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ABSTRACT 

This paper presents a method for writing specifications of parts of 

software systems. The main goal Is to provide specifications sufficiently 

precise and complete that other pieces of software can be written to inter

act with the piece specified without additional information. The secondary 

goal is to include in the specification no more information than necessary 

to meet the first goal. The technique is illustrated by means of a variety 

of examples from a tutorial system. 



A PARADIGM FOR SOFTWARE MODULE SPECIFICATION WITH EXAMPLES 

D. L. Parnas 
Computer Science Department 
Carnegie-Melion University 

Because of the growing recognition that a major contributing factor 

in the so-called "software engineering11 problem is our lack of techniques 

for precisely specifying program segments without revealing too much in

formation [1,2], I would like to report on a paradigm for module specifica

tion which has proven moderately successful in a number of test situations. 

Without taking the space to justify them [see [2]] I would like to 

list the goals of the specification scheme to be described: 

1. Thfe specification must provide to the intended user all the informa

tion that he will need to use the program correctly, and nothing more. 

2. The specification must provide to the implementer, all the information 

that he needs to complete the program, and no additional information; 

in particular, no information about the structure of the calling 

program should be conveyed. 

3. The specification must be sufficiently formal that it can conceivably 

be machine tested for consistency, completeness (in the sense of defin

ing the outcome of all possible uses) and other desirable properties of 

a specification. Note that we do not insist that machine testing be 

done, only that it could conceivably be done. By this requirement we 

intend to rule out all natural language specifications. 

4. The specification should discuss the program in the terms normally used 

by user and implementor alike rather than some other area of discourse. 



By this we intend to exclude the specification of programs in terms 

of the mappings they provide between large input domains and large 

output domains or their specification in terms of mappings onto small 

automata, etc. 

The basis of the paradigm is a view of a program module as a device 

with a set of switch inputs and readout indicators. The notation allows 

for some of the pushbuttons to be combined with indicator lights or read

outs (with the result that we must push a button in order to read), but we 

have not yet found occasion to use that facility. The paradigm specifies 

the possible positions of the input switches and the effect of moving the 

switches on the values of the readout indicators. We insist that the 

values of the readout indicators"be completely determined by the previous 

values of those indicators and the positions of the input switches. A 

simple extension of the notation allows the specification of mechanisms in 

which the values of the readout indicators are not determined by the above 

factors, but can be predicted only by knowing the values of certain "hidden" 

readout indicators which cannot actually be read by the user of the device. 

We have considerable doubts about the advisability of building devices which 

must be specified using this feature, but the ability to specify such devices 

is inexpensively gained. 

In software terms we consider each module as providing a number of sub

routines or functions which can cause changes in state, and other functions 

or procedures which can give to a user program the values of the variables 

making up that state. We refer to these all as Functions. We distinguish 

two classes of readout functions: the most important class provides informa

tion which cannot be determined without calling that function unless the 



user maintains duplicate information in his own program1 s data structures. 

A second class, termed mapping functions, provides redundant information, 

in that the value of these functions is completely predictable from the 

current values of other readout functions. The mapping functions are pro

vided as a notational convenience to keep the specifications and the user 

programs smaller. 

For each function we specify: 

1. the set of possible values: (integers, reals, truth values, 

etc) 

2. initial values: (either "undefined" or a member of the set 

specified in item 1. "Undefined11 is considered a special 

value, rather than an unpredictable value.) 

3. parameters: each parameter is specified as belonging to 

one of the sets named in item 1. 

With the exception of mapping functions, almost all the information 

in the specification is contained in section 4. Under "effect": we place 

two distinct types of items which require a more detailed discussion. 

First, we state that if the "effect" section is empty, then there is 

absolutely no way to detect that the function has been called. One may 

call it arbitrarily often and observe no effect other than the passage of 

time. 

The modules that we have specified have "traps" built in. There is 

a sequence of statements in the "effect" section which specifies the condi

tions under which certain error handling routines will be called. These 

conditions constitute incorrect usage of the module and imply an error in 

the calling program. For that reason it is assumed that the error handling 

routine1s body will not be considered part of the module specified, but 



will be written by the users of the module. If the error is made, there 

is to be no observable result of the call of the routine except the transfer 

of control. When there is a sequence of error statements, the first one in 

the list which applies is the only one which is invoked. In some cases, 

the calling program will correct its error and return to have the function 

try again; in others, it will not. If it does return, the function is to 

behave as if this were the first call. There is no memory of the erroneous 

call. 

The remaining statements are sequence independent. They can be 

"shuffled11 without changing their meaning. These statements describe 

changes in the values of the other functions in the module. It is specified 

that no changes in functions (other than mapping functions) occur unless 

they are included in the effect section. The effect section can refer only 

to values of the function parameters and values of readout functions. The 

value changes of the mapping functions are not mentioned; those changes can 

be derived from the changes in the functions used in the definitions of the 

mapping functions. All of this will become much clearer as we discuss the 

following examples. 

