
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PARADIGM FOR SOFTWARE MODULE
SPECIFICATION WITH EXAMPLES

by

D. L. Parnas

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

March, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44610-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

ABSTRACT

This paper presents a method for writing specifications of parts of

software systems. The main goal Is to provide specifications sufficiently

precise and complete that other pieces of software can be written to inter

act with the piece specified without additional information. The secondary

goal is to include in the specification no more information than necessary

to meet the first goal. The technique is illustrated by means of a variety

of examples from a tutorial system.

A PARADIGM FOR SOFTWARE MODULE SPECIFICATION WITH EXAMPLES

D. L. Parnas
Computer Science Department
Carnegie-Melion University

Because of the growing recognition that a major contributing factor

in the so-called "software engineering11 problem is our lack of techniques

for precisely specifying program segments without revealing too much in

formation [1,2], I would like to report on a paradigm for module specifica

tion which has proven moderately successful in a number of test situations.

Without taking the space to justify them [see [2]] I would like to

list the goals of the specification scheme to be described:

1. Thfe specification must provide to the intended user all the informa

tion that he will need to use the program correctly, and nothing more.

2. The specification must provide to the implementer, all the information

that he needs to complete the program, and no additional information;

in particular, no information about the structure of the calling

program should be conveyed.

3. The specification must be sufficiently formal that it can conceivably

be machine tested for consistency, completeness (in the sense of defin

ing the outcome of all possible uses) and other desirable properties of

a specification. Note that we do not insist that machine testing be

done, only that it could conceivably be done. By this requirement we

intend to rule out all natural language specifications.

4. The specification should discuss the program in the terms normally used

by user and implementor alike rather than some other area of discourse.

By this we intend to exclude the specification of programs in terms

of the mappings they provide between large input domains and large

output domains or their specification in terms of mappings onto small

automata, etc.

The basis of the paradigm is a view of a program module as a device

with a set of switch inputs and readout indicators. The notation allows

for some of the pushbuttons to be combined with indicator lights or read

outs (with the result that we must push a button in order to read), but we

have not yet found occasion to use that facility. The paradigm specifies

the possible positions of the input switches and the effect of moving the

switches on the values of the readout indicators. We insist that the

values of the readout indicators"be completely determined by the previous

values of those indicators and the positions of the input switches. A

simple extension of the notation allows the specification of mechanisms in

which the values of the readout indicators are not determined by the above

factors, but can be predicted only by knowing the values of certain "hidden"

readout indicators which cannot actually be read by the user of the device.

We have considerable doubts about the advisability of building devices which

must be specified using this feature, but the ability to specify such devices

is inexpensively gained.

In software terms we consider each module as providing a number of sub

routines or functions which can cause changes in state, and other functions

or procedures which can give to a user program the values of the variables

making up that state. We refer to these all as Functions. We distinguish

two classes of readout functions: the most important class provides informa

tion which cannot be determined without calling that function unless the

user maintains duplicate information in his own program1 s data structures.

A second class, termed mapping functions, provides redundant information,

in that the value of these functions is completely predictable from the

current values of other readout functions. The mapping functions are pro

vided as a notational convenience to keep the specifications and the user

programs smaller.

For each function we specify:

1. the set of possible values: (integers, reals, truth values,

etc)

2. initial values: (either "undefined" or a member of the set

specified in item 1. "Undefined11 is considered a special

value, rather than an unpredictable value.)

3. parameters: each parameter is specified as belonging to

one of the sets named in item 1.

With the exception of mapping functions, almost all the information

in the specification is contained in section 4. Under "effect": we place

two distinct types of items which require a more detailed discussion.

First, we state that if the "effect" section is empty, then there is

absolutely no way to detect that the function has been called. One may

call it arbitrarily often and observe no effect other than the passage of

time.

The modules that we have specified have "traps" built in. There is

a sequence of statements in the "effect" section which specifies the condi

tions under which certain error handling routines will be called. These

conditions constitute incorrect usage of the module and imply an error in

the calling program. For that reason it is assumed that the error handling

routine1s body will not be considered part of the module specified, but

will be written by the users of the module. If the error is made, there

is to be no observable result of the call of the routine except the transfer

of control. When there is a sequence of error statements, the first one in

the list which applies is the only one which is invoked. In some cases,

the calling program will correct its error and return to have the function

try again; in others, it will not. If it does return, the function is to

behave as if this were the first call. There is no memory of the erroneous

call.

