
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-71-107

A MODEL FOR FUNCTIONAL REASONING IN DESIGN

P. Freeman and A. Newell
May 24, 1971

This paper was given at the Second International Joint Computer
Conference on Artificial Intelligence, London, September 1-3, 1971.
This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-70-C-0107) and is
monitored by the Air Force Office of Scientific Research. This
document has been approved for public release and sale; it's dis
tribution is unlimited.

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

A MODEL FOR FUNCTIONAL REASONING IN DESIGN*

P. Freeman and A. Newell
Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania, U.S.A.

Abstract

A model of the design process is developed
in two stages, corresponding to the task environ
ment of design and the activity of posing and
solving design problems. Use of the model with
top-down and bottom-up disciplines is discussed.
Ah example of the design of an object using a
semi-'automated design system based on the model
is presented. Several issues raised by the
model's qualitative aspects, its suitability to
automated design, and lines for further develop
ment are discussed.

Introduction

We wish to understand Mthe process of devis
ing artifacts to attain goals," as Herbert Simon
(19) recently characterized design. Our inter
ests include the design of programming and com
puter systems, the intellectual processes that
constitute designing, and the actual processes
used by humans in designing.

Informal knowledge about design is abundant.
Entire professions--engineering, programming and
architecture--take design as a central profes
sional aim. However, little reliable information
exists about how design is accomplished. .Most
works, e.g. (3), exposit design methodology to
instruct the novice, being based on informal
observation of design and participation in its
practice, overlaid with attempts to rationalize
its methodology. These works provide a useful
initial approximation. We^learn strategies such
as top-down and bottom-up, that careful specifi
cation of design goals is a must, and that care
ful evaluation is equally important. But this
provides only a beginning. Of works on the
psychology of design, there is even less (though
see 7 and 8).

What does exist, in quantity and quality, is
work on formalizing design. This occurs both as
mathematical models and as computer programs for
classes of design tasks. The bulk of this work
fits the following constraint formulation;

This work was supported by the Advanced
Research Projects Agency of the Office of the
Secretary of Defense (F44620-70-C-0107) and is
monitored by the Air Force Office of Scientific
Research,

Find a point x in a space X such that
x satisfies the constraints C.(x) and i maximizes an objective function F(x).

Most mathematical work takes X to be Euclidean,
so that a mathematical programming problem of
some type is obtained (e.g., 20). Much computer
work follows suit, being practical algorithms
for solving such problems (e.g., 5). A small
amount, mostly experimental work in artificial
intelligence, considers more complex spaces,
such as all arrangements of a set of objects .in
a two-dimensional room (9), (11).

The generality and utility of this formula
tion belies the difficulty of specifying prob
lems in its terms. To formulate completely the
design, say, of an operating system appears to
be essentially impossible. All aspects of the
formulation contribute to the difficulties:
defining the space of possibilities; formulating
the constraints; obtaining all the constraints
in advance; and creating a reasonable objective
function. Evidence from Eastman (7) and con
siderations brought forth by others (e.g., 1)
agree in indicating that humans do not design
using this approach. Even when the space seems
well defined, the constraints emerge continually
throughout the design, rather than being avail
able all at once.

Following Eastman's evidence, one could
profitably consider relaxing the above con
straint-formulation: permitting the space, the
objective function or the constraints to change
or to become progressively defined throughout a
design. Instead, we wish to follow a different
clue: the tendency of humans to design in terms
of functions.

Reasoning in terms of functions—functional
reasoning, as we shall call it—appears to be
ubiquitous. We often name things by the func
tions thev provide: a machine for washing
clothes is a "washing machine;" a man who sets
switches for trains is a "switchman." We give
advice in functional terms: "If your man is
attacked, defend it." We even write definitions
of function terms by using others:

wash: To cleanse, using water or
other liquid, usually with soap
detergent, bleach or the like,
by immersing, dipping, rubbing
or scrubbing (2).

Only a modest amount of scientific study has
been devoted to functional reasoning. Psychology
has had a continuing concern with functional
fixity (6) , the observed tendency of humans to
seLect objects for consideration in problem solv
ing in terms of their functional descriptions
(thus, proving to be poor problem solvers if
becoming fixated on inappropriate descriptions).
This work mainly demonstrates that humans do

1 indeed reason in terms of functional descriptions.

Among artificial intelligence programs, GPS
(10) and related programs (e.g., the Heuristic
Compiler, 18) offer the most explicit model of
functioning reasoning. GPS differences operate
as function terms; they describe a situation in
its relation to a goal and operators in relation
to how they affect situations. Matching the
functional description of a situation's require
ments to the functional description of what an
operator provides selects out a subset of all
possible operators for consideration. Thus, in
an action task (transformation of a situation
into a desired one) GPS provides at least one
paradigm of functional reasoning.*

Nothing indicates that functional reasoning
is a total scheme, sufficient to carry out com
plete solutions. In GPS it only provides one
strand of means-ends analysis. GPS also applies
actual operators to actual situations and
observes the results. Thus, unlike schemes for
reasoning that attempt to map problems into a
single formalized representation (e.g., those
in the Advice Taker tradition (14), (12)), func
tional reasoning may be only a partial technique
that must be combined with others to achieve a
complete problem solving system.

This paper is limited to describing and
illustrating a model for functional reasoning in
design. Evidence for the model must come from
studies of human reasoning or from the construc
tion of design systems that incorporate the
model. Neither is presented here. A semi-
automated design system based on the model is
being developed (by PF) and has been used in the
main illustration presented later. It will be
reported on in a separate publication.

We start by describing the task environment
in which design can take place. We first give
the simplest possible model and then augment it
with various complexities. The next section
deals with posing design problems and solving
them. Finally, a detailed example is developed.

The Basic Model for the Design Task Environment

The basic (or qualitative) model of a
design task environment consists of a set of
structures and a set of functions such that:

Pi: Each structure provides a set of
functions.

P2: For each function it provides, a
structure requires a set of func
tions .

P3: A functional connection can occur
between two structures if one
provides a function required by
the other.

P4: A constructed structure consists
of a set of structures (its
parts) and a set of functional
connections between them such
that:

1) The functions provided are
those provided by the parts
that are not consumed in func
tional connections.

2) The functions required are
those required by the parts
that are not provided by a
functional connection.

We call this the qualitative model because
nothing is said about how many structures of a
given type may exist or how much of a function
is provided or required. These additional stipu
lations are augmentations to the model, to be
discussed in the next section. We illustrate
below each of the propositions, drawing most but
not all examples from computer systems.

Structures provide functions

The most obvious examples are those where
an object has already been named by its functions:

A core memory provides memory.
A store instruction stores information.

