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Abstract 

A model of the design process is developed 
in two stages, corresponding to the task environ
ment of design and the activity of posing and 
solving design problems. Use of the model with 
top-down and bottom-up disciplines is discussed. 
Ah example of the design of an object using a 
semi-'automated design system based on the model 
is presented. Several issues raised by the 
model's qualitative aspects, its suitability to 
automated design, and lines for further develop
ment are discussed. 

Introduction 

We wish to understand Mthe process of devis
ing artifacts to attain goals," as Herbert Simon 
(19) recently characterized design. Our inter
ests include the design of programming and com
puter systems, the intellectual processes that 
constitute designing, and the actual processes 
used by humans in designing. 

Informal knowledge about design is abundant. 
Entire professions--engineering, programming and 
architecture--take design as a central profes
sional aim. However, little reliable information 
exists about how design is accomplished. .Most 
works, e.g. (3), exposit design methodology to 
instruct the novice, being based on informal 
observation of design and participation in its 
practice, overlaid with attempts to rationalize 
its methodology. These works provide a useful 
initial approximation. We^learn strategies such 
as top-down and bottom-up, that careful specifi
cation of design goals is a must, and that care
ful evaluation is equally important. But this 
provides only a beginning. Of works on the 
psychology of design, there is even less (though 
see 7 and 8). 

What does exist, in quantity and quality, is 
work on formalizing design. This occurs both as 
mathematical models and as computer programs for 
classes of design tasks. The bulk of this work 
fits the following constraint formulation; 
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Find a point x in a space X such that 
x satisfies the constraints C.(x) and i maximizes an objective function F(x). 

Most mathematical work takes X to be Euclidean, 
so that a mathematical programming problem of 
some type is obtained (e.g., 20). Much computer 
work follows suit, being practical algorithms 
for solving such problems (e.g., 5). A small 
amount, mostly experimental work in artificial 
intelligence, considers more complex spaces, 
such as all arrangements of a set of objects .in 
a two-dimensional room (9), (11). 

The generality and utility of this formula
tion belies the difficulty of specifying prob
lems in its terms. To formulate completely the 
design, say, of an operating system appears to 
be essentially impossible. All aspects of the 
formulation contribute to the difficulties: 
defining the space of possibilities; formulating 
the constraints; obtaining all the constraints 
in advance; and creating a reasonable objective 
function. Evidence from Eastman (7) and con
siderations brought forth by others (e.g., 1) 
agree in indicating that humans do not design 
using this approach. Even when the space seems 
well defined, the constraints emerge continually 
throughout the design, rather than being avail
able all at once. 

Following Eastman's evidence, one could 
profitably consider relaxing the above con
straint-formulation: permitting the space, the 
objective function or the constraints to change 
or to become progressively defined throughout a 
design. Instead, we wish to follow a different 
clue: the tendency of humans to design in terms 
of functions. 

Reasoning in terms of functions—functional  
reasoning, as we shall call it—appears to be 
ubiquitous. We often name things by the func
tions thev provide: a machine for washing 
clothes is a "washing machine;" a man who sets 
switches for trains is a "switchman." We give 
advice in functional terms: "If your man is 
attacked, defend it." We even write definitions 
of function terms by using others: 

wash: To cleanse, using water or 
other liquid, usually with soap 
detergent, bleach or the like, 
by immersing, dipping, rubbing 
or scrubbing (2). 



Only a modest amount of scientific study has 
been devoted to functional reasoning. Psychology 
has had a continuing concern with functional  
fixity (6) , the observed tendency of humans to 
seLect objects for consideration in problem solv
ing in terms of their functional descriptions 
(thus, proving to be poor problem solvers if 
becoming fixated on inappropriate descriptions). 
This work mainly demonstrates that humans do 

1 indeed reason in terms of functional descriptions. 

Among artificial intelligence programs, GPS 
(10) and related programs (e.g., the Heuristic 
Compiler, 18) offer the most explicit model of 
functioning reasoning. GPS differences operate 
as function terms; they describe a situation in 
its relation to a goal and operators in relation 
to how they affect situations. Matching the 
functional description of a situation's require
ments to the functional description of what an 
operator provides selects out a subset of all 
possible operators for consideration. Thus, in 
an action task (transformation of a situation 
into a desired one) GPS provides at least one 
paradigm of functional reasoning.* 

Nothing indicates that functional reasoning 
is a total scheme, sufficient to carry out com
plete solutions. In GPS it only provides one 
strand of means-ends analysis. GPS also applies 
actual operators to actual situations and 
observes the results. Thus, unlike schemes for 
reasoning that attempt to map problems into a 
single formalized representation (e.g., those 
in the Advice Taker tradition (14), (12)), func
tional reasoning may be only a partial technique 
that must be combined with others to achieve a 
complete problem solving system. 

This paper is limited to describing and 
illustrating a model for functional reasoning in 
design. Evidence for the model must come from 
studies of human reasoning or from the construc
tion of design systems that incorporate the 
model. Neither is presented here. A semi-
automated design system based on the model is 
being developed (by PF) and has been used in the 
main illustration presented later. It will be 
reported on in a separate publication. 

We start by describing the task environment 
in which design can take place. We first give 
the simplest possible model and then augment it 
with various complexities. The next section 
deals with posing design problems and solving 
them. Finally, a detailed example is developed. 

The Basic Model for the Design Task Environment 

The basic (or qualitative) model of a 
design task environment consists of a set of 
structures and a set of functions such that: 

Pi: Each structure provides a set of 
functions. 

P2: For each function it provides, a 
structure requires a set of func
tions . 

P3: A functional connection can occur 
between two structures if one 
provides a function required by 
the other. 

P4: A constructed structure consists 
of a set of structures (its 
parts) and a set of functional 
connections between them such 
that: 

1) The functions provided are 
those provided by the parts 
that are not consumed in func
tional connections. 

2) The functions required are 
those required by the parts 
that are not provided by a 
functional connection. 

We call this the qualitative model because 
nothing is said about how many structures of a 
given type may exist or how much of a function 
is provided or required. These additional stipu
lations are augmentations to the model, to be 
discussed in the next section. We illustrate 
below each of the propositions, drawing most but 
not all examples from computer systems. 

