower case Jletters will be typed out on your terminal as their
upper case egquivalents. Thus the above string would be typed as

ABCDEFGH

Because of the use of the vertical bar as an escape character,
you mnust alvways type two successive vertical bars to get one into
your string. Thus if you type in

M ERSE LA AR Lg N
1CC will type back the string body

LCC Metavariables

[+1=1%]~}

Other than for lower case letters, you will not need to use escape
characters with the reqular CMU type-ball. Escape characters will,
however, be necessary if you use some other type ball or if you

use a teletype for your conversation with LCC, but these uses will
not be described here. :

Examples:
‘BLUE’
‘YABC’ o ‘DEF’ o §
I YA =« 8B + C; ¢ TRANSLATE THIS LATER “/

structure =::= ARRAY [+ e < : e >4 .} 1L |. 1

A structure specifies the dimension and the subscript bounds
wvhich are to he assigned to a given var, thus making that var into
an array. See the var < ARRAY . . . statement on page 27 for a
nore complete description.

Examples:
LA = ARRAYI[1:N, -3 : 8K]
NEW A - ARRAY(3,0:5}), B, C = 26, D « ARPAY([X:Y]
A[B,C) « ARRAY [1:5]1[0:6]

subscript-list z::= e A] 1L }.

Any array designator {(amn array name or a reference to an
array) may be followed by a subscript-list, which will select an
element from the array. Each expression in the sabscript-list will
he evaluated to a number, rounded to an integer, and used as an
index to obtain a constituent from the array, with the validity of
the indexing being determined dynamically. The selected
constituent element may again be an array, and the subscription
process may then be repcated. When multiple subscripts are used,
any character pair ‘][’ may be replaced by the equivalent single
character *,’.

Exanmples:
X [COLOR, SIZE, WT-2] + Y[3]
P{(A,B+1) (T10J) « D(1,2113]1 /7 K

LCC Metavariables 45

empty ::= (i.e., the null string of characters)

type-object ::= | e |
| eapty I
] (for-clause ¢+ type-object 4 .,.) |

See the description of the TYPE statewment {(page 23).

Examples:
TYPE C[3}, , DEF + 1, “STR'
WRITE (FOR 1 TO 100 DO AIIXI], BII]) AS ‘FILE6’
TYPE (FOR I TO 10 DO (FOR J TO 10 DO AlI,J1))
var ::= | operand | < [subscript-list] >

| (e) |

A var begins with either an operand or an expression enclosed
in parentheses, and it may be optionally folloved by a
subscript-list. A var must be a reference entity which specifies a
variable name, though LCC cannot check whether or not the var is a
reference until it is executed.

Bxamples:
PI3) « A + (B« B +# 1) + H(N)
I« J =K =V '
(A + B) [C1ID) « 3
(?Pp)[Q) « 5
HIJI(1,2)[3,47(5) - 6

varid

.
"
f

ident < [subscript-list] >

A varid is an identifier optionally followed by a
subscript-list, i.e., a varid 1is the designator of a variable.
Expressions in the subscript-list wmay be separated from one
another either by a comma or by the character pair ‘1[I’ (i.e., a

subscripted varid is also a varid, whichk may againmn be
subscripted).

Examples:
ND <« »ARI[TI,J1
AfslI(cl
? A1, B213, J+11, C, DIKII9)

-=-=— LCC Operands -~----

REGIN + s 4 .;. END

The Kkeywords “*BEGIN’ and *END’ delimit a “block”, whose list
of arbitrary LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it. LCC
¥ill perform a block entry, after which it will execute the
statements from the list in sequence. This “block expression®” will
normally he terminated by a RETURN statement vwhich supplies a
value, Such a BRETURN wil]l terminate the block context, and the
returned value will be used as that of the operand. A RETURN
statement without a value will first terminate the context of the
Plock expression and then return from the context in which the
block is embedded.

Fxamples:
X -« Y + BEGIN NEW A; PART 6; RETURN A END -~ 2

CASE e OF (e_1 , e_2 , cea

e €_N)

The expression e is evaluated and rounded to an integer K. If
1 £ K < N, the value of this CASF expression is the value of e_K.
It is an error if K is out of the range 1 to N.

CASE e OF (e_1, @2 , .uas o, ©_N , OTHERWISE e_{(N+1))

This statement operates like the ordinary CASE expression
above except if K is out of the range 1 € K £ N, the value is
e_(N+1).,

Fxamples:
& « CASE I-J OF (&, B+1, C-D, OTHERWISE E/f) * }

STEPS num_1 TO num_2

As in a qroup, num_1 must be £ num_2 f(unless num_2 < 1. LCC
will set up a new group context (non-block) for the sequence of
steps from nua_1 to num_2. Execution will then hegin at step num_1
and it will continue through successively higher numbered steps.
The context for this step group operand will normally be
terminated by a RETURN statement, whose result will be the value

LCC Operands 47

of the operand. It is an error for the group to return without a
value. An EXIT statement will terminate the step group context and
return control to you in the context of its calling group.

Note that there is a possible syntactic ambiquity wvhen a step
group operand is used inside an iteration clause. An example is
the statement

FPROM STFEPS 3.5 TO 3.8 BY 2 DO PART 8
In anv such aambiguous c¢ases, the keyword “T0’ will always be
associated with the step c¢all vtather than with the iteration

clause,

Examnples:
M - X - STEPS 5.3 TO 5.46

STEP num

*J

Equivalent to the operand
STEPS num TO num

Examples:
TEMP « STEP 1420.35 * 2

If LCC encounters a question mark as an operand, it will type
a message and give <c¢ontrol to you. You must then type an
expression and return control (by pressing the RETURN key). The
typed expression will be translated and evaluated, and its result
will be the value of the operand. Note that the typed expression
may involve your program variables, whose current meanings will be
used in its evaluyation.

Fxamples:
Y « 24 + 2?2 + 2YLENGTH” LHG + 2% READ STRING'

string-literal

This operand performs like a simple ? operand except LCC will

type out the user-supplied message string instead of the systenm
message,

48

-3

"

LCC Operands

Fxamples:
T « ? “TINES

< string-literal > varidqd

This operand is equivalent to one of the expressions

(varid - ?)
(varid « ? string-literal)

vVarid must be an optionally subscripted variable identifier. You
will be asked for a value as for the simple ? operands described
above. That value will be assigned to varid before being used as
the value of the operand.

Fxamples:
X = 2Y - 3 & 2v72

. < string-literal > < varid >

This operand 1is the same as an ordinary ? operand except LCC
will treat your typed response as the body of a string (i.e., it
will surround the characters which you typed with quote marks).
Thus the value of a ?% operand will always be a string. As an
example, if you respond with the character sequence
ALPHA + BETA

to LCC’s request for the operand ?%$PC in the statement
T« 5 0 ?28%P0

the effect will be to perform, in order, the assignments

PO - “ALPHA + BETA’;
T - S o YALPHA ¢ BETA’;

A slight variation is possible here in the use of single-quote
marks, which need not be Adoubled to appear in your requested
string body. Thus if you were to type

B\"'r,.,

in response to the above request for ?$ PQ, the effect would he to
perform the assignment

po - \B\\;!l’",’.l

LCC Operands 49

Examples:
G - ?% “INPUT N’ EN o EN

The expression e must evaluate to a string, whose contents
will be treated as expression data to the LCC translator. When a !
operand is executed, the string which it supplies will be
translated and converted to a value. That value will then be used
as the valuye of the operand. Thus an operand IST, where ST has a
string value, has the same effect as the expression

(ST +)

which forces the value of ST to be converted from a string to a
number before the addition can be perforamed.