The apparent banality of these statements arises
purely from the use of functional names as can be
seen in these examples:

A drum provides memory.
The BOZ instruction provides a change in
program control.

This common usage of functional names for struc
tures does lead to more serious confusion of what
are functions and what are structures, however:

The success of GPS-like programs in describing
human problem solving offers additional evi
dence for the role of this paradigm (15), (16).

An iteration-code requires an initiali
zation, an iteration-action, a termina
tion-test and an exit.

The iteration-code is a structure--a sequence of
instructions. We name it "iteration-code"
because all we know about it is that it provides
the function of iteration. If we had called it
"Sam," there would have been no confusion between
structure and function.

Proposition Pi asserts that more than one
function can be provided by a single structure:

The drum can hold user files or resi
dent systems.

The conditional branch instruction can
provide either loop control or switch
ing between two mutually exclusive
control paths.

In all these examples there appears to be a
single capability—a single function--that under
lies the multiple use. A drum provides memory;
holding user files and resident systems are
simply two subvariates of the memory function.
The branch provides for the single function of
changing program control; it suffices for either
loop control or path splitting.

This singularity, however, need not be:

A pencil can print characters, punch
holes in paper, serve as a core for a
ball of string, and tamp down pipe
tobacco.

Different aspects of a single object provide the
structural basis for each separate function.
Other structures can be found that provide each
function separately, but not the others (in any
reasonable way): In the example above a type
writer, a three-hole punch, a cardboard cylinder,
and a pipe tool, respectively.

With designed objects (e.g., a magnetic
tape) there is a strong tendency for a single
function to be dominant, with all others seen as
variant, or even deviant:

A magnetic tape provides memory or a
photogenic visage for public relations.

Inside of a structure the situation is otherwise,
and parts are carefully constructed to have
multiple function (e.g., general registers in a
central processor).

The structures in the examples above are
physical objects (drums and pencils) and abstract
objects (instructions). Another important class
of structures in computer systems are relations:

Adjacency of cells in memory provides
a two-way association between two

items of information (their contents).

A structure may provide a given function for any
number of objects:

A single real-time clock provides time-
of-day for all user programs.

In general there is no limit on the number of
structures that can use a provided function..

Structures require functions

The most obvious examples involve general
requirements.

A physical object requires space.

A program requires primary memory
space.

Typically a structure requires the conjunction
of several functions:

A compiler requires primary memory,
secondary memory, input-output, and
a processor.

A generator requires initialization,
a way to obtain a candidate from the
generator state, a next state, and a
termination test.

The second example has' another instance of using
function terms to name structures. The termina
tion test might seem to be a structure. After
all, we know that any test is a piece of code.
But this is because we presume a unique struc
ture for the required function of testing for
termination. In fact, generator terminations
can be provided by a memory protect system that
detects out-of-bounds memory accesses.

The converse of one structure providing
many functions is that in general many struc
tures can be found to provide a given function;

Tape, disk, and core provide memory.

Printers, terminals, and card punches
provide output.

The choice of one of the structures providing a
function is the central activity of qualitative
design.

Proposition P2 is more specific than we
have demonstrated. Functions are required by a
structure in order to provide specific functions:

A program requires primary memory
space to execute.

This is most clearly seen when a structure has
different functional requirements for the

different functions it can provide:

A compiler provides compiled programs
and also source language debugging.
It requires a resident symbol table to
provide the source language debugging,
but not to provide compiled programs.

Construction of structures

Propositions P3 and P4 describe how struc
tures can be combined into new structures. By
choosing a set of structures so that the func
tional requirements of some are satisfied by
others, some functions are left for external
usage. Consider a functional description of a
knife:

Component structures:

blade blade

Ray- handle -*P2
-*P3

structure is never taken as complete and always
admits of further refinement and modification.

Augmentations of the Model

The model in the previous section was the
simplest one that seems to capture the essence
of the relations between structure and function
in design. The situation can be complicated by
various restrictions:

Define the functional specification of
a structure to be the functions pro
vided and required by it along with
whatever restrictions apply (as
defined below).

P41. A constructed structure must
obey the restrictions on its
individual subparts after
the effects of the func
tional connections are
accounted for.

Rl: Requires being held.
R2: Requires being held.
Pi: Provides cutting.
P2: Provides for holding a narrow object*
P3: Provides being holdable by a human

hand.

P5. A structure may be subject
to a supply law that limits
the number of structures of
a given functional specifi
cation that are available
and/or can be constructed.

Constructed structure:

knife
handle --^•XpT blade —

• P3

A functional connection exists between the
blade's requirement for being held (Rl) and the
handled provision of that function (P2). The
blade's provision of the cutting function (Pi) is
not consumed in a connection and is thus provided
by the constructed structure; likewise, the
handle's requirement of being held (R2) is not
satisfied and is thus a functional requirement of
the knife.

This example illustrates a basic property of
construction: Once a functional connection is
established, some of the functions involved may
disappear (e.g., the ability of the handle to
hold a narrow object). They become internal to
the new structure, so to speak.

The functional description of a knife just
given is incomplete. More is required to cut
than just having a blade and a handle (even with
a hand). There must be motion aimed in the right
way and with sufficient pressure; the material
from cutting must be removed; the blade must be
sharp; and so on. A functionally described

P6. A structure may be subject
to a capacity law that
limits the functions that
can be provided.

P7. Functions may be quantified
so that an amount of a func
tion may be provided or
required (measured in some
units); these amounts may be
subject to capacity laws.

P8. A structure may be subject
to an input-output relation
connecting the functions it
provides and those it
requires (either by amounts
for quantified functions or
mere existence for unquali
fied functions--compare
compiler example above) .

As elaborate restrictions are applied, the
problem of design gradually converts from one of
purely qualitative specification into one that
gives the full details of the structures
involved and requires quantitative mathematical
treatment.

Supply laws

Often only a limited supply of a given type
of structure is available, especially in ad hoc

design efforts:

In constructing a raft to get across a
river, exactly two large felled logs
of particular characteristics are
available.

These logs can be described in terms of the func
tions they provide and require, but one must not
assume from such descriptions the availability of
an indefinite number of logs.

When design is done in a commercial enter
prise, supply restrictions often do not exist.
Any number of structures of a given type can be
used, the restrictions being expressed in terms
of the costs of obtaining them.

Capacity laws

The most pervasive form of restriction is on
the ability of a structure to provide a function
for more than one (or several) structures, or to
provide a function given that it is providing
another.

A wall plug may provide any electrical
device with power, but only one at a
time.

If a conditional branch instruction is
used for a loop, it cannot also be used
for path-splitting.

Capacity laws are not quantitative, but
rather an expression of the logical character of
the structure in providing its functions. Almost
any pattern of interrelation can exist, but the
most usual are:

Single-function capacity: A structure
can provide one and only one of its
functions at a time.