Structures provide functions 

The most obvious examples are those where 
an object has already been named by its functions: 

A core memory provides memory. 
A store instruction stores information. 

The apparent banality of these statements arises 
purely from the use of functional names as can be 
seen in these examples: 

A drum provides memory. 
The BOZ instruction provides a change in 
program control. 

This common usage of functional names for struc
tures does lead to more serious confusion of what 
are functions and what are structures, however: 

The success of GPS-like programs in describing 
human problem solving offers additional evi
dence for the role of this paradigm (15), (16). 



An iteration-code requires an initiali
zation, an iteration-action, a termina
tion-test and an exit. 

The iteration-code is a structure--a sequence of 
instructions. We name it "iteration-code" 
because all we know about it is that it provides 
the function of iteration. If we had called it 
"Sam," there would have been no confusion between 
structure and function. 

Proposition Pi asserts that more than one 
function can be provided by a single structure: 

The drum can hold user files or resi
dent systems. 

The conditional branch instruction can 
provide either loop control or switch
ing between two mutually exclusive 
control paths. 

In all these examples there appears to be a 
single capability—a single function--that under
lies the multiple use. A drum provides memory; 
holding user files and resident systems are 
simply two subvariates of the memory function. 
The branch provides for the single function of 
changing program control; it suffices for either 
loop control or path splitting. 

This singularity, however, need not be: 

A pencil can print characters, punch 
holes in paper, serve as a core for a 
ball of string, and tamp down pipe 
tobacco. 

Different aspects of a single object provide the 
structural basis for each separate function. 
Other structures can be found that provide each 
function separately, but not the others (in any 
reasonable way): In the example above a type
writer, a three-hole punch, a cardboard cylinder, 
and a pipe tool, respectively. 

With designed objects (e.g., a magnetic 
tape) there is a strong tendency for a single 
function to be dominant, with all others seen as 
variant, or even deviant: 

A magnetic tape provides memory or a 
photogenic visage for public relations. 

Inside of a structure the situation is otherwise, 
and parts are carefully constructed to have 
multiple function (e.g., general registers in a 
central processor). 

The structures in the examples above are 
physical objects (drums and pencils) and abstract 
objects (instructions). Another important class 
of structures in computer systems are relations: 

Adjacency of cells in memory provides 
a two-way association between two 

items of information (their contents). 

A structure may provide a given function for any 
number of objects: 

A single real-time clock provides time-
of-day for all user programs. 

In general there is no limit on the number of 
structures that can use a provided function.. 

Structures require functions 

The most obvious examples involve general 
requirements. 

A physical object requires space. 

A program requires primary memory 
space. 

Typically a structure requires the conjunction 
of several functions: 

A compiler requires primary memory, 
secondary memory, input-output, and 
a processor. 

A generator requires initialization, 
a way to obtain a candidate from the 
generator state, a next state, and a 
termination test. 

The second example has' another instance of using 
function terms to name structures. The termina
tion test might seem to be a structure. After 
all, we know that any test is a piece of code. 
But this is because we presume a unique struc
ture for the required function of testing for 
termination. In fact, generator terminations 
can be provided by a memory protect system that 
detects out-of-bounds memory accesses. 

The converse of one structure providing 
many functions is that in general many struc
tures can be found to provide a given function; 

Tape, disk, and core provide memory. 

Printers, terminals, and card punches 
provide output. 

The choice of one of the structures providing a 
function is the central activity of qualitative 
design. 

Proposition P2 is more specific than we 
have demonstrated. Functions are required by a 
structure in order to provide specific functions: 

A program requires primary memory 
space to execute. 

This is most clearly seen when a structure has 
different functional requirements for the 



different functions it can provide: 

A compiler provides compiled programs 
and also source language debugging. 
It requires a resident symbol table to 
provide the source language debugging, 
but not to provide compiled programs. 

Construction of structures 

Propositions P3 and P4 describe how struc
tures can be combined into new structures. By 
choosing a set of structures so that the func
tional requirements of some are satisfied by 
others, some functions are left for external 
usage. Consider a functional description of a 
knife: 

Component structures: 

blade blade 

Ray- handle -*P2 
-*P3 

structure is never taken as complete and always 
admits of further refinement and modification. 

Augmentations of the Model 

The model in the previous section was the 
simplest one that seems to capture the essence 
of the relations between structure and function 
in design. The situation can be complicated by 
various restrictions: 

Define the functional specification of 
a structure to be the functions pro
vided and required by it along with 
whatever restrictions apply (as 
defined below). 

P41. A constructed structure must 
obey the restrictions on its 
individual subparts after 
the effects of the func
tional connections are 
accounted for. 

Rl: Requires being held. 
R2: Requires being held. 
Pi: Provides cutting. 
P2: Provides for holding a narrow object* 
P3: Provides being holdable by a human 

hand. 

P5. A structure may be subject 
to a supply law that limits 
the number of structures of 
a given functional specifi
cation that are available 
and/or can be constructed. 

Constructed structure: 

knife 
handle --^•XpT blade — 

• P3 

A functional connection exists between the 
blade's requirement for being held (Rl) and the 
handled provision of that function (P2). The 
blade's provision of the cutting function (Pi) is 
not consumed in a connection and is thus provided 
by the constructed structure; likewise, the 
handle's requirement of being held (R2) is not 
satisfied and is thus a functional requirement of 
the knife. 

This example illustrates a basic property of 
construction: Once a functional connection is 
established, some of the functions involved may 
disappear (e.g., the ability of the handle to 
hold a narrow object). They become internal to 
the new structure, so to speak. 

The functional description of a knife just 
given is incomplete. More is required to cut 
than just having a blade and a handle (even with 
a hand). There must be motion aimed in the right 
way and with sufficient pressure; the material 
from cutting must be removed; the blade must be 
sharp; and so on. A functionally described 

P6. A structure may be subject 
to a capacity law that 
limits the functions that 
can be provided. 

P7. Functions may be quantified 
so that an amount of a func
tion may be provided or 
required (measured in some 
units); these amounts may be 
subject to capacity laws. 

P8. A structure may be subject 
to an input-output relation 
connecting the functions it 
provides and those it 
requires (either by amounts 
for quantified functions or 
mere existence for unquali
fied functions--compare 
compiler example above) . 