Examples:
XY - PP(1-SIN(Z), !P) & 3

{ s 4 .;. }

LCC will treat the statement sequence from this “compound
expression” as a single control unit whose sub-statements will be
executed sequentially from left to right. A coapound expression is
not a block and does not have its own local variables. It will
normally be terminated by a RETURN statement, whose value will be
the value of this operand. A RETURN statement without a value will
first terminate the context of the compound expression and then
return from the context in which that expression is embedded.

Fxamples:
YZ5 « T + { POR K TO N DO F{(K,L,N); RETURN K } / 2

® group ”

The value of this operand is a string consisting of the text
of the specified qroup. That string will contain only the source
text for a step -- not its number. If the group includes nmore than
one step, the strings for the individual steps wvwill be
concatenated in step-number order to form the operand, with no
sempicolons, blanks, or any other characters being inserted bhetween
successive text strings.

50

Examples:

LCC Operands

S « “STEPS 4.5 TO 4.73"
1 %14,301”

o *STEP 6.1”

Appendix A 51

--~- Explanation of Syntax Notation --—--

< >
Optional presence ~-- These delimiters surround a construct
which may either be present or absent.
| ‘
Alternatives - These delimiters surround a set of
alternatives, one and only one of which must be present.
The alternatives are usually listed vertically, but for a
few metavariables, such as “digit” and “letter”, where
there are many alternatives, they will be listed
horizontally and separated from one another by | |
delimiters. :
Grouping -- These bracketing delimiters are used for grouping .
only.
- F
e
II][II
b e
Repetition -- The immediately preceding syntax construct,

which will be surrounded by F+ A brackets, nay be
optionally repeated a number of times, with the construct
between the dots (a comma, a semicolon, or either a conmna
or the character pair *1[(’) being used to separate the
individual constructs. Thus the notation

i"e—'-'c

could mean any of the following

Repetition -- The immediately preceding construct may be
optionally repeated a number of times, with no separators
(or spaces) between the individual constructs,

This separator may be read ‘is defined to be’. It is used in
the same sense as in Algol 60 syntax notation (BNF) for
defining LCC metavariables,

52

Iin

The

Appendix A

the syntax descriptions, lower-case words or phrases are
used to name metavariables. As used here, a metavariable
is a description-~language variable which is wused to
simplify the description of LCC. A metavariable is not
itself an LCC construct, but it is defined (often
recursively) in terms of LCC elements, Whenever a
metavariable is used in the syntax description of LCC, it
nust be replaced by a set of LCC characters satisfying its
definition in order to obtain a valid LCC construct. As an
exanple, the metavariable “digit® can be any of the atomic
characters 0 or 1 or 2 or 3 or 4% or 5 or 6 or 7 or 8 or 9.

upper case words used in the syntax are primitive LCC
elements which must be used (and spelled) exactly as
written (except for the equivalent LCC words ‘PART’ and
‘PARTS’, which may be used interchangeably, and ‘*STEP’ and
‘STEPS’, which may also be interchanged), These primitive
*keyvwords” are reserved identifiers in LCC, and they may
not be used to name variables. The current LCC keywords
are the following:

ALL NEW
ALTER NUMBER
ARRAY OoF

AS OFF
BESIN OTHERWISE
BY PART
CASF PARTS
COMBINE PAUSE
cory BRINT
DELETE PUNCH
DISPLAY READ
DO RECOVER
ELSE RETURN
END SAVE
EXIT SHARE
FALSE STEP
FILE STEPS
POR THEN
FORM TO
FROM TRUE
GO TYPE
GOTO USE

1P VALUES
N dHILE
LINE WITH

LOAD ARITE

Appendix B 53

—---= LCC Syntax --——-

binary-operator ::= =1t 1*i/718]e+]-1<|S1=12|> 12| s=]==|A]|VI=|0}

digit s:= 1011 | 213)u4})S| 61 7T]8109]

1]
.
.

il

| primary |
] unary-operator e |
] e binary-operator e]
{ IF e THEN e ELSE e |

empty ::= {i.e., the null string of characters)

<e > |

extractor s:= | e
| e !

for-clause ::= <|FOR ident <|{FROM| e >|> <|BY e < TO e >|> <WHILE e> DO

l
| |+ | | ITO e < BY e >}
| FROM e |
group 1= 1 | PART | < num < TC num > > |

| | PARTS | !

| + STEP |} |

| { STEPS | |

I !

nup < TO num >

hex-digit t1=] digit | A | B) C | Dy E | F |
ident 13= letter < +] digit | A ... >
} letter |
I
int 13:= = digit A ...
letter ::= IAIBICIDIE|F|GIH)I|JIK|L|MIN|O|P|QIR|ISITIUIVIWNIX|Y|Z]
falblcldjelfiglhiiijlk|Llim|nfolplgirisitiulviv|x|y|z]

Appendix B

logic=-literal 13= ! FALSE |
| TRUE |
| £ <1 L | > F hex-digit 4 ... |
I | 71 I
num z:= | int + . 4 int |
{ ident 1
] (e |
number-literal ::= | | int < F . 4 < int > > | < 4, < | +# } > int > |
It +. 4 int I =1 I
| o < + | > int !
} - !

BEGIN F s - .;.
CASE e OP (+ e
PART num < §
| STE® | num < T
| STEPS |
ident
logic-literal
number-literal
string-literal
var - < (€ F | e] 4 eps 23 >
| pointer |
| procedure |

operand $:= : END
- 4 .,. <, OTHERWISE e >)

s 4.

O nuw

A —m I R D . L oy S—— T it — e —m—
—— e — T S— —— ——— —— . o s—

2 < $ > < string-literal > < ident >
' o .
{ +sH4 .3. 1}
* group *
pointer ::= > varid
primary ::= | operand | < [| extractor 11>
] Ce) | | subscript-list < | 10l | extractor > |
| PR !
procedurs 1= e < { F ident 4 .,.) > | e |
| s 4 .;. |
s 1= } statement |

{ ident : s |

save-ohject ::=

statement 23=

string-character

string-literal

structure 131=

subscript-list

type-object

(L]
(1]

Appendix B

ALL

PARTS

STEPS

VALUES

< | PART |
{ PARTS |
| STEP |
| STEPS |

 varid 4 .,.

> t+ num €< TO pum > +H .,.

{see list of statements starting on

3= | any-CMU-character-but~-a-quote |
‘ LB

!
| e !

¥ < F string-character + ... > *

ARRAY [+Fe <:e> 4 .1130]. 1

] e
| empty
| { for-clause F+ type-object H .,.)

unary-operator 2= J+ 1 =14+~

var 13= | operand | < [subscript-list] >
] (e |

varid R ident < { subscript-list 1 >

595

next page)

56 Appendix R

statement 1= one of the following syntactic forms

ALTER qroup | 2 } F e = e 4 .,.
e |

< NEW > ARRAY + | ident 4 .,. [+e < 1 e>4 .| 101.14.,.

BERGIN + s A .;. END

CASE e OF { + s 4 .3. € ; OTHERWISE s > }
COMBINE < STEPS > num TO num AS e

COPY group AS e < BY e >

DELETE | FILE e |
| save-obiect |

DISPLAY | FILE < CATALOG > |

| RETORN < STEPS > |

| save-ohiject |
EXIT < | ALL 1 >

| € TO > < PART > e |

for-clause s

| GOKTO > | <e>
| GOTO)

IF @« THEN s < ELSE s >

LINE < e >

LOAD < FILE > e

Appendix B

NE# + ident < = | e >4 .,.
| pointer]
] procedure |
| structure |

NUMBER | AS e] < BY e >

| gqroup < AS e > |
OFF <« SAVE >
PART num < { F s 4 .;. } >
PAUSE < e >
PRINT < FILE > e
RECOVER < e >

RETHRN < | e |
| pointer |
| procedure |

>

SAVF save-obiect < AS < FILE > e >

| STEP | num < TO num >
] STEPS |

TYPE + type-obdect 4 .,.