Single-structure capacity: A structure
can provide a function to one and only
one structure at a time.

There are also strong time dependent effects
as well as irreversible ones:

A bomb may provide an explosion only
once.

A pawn may be queened only once.

Quantitative functions

Many homogeneous quantities occur in func
tional descriptions: power, space, memory, pro
cessing, channel capacity, energy, time, etc.
The amounts of these functions that can be pro
vided are frequently subject to capacity laws:

A file directory can be kept in primary
memory, on the swapping drum, or on the

- If it is kept in primary memory
the users will have a smaller
Job area.

- If it is kept on the swapping
drum, fewer users can be logged
in simultaneously.

- If it is kept on the file, the
time to obtain files increases.

The first two consequences derive from the capac
ity law on the amount of memory that is a form
of conservation law (i.e., what is provided to
one structure is not available for others). The
third arises from the fundamental law that a
function (obtaining files) cannot be performed
until its required functions (obtaining file
addresses) is provided.

Input-output relations

The amount of a function provided can be
tied to the amount of the functions required by
an input-output relation:

The number of users logged on depends
on the amount of primary memory avail
able.

The amount of cutting depends on the
sharpness of the blade.

Summary

Functional reasoning in design does not
operate at some particular level in the range of
restrictions. Rather, different domains of
design (different technologies) require the use
of specific types of restrictions. Further, no
consistency occurs within a design situation
(e.g., if some supply laws are used, it does not
follow that there are supply laws on everything)
Complexity is added only for the critical struc-
tues that need it, other components being left
as simple as possible.

We have laid out these augmentations to
provide context for the qualitative model and to
emphasize that casting the basic model in the
simplest of forms was deliberate. This paper
will focus on the qualitative model, since it
contains the basic notions.

Design with the Model

The model given in the previous sections
lays out an environment. Within this a variety
of design problems can be posed. The most fun
damental one is:

Given: A set of structures and
and their functional speci fications.

secondary file.

Construct: A structure with desired
functional specifications.

The fundamental problem here is not one of opti
mization, but one of feasibility--to find a
structure that can be composed from the available
structures and has the desired properties
(expressed functionally). Variations can be
generated by insisting that certain structures
be used, by asking for minimum structure, by
finding all possible designs rather than just
one, and so on.

Given a design problem, different methods
can be formulated for attempting it. Top-down
schemes start with the desired functions and
work back toward the structures that are avail
able. Bottom-up schemes start with the struc
tures available, constructing successively
larger structures until one is found that has
the desired specifications. Most-critical-
component-first schemes posit functional speci
fications of structures that appear (on whatever
grounds) to be critical to the final design and
then design these first.

These methods all have a combinatorial,
heuristic-search character. At each stage of
the design a set of possible actions is available
to advance the design, one of which must be
selected, which then leads to a new situation of
partial design. As in other such problems, the
set of alternatives is generally large enough so
that brute force search (e.g., breadth first)
cannot possibly succeed. However, let us formu
late the basic bottom-up and top-down methods,
since they bring out some important points.

Basic bottom-up method

The elements of the problem space consist of
sets of structures (with functional specifica
tions). A new structure can be constructed from
any set of existing structures that can form
functional connections. The functional speci
fications for the new structure can be deter
mined via postulates P4 and P4'.

A structure satisfies the desired functional
specifications if its provided functions include
those desired and if for each desired function
the required functions match exactly those
desired." Thus the basic bottom-up method is
exactly heuristic search in terms of the opera
tions that are specified in the task environment.

Basic top-down method

Working top-down is not just working back
ward from the desired functions toward the given
structures. It also attempts to bind the design

The asymmetry arises because there is no obli
gation to use provided functions.

as little as possible at each stage, taking only
necessary steps, given the structures actually
available, and coming as close as possible to
deriving the design.

A typical step in a top-down design might
look like:

Synchronization of the drum requires
a buffer memory.

Stipulate a memory that is write-by-
word and read-by-bit.

Only a single essential feature of the memory is
specified, rather than an actual available
memory (e.g., a specific drum). The specifica
tion (the stipulation) is structural, for it is
not necessary really that memory have this
property to produce synchronization. The step
is a perfect one in a top-down design if, in
fact, for the available structures, all solu
tions to the design problem will have this
structure.

Stipulation can appear to be entirely func
tional:

A value of the Bessel function must be
obtained.

Stipulate a process that searches a
table for it.

Further specification has occurred, for an alter
native could have been chosen:

Stipulate a process that recomputes it
on demand.

We recognize the difference between a search and
a computation (as intended here), but the dis
tinction is given in functional terms (though
lurking in the background are some structural
distinctions).

In a top-down design one is continually
forced to ask "What structures will provide this
function?". The answer one wants in order to
delay binding the design is one that makes only
very general commitments. Thus, an answer such
as

"CLA instructions and input operations
retrieve information."

to the question "How can we obtain information?"
is not very useful during most stages of a top-
down design. On the other hand, an answer of
the form:

Information can be obtained by knowing
it, computing it, or searching for it.

provides an incremental binding of the design

that permits further detailing without overcom-
mitting the designer. Such generalized function-
structure laws* appear to be quite important,
carrying much of the burden of top-down reason
ing.

A top-down design iterates between picking
structures to supply functions and generating
new functional requirements from the chosen
structures. Successful termination of the pro
cess occurs when all functional requirements are
satisfied by parts of the designed structure
(through functional connections) and all desired
functions are provided. This corresponds to a
backwards working heuristic search procedure.

The result of a successful design is a con
structed structure whose components are either
given structures or are reducible (recursively)
thereto. Such a structure may still be distant
from a real physical object that will perform as
desired. To have designed a knife as a blade
and a handle, or even a blade, handle and
fastener (of blade to handle), is not yet to have
a knife. One might insist that a design task is
not well posed unless the given structures cor
respond to actual physical objects. Successively
more detailed restrictions could be added to the
functions, until an adequate physical model of
the situation would be implicit in the func
tional description. Reasoning would more and
more involve the details of these restrictions
and less and less the matching of functions
required to functions provided, which is the
heart of functional reasoning. Actually, it
appears impossible (even if it were desirable)
that an elaboration of functions into finer and
finer categories could suffice for expressing
the intricacies of actual physical technologies
(e.g., metallurgy or polymer chemistry). How
ever, such an elaboration might prove successful
for extremely artificial and discrete technolo
gies, such as computer programming.