As elaborate restrictions are applied, the 
problem of design gradually converts from one of 
purely qualitative specification into one that 
gives the full details of the structures 
involved and requires quantitative mathematical 
treatment. 

Supply laws 

Often only a limited supply of a given type 
of structure is available, especially in ad hoc 



design efforts: 

In constructing a raft to get across a 
river, exactly two large felled logs 
of particular characteristics are 
available. 

These logs can be described in terms of the func
tions they provide and require, but one must not 
assume from such descriptions the availability of 
an indefinite number of logs. 

When design is done in a commercial enter
prise, supply restrictions often do not exist. 
Any number of structures of a given type can be 
used, the restrictions being expressed in terms 
of the costs of obtaining them. 

Capacity laws 

The most pervasive form of restriction is on 
the ability of a structure to provide a function 
for more than one (or several) structures, or to 
provide a function given that it is providing 
another. 

A wall plug may provide any electrical 
device with power, but only one at a 
time. 

If a conditional branch instruction is 
used for a loop, it cannot also be used 
for path-splitting. 

Capacity laws are not quantitative, but 
rather an expression of the logical character of 
the structure in providing its functions. Almost 
any pattern of interrelation can exist, but the 
most usual are: 

Single-function capacity: A structure 
can provide one and only one of its 
functions at a time. 

Single-structure capacity: A structure 
can provide a function to one and only 
one structure at a time. 

There are also strong time dependent effects 
as well as irreversible ones: 

A bomb may provide an explosion only 
once. 

A pawn may be queened only once. 

Quantitative functions 

Many homogeneous quantities occur in func
tional descriptions: power, space, memory, pro
cessing, channel capacity, energy, time, etc. 
The amounts of these functions that can be pro
vided are frequently subject to capacity laws: 

A file directory can be kept in primary 
memory, on the swapping drum, or on the 

- If it is kept in primary memory 
the users will have a smaller 
Job area. 

- If it is kept on the swapping 
drum, fewer users can be logged 
in simultaneously. 

- If it is kept on the file, the 
time to obtain files increases. 

The first two consequences derive from the capac 
ity law on the amount of memory that is a form 
of conservation law (i.e., what is provided to 
one structure is not available for others). The 
third arises from the fundamental law that a 
function (obtaining files) cannot be performed 
until its required functions (obtaining file 
addresses) is provided. 

Input-output relations 

The amount of a function provided can be 
tied to the amount of the functions required by 
an input-output relation: 

The number of users logged on depends 
on the amount of primary memory avail
able. 

The amount of cutting depends on the 
sharpness of the blade. 

Summary 

Functional reasoning in design does not 
operate at some particular level in the range of 
restrictions. Rather, different domains of 
design (different technologies) require the use 
of specific types of restrictions. Further, no 
consistency occurs within a design situation 
(e.g., if some supply laws are used, it does not 
follow that there are supply laws on everything) 
Complexity is added only for the critical struc-
tues that need it, other components being left 
as simple as possible. 

We have laid out these augmentations to 
provide context for the qualitative model and to 
emphasize that casting the basic model in the 
simplest of forms was deliberate. This paper 
will focus on the qualitative model, since it 
contains the basic notions. 

Design with the Model 

The model given in the previous sections 
lays out an environment. Within this a variety 
of design problems can be posed. The most fun
damental one is: 

Given: A set of structures and 
and their functional speci fications. 

secondary file. 



Construct: A structure with desired 
functional specifications. 

The fundamental problem here is not one of opti
mization, but one of feasibility--to find a 
structure that can be composed from the available 
structures and has the desired properties 
(expressed functionally). Variations can be 
generated by insisting that certain structures 
be used, by asking for minimum structure, by 
finding all possible designs rather than just 
one, and so on. 

Given a design problem, different methods 
can be formulated for attempting it. Top-down 
schemes start with the desired functions and 
work back toward the structures that are avail
able. Bottom-up schemes start with the struc
tures available, constructing successively 
larger structures until one is found that has 
the desired specifications. Most-critical-
component-first schemes posit functional speci
fications of structures that appear (on whatever 
grounds) to be critical to the final design and 
then design these first. 

These methods all have a combinatorial, 
heuristic-search character. At each stage of 
the design a set of possible actions is available 
to advance the design, one of which must be 
selected, which then leads to a new situation of 
partial design. As in other such problems, the 
set of alternatives is generally large enough so 
that brute force search (e.g., breadth first) 
cannot possibly succeed. However, let us formu
late the basic bottom-up and top-down methods, 
since they bring out some important points. 

Basic bottom-up method 

The elements of the problem space consist of 
sets of structures (with functional specifica
tions). A new structure can be constructed from 
any set of existing structures that can form 
functional connections. The functional speci
fications for the new structure can be deter
mined via postulates P4 and P4'. 

A structure satisfies the desired functional 
specifications if its provided functions include 
those desired and if for each desired function 
the required functions match exactly those 
desired." Thus the basic bottom-up method is 
exactly heuristic search in terms of the opera
tions that are specified in the task environment. 

Basic top-down method 

Working top-down is not just working back
ward from the desired functions toward the given 
structures. It also attempts to bind the design 

The asymmetry arises because there is no obli
gation to use provided functions. 

as little as possible at each stage, taking only 
necessary steps, given the structures actually 
available, and coming as close as possible to 
deriving the design. 

A typical step in a top-down design might 
look like: 

Synchronization of the drum requires 
a buffer memory. 

Stipulate a memory that is write-by-
word and read-by-bit. 

Only a single essential feature of the memory is 
specified, rather than an actual available 
memory (e.g., a specific drum). The specifica
tion (the stipulation) is structural, for it is 
not necessary really that memory have this 
property to produce synchronization. The step 
is a perfect one in a top-down design if, in 
fact, for the available structures, all solu
tions to the design problem will have this 
structure. 

Stipulation can appear to be entirely func
tional: 

A value of the Bessel function must be 
obtained. 

Stipulate a process that searches a 
table for it. 

Further specification has occurred, for an alter
native could have been chosen: 

Stipulate a process that recomputes it 
on demand. 

We recognize the difference between a search and 
a computation (as intended here), but the dis
tinction is given in functional terms (though 
lurking in the background are some structural 
distinctions). 