USE < FILE > e

WRITF |+ type-object 4 .,. < AS < FILE > e >

? < £ > < string-literal > varid A4 .,.

{f +s4.;. }

r]

58

& < F character 4 ... >

var =« | e]
| pointer |
| procedure |
| structure |

var < { € + | &
| pointer
| procedure

Appendix B

1.

2.

3.

Appendix C 59

---- Procedure for Logging On to the LCC Systea ----
-—— at a 2741 Terminal ———

Set the power switch (at right of keyboard) to ON.

Make sure the terminal mode switch (on left side of 2741) is
set to COM. It will be set to COM if and only if the keyboard
is 1locked, which you can easily test by trying to press the
RETURN key.

Push the TALK button on your Data-Phone.

Lift the phone receiver and dial the computer, which will
answer and then emit a continuous tone. When you hear the
tone {a beep), press the DATA button and replace the
receiver, You are nov connected with the TSS monitor systenm,
which will, after a short delay, ¢type back to you a message
similar to

ROO1 TSS AT CMU TASKID=0031 09/23/69 17:31 8345 SDA=0053

Type your 8-character user number and press the RETURN key. TSS

will respond with a one or two line greeting message and, on
a nev line, an initial underline character (_) followed by a
backspace, leaving the typing element positioned at the first
position on the line.

If this is to be your first session with LCC, type the
characters

SHARE USER,LCC,USER
and press RETURN. TSS will respond with another

underline-backspace. This SHARE command needs to be typed
only once, and on subsequent runs you should omit it.

Type the characters

DDEF LCC, VP,USER.LCC,OPTIONR=JOBLIB

and press RETURN. TSS will again respond with an
underline-backspace.

A0

The

Appendix C

Tyre the characters

Lcc

and press RETURN. After a short delay, LCC will respond with
a polite greeting such as

LCC: GOOD AFTERNOON

It will then indent four spaces and give you control. You are
now communicating directly with the LCC processor, which will
analyze all succeeding linas which you type.

complete logon record for your first LCC run will thus be
similar to the following:

BON1 TSS AT CMU TASKID=0031 09/23/69 17:31 8345 SDA=00S3
XY217213

15:22 23SEP 69-TS5S UP TILL 2u4:00

SHARE USER,LCC,USER

DDE® LCC,VP,USER.1CC,OPTIONSJOBLIB

LCC

LCC: GOOD APTERNQON

Por subsegquent runs, everything will look the same except for
the omission of the “SHARE’ line.

Appendix D 61

-=~- Typing LCC Text at a 2741 -—-=---

The characters, including blanks, which you type will be sent
to LCC line-by-line in the order you type thes. However, if you
discover before you finish typing a line that you have made an
error on that 1line, you may backspace past the incorrect
characters, thus deleting them from the line being sent to LCC
(though not, obviously, from your typed page). You may then
complete the 1line by typing the correct characters or, if no
correction is needed, merely press the RETURN key. Each time you
press BACKSPACE, you will delete one character from the line; thus
five BACKSPACEs would erase the last five characters (including
blanks) which you typed. After backspacing, you should manually
upspace the paper in your 2741 to avoid any confusion which would
be caused by strikeovers.

If your whole line is wrong, you may cancel it all by pressing
RETURN immediately after typing either the character ‘o’ or the
character ‘/’. LCC will completely ignore the line, and it will
merely unlock the keyboard for the next line -- it will not indent
the typing element after such a line cancellation. Note that a ‘o’
and. a “/’ will act to cancel a line only when they are followed
immediately by a RETURN. In all other cases they are sent along as
legitimate LCC characters.

When you complete a line, you must terminate it by pressing
the RETURN key, This will cause the sequence of characters vwhich
you typed to be sent to the LCC processor for syntactic analysis
and possible action. LCC will scan your line from left to right in
order to translate it into an internal interpretable code. If your
line 1is syntactically incorrect, an error message will bhe typed
back to you, indicating {(by a *}’) the position in the line of the
item which had Just been scanned when the error was encountered
and {(by a number) the kind of error which was found (see Appendix

E). Tf your line is correct, LCC will determine whether it is a
complete step or whether you plan to supply an additional line to
continune it. You must indicate such continuation by typing a

hyphen or minus character (*-’) just before pressing RETURN. The
next line will then bhe concatenated with the current line such
that 1its first character will follow directly after the last
character before the hyghen, and the hyphen will be deleted.

Bach line will be analyzed as above until a step is found to
be complete. LCC will then determine whether the step is immediate
or delaved by checking its step number. If it has a number, the
step is delayed, and it will be saved internally so that it may be
called into execution at some later time. If it has no number, the
actions specified by the step will be performed immediately. When
all such actions have been completed, LCC will indent one or more
spaces, unlock the keyboard, and return control to you.

Appendix E

~=-=-- Error Messages -—----

Translator (syntax) errors -- A vertical bar character (])
vill be typed under the position in your step text which
had just been scanned by the translator when it discovered
the error, and a message of the form

ERROR SXnn text

will be written. *nn® is a two digit number which
specifies the translator error which has been encountered,
and “text” is an atbreviated description of the error (see
Appendix F for some expanded descriptions of the errors).
The error message will be left-justified on the line
containing the ‘|’ marker unless the marker occurs within
the €first 10 characters on the line, in which case the
message will be typed to the right of the marker.

Execution errors -- Execution error messages are of the fora
ERROR mmmm text

vhere “mmmm® is a four character internal error designator
and “text” is a string which describes the error which has
been encountered. Examples are

FRROR UNO1 V(45,11 IS UNDEFINED

ERROR GOO3 STEP 2.15 NOT IN AN ACTIVE CONTEXT
ERROR VEO3 SUBSCRIRT QUT OF RANGE

ERROR OROY AT 6171.4 DIVISION BY ZERO

A complete listing of all the errors caught by LCC, with
explanations of their causes and descriptions of any
possible recovery options, may be found in the reference
document *LCC Error Messages”.

10:
11:
12
13:
14
15:
16:
172
18:
19:
20:
21:
22
24z
25:
26
27:
28:
30:
32
34
35:
36:
38;
39:
40:
43
4y

96

97:

99

Appendix F 63

---- LCC Syntax (SX) PBrror Descriptions -——--

T™his shoyld have been a statement, but it isn’t one.
This literal constant is malformed.

This must bhe an operand. It isn’t one.

This must be an operator or a delimiter. It isn’t one.
No ‘[’ to match this ‘}°.

An extracted value may not be subscripted.

In the current language context, this is meaningless.
This should be a statement terminator (E%¥D, }, ;, ELSE,).
No *{’ to match this “)’.

No “BEGIN’ to match this ‘END’.

No “IF’ to match this *‘*THEN’,

No “THEN’ to match this “ELSE’.

Your ™ must meet its patch here.

You need a step or part number here.

A controlled variable must be an identifier.

Your CASE statement needs a ‘*{’ here.

Your CASE expression needs a *{’ here.

The ‘OTHERWISE’ must be last in a CASE list,

You can’t store into an extracted value,

You can’t have more than an expression here.