The remaining statements are sequence independent. They can be

"shuffled11 without changing their meaning. These statements describe

changes in the values of the other functions in the module. It is specified

that no changes in functions (other than mapping functions) occur unless

they are included in the effect section. The effect section can refer only

to values of the function parameters and values of readout functions. The

value changes of the mapping functions are not mentioned; those changes can

be derived from the changes in the functions used in the definitions of the

mapping functions. All of this will become much clearer as we discuss the

following examples.

NOTATION

The notation is mainly Algol-like and requires little explanation. To

distinguish references to the value of a function before calling the speci

fied function from references to its value after the call, we enclose the

old or previous value in single quotes (e.g. fVAL f). Brackets ("[" and "]")

are used to indicate the scope of quantifiers.

In some cases we may specify the effect of a sequence to be null. By

this we imply that that sequence may be inserted in any other sequence with

out changing the effect of the other sequence.

PUSH(a)
value: none
integer: a
effect: call ERRl if a > p2 V a < 0 V 1 DEPTH1 = pi

else [VAL = a;
DEPTH = 1 DEPTH1+1;]

POP
value: none
no parameters
effect: 1. call ERR2 if 'DEPTH1 = 0

2. the sequence "PUSH(a); POP'1 has no net effect if no error
calls occur.

VAL
value: integer initial value undefined
no parameters
effect: error call if 1DEPTH1 = 0

DEPTH
value: integer initial value 0
no parameters
no effect.

We propose that the definition of a stack shown in Figure 1 should

replace the usual pictures of implementations (e.g., the array with pointer

or the linked list implementations). All that you need to know about a

stack in order to use it is specified above. There are countless imple

mentations (including a large number of sensible ones). The implementation

should be free to vary without changing the using programs. If the using

programs assume no more about a stack than is stated above, that will be

true.

Introduction

In the following module all function values and parameters are integers
except where stated otherwise. In the interest of brevity we shall not state
this repeatedly. For some values the values are not predicted by the defini
tion. They are chosen arbitrarily by the system. This is done because the
user should not make use of any regularity which might exist in the values
assigned. The necessary relations between the values of those functions and
the values of other functions are stated explicitly. Such incompletely
defined functions are noted with an *• The user may store the values of
those functions and use them to avoid repeated nested function calls.

Note: FA = father, LS = .leftspn, RS = right son, SLS = set Ls, SRS = jset rs,
SVA = set val, VAL = value, DEL = delete, ELS = exists ,1s, ERS = exists rs,

fFA(i)
initial value: FA(0) = 0; otherwise undefined
effect: if FA(i) undefined, then error call else none

*LS(i)
initial value: undefined
effect: error call if value is undefined

*RS(i)
initial value:
effect:

undefined
error call if value is undefined

SLS(i)
no value
effect:

else

error call if FA(i) is undefined
error call if LS(i) is defined

LS(i) and FA(ls(i)) are given values such that
[FA(LS(i)) = i and 1 FA(LS(i))1 was undefined
ELS(i) = true;]

SRS(j)
no value
effect:

else

error call if FA(i) is undefined
error call jLf RS(i) is defined

RS(i) and FA(RS(i)) are assigned values such that
[FA(RS(i)) = i and fFA(RS(i))f was not defined
ERS(i) = true;]

SVA(i,v)
no value
effect: error call if FA(i) is undefined

else
VAL(i) = v

VAL(i)
initial value:
effect:

DEL(i)
no value
effect:

else

undefined
error call if VAL(i) is undefined

error call if FA(i) is undefined
error call if LS(i) or RS (i) are defined

FA(i), VAL(i) are undefined
if i » fLS(lFA(i) t) t then [LS (fFA (i)1) is undefined and

ELS (FA (i)) - false]
if i = ,RS(lFA(i) ,) f then [RS (fFA(i)f) is undefined

ERS(FA(i))= false]

ELS(i)
possible values:
initial value:
effect:

ERS(i)
possible values:
initial value:
effect:

true, false
false false
error call if FA (i) undefined

true, false
false
error call if FA (i) undefined

Figure 2 shows a "binary tree." This example is of interest because

we have provided the user with sufficient information that he may search

the tree, yet we have not defined the values of the main functions, only

properties of those values. Thus, those values might well be links in a

linked list implementation, array indices in a TREESORT [3] implementation

or a number of other possibilities. The important fact is that if we

implement the functions as defined by any method, any usage which assumes

only what is specified will work.