In a top-down design one is continually 
forced to ask "What structures will provide this 
function?". The answer one wants in order to 
delay binding the design is one that makes only 
very general commitments. Thus, an answer such 
as 

"CLA instructions and input operations 
retrieve information." 

to the question "How can we obtain information?" 
is not very useful during most stages of a top-
down design. On the other hand, an answer of 
the form: 

Information can be obtained by knowing 
it, computing it, or searching for it. 

provides an incremental binding of the design 



that permits further detailing without overcom-
mitting the designer. Such generalized function-
structure laws* appear to be quite important, 
carrying much of the burden of top-down reason
ing. 

A top-down design iterates between picking 
structures to supply functions and generating 
new functional requirements from the chosen 
structures. Successful termination of the pro
cess occurs when all functional requirements are 
satisfied by parts of the designed structure 
(through functional connections) and all desired 
functions are provided. This corresponds to a 
backwards working heuristic search procedure. 

The result of a successful design is a con
structed structure whose components are either 
given structures or are reducible (recursively) 
thereto. Such a structure may still be distant 
from a real physical object that will perform as 
desired. To have designed a knife as a blade 
and a handle, or even a blade, handle and 
fastener (of blade to handle), is not yet to have 
a knife. One might insist that a design task is 
not well posed unless the given structures cor
respond to actual physical objects. Successively 
more detailed restrictions could be added to the 
functions, until an adequate physical model of 
the situation would be implicit in the func
tional description. Reasoning would more and 
more involve the details of these restrictions 
and less and less the matching of functions 
required to functions provided, which is the 
heart of functional reasoning. Actually, it 
appears impossible (even if it were desirable) 
that an elaboration of functions into finer and 
finer categories could suffice for expressing 
the intricacies of actual physical technologies 
(e.g., metallurgy or polymer chemistry). How
ever, such an elaboration might prove successful 
for extremely artificial and discrete technolo
gies, such as computer programming. 

The result, then, of a functional design 
remains a plan for the realization of an actual 
object. To implement the plan requires enlarg
ing the reasoning to include working with the 
actual physical structures or with symbolic 
models of them, observing the effects of manipu
lation, correcting the design, testing it, and 

* The example given here is actually a function-
function law, of a type that further elabo
rates a function term. There is a similar 
type of relation that deals with the inclusion 
of one function in another (e.g., hi-speed, 
low-speed, and multiplexed transmission of in
formation are all transmissions of informa
tion). For simplicity, the initial version of 
the model does not deal with this issue. A 
more complete version will deal with direct 
relationships between functions (i.e. with no 
intervening structure) since they are an 
important part of design. 

An Example of Qualitative Design: A Symbol Table 

We will not attempt an example of a com
plete design, involving the application of a 
design method to a task environment to obtain a 
solution. Although this must be done to explore 
the problem solving aspects of an automated 
design system, that seems less crucial initially 
than exploring the framework itself. We will 
attempt an example that provides: 

- an explicit rendition of a design 
task environment; 

- the posing of a real design problem 
in this environment; 

- the description of a path through 
the design space that would have 
resulted in the solution given; 

- the exhibition of a functional 
assignment of structures that satis
fies the posed design problem; 

- an indication of how a complete 
physical specification could be 
obtained; 

- an indication of how alternate 
choices in the design could have led 
to other solutions. 

We chose as the example the design of a 
two-way symbol table for a programming language. 
This is a common programming structure, and 
many standard solutions to it exist: sequential 
search, binary search, logorithmic or tree 
search, and hash addressing. It is a fairly 
simple, though real, design task and permits us 
to stay within the confines of the paper and 
manual analysis. 

No extensive discussion exists in the lit
erature that explores thoroughly the design of 
symbol tables, describing trade-offs in terms 
of the possible properties. There does not 
even exist, so far as we know, a complete for
mulation of the design problem, say in terms of 
a space of possibilities, the constraints and 
the objective function. Our example is not 
meant to fill any of these gaps, but only to 
illustrate our model of functional reasoning in 
design. 

The design task environment 

The basic class of structures to be used 
in the design, called programming structures, 
consists of collections of data-structures with 

so on. This is in agreement with the paradigm 
embedded in GPS; and we shall not explore it 
further here. 



programs that operate on them. Programming 
structures, by the execution of one or more of 
their programs, provide (possibly many) func
tions to other programming structures in which 
they are embedded. 

We adopt two general conventions of design 
practice, which are substantially honored 
throughout the programming world: 

Principle of separated functions. 
There exists a distinct program that 
provides each of the functions pro
vided by a programming structure. 

Principle of uniform control. There 
exists a programming language (includ
ing therein the notion of a set of 
programming conventions) that for all 
programming structures provides the 
functions of: 

(1) Designating the program to be 
executed at each moment. 

(2) Designating the operands 
(data-structures) for a pro
gram. 

(3) Communicating the operands to 
a program to be executed. 

(4) Communicating the results of 
an executed program. 

(5) Loading programs and their 
operands into space required 
for their operation. 

The first principle is simply that one designs a 
separate subroutine for each kind of thing one 
can do with a data structure, rather than evok
ing the actions in various linked and contingent 
combinations. It does not imply that only such 
programs should exist; the usual programming 
structure has many subroutines that are internal 
to it. The second principle is simply to have 
uniform conventions for calling routines, passing 
parameters, providing space in primary memory, 
etc. Both principles cover functions that must 
be provided for any programming structure to 
operate. They permit the design of a particular 
programming structure to attend exclusively to 
the processing required to achieve the specific 
functions desired. 

Both program and data are structures and 
lead to a kind of dual functional description. 
We can describe programs, giving the function 
performed by each subroutine (ultimately, each 
instruction). Such a functional description will 
be complete: the functioning of each of the in
structions is the necessary and sufficient con
dition for the programming structure to provide 
specified functions. The data does not seem to 
enter in. Equally, we can describe data 

structures, giving the functions of the contents 
of each subpart and their relations in address 
space. Such a description will be almost com
plete, for almost every instruction in the pro
gram will operate only by the grace of some 
aspect of the data0* Thus, a functional 
description of a programming structure will 
appear to present everything twice. We recog
nize this by taking the function of data as 
permitting various processing functions to be 
provided by particular programs (ultimately, 
instructions). For example, an address rela
tionship may "permit computation" of some result 

Figure 1 shows the actual structures avail
able for our example: cells, addresses, the 
relation of contents-of, and sets of instruc
tions. We write programs in a simple Algol-like 
notation. Figure 2 illustrates the functions 
provided by the program structures and those 
permitted by the data structures. The func
tional requirements of the structures are not 
shown here since they are well-known to all 
programmers. 