You need “AS’ here,

A parameter may only be delimited by ‘,’ or “)’.

This step is missing an “END’.

This step is missing a *}’.

No “{’ to match this *}’. _

You need to specify some subscript bounds here.

You can only request input to a variable, not an expression.
You need “*FROM’ or “IN’ or a statement terminator here.
No ‘¥’ to match this one.

You need a ‘)’ to end this formal parameter list.

You need a save-obiect or a group designator here.

You need a group designator here.

This must be an identifier.

This must be a “«’,

You need a “:” or a Y, to delinmit this ALTER list.
This can’t follov an iterated output element,

This should be a step number, but it isn’t one.

Whoops -- the first phase of the translator has just had a
stack indexing error, which should be impossible., Please show
vyour listing to an LCC implementor.

The translator has Jjust run into some sort of a semantic
error. It could be due to something simple, like an unmatched
YEND’, but if vyou can’t find a mistake, please ask an LCC
implementor for some help.

Congratulations: you have Fust found an error in the LCC
syntax tables., Please tell an LCC implementor about it,

64

Appendix G
---- Automatic Reload File J—

There 1is a possibility that during a conversational session a
hardware or software failure will kill LCC and/or TSS and break
off your conversation. In that case LCC will lose all of its
temporary records of vyour interactions, which would normally
include all of your delayed steps and all “values” which had bheen
assigned to your variables as well as all the stacked information
on the status of your program’s execution at the instant of the
system failure. The values and the execution information will be
irretrievably 1lost, but LCC 1includes a special feature to save
your delayed steps, thus lessening the catastrophic effects of the
system crash,

This feature is the ‘automatic reload file’, a file on which
your delayed steps are antomatically saved while your conversation
progresses. If there are no system failures during your session,
this file will be Jeleted when you log off {(unless you explicitly
retain it with an “OFF SAVE’ statement), but if the system fails,
the file will not be deleted and thus will be available for
reloading when you next call LCC. Fach time you call LCC, a check
will be made to determine whether vyour automatic reload file
exists. TIf it does not, nothing is done, but if it does, you will
be given control after the message

AUTOMATIC RELOAD? Y OR N

You then have the option either to restore your delayed steps by
loading the file (by typing ‘Y’ and pressing the RETURN key or by
merely pressing RETURN) or to ignore the file and delete it (hy
typing ‘N’ and pressing RETURN). Steps will be added to the reload
file in sets of S in the order you type them; thus you may lose
your last five typed steps after a crash, but no more. Remember
that no values or context information will be automatically kept,
so you may have to perform a lot of initialization to resunme
execution from the point of the crash.

Nam

A BS
ARCC
ARCS
ARCT
cos
COTA
ENTI
EXP
LN
LOG
SGN
SIGN
SIN
SQRT
TAN

Appendix H 65
-==- Standard Functions --—--

The standard functions which are included in LCC as predefined
procedures are listed below. Each requires as an argument (AR2G)
one actual parameter which nmust evaluate to a number. The
arquments of the trigonometric functions (and the results of the
inverse trigonometric functions) amust be in radians.

e Function Definition
Absolute value | ARG |
0Ss Arccosine arccos (ARG)
N Arcsine arcsin(ARG)
AN Arctangent arctan (ARG)
Cosine cos (ARG)
N Cotangent cotan(ARG)
ER largest integer < ARG
Fxponential e t ARG
Natural lcogarithm 1n{(ARG)
Common logarithm log, (ARG)
Sign IF ARG > O THEN 1 ELSE IF ARG < 0
Sign (same as SGN) THEN -1 ELSE 0
Sine sin(ARG)
Square root ARG ¥ (1/2)
Tangent tan (ARG)

66

Appendix I

~=== Built-in LCC PFunctions and Procedures ----

The special functions and procedures which are included in the
LCC system are described below. To use the name of a standard or
built-in function as a variable, you must declare it as “NEW’, The
function’s original meaning will then Ye lost for as long as your
declaration is in effect. TIf you declare one of these identifiers
on level zero, its original meaning will be lost for the duration
of your conversational session unless you reinitialize your LCC
environment by executing a ‘DELETE ALL’ statement.

—r e —— o s -

COLLATE (arg)

Arg must be an expression vwhich evaluates to a string. The
value of the function COLLATE is an integer associated with the
lettmost character of the value of arg. A unique integer is
returned for each valid LCC character, and the integers will be
ordered according to the System/360 EBCDIC collating sequence for
the associated characters. The space or blank character comes
first in the <c¢ollating sequence and thus has the smallest
associated integer, The other valid LCC characters are listed
below 1in order of ascending collating sequence (left to right and
top to bottom).

tAaviti~+s3].< (4]} x

v

F 4« ¥

-

$) ; ~~/ € g, A 2 =27V P % o0 v =\

N

abcdefaghidklmnopgrstuvuwewzxy
ABCDRPGHTIJEKLMANOPOQRSTUVNWNXYS?Z

012345467829

RExamples: The following steps define a function ALPHA which
returns the value TRUE if the first character in its atgument
string is alphabetic (lower or upper case); othervise it
returns FALSE.

ALTER 1.6, ‘LL’-COLLATE(*|A’), “0UL’-COLLATE(*Z”);
ALPHA < ¥ (X) ((Y « COLLATE(X)) 2 LL) A (X < 0L} ¥;

— b
L

.
o hn

Appendix I 67

This parameterless function has as a coustant value the base
of the natural logarithms, i.e., 2.718281828 ... Its value is as
accurate as is possible in a Systea/360 double-word.

EXTERNAL (arqg)

This procedure allows you to temporarily add to your LCC
environment a non-LCC procedure or function which is to be called
from your LCC program., Tts argument must be a pointer to the name
of the procedure or function to be added (e.g., > WAN). The effect
of PXTFRNAL is temporary and lasts only until you log off or
reinitialize with a “‘DELETE ALL’ statement.

The external procedure or function to be added must satisfy
the standard TSS (FORTRAN) linkage conventions and its name must
appear as an entry point in one of your effective TSS job-library
stack members, The value which it returns (if any) wmust be a
double-word number placed in floating-point register zero. All
FORTRAN double-precision 1library functions which do not involve
arrays satisfy these conditions and are acceptable EXTERNAL
functions. Any other experimentation is at your own risk.

Examples: The following statements indicate to LCC that you wish
to use the FORTRAN procedures “*DSIN’ and ‘DCOS’.

EXTERNAL(2DSIN);
EXTRRNAL(=DCOS);

INTERNAL (arqg_1 , arg_2)

This procedure should not be called by a normal user. Its nanme
is included here merely to forestall possible naming conflicts.

LENGTH (arq)

Arqg must be an expression which evaluates to a string. The

function LFNGTH will have as its value the length {(in number of
characters) of that string.

68

Appendix I

Examples:
The value of LENGTH(“XYZ’) is 3.
The value of LENGTH(S o 1234), where 5 = *CMy*, is 7.

PI

This parameterless function has as a constant value the
mathematical constant pi, i.e., 3.141592653 ... Its value is as
accurate as is possible in a System/360 double-word.

SCANN (arg_t , arg_2 , arq_3)

SCANN is a procedure which scans a string to obtain its first
atomic element, Its first arqument {(arg_17) must be an expression
vhich evaluates to a string, and arg_2 and arg_3 must be pointers
(i.e., >V and oW, wvwhere V and W are arbitrary variables). SCANN
will search the string supplied by arg_1 for its first (leftmost)
aton. Tt will store that atom into the variable pointed to by
arg_ 2 (i.e,, V), and it will store into W a string consisting of
everything from arg_1 which is to the right of its first atonm.