NOTATION 

The notation is mainly Algol-like and requires little explanation. To 

distinguish references to the value of a function before calling the speci

fied function from references to its value after the call, we enclose the 

old or previous value in single quotes (e.g. fVAL f). Brackets ("[" and "]") 

are used to indicate the scope of quantifiers. 

In some cases we may specify the effect of a sequence to be null. By 

this we imply that that sequence may be inserted in any other sequence with

out changing the effect of the other sequence. 



PUSH(a) 
value: none 
integer: a 
effect: call ERRl if a > p2 V a < 0 V 1 DEPTH1 = pi 

else [VAL = a; 
DEPTH = 1 DEPTH1+1;] 

POP 
value: none 
no parameters 
effect: 1. call ERR2 if 'DEPTH1 = 0 

2. the sequence "PUSH(a); POP'1 has no net effect if no error 
calls occur. 

VAL 
value: integer initial value undefined 
no parameters 
effect: error call if 1DEPTH1 = 0 

DEPTH 
value: integer initial value 0 
no parameters 
no effect. 

We propose that the definition of a stack shown in Figure 1 should 

replace the usual pictures of implementations (e.g., the array with pointer 

or the linked list implementations). All that you need to know about a 

stack in order to use it is specified above. There are countless imple

mentations (including a large number of sensible ones). The implementation 

should be free to vary without changing the using programs. If the using 

programs assume no more about a stack than is stated above, that will be 

true. 



Introduction 

In the following module all function values and parameters are integers 
except where stated otherwise. In the interest of brevity we shall not state 
this repeatedly. For some values the values are not predicted by the defini
tion. They are chosen arbitrarily by the system. This is done because the 
user should not make use of any regularity which might exist in the values 
assigned. The necessary relations between the values of those functions and 
the values of other functions are stated explicitly. Such incompletely 
defined functions are noted with an *• The user may store the values of 
those functions and use them to avoid repeated nested function calls. 

Note: FA = father, LS = .leftspn, RS = right son, SLS = set Ls, SRS = jset rs, 
SVA = set val, VAL = value, DEL = delete, ELS = exists ,1s, ERS = exists rs, 

fFA(i) 
initial value: FA(0) = 0; otherwise undefined 
effect: if FA(i) undefined, then error call else none 

*LS(i) 
initial value: undefined 
effect: error call if value is undefined 

*RS(i) 
initial value: 
effect: 

undefined 
error call if value is undefined 

SLS(i) 
no value 
effect: 

else 

error call if FA(i) is undefined 
error call if LS(i) is defined 

LS(i) and FA(ls(i)) are given values such that 
[FA(LS(i)) = i and 1 FA(LS(i))1 was undefined 
ELS(i) = true;] 

SRS(j) 
no value 
effect: 

else 

error call if FA(i) is undefined 
error call jLf RS(i) is defined 

RS(i) and FA(RS(i)) are assigned values such that 
[FA(RS(i)) = i and fFA(RS(i))f was not defined 
ERS(i) = true;] 

SVA(i,v) 
no value 
effect: error call if FA(i) is undefined 

else 
VAL(i) = v 



VAL(i) 
initial value: 
effect: 

DEL(i) 
no value 
effect: 

else 

undefined 
error call if VAL(i) is undefined 

error call if FA(i) is undefined 
error call if LS(i) or RS (i) are defined 

FA(i), VAL(i) are undefined 
if i » fLS( lFA(i) t) t then [LS (fFA (i)1) is undefined and 

ELS (FA (i)) - false] 
if i = ,RS( lFA(i) ,) f then [RS (fFA(i)f) is undefined 

ERS(FA(i))= false] 

ELS(i) 
possible values: 
initial value: 
effect: 

ERS(i) 
possible values: 
initial value: 
effect: 

true, false 
false false 
error call if FA (i) undefined 

true, false  
false 
error call if FA (i) undefined 

Figure 2 shows a "binary tree." This example is of interest because 

we have provided the user with sufficient information that he may search 

the tree, yet we have not defined the values of the main functions, only 

properties of those values. Thus, those values might well be links in a 

linked list implementation, array indices in a TREESORT [3] implementation 

or a number of other possibilities. The important fact is that if we 

implement the functions as defined by any method, any usage which assumes 

only what is specified will work. 



Definition of a ffLine Holder" Mechanism 

Introduction 

This definition specifies a mechanism which may be used to hold up 
to pi lines, each line consisting of up to p2 words, and each word may be 
up to p3 characters. 