Figure 3 shows the code and data structure 
for the simple symbol table whose design we shall 
illustrate. It consists of a one-dimensional 
array with each entry in the symbol table taking 
two adjacent cells. The external symbol is 
entered in the first cell of a pair, the internal 
address in the second. There are three routines: 
Rl finds the address associated with an external 
symbol; R2 finds the symbol associated with an 
internal address; and R3 enters a new symbol-
address pair into the table. For the accessing 
operations a search is made of the table, test
ing the first word of a pair if the symbol is 
given or the second word of the pair if the 
address is given. If a match is found, then the 
other member of the pair is returned as the 
result. To establish a new pair, it is simply 
loaded into the table at the high end. 

Several simplifications have been intro
duced. We ignore all failure conditions, either 
that a requested entry is not in the table or 
that the table is too full to receive a new 
entry. We do not provide for the removal or 
modification of existing entries so that R3 
becomes much simplified. These simplifications 
are made to keep the example within bounds. 

It is necessary to impose a system of func
tion terms. Figure 4** defines the functional 
* The failure of completeness derives from pro
grams accomplishing some things without resort 
to a data structure. 

'WfThe material in Figures 4, 5 and 6 is output 
from XDA, a semi-automated design system based 
on our model. The system is being built (by 
PF) and used on the PDP-10; it is constructed 
on L*(F) — a kernel system-building system. 



provisions of the structures to be used in the 
design example. Referring to Table 1 for an 
explanation of the notation used by XDA, Figure 
4 tells us that the function OBTAIN (with inter
nal name Fl) can be provided by three different 
structures: a KNOW STRUCTURE, a COMPUTE STRUC
TURE, or a SEARCH STRUCTURE (with internal names 
S1, S2, and S3). Additionally, Si (the KNOW 
STRUCTURE) is marked PRIMITIVE, meaning that for 
the present we need not worry about its func
tional requirements. 

Although the function terms listed in 
Figure 4 (OBTAIN, KNOW, COMPUTE, etc.) are 
meaningful to the reader, their role in this 
design must depend entirely on their functional 
specifications. These consist of the function 
provision laws given in Figure 4 and the func
tional requirements given in Figure 5. The 
first line of Figure 5 states that S2 requires 
the function F3, lines 4 and 5 state that S5 
requires F3 and F9, etc. (The full form of a 
name (e.g. SEARCH STRUCTURE) or its internal 
name (e.g., S3) can be used interchangeably). 

The system of functional description that 
this scheme leads to is quite simple and reason
ably abstract compared to the actual programming 
structures of Figure 1. Nonetheless, it is 
adequate for the purposes of the example and 
serves to define a small but complete design task 
environment. 

The design problem 

We can pose the problem of designing a 
symbol table as follows: 

Given: The structures available in the 
design task environment. 

Construct: A structure (called a 
symbol table) that provides 
for: 

(1) Obtaining the internal 
address associated with a 
presented external symbol. 

(2) Obtaining the external sym
bol associated with a pre
sented internal address. 

(3) Associating a presented exter
nal symbol and internal 
address. 

In accordance with our earlier remarks, we have 
removed other functions normally associated with 
a symbol table. 

The problem is cast in terms of a set of 
three functions to be provided and none to be 
required. From the principles stated earlier, we 
can take it that there will be a program for each 
of the three functions, and that the only design 

problem is what is the nature of these three pro
grams and the data structures on which they work. 
The issue of how an external symbol and an inter
nal address are presented is not of concern, 
being part of the surrounding programming system. 

The design task environment presented is not 
at all a special task environment for symbol 
tables. The structures and functions provided 
are general. With a few additions, a complete 
order code could be built up and we could then 
propose other problems to be solved in the same 
environment. 

Design path 

As already discussed, one can follow a 
variety of design strategies while employing 
functional reasoning to go from a design goal to 
a complete design. Although the strategy used 
can be very important, our purpose here is to 
illustrate the reasoning and its product not 
the pattern it follows. Consequently, no par
ticular significance should be attached to the 
order in which the following design unfolds. 

XDA was used to go through an essentially 
complete sequence that achieves a design for the 
object specified above within the design task 
environment given. Figure 6 shows an initial 
portion of the design trace output of XDA as it 
was used to develop this example. Using the 
notation of Table 1 and noting that the design
er's input is underlined to distinguish it from 
XDA's output, we see that first the structure to 
be designed is defined by stating the functions 
it is to provide. This structure and its re
quired functions are placed in nodes of the de
sign representation (Dl, D2, etc.). The designer 
is then given a choice as to which part of the 
design he wants to work on and a set of possible 
structures are presented to him for his choice.* 
He may stipulate a structure to supply the func
tion in question at this point in the design 
(other structures might be used to supply the 
same function elsewhere in the design). Then 
its functional requirements are entered into the 
design and the cycle repeats. This proceeds 
(assuming the designer does not alter the prompt
ing sequence of XDA) until a primitive structure 
is stipulated to provide a needed function, ter
minating that branch of the design. 

Figure 7 portrays graphically the design  
path that was followed in the complete design 
trace of XDA (the path that produced the design 

'The designer may make a variety of responses, 
besides those suggested by the system, that per
mit him complete freedom in choosing a design 
sequence. Additionally, the design may be backed 
up, new functions and structures not in the data 
base may be defined and used in the design,and the 
system can be requested to perform more complicat
ed searches for structures supplying a given 
function. 



of routine Rl is omitted since it is exactly 
analogous to the design of R2 -- the left-most 
branch of the tree). The time order of the 
trace can be reproduced by following the branches 
depth-first in left to right order (a top-down 
strategy was used for simplicity). The tokens 
in the nodes are the shorthand names of functions 
and structures and the node is labeled with its 
name from XDA's trace. A function node below a 
(Structure node indicates the function is re
quired by the structure; a structure node below 
a function node indicates the structure can pro
vide the function. If a structure node is a 
triangle, then the structure was considered but 
not stipulated for the design. If a node is 
square, the structure is terminal and a name of 
the form Si/(Di) is attached to indicate the 
actual structure that was stipulated for the 
design, as shown in Figures 6 and 8. 