For scanning purposes, an atomr is one of the following:

1. A contiquous string of alphabetic and/or numeric
characters {(e.g., “ABCD’, M3457, ‘PU2G’, “HLAB2").

2. A single non-alphanumeric character (e.g., Y%/, *.’, ‘-7,
\(! \.')
? L .

Blanks which precede an atom will be ignored, and an atom will be
terminated by a blank, another atom, or the end of the string
which contains it.
Examples: The stap

SCANN{(® AB +ARC#DE’, 5L, »R); SCANK(R, >LL, =RR)

will set L to “AB’, R to ‘Y +ABC#DE’, LL to ‘+’, and RR to
“*ABC+DE”’.

SPLITT (arq_1 , arg_ 2 , arg_3 , atg_4)

SPLITT is a function which searches a string (of atoms) for a

file:///P42G'

Appendix I 69

specified substring. Its value will be TRUE if the substring can
be found or FALSE if it cannot. Its first two arquments sust be
expressions which evaluate to strings, and its last two arguments
must be pointers (i.e., >V and sW, vhere V and W are arbitrary
variables). SPLITT will treat both strings as sequences of atoms
{(see the SCANN procedure above) and, searching from left toc right,
it will attempt to find a sequence of atoms in arg_2 which matches
the atomic sequence arg_1. If such a sequence is found, SPLITT
will return the value TROE and, as side effects, it will store all
of arqg_2 to the left of the match into the variable pointed to hy
arg_3 (i.e., V), and it will store everything to the right of the
match into W. If no matching subseguence is found, V and W will be
left unchanged.

Note that the matching done by SPLITT is atom-by-atom rather
than character-by-character. This means that the character string
arg_1 need not be contained exactly in arg_2 to obtain a match,
though it nmust be except for blanks which may surround atoms
(i.e., the strings “A+B’, * A +B’, *a + B’ are all equivalent
in this atomic sense). Effectively then, all extraneous blanks in
arg_1 are deleted before the match is performed, and arg_2 cannot
be searched for sequences of blanks.

Examples: The operand
SPLITT{(*AB’, “*ABC:AB«AB+1’, 2L, =R)

has the value TRUE and it sets L to ‘ABC:f and R to
‘«AB+1’, The operand

SPLTITT(*3 . 4 7, *3.4 :A + Bf, oLL, oRR)

has the value TRUE and it sets LL to “* (the null string)
and RR to * :A + B’.

Appendix J

---- Example LCC Conversation ----

& THIS IS THE RECORD OF AN ACTUAL CONVERSATION BETWEEN A USER
A (AT A RPMOTE 274% TYPEWRITER) AND THF LCC SYSTEM.

4 THE POLLOWIMG ARE NURMBERS (LITERAL NUMERIC CONSTANTS) IN LCC:

15

00065
.00065

1234567890,
1234567890

A WF CAN APPEND AN EXPONENT TO GET LARGER (OR SMALLER) NUMBERS:

6.2,12
«H2,+13
3.721,-5
.00003721
6.35,4,-42
.6 35,,~41
12345, 2,+65
c123452,+70

A AN EXPONFNT ALONE IS ALSO A NUMBER,

w4

L0001
wl?

« Tt 16
A NUMBERS ARE ODPERANDS WHICH CAN BE COMBINED INTO EXPRESSIONS,
A USTNG THE DNARY PREFIX OPERATORS (WHICH ARE WRITTEN TO THE
A LEFT OF AN OPERAND):
A - NEGATE
A * {HAS NO EFFECT)
A + TRUNCATE (STRIP OFF THE PRACTIONAL PART)
A AND THE BINARY INFIX OPERATORS (WRITTEN BETWEEN TWO OPERANDS):
A + ADD
.Y - SOBTRACT
A * MULTIPLY
A / DIVIDFE
A 4 RAISE TOC A POWFR
A IFP ¥R TYPE IN AN EXPRESSTION, LCC WILL EVALUATE IT AND TYPE BACK
A THE RESULT. THUS WE CAN USE LCC TO PERFORM ‘DESK CALCULATOR’
A OPRPATIONS.
A LET’S TRY A FEW EXPRESSTCONS TO SEE WHAT WILL HAPPEN,

Appendix J 71

242
4
348
24
-5
-5
2345-876
1469
1/3
.3333333333
2/
.2857142857
215
32
2132
4294967296
2345.6789¢ s I GOOFED. TO CANCEL THIS LINE I“LL TYPE © AND RETURN
ERROR SX03 |
A I GODFED AGAIN -- I HIT THE RETURN KEY FIRST INSTEAD OF THE ‘o’
a KEY, SO LCC TRIED TO TRANSLATE THE LINE. ITS TRANSLATOR FOUND

A THAT I AAD A MISSING OPERAND, WHICH I ALREADY KNEW.
a I’LL TRY IT AGAIN ON THIS LINE -- o
A LCC IGNORED THAT LINE AND MERELY UNLOCKED THE KEYBOARD TO LET ME
A TYPE ANOTHER ONE. LCC WILL NEVER INDENT AFTER A CANCELLED
LINE. EYTHER A ‘of OR A “/’ WILL CANCEL A LINE, BUT TO DO
SO IT MUST BE TYPED IMMEDIATELY BEFORE A CARRIER RETUBN.

AN EMBEDDED ‘o’ OR “/’ HAS NO SUCH CANCELLATION PROPERTIES.
LCC WILL ALSC TIGNORE BLANK LINES AND ANY LINES (SUCH AS THESE)
WHICH BEGIN WITH A DELTA (a). THUS COMMENT LINES MAY BE

TYPED WITHOUT ANY ANALYSIS FROM THE LCC SYSTEM.
NOTZ THAT IF I FORGET THE “A’ ON A COMMENT LINE, LCC WILL OBJECT.
FRROR SX04 |
a IT SAYS “THAT’ ISN’T AN OPERATOR, WHICH IS CERTAINLY TRUE. AW
a ENGLYSH SENTENCE DORSN’T USUALLY TURN OOUT TO BE A VALID
a LCC STATEMENT.

- - - - -

A IF YOU MAKE AN ERROR AND NOTICE IT BEFORE YOU SEND THE LINE® TO

A LCC (I.®., BEPORE ¥YOU HIT THE RETURN KEY), YQU CAN CORRECT

A THE ERROR BY BACKSPACING TO THE LEPTMOST BAD CHARACTER AND

a RETYPING IT AND ALL THE CHARACTERS WRICH FOLLOWED IT. ANY

A CHARACTERS BACKSPACED OVER (NOT JUST THE LEFTMOST ONE) WILL

A BE DELETED FROM THE LINE. I‘LL SHOW YOU AN EXAMPLE:

12.34,556 THE ,” SHOULD BE A “+', I’LL BACKSPACE AND RETYPE 1IT.
+56 & T UPSPACED NANUALLY TO AVOID STRIKEOVERS.

68.34
A STRIKEOVERS WON’T BOTHER LCC, BUT I WOULDN’T BE ABLE TO READ
A WHAT I TYPED,.

A NOW LET’S TRY SOME MORE EXPRESSIONS.

$2345.876
2345

+345
345

Appendix J

238 + 12.5 & 54.2 / 6,3 - 2
232.1129167

4 TUNARY OPERATIONS ARE NORMALLY DONE BEFORE ¢’S, WHICH ARE DONF

A BEFORE # AND /, WHICH TN TURN ARE DONE BEFQORE + AND -.
A HOWEVER, WE CAN CHANGE THIS IMPLICIT HIERARCHY OF OPERATIONS
A RY UOSING PARENTHESES.