Definition of a ffLine Holder" Mechanism

Introduction

This definition specifies a mechanism which may be used to hold up
to pi lines, each line consisting of up to p2 words, and each word may be
up to p3 characters.

FUNCTION WORD
possible values: integers
initial values: undefined
parameters: l,w,c all integer
effect:

call ERLWNL(MN) if 1 < 1 or 1 > pi
call ERIWNL(MN) if 1 > LINES
call ERLWNW(MN) if w < 1 or w > p2
call ERLWNW(MN) if w >W0RDS(1)
call ERLWNC(MN) if c < 1 or c > p3
call ERLWNC(MN) if c > CHARS(l,w)

Function SETWRD
possible values: none
initial values: not applicable
parameters: l,w,c,d all integers
effect: CSUNDO

call ERLSLE(MN) if 1 < 1 or 1 > pi
call ERLSBL(MN) if 1 > 'LINES1 +1
call ERLSBL (MN) if 1 < 'LINES1

if 1 = 'LINES' +1 then LINES = 'LINES' + 1
call ERLSWE(MN) if w < 1 or w > p2
call ERLSBW(MN) if w > 'WORDS'(1) + 1
call ERLSBW(MN) if w < 'WORDS' (1)
if w = 'WORDS'(1) +1 then WORDS(l) = w
call ERLSCE(MN) if c < 1 or c > p3
call ERLSBC(MN) if c .noteq. 'CHARS'(l,w)+l
CHARS (l,w) = c
WORD(l,w,c) = d

Function WORDS
possible values: integers
initial values: 0
parameters: 1 an integer
effect:

call ERIWSL(MN) If 1 < 1 or 1 > pi
call ERLWSL(MN) if 1 > LINES

call ERLWSL(MN) if 1 > LINES

Function LINES
possible values: integers
initial value: 0
parameters: none
effect: none

Function DELWRD
possible values: none
initial values: not applicable
parameters: l,w both integers
effect:

call ERLDLE(MN) if 1 < 1 or 1 > LINES
call ERLDWE(MN) if w < 1 or w > fWORDSf(l)
call ERLDLD(MN) if 'WORDS1 (1) = 1
WORDS(l) = 'WORDS'(1) - 1
for all c WORD(l,v,c) = 'WORD'(l,v+1 ,c) if v = w or v >
for all v > w or v = w CHARS(l,v) = 'CHARS'(l,v+l)

Function DELINE
possible values: none
initial values: not applicable
parameters: 1 an integer
effect:

call ERLDLL(MN) if 1 < 0 or 1 > 'LINES'
LINES = 'LINES' - 1
if r = 1 or r > 1 then for all w, for all c

(WORDS(r) = 'WORDS'(r+1)
CHARS(r,w) = 'CHARS' (r-Kl ,w)
WORD(r,w,c) = 'WORD'(r+1,w,c))

Function CHARS
possible values: integer
initial value: 0
parameters 1, w both integers
effect:

call ERLCNL(MN) if 1 < 1 or 1 > LINES
call ERLCNW(MN) if w < 1 or w >W0RDS(1)

Figure 3 shows a more specialized piece of software* It is a storage

module intended for use in such applications as producing KWIC indices.

It is designed to hold "lines" which are ordered sets of "words," which

are ordered sets of characters, to fee dealt with by an integer repre

sentation. For this example there are some restrictions on the way that

material may be inserted (only at the end of the last line) which reflect

the intended use. That might well be a design error, but for our purposes

the important thing to note is that the restrictions are completely and

precisely specified without revealing any of the internal reasons for

making such restrictions.