The result, then, of a functional design
remains a plan for the realization of an actual
object. To implement the plan requires enlarg
ing the reasoning to include working with the
actual physical structures or with symbolic
models of them, observing the effects of manipu
lation, correcting the design, testing it, and

* The example given here is actually a function-
function law, of a type that further elabo
rates a function term. There is a similar
type of relation that deals with the inclusion
of one function in another (e.g., hi-speed,
low-speed, and multiplexed transmission of in
formation are all transmissions of informa
tion). For simplicity, the initial version of
the model does not deal with this issue. A
more complete version will deal with direct
relationships between functions (i.e. with no
intervening structure) since they are an
important part of design.

An Example of Qualitative Design: A Symbol Table

We will not attempt an example of a com
plete design, involving the application of a
design method to a task environment to obtain a
solution. Although this must be done to explore
the problem solving aspects of an automated
design system, that seems less crucial initially
than exploring the framework itself. We will
attempt an example that provides:

- an explicit rendition of a design
task environment;

- the posing of a real design problem
in this environment;

- the description of a path through
the design space that would have
resulted in the solution given;

- the exhibition of a functional
assignment of structures that satis
fies the posed design problem;

- an indication of how a complete
physical specification could be
obtained;

- an indication of how alternate
choices in the design could have led
to other solutions.

We chose as the example the design of a
two-way symbol table for a programming language.
This is a common programming structure, and
many standard solutions to it exist: sequential
search, binary search, logorithmic or tree
search, and hash addressing. It is a fairly
simple, though real, design task and permits us
to stay within the confines of the paper and
manual analysis.

No extensive discussion exists in the lit
erature that explores thoroughly the design of
symbol tables, describing trade-offs in terms
of the possible properties. There does not
even exist, so far as we know, a complete for
mulation of the design problem, say in terms of
a space of possibilities, the constraints and
the objective function. Our example is not
meant to fill any of these gaps, but only to
illustrate our model of functional reasoning in
design.

The design task environment

The basic class of structures to be used
in the design, called programming structures,
consists of collections of data-structures with

so on. This is in agreement with the paradigm
embedded in GPS; and we shall not explore it
further here.

programs that operate on them. Programming
structures, by the execution of one or more of
their programs, provide (possibly many) func
tions to other programming structures in which
they are embedded.

We adopt two general conventions of design
practice, which are substantially honored
throughout the programming world:

Principle of separated functions.
There exists a distinct program that
provides each of the functions pro
vided by a programming structure.

Principle of uniform control. There
exists a programming language (includ
ing therein the notion of a set of
programming conventions) that for all
programming structures provides the
functions of:

(1) Designating the program to be
executed at each moment.

(2) Designating the operands
(data-structures) for a pro
gram.

(3) Communicating the operands to
a program to be executed.

(4) Communicating the results of
an executed program.

(5) Loading programs and their
operands into space required
for their operation.

The first principle is simply that one designs a
separate subroutine for each kind of thing one
can do with a data structure, rather than evok
ing the actions in various linked and contingent
combinations. It does not imply that only such
programs should exist; the usual programming
structure has many subroutines that are internal
to it. The second principle is simply to have
uniform conventions for calling routines, passing
parameters, providing space in primary memory,
etc. Both principles cover functions that must
be provided for any programming structure to
operate. They permit the design of a particular
programming structure to attend exclusively to
the processing required to achieve the specific
functions desired.

Both program and data are structures and
lead to a kind of dual functional description.
We can describe programs, giving the function
performed by each subroutine (ultimately, each
instruction). Such a functional description will
be complete: the functioning of each of the in
structions is the necessary and sufficient con
dition for the programming structure to provide
specified functions. The data does not seem to
enter in. Equally, we can describe data

structures, giving the functions of the contents
of each subpart and their relations in address
space. Such a description will be almost com
plete, for almost every instruction in the pro
gram will operate only by the grace of some
aspect of the data0* Thus, a functional
description of a programming structure will
appear to present everything twice. We recog
nize this by taking the function of data as
permitting various processing functions to be
provided by particular programs (ultimately,
instructions). For example, an address rela
tionship may "permit computation" of some result

Figure 1 shows the actual structures avail
able for our example: cells, addresses, the
relation of contents-of, and sets of instruc
tions. We write programs in a simple Algol-like
notation. Figure 2 illustrates the functions
provided by the program structures and those
permitted by the data structures. The func
tional requirements of the structures are not
shown here since they are well-known to all
programmers.

Figure 3 shows the code and data structure
for the simple symbol table whose design we shall
illustrate. It consists of a one-dimensional
array with each entry in the symbol table taking
two adjacent cells. The external symbol is
entered in the first cell of a pair, the internal
address in the second. There are three routines:
Rl finds the address associated with an external
symbol; R2 finds the symbol associated with an
internal address; and R3 enters a new symbol-
address pair into the table. For the accessing
operations a search is made of the table, test
ing the first word of a pair if the symbol is
given or the second word of the pair if the
address is given. If a match is found, then the
other member of the pair is returned as the
result. To establish a new pair, it is simply
loaded into the table at the high end.

Several simplifications have been intro
duced. We ignore all failure conditions, either
that a requested entry is not in the table or
that the table is too full to receive a new
entry. We do not provide for the removal or
modification of existing entries so that R3
becomes much simplified. These simplifications
are made to keep the example within bounds.

It is necessary to impose a system of func
tion terms. Figure 4** defines the functional
* The failure of completeness derives from pro
grams accomplishing some things without resort
to a data structure.

'WfThe material in Figures 4, 5 and 6 is output
from XDA, a semi-automated design system based
on our model. The system is being built (by
PF) and used on the PDP-10; it is constructed
on L*(F) — a kernel system-building system.

provisions of the structures to be used in the
design example. Referring to Table 1 for an
explanation of the notation used by XDA, Figure
4 tells us that the function OBTAIN (with inter
nal name Fl) can be provided by three different
structures: a KNOW STRUCTURE, a COMPUTE STRUC
TURE, or a SEARCH STRUCTURE (with internal names
S1, S2, and S3). Additionally, Si (the KNOW
STRUCTURE) is marked PRIMITIVE, meaning that for
the present we need not worry about its func
tional requirements.

Although the function terms listed in
Figure 4 (OBTAIN, KNOW, COMPUTE, etc.) are
meaningful to the reader, their role in this
design must depend entirely on their functional
specifications. These consist of the function
provision laws given in Figure 4 and the func
tional requirements given in Figure 5. The
first line of Figure 5 states that S2 requires
the function F3, lines 4 and 5 state that S5
requires F3 and F9, etc. (The full form of a
name (e.g. SEARCH STRUCTURE) or its internal
name (e.g., S3) can be used interchangeably).

The system of functional description that
this scheme leads to is quite simple and reason
ably abstract compared to the actual programming
structures of Figure 1. Nonetheless, it is
adequate for the purposes of the example and
serves to define a small but complete design task
environment.

The design problem

We can pose the problem of designing a
symbol table as follows:

Given: The structures available in the
design task environment.