Starting at the top we note that the symbol 
table (S16) has three functional requirements 
(F24, F25 and F26) that are the three functions 
it is to provide. To follow the design of the 
retrieval mechanism for (F24) we move down the 
left subpath. F24 has three types of structures 
(SI, S2 and S3) that can provide it. Since the 
path goes through S3 that means we chose to use 
a search structure (S3) in the design. 

From XDA's data base (built up in Figures 
4 and 5) we learn that a search structure (S3) 
has only one functional requirement, search (F4), 
and that two structures (S7 and S8) can provide 
the function of search. We chose a generator 
searcher (S7). It in turn has three functional 
requirements (Fll, Fl2 and F13). S8 was con
sidered as a candidate to provide F4 but was not 
chosen. The design trace in Figure 6 shows this 
sequence more clearly. 

The path continues in this way, splitting 
into subpaths each time two or more functional 
requirements appear for a single structure. At 
the terminal nodes we have designated particular 
pieces of primitive structure (for this design) 
that go to make up the designed object. 

A Solution of the Design Problem 

Figure 3 shows a completed symbol table 
(data structures plus operators) that is an in
formal solution. Any programmer would verify 
that it performs the required functions. In 
terms of the model, however, it is not a complete 
solution for we have not demonstrated what struc
tures provide what functions and what structures 
permit other structures (e.g., programs) to 
operate as needed. 

Figure 8 presents the completed design by 
associating the terminal structures from the 
design trace with the actual structures used in 
the solution presented in Figure 3. The first 
column has the code names of the terminal struc
tures. The second column presents the functions 

provided by the structures as developed in the 
design trace; it consists of all functional re
quirements above the structure in the design 
path up to and including the first function that 
is a member of a set of two or more functional 
requirements of a structure. The third column 
is the informal definition of the structure 
given in the design trace and the last column 
shows the corresponding structure used in 
Figure 3. As noted above, the data structures 
play a role of permitting various functions by 
the program structures and thus do not appear 
in Figure 8. 

Full Design 

The disparity between the functional de
scriptions of the terminal objects and the 
actual structures used illustrates the point 
made above that the output of a functional 
reasoning design process is essentially a plan 
requiring further implementation. The struc
tures used are not only some distance from the 
structures specified but some critical elements 
are missing and must be supplied by some pro
cess to effect an implementation. To wit, the 
control structures that tie together the various 
pieces of program and the exact constraints on 
the data structures (e.g., size of cell, adja
cency) are not present. 

The distance between the final result of 
the functional reasoning in the example and a 
physical specification of the constructed ob
ject does not seem to be an unbridgeable chasm. 
Aside from the fact that many important designs 
(e.g., flowcharts and blueprints) leave out 
many important details (the use of language 
constructions and the principles of carpentry), 
there are at least two possible courses of 
action. 

One could try to carry the functional 
reasoning process down further to obtain more 
concrete specifications. Analysis of the re
quirements of individual instructions in terms 
of their need for operands and/or adjacent in
structions permits a more detailed specifica
tion. Likewise, data structures could be ana
lyzed in terms of relations between their parts. 
Even though this approach could carry the de
sign further than our example goes, it is not 
clear it could do the entire job. 

The other approach that bears investiga
tion is to consider the output of functional 
reasoning to be a plan that is input to a 
heuristic compiler. Matching on the functional 
descriptions of instructions and data struc
tures would be used to implement the plan. 
Clearly, such a procedure would have to have 
available operators for manipulating and testing 
the physical structures so assembled. The 
details have not been worked out, but Figure 8 
clearly presents a set of well-defined problems 
of the general form "Build a structure out of 



of a poor man's non-technical constraint satis
faction scheme. It should be replaced by more 
adequate formulations wherever possible. 

An alternative view sees functional reason
ing as a planning scheme to be used in connec
tion with more accurate procedures. This is the 
view implicit in our treatment of the example, 
where we carried the functional description only 
to a certain detail and then used a more precise 
formulation. 

On the initial structuring of designs 

One of the peculiarities of many design 
problems is that they create structure out of 
nothing, so to speak. They appear in this sense 
to be open problems. It can often be observed 
in human design that a structure is placed on 
the design problem within a few minutes, or even 
fractions of a minute, of obtaining the problem. 
Pure functional reasoning seems to be a plausible 
candidate for the mechanism whereby this initial 
creation of structure occurs. 

The functionally described structures are 
not unlike the kinds of descriptions of struc
ture people seem to have initially/' The reason
ing involved, which is highly associational 
(bouncing back and forth between functions and 
structures using function terms as the linkages), 
is well suited for rapid reasoning which could 
put together new structures never before known 
to the designer. This role for functional 
reasoning in design is consistent with viewing 
it as a planning, initial approximation instru
ment. This aspect also emphasizes the qualita
tive model, rather than models with substantial 
restrictions added which make reasoning more 
complex. 

Large memory structure 

It goes almost without saying (though we 
have not said it yet) that real designs require 
a large memory of structures and functional laws 
between them. This point has been urged in con
nection with almost every attempt to reason 
about the real world, and this paper offers no 
new evidence for it. The qualitative model can 
be viewed as a sort of retrieval net for index
ing and organizing a large memory, and much of 
its power should only become apparent in such 
contexts. 

The relation to predicate calculus models 

We do not yet understand the relationship 
of this model of functional reasoning to at
tempts to formulate problems in a formal calcu
lus (12), (13), (17). It appears that all 

Sometimes they also have a highly specific and 
elaborate structure clearly evoked from having 
already known it. 

the available physical structures (as in Figure 
1) that performs this well-defined function", 
which would be amenable to heuristic compiler 
techniques. 

Alternative Designs 

Figure 7 plainly shows that only one of many 
possible paths has been chosen. Most, of course, 
lead to no design at all. For example, if the 
association function had been designed as a hash
ing function and the retrieval operations as we 
now have them, we clearly would not have a symbol 
table. 