Figure 4

SYMBOL TABLE DEFINITION

p1=maxiraum number of symbols
p2=maximum number of characters per symbol
p3=maxlmum value of character

STRTSM
possible values:
initial values:
parameters:
effects:

none
not applicable
none
call ERFAST if fMAYINf=true
MAYIN=true

MAY IN
possible values: true, false
initial values: false
parameters: none
effects: none

CHARIN
possible values:
initial values:
parameters:

none
not applicable
call ERCHIL if c < 0 or c > p3
call ERMNIN if 1MAYINf=false
call ERBUFX if 1BUFFERCNT1=p2
BUFFER(1BUFFERCNT1+1)=c
BUFFERCNT=1 BUFFERCNT1 +1

BUFFER
possible values:
initial values:
parameters:
effects:

integers 0 < BUFFER £ p3
not applicable
c, an integer
call ERBUFE if c < 1 or c >'BUFFERCNT1

BUFCNT
possible values:
initial values:
parameters:
effects:

integers 0 < BUFFERCNT £ p2
0
none
none

SYMEND
possible values:
initial values:
parameters:
effects:

integers 0 < SYMEND £ 1SMCNT1)+1
not applicable
none
call ERNOIN if 'MAYIN^false
MAYIN=false
if there is an s (0 < s £ 1SMCNT1) such that
1BUFFERCNT1=fCHCNT(s)f and

[if for all c (0 < c < 'BUFFERCNT1)
BUFFER(c)=lCHAR(s,c)f]then

SYMEND=s
else [ERSYL if 1SMCNT1=p1

for all c (0 < c < 1BUFFERCNT1)
[CHAR(1SMCNT1+1,c) = 1 BUFFER1(c)
CHCNT(f SMCNT1+1) = f BUFFERCNT1]
SMCNT=1 SMCNT* +1]

BUFFERCNT=0

CHAR
possible values:
initial values:
parameters:
effects:

integers 0 < CHAR £ p3
not applicable
s and c, both integers
call ERNOSY if a < 1 or s >f SMCNT1

call ERNOCH if c < 1 or c > f CHCNT1(s)

SMCNT
possible values:
initial values:
parameters:
effects:

integers 0 £ SMCNT £ pi
0
none
none

CHCNT
possible values:
initial values:
parameters:
effects:

integers 0 < CHCNT < p2
not applicable
s, an integer
call ERNOSY if s < 1 or s >f SMCNT1

In making the line holder of Figure 3 it will probably prove

advantageous to (1) separate out the problem of storing the individual

characters that make up a word from the problem of storing the makeup of

lines out of words, and (2) avoid duplicate storing of identical words.

Both can be accomplished by use of the mechanism defined in Figure 4 as

a submodule for that described in Figure 3. The implementor of the "line

holder11 would pass the individual characters of the "words11 to the symbol

table whose definition guarantees him that he will receive a unique

encoding of every symbol. Note that the specification in Figure 4 does

not rule out an implementation which stores duplicate copies of words, but

it does require that all receive the same encoding.

It is important to note that the user of the "line holder" will

never know or need to know of the existence of the symbol table inner

mechanism.

Figure 5

Alphabetizer for Line Holder

This module accomplishes the alphabetization of the contents of

the modules referred to above by producing a pointer function,ITU., which

gives the index of the ith line in the alphabetized sequence.

Function ITH:
possible values: integers
initial values: undefined
parameters: i an integer
effect:

call ERAIND if value of function undefined for parameter given

Mapping Function ALPHC:
possible values: integers
values: ALPHC(l) = index of 1 in alphabet used

ALPHC (1) infinite if character not in alphabet
parameter: 1 an integer
effect:

call ERAABL if 1 not in alphabet being used

Mapping Function EQ$:
possible values: true,false
parameters: 11,12,wl,w2 all integers
values:

EQW(11,w1,12,w2)=for all c(t>SWORD 1 (11 ,w1 ,c) = f CSWORD1 (12,w2,c))
effect:

call ERAEBL if 11 < 1 or 11 > 1 CSLINES*
call ERAEBL if 12 < 1 or 12 > 1 CSLINES1

call ERAEBW if wl < 1 or wl > 1 CSWORDS1 (11)
call ERAEBW if w2 < 1 or w2 > 1 CSWORDS1 (12)