Construct: A structure (called a
symbol table) that provides
for:

(1) Obtaining the internal
address associated with a
presented external symbol.

(2) Obtaining the external sym
bol associated with a pre
sented internal address.

(3) Associating a presented exter
nal symbol and internal
address.

In accordance with our earlier remarks, we have
removed other functions normally associated with
a symbol table.

The problem is cast in terms of a set of
three functions to be provided and none to be
required. From the principles stated earlier, we
can take it that there will be a program for each
of the three functions, and that the only design

problem is what is the nature of these three pro
grams and the data structures on which they work.
The issue of how an external symbol and an inter
nal address are presented is not of concern,
being part of the surrounding programming system.

The design task environment presented is not
at all a special task environment for symbol
tables. The structures and functions provided
are general. With a few additions, a complete
order code could be built up and we could then
propose other problems to be solved in the same
environment.

Design path

As already discussed, one can follow a
variety of design strategies while employing
functional reasoning to go from a design goal to
a complete design. Although the strategy used
can be very important, our purpose here is to
illustrate the reasoning and its product not
the pattern it follows. Consequently, no par
ticular significance should be attached to the
order in which the following design unfolds.

XDA was used to go through an essentially
complete sequence that achieves a design for the
object specified above within the design task
environment given. Figure 6 shows an initial
portion of the design trace output of XDA as it
was used to develop this example. Using the
notation of Table 1 and noting that the design
er's input is underlined to distinguish it from
XDA's output, we see that first the structure to
be designed is defined by stating the functions
it is to provide. This structure and its re
quired functions are placed in nodes of the de
sign representation (Dl, D2, etc.). The designer
is then given a choice as to which part of the
design he wants to work on and a set of possible
structures are presented to him for his choice.*
He may stipulate a structure to supply the func
tion in question at this point in the design
(other structures might be used to supply the
same function elsewhere in the design). Then
its functional requirements are entered into the
design and the cycle repeats. This proceeds
(assuming the designer does not alter the prompt
ing sequence of XDA) until a primitive structure
is stipulated to provide a needed function, ter
minating that branch of the design.

Figure 7 portrays graphically the design
path that was followed in the complete design
trace of XDA (the path that produced the design

'The designer may make a variety of responses,
besides those suggested by the system, that per
mit him complete freedom in choosing a design
sequence. Additionally, the design may be backed
up, new functions and structures not in the data
base may be defined and used in the design,and the
system can be requested to perform more complicat
ed searches for structures supplying a given
function.

of routine Rl is omitted since it is exactly
analogous to the design of R2 -- the left-most
branch of the tree). The time order of the
trace can be reproduced by following the branches
depth-first in left to right order (a top-down
strategy was used for simplicity). The tokens
in the nodes are the shorthand names of functions
and structures and the node is labeled with its
name from XDA's trace. A function node below a
(Structure node indicates the function is re
quired by the structure; a structure node below
a function node indicates the structure can pro
vide the function. If a structure node is a
triangle, then the structure was considered but
not stipulated for the design. If a node is
square, the structure is terminal and a name of
the form Si/(Di) is attached to indicate the
actual structure that was stipulated for the
design, as shown in Figures 6 and 8.

Starting at the top we note that the symbol
table (S16) has three functional requirements
(F24, F25 and F26) that are the three functions
it is to provide. To follow the design of the
retrieval mechanism for (F24) we move down the
left subpath. F24 has three types of structures
(SI, S2 and S3) that can provide it. Since the
path goes through S3 that means we chose to use
a search structure (S3) in the design.

From XDA's data base (built up in Figures
4 and 5) we learn that a search structure (S3)
has only one functional requirement, search (F4),
and that two structures (S7 and S8) can provide
the function of search. We chose a generator
searcher (S7). It in turn has three functional
requirements (Fll, Fl2 and F13). S8 was con
sidered as a candidate to provide F4 but was not
chosen. The design trace in Figure 6 shows this
sequence more clearly.

The path continues in this way, splitting
into subpaths each time two or more functional
requirements appear for a single structure. At
the terminal nodes we have designated particular
pieces of primitive structure (for this design)
that go to make up the designed object.

A Solution of the Design Problem

Figure 3 shows a completed symbol table
(data structures plus operators) that is an in
formal solution. Any programmer would verify
that it performs the required functions. In
terms of the model, however, it is not a complete
solution for we have not demonstrated what struc
tures provide what functions and what structures
permit other structures (e.g., programs) to
operate as needed.

Figure 8 presents the completed design by
associating the terminal structures from the
design trace with the actual structures used in
the solution presented in Figure 3. The first
column has the code names of the terminal struc
tures. The second column presents the functions

provided by the structures as developed in the
design trace; it consists of all functional re
quirements above the structure in the design
path up to and including the first function that
is a member of a set of two or more functional
requirements of a structure. The third column
is the informal definition of the structure
given in the design trace and the last column
shows the corresponding structure used in
Figure 3. As noted above, the data structures
play a role of permitting various functions by
the program structures and thus do not appear
in Figure 8.

Full Design

The disparity between the functional de
scriptions of the terminal objects and the
actual structures used illustrates the point
made above that the output of a functional
reasoning design process is essentially a plan
requiring further implementation. The struc
tures used are not only some distance from the
structures specified but some critical elements
are missing and must be supplied by some pro
cess to effect an implementation. To wit, the
control structures that tie together the various
pieces of program and the exact constraints on
the data structures (e.g., size of cell, adja
cency) are not present.

The distance between the final result of
the functional reasoning in the example and a
physical specification of the constructed ob
ject does not seem to be an unbridgeable chasm.
Aside from the fact that many important designs
(e.g., flowcharts and blueprints) leave out
many important details (the use of language
constructions and the principles of carpentry),
there are at least two possible courses of
action.

One could try to carry the functional
reasoning process down further to obtain more
concrete specifications. Analysis of the re
quirements of individual instructions in terms
of their need for operands and/or adjacent in
structions permits a more detailed specifica
tion. Likewise, data structures could be ana
lyzed in terms of relations between their parts.
Even though this approach could carry the de
sign further than our example goes, it is not
clear it could do the entire job.

The other approach that bears investiga
tion is to consider the output of functional
reasoning to be a plan that is input to a
heuristic compiler. Matching on the functional
descriptions of instructions and data struc
tures would be used to implement the plan.
Clearly, such a procedure would have to have
available operators for manipulating and testing
the physical structures so assembled. The
details have not been worked out, but Figure 8
clearly presents a set of well-defined problems
of the general form "Build a structure out of

of a poor man's non-technical constraint satis
faction scheme. It should be replaced by more
adequate formulations wherever possible.