12,78 « (92.5 / .341 - ,00058) ¢ (3 « .788)
7228636.11

& THIS WAS DONE AS IT IT HAD BFEN WRITTEN

12.79 % (((92.5 7/ .341) - ,000%8) ¢ (3 » .788))

7228636. 11
A BESID®S THE UNARY AND BINARY OPERATORS WE CAN USE SOME OF THE
A STANDARD MATHEMATICAL PURCTIONS SUCH AS
A SQRT SQUARE ROOT
A SIN SINE (ARGUMENT IN RADIANS)
A CosS COSINE (ARGUNENT TN RADIANS)
A LN ~ LOGARITHM (BASE E)
A EXP EXPONENTIAL (EtARGUMENT)
A ARCTAN ABCTANGENT (ANGLE IN RADTANS)

A LET’S TRY A FEW OF THEM,

SORT(3)
1.732050809
SQRT{234)
15.29705854
SIN(5)
-< 9589242747
LN (2)
+.6931471806
XP(Y)
2.718281828

THNS FPAR IN THIS CONVERSATION, NO VALUES HAVFE BEEN RETATNED BY
LCC, BUT IF WE WISH TN KEFP A COMPUTED NUMERIC VALUE, WE CAN
STORE IT INTO A VARYABLE. VARIABLES ARE DESIGNATED AY
IDENTIFIERS, WHICH YOO CAN CHOOSF FREELY (EXCEPT POR LCC
KEYWORNDS LIKE “TYPE’ AND “IF’, WHICH HAVE SPECIAL MEANINGS).

AN IDENTIFIER MUST BREGIN WITH A LETTER AND IT CAN CONTINUE
9ITH LETTERS, DIGITS, OR OUNDERLINE {(_) CHARACTERS. IDENTIFIERS
CAN RE AS LONG AS YOD LIKF, BOT LCC WILL YGRORE ANY CHARACTERS
AFTER THE FIRST 8.

ILL PICK SOME IDENTIFIERS ANTD STORR VALUES INTO THEM. NOTE THAT,
UNLIKE ALGOL, LCC DOES NOT REQUIRE ME TO DECLARE AN IDERTIFIER
BEFORE I USE IT.

> > > >

A+« S ; Be U ; LCC - 111868 ; FISH ~ O ; NOVEMBER « 18 ; A_B_C ~ 35
8 WE CAN CHECK THE VALUES WHICH WERE STORED BY TYPING THEM OUT.

TYPE A,B,LCC,PISY,NOVEMBER,A_B_C

A

Appendix J 73

4

111868

0

18

35
4 NOW WFE CAN USE THESE VARIABLES AS OPERANDS IN PURTHER CALCULATIONS
A+B

a
SQRT(B+FISH)

2

LCC / NOVEMBER ~ (LCC = A_B_C)
-3909165.111

A WE CAN CHANGE THE VALUE OF A YARIABLE WHENEVER WE WISH:

A« -742.8 ; B - B-1; FISH«34-B; TYPE A, B,FISH

-T742.8

3

31
a THE CONSTRUCTION A -5 IS A STATENMENT, IN PARTICULAR, AN
A ASSIGNMENT STATEMENT. THE “MTYPE’ STATEMENT IS ANOTHER KIND OF
a STATEMENT WHICH CAUSES EACH OF A LIST OF EXPRESSION VALUES TO
A BE TYPED BACK TO US (ONE VALUE PER LINE). WE CAN PUT MORE THAN
A ONF STATEMENT ON A LINE BY SEPARATING THE SUCCESSIVE STATEMENTS
A BY SEMICOLONS (AS ABOVE). 2 SEMICOLON AFTER THE LAST STATEMENT
A ON A LINE IS OPTIONAL.
A WE CAN MAKE AN ASSIGNMENT INSIDE AN EXPRESSION, OR WE CAN BOTH
A TYPE ARD ASSIGN IF WFE WISH.
T~ A/ (C=B - 1) ¢« 100; TYPE T,C

~271.4

2

TYPE P - LCC + 1
111869
TYPE CAT < DOG - 3;
ERROR UNO1 DOG IS UNDEPINED
A THAT DIDN’T WORK BECAUSE T FORGOT TO GIVE A VLAUE TO THE VARTABLE

A DOG. I’LL DO SO AND TRY AGAIN. NOTE THE ERROR MESSAGE PROM
A LCC’S EXECUTOR, WHICH WAS UNABLE TO CONTINUE AFTER FINDING AN
a INDEPINED VARTABLE.
DOG + 45
TYPE CAT « DOG - 3

99997

TeJeKeLeN«N«+0; A WE CAN ASSIGN A VALUE TO A WHOLE SET OF VARIABLFS.
TYPE I+J+K+Le¢M+N; a THEY WILL ALL BE ZEROC.

0
IJRLMNOPQRSTUVWXYZ « 5; TYPE TJKLMNOP; & LCC YGNORES THE REST.
5
A WE CAN TEST THE VALUES OF VARIABLES BY MEANS OF AN “*IFP’ STATEMENT.
A EXAMPLES ARE:
IF A < B THEN TYPE 3 ELSE TYPE O
3

IF B*P # LCC THEN TYPE 9999

74

39149

el) e

* »

(S <R SV 8 B

e *E 2 Be ¥

Appendix J

IF WF WANT TO PERFORM MORE THAN ONE ACTION DEPENDING ON A
CONDITTON, WE CAN COMBINE A SET OF STATEMENTS INTO A SINGLE
COMPOUND STATEMENT VIA THE STATEMENT BRACKETS { AND }.

THUS WE CAN TYPE:

o> >

IF A/JB € P THEN [T « 3 ; W « U4 ; TYPE T+W };
I T = P THEN TP A # B THEN TYPE 3 ELSE TYPE 4 ELSE TYPE 5

& NOTE THAT ANY STATEMENT (EVEN AN IF STATEMENT) CAN FOLLOW A
A *THEN’ (OR AN “ELSE’).

A S0 MUCH FOR THE BASIC ‘*DESK CALCULATOR’ FEATURES OF LCC. SUPPOSE
WF WTSH TO WRITE A PROGRAM AND STORE IT INSIDE LCC. THUS FAR
IN THIS CONVERSATION, NONE OF OUR STATEMENTS HAVE BEEN KEPT
AFTER BEING EXECNTRED, THOUGH LCC HAS SAVED THE VALUES WHICH WE
ASSIGNED TO OUR VARTABLES. WE CAN SAVE STATEMENTS WHICH ARE
TO BE CALLED OUT LATER FOR EXECUTION BY GIVING THEM ‘STEP
NUMBERS’ WHICH BOTH IDENTIFY THEM FOR OUR PFUTUORE USE AND ALLOW
LCC TO DRDER THEM PROPERLY. AS AN EXAMPLE, LET’S WRITE A
SIMPLE PROGRAM TO COMPUTE FACTORIRLS.

I - -

3.1: FACT + 1;

A THE STRP NUMBER, 3.1, CAN BE SEPARATED INTO TWO PORTIONS, THE

A INTEGER PORTION, WHICH IS THE “PART NUMBER’, AKD THE FRACTIONAL
A PORTION. SINCE THE INTEGER PORTION IS 3, THIS STFP IS STORED

A IN PART 3, AND THE PRACTION INDICATES ITS POSITION RELATIVE TO
A OTHER STEPS IN PART 3. PART NOUMRERS MOST BE BETWEEN 1 AND 9999,
A AND THE STFP? FRACTION MUST BE BETWEEN .0001 AND .9999, LEADING
A ZERQS IN THE PART NUMBER AND TRAILING ZEROS IN THE FRACTION MAY
A BE OMITTED.