* Mapping Function ALPHW:
possible values: true,false
parameters: 11, 12,wl,w2 all integers
values:

ALPHW(11,w1,12,w2) = if .not. fEQWf(11,w1,12,w2) and
k = min c such that (f CSWORD.1 (11 ,w1 ,c) • noteq.'CSWORD1 (12,w2,
then 1ALPHC1(•CSWORD1(11,w1,c)) < f ALPHCf(,CSWORDl(12,y2,c))
else false

effect:
call ERAWBL if 11 < 1 or 11 > ^SLINES*
call ERAWBL if 12 < 1 or 12 > fCSLINESf

call ERAWBW if wl < 1 or wl > 'CSWORDS1(11)
call ERAWBW if w2 < 1 or w2 > 'CSWORDS*(12)

Mapping Function EQL:
possible values, true, false
parameters: 11,12 both integers
values:

EQL (11,12) = for all k (fEQWf(11,k,12,k))
effect:

call ERALEL if 11 < 1 or 1 > 'CSLINES'
call ERALEL if 12 < 1 or 12 > 'CSLINES'

Mapping Function ALPHL:

possible values: true,false
parameters: 11,12 both integers
value:

ALPHL(ll,12) = if .not.'EQL1(11,12) then
(let k = min c such that .not. fEQWf (11,k,12,k))
•ALPHW1(11,k,12,k) else true

effect:
call ERAALB if 11 < 1 or 11 > 'CSLINES'
call ERAALB if 12 < 1 or 12 > 'GSLINES'

Function ALPH:
possible values: none
initial values: not applicable
effect:

for all i .not<. 1 and i.not>.1GSLINES1 (
ITH (i) is given values such that(

for all j .not<.1 and .not>. CSLINES
there exists a k such that ITH(k) = j

for i >-l and < 'GSLINES' (that1ALPHL'(ITH(i), ITH(i+l)))

Figure 5 is intended to exhibit the situations in which mapping

functions are useful in specifications. This module is an alphabetize^

intended to work with the "line holder" shown earlier. It determines

values for ITH in such a way that (1) every integer between 1 and the

number of lines is a value of ITH and if i < j then the line numbered

ITH(i) does not come before the line numbered ITH(j) in the alphabetic

ordering.

Note that ITH as defined might be an array in which the values speci

fied are stored by the routine ALPH, or it might be a routine which

searches for the appropriate line each time called. An interesting alter

native would be to make use of FIND [4] within ITH so that the computation

is distributed over the cal-ls of ITH and so that in some situations

unneeded work may be avoided. We repeat that the important feature of

this specification is that it provides sufficient information to use a

module which is correctly implemented according to any of these methods,

without the user having any knowledge of the method.

Using the Specifications

The specifications will be of maximum usefulness only if we adapt our

methods to make use of them. Our aim has been to produce specifications

which are in a real sense just as testable as programs. We will gain the

most in our system building abilities if we have a paradigm for usage of

the specifications which involves testing the specifications long before

the programs specified are produced. The statements being made at this

level are precise enough that we should not have to wait for a lower level

representation in order to find the errors.

Such specifications are at least as demanding of precision as are

programs; they may well be as complex as some programs. Thus they are as

likely to be in error. Because specifications cannot be "run,11 we may be

tempted to postpone their testing until we have programs and can run them.

For many reasons such an approach is wrong.

We are able to test such specifications because they provide us with

a set of axioms for a formal deductive scheme. As a result, we may be able

to prove certain "theorems11 about our specifications. Example "theorems11

might be:

1. The specification never refers to Fl(p) unless it is certain that

p is less than 9.

2. Whenever F3(x) is true F4(x) is defined and conversely.

3. It is not possible for F5(x) to take on values greater than p3.

4. Error routine ERRX will never be called.

5. There exists a sequence of function calls which will set F2(x) =

F5(x) = 0.

6. There will never exist distinct integers i and j such that Fl(i) =

F2(j).

By asking the proper set of such questions, the "correctness" of a set

of specifications may be verified. The choice of the questions, hence the

meaning of "correctness" is dependent on the nature of the object being

specified.