An alternative view sees functional reason
ing as a planning scheme to be used in connec
tion with more accurate procedures. This is the
view implicit in our treatment of the example,
where we carried the functional description only
to a certain detail and then used a more precise
formulation.

On the initial structuring of designs

One of the peculiarities of many design
problems is that they create structure out of
nothing, so to speak. They appear in this sense
to be open problems. It can often be observed
in human design that a structure is placed on
the design problem within a few minutes, or even
fractions of a minute, of obtaining the problem.
Pure functional reasoning seems to be a plausible
candidate for the mechanism whereby this initial
creation of structure occurs.

The functionally described structures are
not unlike the kinds of descriptions of struc
ture people seem to have initially/' The reason
ing involved, which is highly associational
(bouncing back and forth between functions and
structures using function terms as the linkages),
is well suited for rapid reasoning which could
put together new structures never before known
to the designer. This role for functional
reasoning in design is consistent with viewing
it as a planning, initial approximation instru
ment. This aspect also emphasizes the qualita
tive model, rather than models with substantial
restrictions added which make reasoning more
complex.

Large memory structure

It goes almost without saying (though we
have not said it yet) that real designs require
a large memory of structures and functional laws
between them. This point has been urged in con
nection with almost every attempt to reason
about the real world, and this paper offers no
new evidence for it. The qualitative model can
be viewed as a sort of retrieval net for index
ing and organizing a large memory, and much of
its power should only become apparent in such
contexts.

The relation to predicate calculus models

We do not yet understand the relationship
of this model of functional reasoning to at
tempts to formulate problems in a formal calcu
lus (12), (13), (17). It appears that all

Sometimes they also have a highly specific and
elaborate structure clearly evoked from having
already known it.

the available physical structures (as in Figure
1) that performs this well-defined function",
which would be amenable to heuristic compiler
techniques.

Alternative Designs

Figure 7 plainly shows that only one of many
possible paths has been chosen. Most, of course,
lead to no design at all. For example, if the
association function had been designed as a hash
ing function and the retrieval operations as we
now have them, we clearly would not have a symbol
table.

One common type of symbol table employs a
variant of binary search in which an inspection
of a candidate indicates a narrowed range from
which to obtain the next candidate. This is
what we have called a guided searcher (S8).
Thus, by choosing S8 instead of the generator
searcher (S7) at design node D7, we would have
obtained a symbol table of that design (assuming
we made appropriate changes in the association
function as well).

To obtain a hash storage scheme instead of
the relational storage, we used, we could have
picked the structure of name location storage
(S15) at design node D40, this being the kind of
structure that computes the address of a storage
cell from the name of the presented item. Then
in the retrieval operation we would have had to
choose a compute structure (S2) at design node
D5 in order to compute directly the location of
the target object.

Discussion

We have now presented a model of functional
reasoning in design and illustrated at least the
central tenets of it. A number of aspects have
been left dangling or received no attention at
all. They can receive no adequate treatment
here, but we will attempt to state some of them
briefly.

Relation to constraint-formulation

We took note of the constraint-formulation
at the beginning of the paper, because it appears
to be the form towards which design problems
tend as they become formalized. There is more
than one way to look at the relation of function
al reasoning to the constraint-formulation. One
view takes functional reasoning as a special
subspecies of the constraint-formulation. The
kinds of constraints are simple logical ones,
saying that connections of various kinds must
exist. As we move toward the various restric
tive laws (supplies, capacities, etc) a few
additional simple constraints can be handled
(e.g. , these laws are mostly expressible as
constant or bounded sums, as in linear program
ming). But no really intricate constraints can
be handled. Thus, functional reasoning is sort

reasoning schemes rely ultimately on mechanisms
for matching expressions and instantiations of
forms for that is what is available in in
formation processing systems. Thus all systems
have a sort of brotherhood under the surface.
The formal calculi offer great precision and thus
appear to be modelling the structure of situa
tions. But when they are applied to non-formal
situations (i.e., not to already formalized areas
such as group theory, lattice theory, or simple
puzzles) the toy models that are constructed
(i.e., the baby axiomatizations) are sufficiently
gross caricatures of reality that they may in
fact be nothing but a vehicle for the sort of
functional reasoning discussed here.

Universal non-model

The uniformity of functional reasoning
across all domains prompts the conjecture that
it is a sort of non-modelv of each particular
domain. That is, it is a scheme of reasoning
that is adapted to the needs of the reasoner,
not to the details of the domain. It is applied
universally to all domains. Whatever is picked
up is reflected in the reasoner's problem solv
ing; whatever is too intricate is lost. The
major degree of freedom available to make the
model adaptive to a particular domain is the
choice of the function terms that are to be ap
plied in that domain. The set of functional
terms appears not to be derivable from the struc
tural domain, so that they constitute an importa
tion or construction for a domain. For instance,
they can reflect past experience with solving
problems in that domain, so that a particular set
of function terms serves, in part, as a memory of
past solutions.

Systems of functional description

Function terms do not generally occur in
isolation. They form systems for a given domain.
For example, GPS has a set for logic: add and
delete terms; increase and decrease numbers of
terms; change signs, connective, position, and
grouping. These cover the domain: if no such
term applies, then the given situation is already
the desired one. Relations other than partition
ing hold between function terms (e.g., inclusion).
It is clear that the efficacy of a scheme of
functional reasoning depends on the set of terms
chosen and their relations to each other (e.g.,
see GPS on the Tower of Hanoi (10)). The impor
tance of the nature of the descriptive system
available on a problem space has been emphasized
by others, most notably by Banerji (4). It
deserves extensive treatment.

It is, of course, a model of any domain it is
used for. Our use of Mnon-modelM is to emphasize
its lack of responsiveness to the details of any
particular domain.

Conclusion

This paper provides an initial attempt to
set out a model of a specific type of reasoning.
It does not capture all that happens when humans
design using function terms. Hut only by at
tempting an explicit model for some of the more
obvious aspects of functional reasoning, will
it be possible to discover the additional phe
nomena that exist.

References

1. Alexander, C. Notes on the Synthesis of
Form, Harvard University Press, 1964.

2. American Heritage Dictionary, 1969.

3. Asimow, M. Introduction to Design, Prentice
Hall, 1962.

4. Banerji, R. B. Theory of Problem Solving:
An Approach to Artificial Intelligence,
American Elsevier Publishing Company, 1969.

5. Dejka, W. and D. C. McCall. MA Study in the
Design of a Practicable Timeable Bandpass
Filter Using Mathematical Programming,"
Proc. of the IEEE 1970 Systems Science and
Cybernetics Conference, p. 267.