A LET’S GO ON WITH OUR PROGRAM.

3.2000;: FACT « FACT * N; A WE’LL COMPUTE N! AND PUT IT INTO FACT.
3.3: IF W = 1 THEN RETURN ;
3.40: N« N -1 ;

3.5: 60 TO 3.3; A WF CAN TRANSFRR CONTROL TO A NUMBERED STFEP.

A NOW LET’S SEE WHAT PART 3 LOOKS LIKE.
NTSPLAY PART 3 ; A THIS WILL TYPE OUT THE STEPS IN PART 3.

FACT - 1;

FACT « PACT « N; & WR’LL COMPUTE N! AND PUT IT INTO FACT.
I N = 1 THEN RETURN ;

NN - 12:;

GO TO 3.3; & WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

A NOW I’LL GIVFE A VALUE TO N AND CALL PART 3. FEXECUTION WILL BEGIN
A WITH STEP 3.1 AND PROCEED TO SUCCESSIVELY HIGHER NOMBEBRFED STEPS
a UNLESS WF EYPLICITLY TRANSFER CONTROL WITH A “*GO TO’ STATEMENT.

Appendix J 75

N = §; PART 3

TYPE PACT
q . .
A HMMM... THAT’S NOT S! --- 1 GUESS I HAVE A BUG.
4 OH, YES; STEP 3.5 SHOULD GO TO 3.2. I’LL CHANGE IT BY RETYPING
A STEP 3.5. THAT WILL FRASE THE OLD STEP AND REPLACE IT BY MY
A NFEW ONE.
3.5 GO T™ 3.2 ;
A NOW TRY AGAIN.
N«5 ; PART 3
TYPE FACT
120
4 THAT’S BETTER. LEBT’S FIX STEP 3.3 SO IT WILL RETURN THE VALUE
A OF FACT.
ALTER STEP 3.3 : “RETURN’ - ‘*RETURN FACT'
A THAT CHANGED THE TEXT OF STEP 3.3 BY SUBSTITUTING ONE STRING FOR
A ANDTHER. THE KEYWORD ‘STEP’ WAS OPTIONAL IN THIS ALTER
A STATEMENT, AND I COULD HAVE USED A *," IN PLACE OF THE *:’.
DISPLAY STEPS 3.3 TO 3.5; a LET’S CHECK THE TAIL END OF OUR PART.,
3.3: IF X = 1 THEN RETURN FACT ;
3.4 N-N-1:; :
3.5: GO TO 3,2 :
4 LOOKS 0.X. A FURTHER WORD ABOUT THAT DISPLAY STATEMENT -- 1IN
A SPECIFYING A GROUP OF ONE OR MORE STEPS OR PARTS, THE KEYWORDS
A *STEP’ AND *STEPS’ ARE EQUIVALENT EVERYWHERE IN LCC, AS ARE
A *PART? AND “‘PARTS’. MOREOVER, IN MOST CASES, SUCH AS THTS
A ONE, THE KEYWORD “STEP’ MAY BE OMITTED. THUS I COULD JUST
a AS WELL HAVE SAID
A DISPLAY STEP 3.3 TO 3.5
A oR DISPLAY 3.3 TO 3.5
& NOR I’LL TRY PART 3 AGAIN.
Ne-f; PART 3
720
Ne10:;PART 3
3628800

N«0; PART 3;
'
ATTN AT 3.2
& THAT WENT INTO A LOOP, AND I HAD TO HIT THE ‘ATTN’ KEY TO GET
a ouT 0OF TIT. I GUESS THE PROGRAM IS STILL BUGGY.
A I’LL THINK AROUT IT. * * * * *
TYPE FACT,N ; A T WONDER WHAT MY VARIABLES ARE NOW?

-15
A 0, I SEE —— PART 3 WONR’T WORK FOR ANY VALUES LESS THAN 1.
& I“LL PIX IT RY ADDING ANOTHER STATEMENT.
3.15: TF* N < 0 THEN RETURN FACT ;
N « 0; PART 3; a TRY AGAIN.

76

Appendix J

4 THAT’S MOCH BETTER. NOTE, HOWEVER, THAT I STILL HAVEN’T GOTTEN

A Q0T OF MY ORIGINAL 1LOOP (YOU CAN TFRLL BY THE INDENTATION - 7
A SPACES INSTEAD OF 4), T CAN SAY “G0O’, WHICH WILL GO ON FROM
a THF POINT WHERE I HIT “ATTN’, BUT THAT WON’T DO MUCH GOOD.

A T’LL TRY IT ANYWAY TO SHOW YOU.

GO
'

ATTN AT 3.2
a YOU SEE, I’M BACK IN THE LOOP AGAIN. TO GET OUT, I’LL FORCE AN

A END T0 PART 3 BY GOING TO STEP 3.15.
GO TO 3.15
0
A FACT STILL HAS THR VALUE OF ZERO BECAUSE IT WAS ERRONECUSLY
A MULTIPLIED BY THE ZBRO VALUE OF K, NOTE ALSO THAT N HAS BEEN
a COUNTED DOWN AGAIN BY THE LOOP.
TYPE W
-5 ‘
8 WF CAN HAVE PART 3 ASK US POR A VALUF OF N BY USING A REQUEST
A STATEMENT.
3.05: 2%
PART 13
AT 3,05 N «5; a I'LL SET N TO 5.
120 '
A WE CAN INCLUDE OUR OWN MESSAGE IN THE REQUEST BY PUTTING A STRING
A RETWEFN THE QUESTION MARK AND THE VARIABLE NAMNE (N).
3.05: ? “TYPE N FOR N!* N
PART 3
TYPE N FOR N! 4
24
& WF CAN USE ANOTHYR PART TO CALL PART 3 REPEATEDLY., WE’LL USE
a PART 25. LEBT’S 0USFE A “NUMBER’ STATEMENT TO GENERATE THE STEP
A NUMRERS AUTOMATICALLY.

NUMBER AS 25 RY .1

25.1: PART 3

25.2: 2?0 TYPE 1t TO G0 O¥N, 0O TO STOP Y FLAG;

25.3:IF PLAG = 1 THEN GO TO 25.1;

25.4:
A THF AUTOMATIC NUMBFRING IS TURNED CFFP BY PRESSING THE RETURN KEY
A IMMEDIATELY AFTER THE STEP NOMBER IS TYPED TC US.
PART 25; A NOW CALL OUR PRCGRAM.