Using the same approach of taking the specifications as axioms and

attempting to prove theorems, one may ask questions about possible changes

in system structure. For example, one may ask which modules will have to

be changed, if certain restrictions heretofore assumed were removed.

It would be obviously useful if there were a support system which would

input the specifications and provide question answering or theorem proving

ability above the specifications. That, however, is not essential. What

is essential is that system builders develop the habit of verifying the

specifications whether by machine or by hand before building and debugging

the programs.

Incidentally, the theorem proving approach might also be considered as

a basis for a program which searches automatically for implementations of

a specified module.

Hesitations

To date the paradigm has received only limited evaluation. It has

been used with reasonable success in the construction of small systems

with simple modules in an undergraduate class. Currently nearing comple

tion is a description of a simplified man/machine interface for a graphics

based editor system. However, any attempt to use this on a larger project

(where the probability of failure without the technique is high) is in a

very early stage. Clearly the idea needs further practical use before its

usefulness can be evaluated. I hope that some of my readers will be in a

position to do this.

There appears to be a weak limitation on the technique in that it

makes it easy to describe objects which receive data in small units, and

where the calling program must be aware of the period between receipt

of such small units. As of yet we have not found a way to follow the

paradigm for such objects as a compiler where the user sends one very

large unit and does not want to know of internal steps in the processing

of individual characters, phrases, etc. For such situations we have been

forced to make use of techniques similar to that of Wirth and Weber [5],

We did, however, combine the two techniques with some success.

In usage of these techniques it has become clear that there is a

great initial resistence to their use. This approach to the description

of programs as somewhat static objects, rather than sequential decision

makers, is unfamiliar to men with lots of programming experience. The

first few attempts always fail and require the patient guidance of an

instructor. The idea is, however, simple and is eventually mastered by

almost everyone.

References

[1] Buxton and Randell (eds.), Software Engineering Methods. Report of
a conference sponsored by the NATO Science Committee, Rome, Italy,
27-31 October 1969.

[2] yarnas, D. L. "Information Distribution Aspects of Design Methodology."
Technical Report, Department of Computer Science, Carnegie-Melion
University, February, 1971. To be presented at the IFIP Congress, 1971,
Ljubljana, Yugoslavia, and will be included in the proceedings.

[3] Floyd, R. W. "Treesort 3" Algorithm 245. Comm. ACM, December, 1964.

[4] Hoare, C. A. R. "Proof of a Program, FIND." Comm. ACM, January, 1971.

[5] Wirth, N. and H. Weber. "Euler: A Generalization of ALGOL and its
Formal Definition." Comm. ACM, pp. 13-23, January, 1966.

Security C l a s s i f i c a t i o n

DOCUMENT CONTROL DATA - R & D
fSccttrity classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

1 . O R I G I N A T I N G A C T I V I T Y (Corporate author)

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

2 0 . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2b. G R O U P

3. R E P O R T T I T L E

A Paradigm for Software Module Specification with Examples

4 . D E S C R I P T I V E N O T E S (Type of report and Inclusive dates)

Scientific Interim
5. A U T H O R (S) (First name, middle initial, last name)

D. L. Parnas
6 R E P O R T D A T E

March, 1971
7a. T O T A L N O . O F P A G E S

22
7 6 . N O . O F R E F S

5
8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

A0827-5
c.

61101D
d.

9f l . O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8 a . C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

A0827-5
c.

61101D
d.

9 b . O T H E R R E P O R T N O (S) (Any other numbers that may be assigned
thts report)

10 . D I S T R I B U T I O N S T A T E M E N T

This document has been approved for public release and sale;
its distribution is unlimited.

I I . S U P P L E M E N T A R Y N O T E S

TECH, OTHER

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

13 . A B S T R A C T

This paper presents a method for writing specifications of parts of
software systems. The main goal is to provide specifications sufficiently precise
and complete that other pieces of software can be written to interact with the
piece specified without additional information. The secondary goal is to include
in the specification no more information than necessary to meet the first goal.
The technique is illustrated by means of a variety of examples from a tutorial
system.

DD ,F,°oRvM473

Security Classif icat ion
1 4 .

K E Y W O R D S
L I N K A L I N K B L I N K C

R O L E W T R O L E ft T H O L E W T

Security C l a s s i f i c a t i o n