6. Duncker, K. "On Problem-Solving,11 Psychol
ogy Monographs, 58, 5, 1945.

7. Eastman, C. M. "Explorations of the Cog
nitive Processes in Design." Computer
Science Department, Carnegie-Mellon
University, AD671158, 1968,

8. Eastman, C M. "Cognitive Processes and
111-defined Problems: A Case Study from
Design." Proc. of First Joint International
Conference on Artificial Intelligence,
Washington, D. C , 1969.

9. Eastman, C. M. "Problem solving strategies
in Design." EDRA 1: Proceedings of the
Environmental Design Research Association
Conference, H. Sanoff and S. Cohn (eds.)
Chapel Hill, N. C , June 1969. School for
Design, North Carolina State University,
1970.

10. Ernst, C W. and A. Newell. GPS: A Case
Study in Generality and Problem Solving,
Academic Press, 1969.

11. Grason, J. "Methods for the Computer-
Implemented Solution of a Class of 'Floor
Plan' Design Problems," Ph.D. Thesis,
Carnegie-Mellon University, AD 717756, 1970.

12. Green, C. "Application of Theorem Proving
to Problem Solving," Proc. of First Inter
national Joint Conference on Artificial
Intelligence, Washington, D. C , 1969.

13. McCarthy, J. "Programs with Common Sense,"
in Semantic Information Processing, M. Minsky
(ed.), MIT Press, 1968.

14. McCarthy, J. and P. J. Hayes. "Some Philo
sophical Problems From the Standpoint of
Artificial Intelligence," in Machine Intelli
gence 4, 13. Melt2er and D. Michie (eds.),
American Elsevier Publishing Co., Inc., 1969.

15. Newell, A. and H. A, Simon, "Computers in
Psychology," in Handbook of Mathematical
Psychology, vol. 1, John Wiley, pp. 361-428,
1963.

16. Newell, A. and H. A. Simon. Human Problem
Solving, Prentice-Hall, in press, 1971.

17. Pople, H. E. Jr. A Goal Oriented Language
for the Computer, Ph.D. Thesis, Carnegie-
Mellon University, 1969.

18. Simon, H. A. "Experiments with a Heuristic
Compiler," JACM 10,4, October, 1963.

19. Simon, H. A. The Sciences of the Artificial,
MIT Press, 1969.

20. Wilde, D. J. and C. S. Beightler. Founda
tions of Optimization, Prentice-Hall, 1967.

elements

ST:

procedure Rl(symbol, address); array ST;

i :» 0;

Rl.l: tes£(symbol. ST[1]);

Iftrue goto Rl.2;

i i + 2;

goto Rl.l;

R1.2: address :=» ST[i 4- 1]; end

procedure R2(address, symbol); array ST;

i :- 1;

R2,l: test(address. ST[i]);

Iftrue goto R2.2;

i := 1 + 2;

£oto R2.1;

R2.2: symbol := ST[i - 1]; end

procedure R3(symbol, address); array ST;

top := top +2;

ST[top] := symbol;

ST[top + 1] := address; end

Figure 3: A Completed Symbol Table

Structure and Function Names:

CJELL, ELEMENT ADDRESS, OBTAIN CANDIDATE, SEARCH FOR IDENTITY, ...

SI, S2, ... Fl, F2, ... used internally and for shorthand (assigned
automatically by XDA the first time used)

Design Nodes:

Dl, D2, D3, ...

Operators:

#PRDUTIVE# Mark the preceding structure as not needing any
functional specification

, List separator.
Sc List separator.
* Input statement terminator.
s£: A new structure with name si follows.
fi: A new function with name fi follows.
Si: A B C Si is the internal name of the structure A B C .
Fi: D E Fi is the internal name of function D E.
A --> B A provides B.
A <-- B A is provided by B.
A » B A requires B.
A « B A is required by B.
A == B Design node A is specified by B.
A = B Design terminal A is specified by B.

Table 1: Notation Used by XDA System

fl: OBTAIN si: KNOW STRUCTURE ^PRIMITIVE* ,
s2: COMPUTE STRUCTURE ,
s3: SEARCH STRUCTURE *

f2: KNOW <-- si: KNOW STRUCTURE *

f3: COMPUTE < — ski OPERATOR THAT PRODUCES RESULT ,
s5: OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE ,
s6: OPERATOR THAT COMPUTES CONDITIONALLY *

fkx SEARCH < — s7: GENERATOR SEARCHER ,
s8: GUIDED SEARCHER *

f5: GENERATE < — s9: GENERATOR *
f6: RECOGNIZE < — slO: UNIQUE STRUCTURE MATCHER ,

sll: UNIQUE RELATION MATCHER /

sl2: EXTREME MEASURE SEARCHER *
f7: RETAIN <-- sl3: STORE OPERATOR ^PRIMITIVE* /

slUi RELATIONAL ITEM STORAGE ,
sl5: NAME LOCATION STORAGE *

f8: STORE < — sl3: STORE OPERATOR *
Figure 4: Structures and Provided Functions (input to XDA)

s2: COMPUTE STRUCTURE >> f3: COMPUTE *
s3: SEARCH STRUCTURE >> fi»: SEARCH *
ski OPERATOR THAT PRODUCES RESULT >> f9« KNOW OPERATOR *
s5: OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE »

f9: KNOW OPERATOR & f3s COMPUTE *
S6J OPERATOR THAT COMPUTES CONDITIONALLY >> f6i RECOGNIZE &

f9: KNOW OPERATOR *
s7: GENERATOR SEARCHER » flO: GENERATE CANDIDATES &

fll: RECOGNIZE TARGET A fl2i OBTAIN FROM TARGET *
38: GUIDED SEARCHER >> fl3: OBTAIN INITIAL CANDIDATE &

flU: OBTAIN NEXT CANDIOATE FROM CURRENT CANDIDATE &
fll: RECOGNIZE TARGET &
fl2: OBTAIN FROM TARGET *

s9i GENERATOR » fl5: OBTAIN INITIAL STATE &
fl6: OBTAIN CANDIDATE FROM STATE &
fl7s OBTAIN NEXT STATE FROM STATE *

slOt UNIQUE STRUCTURE MATCHER » fl8: OBTAIN UNIQUE STRUCTURE &
fl9: OBTAIN DIFFERENCE *

sll: UNIQUE RELATION MATCHER » f20t OBTAIN UNIQUE RELATION &
f21: COMPUTE RELATION *

sl2: EXTREME MEASURE SEARCHER » fki SEARCH & f6t RECOGNIZE *
silt RELATIONAL ITEM STORAGE » f22i OBTAIN STORAGE OBEYING RELATION 4

f8: STORE •
sl5: NAME LOCATION STORAGE >> f23: COMPUTE NAME OF STORAGE FROM ITEM &

f8: STORE *

Figure 5: Functional Requirements (input to XDA)

A set of memory cells of the form:

memory cell
memory address ,

t . T
relation of contents of

An. A^QOL^llke programming language:
- Identifiers
* assignment operator
* simple arithmetic expressions
- arrays
- special procedure test(A,B) returns true if A-B
- simple conditional: iftrue
" BotQt labels, declarations, delimiters as needed

Note: Addresses are positive Integers and symbols are sequences of
characters.