TYPE N FOR N! 1

1

TYPF 1 TO GO ON, O TO STOP 1
TYPE N FOR N! 6
720

TYPE 1 TO GO O, O TO STOP 1

TYPE N FOR N! O
1
TYPE 1 TO GO ON, 0 TO STOP 1
TYPE N FNR N! 8
40320

Appendix J 77

TYPE 1 TO GO ON, 0 TO STOP 1

TYPE N POR N! 2.4

1

ATTN AT 3.4

4 OH, OH =~ I’M IN A LOOP AGAIN. I’LL PLANT A ‘PAUSE’ STATEMENT
a INSIDE IT TO SEE WHAT IS HAPPENING.
3.21: PAUSE ; a4 THIS WILL GIVE ME CONTROL APTER STEP 3.2 IS DONE.
GO; A NOW I’LL GO ON WITH THE LOOP.
PAUSE AT 3.21
TYPE FACT,N; 4 I’LL TAKE A LOOK AT THE VARIABLES.
15604. 49567
~7.6
GO ; &4 IF I SAY GO, THE PROGRAM WILL GO THROUGH THE LOOP AGAIN.
PAUSE AT 3.21
TYPE FACT,WN
-134198. 6628
-8.6
A AS YOU CAN SEE, OUR PROGRAM DOESN’T WORK FOR NON-INTRGERS.
A LET’S FIX IT BY TRUNCATING N WHEN WE ENTER PART 3.
3.06, N = N;
A NOW TO GET RID OP THE PAUSE STATFMENT. I’LL USE A “DELETE’
a STATEMENT, WHICH WILL ERASE IT.
DELETE STEP 3.21
$50; A LET’S GO ON.
ERROR GO10 STEP 3.21 CHANGED; GO CANNOT BE USED
A OH,0H —- T FORGOT THAT I CAN’T CONTINUE NORMALLY AFTER I DELETE
AN ACTIVE STEP. THERE ARE A NUMBER OF WAYS TO RECOVER FRON
THIS SITUATION, BUT THF SIMPLEST IS TO START OVER. TO DO
THAT WE HAVE TO GET OUT OF THE CURRENT PART CALLS, AND THE
EASIEST WAY IS TO EXECUTE AN “FXIT ALL’ STATEMENT, WHICH
WILL TAKE 0US BACK TO THE OBIGINAL USER STATE. REMEMBER THAT
CURRENTLY WE ARE IN PART 3, WHICH WAS CALLED FROM PART 25,
WHICH WAS CALLED BY ME, SO OUR CONTROL NESTING DEPTH IS 2
(I COULD THUS USE TWO SIMPLE ‘EXIT” STATEMENTS INSTEAD OF
THE ‘EXIT ALL‘).

IF WE AREN’T SURE WHAT OUR CURRENT CONTROL STATE IS, WE CAN
FIND OUT BY MEANS OF A ‘DISPLAY RETURN STEPS’ STATEMENT,
WHICH WILL LIST THE STEPS CURRENTLY BEING EXECUTED. LET’S
SEE WHAT OUR STATUS IS NOW.

-4

P D

DISPLAY RETURN STEPS

* %k %

3. 21

25.1

LR B
& THE “s¢+’ INDICATES AN IMMEDIATE STEP, WHICH IMPLIES THAT WE,
A RATHER THAN A SAVED PROGRAM STEP, ARE IN THF CONTROL CHAIN.
A NOTFE. THAT WE ARE IN THE LIST TWICE; WE ARE IN CONTROL NOW
A (TOP ENTRY) AND WE CALLED PART 25, WHICH WOULD NORMALLY
a RETORN CONTROL TO US (BOTTOM ENTRY). THF “EXIT ALL’,
A HOWEVER, ISN’T NORMAL; IT ERASES THE CONTROL CHAIN SO THAT
A CONTROL REVERTS TO THFE ORIGINAL GLOBAL STATE WHERE ONLY A
A SINGLE “#*+¢«’ WOULD BE DYSPLAYED.
4 THE AMOUNT OF INDENTATION WHICH IS DONF BEFQRFE LCC GIVES UP

78

Appendix J

A CONTROL TO LET US TYPE A STATEMENT DEPENDS ON THE NUMBER OF
A TIMES WE ARE THEN INK THE CONTROL CHAIN, WHICH IS THE NUMBER
a OF “#*%«7 ENTRIES IN THE “DISPLAY RETURN’ LIST. INITTALLY WE
A ARE ON USER LEVEL 1 (IN THE CHAIN ONCE) AND LCC WILIL INDENT
A 4 SPACFES. FOR USER LEVFEL 2, INDENTATION WILL BE 7, FOR LEVEL
A 3 IT WILL BF 10, FOR LEVEL 4 IT WRAPS AROUND TO 1, THERE-

A APTER, FOR HIGHER NESTING LEVELS THE INDENTATION WILL FOLLOW
A THE SEQUENCE

a 4, 7, 10, 1, 4, 7, 10, 1, ...

A LET’S GO ON.

EXIT ALL
DISPLAY PART 3; a LET’S SEF WHAT PART 3 LOOKS LIKE.

3,05: ? *PYPE N FOR WN!f N

3.062z N <« §N;

3.1: PACT « 13

3.15: IF ¥ < 0 THEN RETURN PRACT ;

3.2: FACT « PACT * N;y 4 RE’LL COMPOUTE N! AND PUT IT INTO FACT.
3: IP N = 1 THEN RETURN FACT ;

3.48: N+« N - 1 ;
5 GO TO 3.2 ;

PART 25 ; & LOOKS FINE. NOW IT SHOULD WORK FOR ALL REAL VALUES OF N.
TYPE N FOR N! 2.4

2
TYPFE 1 TO GO ON, O TO STOP 1
TYPE N FOR W! ~34.8
1
TYPE 1 TO GO ON, O TO STOP 0
A THAT’S ENOUGH OF THAT. WE CAN NOW SAVE PART 3 OK A FILE FOR USE
A DURING SOME PUTURE INTERACTION SESSION. IYLL PUT IT ON THE
A FILE “FACTY’,

SAVE PART 3 AS FILE ‘FACT3’
A THAT CREATED A NEW FILE NAMED “PACT3’ AND STORED THE TEXT FROM
A PART 3 ON IT. THE TEXT OF PART 3 WILL BE RESTORED IF WE LOAD
A CFACT37 (USING A “LOAD’ STATEMENT)Y DURING A FUTURE CONVERSATION
A WITH ILCC.
OFF; A LET’S LOG OFF AND END THIS SESSION.
ON LCC FROM 16:35:48 TO 17:17:12
C»y TIME USED: 00:00:06:86

| Security Classification | .
DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of absiract and indexing annotation must be entered when the overall report ia clasailiod)

1. ORIGINATING ACTIVITY {Corparate author) 24, REPORT SECURITY CLASSIFICATION
Department of Computer Science — ENCLASSZELEP
2b. GROU

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

3. REPONY TITLE

Conversational Programming--LCC A Reference Manual For A Language For
Conversational Computing.

4. DESCRIFPTIVE NOTES (Type of report and inclusive datea)

Scientific Interim

E- AU THOR{S) (Firet name, middie initial, llut-rTnnn)

J. Mitchell, J. Newcomer, A, Perlis, H. Van Zoeren, D, Wile.

{6 RERORT DATE 78, TOTAL NO. OF PAGES 7h, NO. OF REFS
, 1971 85 None
8. CONTRACT CR GRANT NO. 24, ORIGINATOR'S REPORT NUMBER(S)
F44620-70-C=-0107
b, PROJECT NO.
A0827-5
e b, OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)
61101D
a4,

- DISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited,

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
TECH, OTHER Air Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

. ABSTRACT

This document describes ICC, a Language for Conversational Computing which runs
under TSS on an IBM 360/67. The statement syntax of LCC stems from that of Algol
60 and JOSS, but LCC has been designed to exploit as fully as possible the dynamic
nature of conversational computing. Thus LCC is a fully interpretive system

with extensive features for conversational control and with capabilities for

a) dynamic block structure, block expressions, and recursion, b) interspersed
editing and execution (use of program text as data and vice versa), c¢) dynamic
variable attributes, and d) interlaced program execution and creation (program-
directed program preparation}, The complete LCC syntax and a sample conversation
are included,

DD "0..1473

Security Classification

Sacurity Classification

1 4.

KEY wuROA

LINK A LINK B

——
LINK €

ROLE

nT AOLE w.

ROLK

wYT

Security Classification