One common type of symbol table employs a 
variant of binary search in which an inspection 
of a candidate indicates a narrowed range from 
which to obtain the next candidate. This is 
what we have called a guided searcher (S8). 
Thus, by choosing S8 instead of the generator 
searcher (S7) at design node D7, we would have 
obtained a symbol table of that design (assuming 
we made appropriate changes in the association 
function as well). 

To obtain a hash storage scheme instead of 
the relational storage, we used, we could have 
picked the structure of name location storage 
(S15) at design node D40, this being the kind of 
structure that computes the address of a storage 
cell from the name of the presented item. Then 
in the retrieval operation we would have had to 
choose a compute structure (S2) at design node 
D5 in order to compute directly the location of 
the target object. 

Discussion 

We have now presented a model of functional 
reasoning in design and illustrated at least the 
central tenets of it. A number of aspects have 
been left dangling or received no attention at 
all. They can receive no adequate treatment 
here, but we will attempt to state some of them 
briefly. 

Relation to constraint-formulation 

We took note of the constraint-formulation 
at the beginning of the paper, because it appears 
to be the form towards which design problems 
tend as they become formalized. There is more 
than one way to look at the relation of function
al reasoning to the constraint-formulation. One 
view takes functional reasoning as a special 
subspecies of the constraint-formulation. The 
kinds of constraints are simple logical ones, 
saying that connections of various kinds must 
exist. As we move toward the various restric
tive laws (supplies, capacities, etc) a few 
additional simple constraints can be handled 
(e.g. , these laws are mostly expressible as 
constant or bounded sums, as in linear program
ming). But no really intricate constraints can 
be handled. Thus, functional reasoning is sort 



reasoning schemes rely ultimately on mechanisms 
for matching expressions and instantiations of 
forms for that is what is available in in
formation processing systems. Thus all systems 
have a sort of brotherhood under the surface. 
The formal calculi offer great precision and thus 
appear to be modelling the structure of situa
tions. But when they are applied to non-formal 
situations (i.e., not to already formalized areas 
such as group theory, lattice theory, or simple 
puzzles) the toy models that are constructed 
(i.e., the baby axiomatizations) are sufficiently 
gross caricatures of reality that they may in 
fact be nothing but a vehicle for the sort of 
functional reasoning discussed here. 

Universal non-model 

The uniformity of functional reasoning 
across all domains prompts the conjecture that 
it is a sort of non-modelv of each particular 
domain. That is, it is a scheme of reasoning 
that is adapted to the needs of the reasoner, 
not to the details of the domain. It is applied 
universally to all domains. Whatever is picked 
up is reflected in the reasoner's problem solv
ing; whatever is too intricate is lost. The 
major degree of freedom available to make the 
model adaptive to a particular domain is the 
choice of the function terms that are to be ap
plied in that domain. The set of functional 
terms appears not to be derivable from the struc
tural domain, so that they constitute an importa
tion or construction for a domain. For instance, 
they can reflect past experience with solving 
problems in that domain, so that a particular set 
of function terms serves, in part, as a memory of 
past solutions. 

Systems of functional description 

Function terms do not generally occur in 
isolation. They form systems for a given domain. 
For example, GPS has a set for logic: add and 
delete terms; increase and decrease numbers of 
terms; change signs, connective, position, and 
grouping. These cover the domain: if no such 
term applies, then the given situation is already 
the desired one. Relations other than partition
ing hold between function terms (e.g., inclusion). 
It is clear that the efficacy of a scheme of 
functional reasoning depends on the set of terms 
chosen and their relations to each other (e.g., 
see GPS on the Tower of Hanoi (10)). The impor
tance of the nature of the descriptive system 
available on a problem space has been emphasized 
by others, most notably by Banerji (4). It 
deserves extensive treatment. 

It is, of course, a model of any domain it is 
used for. Our use of Mnon-modelM is to emphasize 
its lack of responsiveness to the details of any 
particular domain. 

Conclusion 

This paper provides an initial attempt to 
set out a model of a specific type of reasoning. 
It does not capture all that happens when humans 
design using function terms. Hut only by at
tempting an explicit model for some of the more 
obvious aspects of functional reasoning, will 
it be possible to discover the additional phe
nomena that exist. 
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elements 

ST: 

procedure Rl(symbol, address); array ST; 

i :» 0; 

Rl.l: tes£(symbol. ST[1]); 

Iftrue goto Rl.2; 

i i + 2; 

goto Rl.l; 

R1.2: address :=» ST[i 4- 1]; end 

procedure R2(address, symbol); array ST; 

i :- 1; 

R2,l: test(address. ST[i]); 

Iftrue goto R2.2; 

i := 1 + 2; 

£oto R2.1; 

R2.2: symbol := ST[i - 1]; end 

procedure R3(symbol, address); array ST; 

top := top +2; 

ST[top] := symbol; 

ST[top + 1] := address; end 

Figure 3: A Completed Symbol Table 



Structure and Function Names: 

CJELL, ELEMENT ADDRESS, OBTAIN CANDIDATE, SEARCH FOR IDENTITY, ... 

SI, S2, ... Fl, F2, ... used internally and for shorthand (assigned 
automatically by XDA the first time used) 

Design Nodes: 

Dl, D2, D3, ... 

Operators: 

#PRDUTIVE# Mark the preceding structure as not needing any 
functional specification 

, List separator. 
Sc List separator. 
* Input statement terminator. 
s£: A new structure with name si follows. 
fi: A new function with name fi follows. 
Si: A B C Si is the internal name of the structure A B C . 
Fi: D E Fi is the internal name of function D E. 
A --> B A provides B. 
A <-- B A is provided by B. 
A » B A requires B. 
A « B A is required by B. 
A == B Design node A is specified by B. 
A = B Design terminal A is specified by B. 