Figure 1: Structures Available for Building Symbol Table

set of cells PERMITS generate
memory address recognize
memory cell M store
cell contents recognize
contents-of relation M obtain
cell adjacency relation ,f retain
symbol " recognize
identifier obtain

assignment operator PROVIDES store
arithmetic expression M obtain
array » retain
test(A.B) " recognize
variables 11 know
program structure ,f know

Figure 2: Functions Provided by Programming Structures

DESIGN SYMDOL TADLE «
S16: SYMOOL TABLE (Dl) — > F2fr: OBTAIN ADDRESS GIVEN SYMBOL &

F2S: OBTAIN SYMBOL GIVEN ADDRESS &
F26; RETAIN SYMBOL ADDRESS PAIR «

CHOOSE FROM F2«» F25 F26 TO WORK ON: F2U
OBTAIN <-- SI S2 S3
F2«»: OBTAIN ADDRESS GIVEN SYMBOL (D2) « S3; SEARCH STRUCTURE *
S3: SEARCH STRUCTURE (D5) >> F«t SEARCH (06)
CHOOSE FROM <Fk TO WORK ON: FU
SEARCH < — S7 S8
Fkt SEARCH (D6) « S7: GENERATOR SEARCHER «
S7: GENERATOR SEARCHER (D7) » F10: GENERATE CANDIDATES (D10) A

Fll: RECOGNIZE TARGET (D8) & F12: OBTAIN FROM TARGET (09)
CHOOSE FROM F10 Fll F12 TO WORK ON: F12
OBTAIN < — SI S2 S3
F12: OBTAIN FROM TARGET (D9) « S2: COMPUTE STRUCTURE *
S2: COMPUTE STRUCTURE (DID >> F3: COMPUTE (D12)
CHOOSE FROM F3 TO WORK ON: F3
COMPUTE < — Sk S5 S6
F3: COMPUTE (D12) « Sfr: OPERATOR THAT PRODUCES RESULT *
SU: OPERATOR THAT PRODUCES RESULT (D13) » F9: KNOW OPERATOR (DU)
F9: KNOW OPERATOR (DU) « SI: KNOW STRUCTURE (D15)
PLEASE DEFINE AN SI AT (D15) THAT PROVIDES F9 F3 F12
S1/(D15) - ADD ONE TO TARGET AND FETCH
CHOOSE FROM F10 Fll TO WORK ON: Fll

Figure 6: Initial Portion of XDA Design Trace
(Designer's responses to system are underlined.)

(D24) S1 (D34) S1 (D39) S1

Figure 7: Outline of XDA Design Trace for Symbol Table
(Structures considered ^ and chosen (s) , resulting functional

requirements (g) , and design terminals [s] .

Design Terminal Functions Provided Definition Given in Design Trace Structure Used in Actual Solution

S1/(D15)

S1/(D19)

S1/(D24)

S1/(D29)

S1/(D34)

S1/(D39)

S1/(D47)

S13/(D48)

F9: KNOW OPERATOR
F3: COMPUTE
F12: OBTAIN TARGET

F18: OBTAIN UNIQUE STRUCTURE

F9: KNOW OPERATOR
F3: COMPUTE
F19: OBTAIN DIFFERENCE

F15: OBTAIN INITIAL STATE

F9: KNOW OPERATOR
F3: COMPUTE
F16: OBTAIN CANDIDATE FROM STATE

F9: KNOW OPERATOR
F3: COMPUTE
F17: OBTAIN NEXT STATE FROM STATE

F9: KNOW OPERATOR
F3: COMPUTE
F22: OBTAIN STORAGE OBEYING

RELATION

F8: STORE

ADD 1 TO TARGET AND FETCH

BIT PATTERN OF GIVEN SYMBOL

FETCH CONTENTS OF CANDIDATE
AND TEST FOR IDENTITY WITH
UNIQUE STRUCTURE,

GET FIRST WORD ADDRESS OF
TABLE.

STATE IS CANDIDATE.

ADD 2 TO STATE.

ADD 2 TO CURRENT TOP ADDRESS.

STORE SYMBOL IN FIRST CELL,
ADDRESS IN SECOND CELL.

address:= ST[i + 1];

symbol

test(address, ST[i])

i :» 1

ST[i]

i :» i-+ 2

top :» top + 2

ST[top] :« symbol
ST[top + 1] :* address

O

Figure 8: Functional Assignments for Symbol Table Design

S f c u r i t v C I as si fic at ton

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 . O R l G l N A T t N G A C T I V I T Y (Corporate author)

Department of Computer Science
2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
2b. G R O U P

3 . R E P O R T T I T L E

A Model for Functional Reasoning in Design

4 . D E S C R I P T I V E N O T E S (Type of report and inclusive dates)

Scientific Report
5 A U T H O R (S) (First name, middle initial, last name)

P. Freeman and A. Newell

6 - R E P O R T D A T E

May 24, 1971
la. T O T A L N O . O F P A G E S

21 pp
76. N O . O F R E F S

20
8a. C O N T R A C T O R G R A N T N O .

F44620-70-0107

b. P R O J E C T N O .

c.

d.

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8a. C O N T R A C T O R G R A N T N O .

F44620-70-0107

b. P R O J E C T N O .

c.

d.

9b. O T H E R R E P O R T N O (S > (Any other numbers that may be assigned
this report)

CMU-CS-71-107
1 0 . D I S T R I B U T I O N S T A T E M E N T

Approved for public release, distribution unlimited.

1 1 . S U P P L E M E N T A R Y N O T E S 1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Adv Res Proj Ag
Air Force Office of Sci Res

1 3 . A B S T R A C T

A model of the design process is developed in two stages, corresponding
to the task environment of design and the activity of posing and solving
design problems. Use of the model with top-down and bottom-up disciplines
is discussed. An example of the design of an object using a semi-automated
design system based on the model is presented. Several issues raised by
the model's qualitative aspects, its suitability to automated design,
and lines for further development are discussed.

DD ,F,T6,1473 <PA6E "
S/N 0 1 0 1 - 8 0 7 - 6 8 0 1 Security Classif ication

1 4 .
K E Y W O R D S

L I N K A L I N K B L I N K C 1 4 .
K E Y W O R D S

R O L E W T R O L E W T R O L E W T

Design, functional reasoning, software systems
design, artificial intelligence.

DD ,F
N°0

RvM473 (BACK)
(PAGE' 2) Security Classif ication