Table 1: Notation Used by XDA System 

fl: OBTAIN si: KNOW STRUCTURE ^PRIMITIVE* , 
s2: COMPUTE STRUCTURE , 
s3: SEARCH STRUCTURE * 

f2: KNOW <-- si: KNOW STRUCTURE * 

f3: COMPUTE < — ski OPERATOR THAT PRODUCES RESULT , 
s5: OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE , 
s6: OPERATOR THAT COMPUTES CONDITIONALLY * 

fkx SEARCH < — s7: GENERATOR SEARCHER , 
s8: GUIDED SEARCHER * 

f5: GENERATE < — s9: GENERATOR * 
f6: RECOGNIZE < — slO: UNIQUE STRUCTURE MATCHER , 

sll: UNIQUE RELATION MATCHER / 

sl2: EXTREME MEASURE SEARCHER * 
f7: RETAIN <-- sl3: STORE OPERATOR ^PRIMITIVE* / 

slUi RELATIONAL ITEM STORAGE , 
sl5: NAME LOCATION STORAGE * 

f8: STORE < — sl3: STORE OPERATOR * 
Figure 4: Structures and Provided Functions (input to XDA) 



s2: COMPUTE STRUCTURE >> f3: COMPUTE * 
s3: SEARCH STRUCTURE >> fi»: SEARCH * 
ski OPERATOR THAT PRODUCES RESULT >> f9« KNOW OPERATOR * 
s5: OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE » 

f9: KNOW OPERATOR & f3s COMPUTE * 
S6J OPERATOR THAT COMPUTES CONDITIONALLY >> f6i RECOGNIZE & 

f9: KNOW OPERATOR * 
s7: GENERATOR SEARCHER » flO: GENERATE CANDIDATES & 

fll: RECOGNIZE TARGET A fl2i OBTAIN FROM TARGET * 
38: GUIDED SEARCHER >> fl3: OBTAIN INITIAL CANDIDATE & 

flU: OBTAIN NEXT CANDIOATE FROM CURRENT CANDIDATE & 
fll: RECOGNIZE TARGET & 
fl2: OBTAIN FROM TARGET * 

s9i GENERATOR » fl5: OBTAIN INITIAL STATE & 
fl6: OBTAIN CANDIDATE FROM STATE & 
fl7s OBTAIN NEXT STATE FROM STATE * 

slOt UNIQUE STRUCTURE MATCHER » fl8: OBTAIN UNIQUE STRUCTURE & 
fl9: OBTAIN DIFFERENCE * 

sll: UNIQUE RELATION MATCHER » f20t OBTAIN UNIQUE RELATION & 
f21: COMPUTE RELATION * 

sl2: EXTREME MEASURE SEARCHER » fki SEARCH & f6t RECOGNIZE * 
silt RELATIONAL ITEM STORAGE » f22i OBTAIN STORAGE OBEYING RELATION 4 

f8: STORE • 
sl5: NAME LOCATION STORAGE >> f23: COMPUTE NAME OF STORAGE FROM ITEM & 

f8: STORE * 

Figure 5: Functional Requirements (input to XDA) 



A set of memory cells of the form: 

memory cell 
memory address , 

t . T 
relation of contents of 

An. A^QOL^llke programming language: 
- Identifiers 
* assignment operator 
* simple arithmetic expressions 
- arrays 
- special procedure test(A,B) returns true if A-B 
- simple conditional: iftrue 
" BotQt labels, declarations, delimiters as needed 

Note: Addresses are positive Integers and symbols are sequences of 
characters. 

Figure 1: Structures Available for Building Symbol Table 

set of cells PERMITS generate 
memory address recognize 
memory cell M store 
cell contents recognize 
contents-of relation M obtain 
cell adjacency relation ,f retain 
symbol " recognize 
identifier obtain 

assignment operator PROVIDES store 
arithmetic expression M obtain 
array » retain 
test(A.B) " recognize 
variables 11 know 
program structure ,f know 

Figure 2: Functions Provided by Programming Structures 



DESIGN SYMDOL TADLE « 
S16: SYMOOL TABLE (Dl) — > F2fr: OBTAIN ADDRESS GIVEN SYMBOL & 

F2S: OBTAIN SYMBOL GIVEN ADDRESS & 
F26; RETAIN SYMBOL ADDRESS PAIR « 

CHOOSE FROM F2«» F25 F26 TO WORK ON: F2U 
OBTAIN <-- SI S2 S3 
F2«»: OBTAIN ADDRESS GIVEN SYMBOL (D2) « S3; SEARCH STRUCTURE * 
S3: SEARCH STRUCTURE (D5) >> F«t SEARCH (06) 
CHOOSE FROM <Fk TO WORK ON: FU 
SEARCH < — S7 S8 
Fkt SEARCH (D6) « S7: GENERATOR SEARCHER « 
S7: GENERATOR SEARCHER (D7) » F10: GENERATE CANDIDATES (D10) A 

Fll: RECOGNIZE TARGET (D8) & F12: OBTAIN FROM TARGET (09) 
CHOOSE FROM F10 Fll F12 TO WORK ON: F12 
OBTAIN < — SI S2 S3 
F12: OBTAIN FROM TARGET (D9) « S2: COMPUTE STRUCTURE * 
S2: COMPUTE STRUCTURE (DID >> F3: COMPUTE (D12) 
CHOOSE FROM F3 TO WORK ON: F3 
COMPUTE < — Sk S5 S6 
F3: COMPUTE (D12) « Sfr: OPERATOR THAT PRODUCES RESULT * 
SU: OPERATOR THAT PRODUCES RESULT (D13) » F9: KNOW OPERATOR (DU) 
F9: KNOW OPERATOR (DU) « SI: KNOW STRUCTURE (D15) 
PLEASE DEFINE AN SI AT (D15) THAT PROVIDES F9 F3 F12 
S1/(D15) - ADD ONE TO TARGET AND FETCH 
CHOOSE FROM F10 Fll TO WORK ON: Fll 

Figure 6: Initial Portion of XDA Design Trace 
(Designer's responses to system are underlined.) 



(D24) S1 (D34) S1 (D39) S1 

Figure 7: Outline of XDA Design Trace for Symbol Table 
(Structures considered ^ and chosen (s) , resulting functional 

requirements (g) , and design terminals [s] . 



Design Terminal Functions Provided Definition Given in Design Trace Structure Used in Actual Solution 

S1/(D15) 

S1/(D19) 

S1/(D24) 

S1/(D29) 

S1/(D34) 

S1/(D39) 

S1/(D47) 

S13/(D48) 

F9: KNOW OPERATOR 
F3: COMPUTE 
F12: OBTAIN TARGET 

F18: OBTAIN UNIQUE STRUCTURE 

F9: KNOW OPERATOR 
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Figure 8: Functional Assignments for Symbol Table Design 
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