FUNCTION WORD 
possible values: integers 
initial values: undefined 
parameters: l,w,c all integer 
effect: 

call ERLWNL(MN) if 1 < 1 or 1 > pi 
call ERIWNL(MN) if 1 > LINES 
call ERLWNW(MN) if w < 1 or w > p2 
call ERLWNW(MN) if w >W0RDS(1) 
call ERLWNC(MN) if c < 1 or c > p3 
call ERLWNC(MN) if c > CHARS(l,w) 

Function SETWRD 
possible values: none 
initial values: not applicable 
parameters: l,w,c,d all integers 
effect: CSUNDO 

call ERLSLE(MN) if 1 < 1 or 1 > pi 
call ERLSBL(MN) if 1 > 'LINES1 +1 
call ERLSBL (MN) if 1 < 'LINES1 

if 1 = 'LINES' +1 then LINES = 'LINES' + 1 
call ERLSWE(MN) if w < 1 or w > p2 
call ERLSBW(MN) if w > 'WORDS'(1) + 1 
call ERLSBW(MN) if w < 'WORDS' (1) 
if w = 'WORDS'(1) +1 then WORDS(l) = w 
call ERLSCE(MN) if c < 1 or c > p3 
call ERLSBC(MN) if c .noteq. 'CHARS'(l,w)+l 
CHARS (l,w) = c 
WORD(l,w,c) = d 

Function WORDS 
possible values: integers 
initial values: 0 
parameters: 1 an integer 
effect: 

call ERIWSL(MN) If 1 < 1 or 1 > pi 
call ERLWSL(MN) if 1 > LINES 



call ERLWSL(MN) if 1 > LINES 

Function LINES 
possible values: integers 
initial value: 0 
parameters: none 
effect: none 

Function DELWRD 
possible values: none 
initial values: not applicable 
parameters: l,w both integers 
effect: 

call ERLDLE(MN) if 1 < 1 or 1 > LINES 
call ERLDWE(MN) if w < 1 or w > fWORDSf(l) 
call ERLDLD(MN) if 'WORDS1 (1) = 1 
WORDS(l) = 'WORDS'(1) - 1 
for all c WORD(l,v,c) = 'WORD'(l,v+1 ,c) if v = w or v > 
for all v > w or v = w CHARS(l,v) = 'CHARS'(l,v+l) 

Function DELINE 
possible values: none 
initial values: not applicable 
parameters: 1 an integer 
effect: 

call ERLDLL(MN) if 1 < 0 or 1 > 'LINES' 
LINES = 'LINES' - 1 
if r = 1 or r > 1 then for all w, for all c 

( WORDS(r) = 'WORDS'(r+1) 
CHARS(r,w) = 'CHARS' (r-Kl ,w) 
WORD(r,w,c) = 'WORD'(r+1,w,c) ) 

Function CHARS 
possible values: integer 
initial value: 0 
parameters 1, w both integers 
effect: 

call ERLCNL(MN) if 1 < 1 or 1 > LINES 
call ERLCNW(MN) if w < 1 or w >W0RDS(1) 



Figure 3 shows a more specialized piece of software* It is a storage 

module intended for use in such applications as producing KWIC indices. 

It is designed to hold "lines" which are ordered sets of "words," which 

are ordered sets of characters, to fee dealt with by an integer repre

sentation. For this example there are some restrictions on the way that 

material may be inserted (only at the end of the last line) which reflect 

the intended use. That might well be a design error, but for our purposes 

the important thing to note is that the restrictions are completely and 

precisely specified without revealing any of the internal reasons for 

making such restrictions. 



Figure 4 

SYMBOL TABLE DEFINITION 

p1=maxiraum number of symbols 
p2=maximum number of characters per symbol 
p3=maxlmum value of character 

STRTSM 
possible values: 
initial values: 
parameters: 
effects: 

none 
not applicable 
none 
call ERFAST if fMAYINf=true 
MAYIN=true 

MAY IN 
possible values: true, false 
initial values: false 
parameters: none 
effects: none 

CHARIN 
possible values: 
initial values: 
parameters: 

none 
not applicable 
call ERCHIL if c < 0 or c > p3 
call ERMNIN if 1MAYINf=false 
call ERBUFX if 1BUFFERCNT1=p2 
BUFFER(1BUFFERCNT1+1)=c 
BUFFERCNT=1 BUFFERCNT1 +1 

BUFFER 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 < BUFFER £ p3 
not applicable 
c, an integer 
call ERBUFE if c < 1 or c >'BUFFERCNT1 

BUFCNT 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 < BUFFERCNT £ p2 
0 
none 
none 

SYMEND 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 < SYMEND £ 1SMCNT1 )+1 
not applicable 
none 
call ERNOIN if 'MAYIN^false 
MAYIN=false 
if there is an s (0 < s £ 1SMCNT1) such that 
1BUFFERCNT1=fCHCNT(s)f and 

[if for all c (0 < c < 'BUFFERCNT1) 
BUFFER(c)=lCHAR(s,c)f]then 

SYMEND=s 
else [ERSYL if 1SMCNT1=p1 

for all c (0 < c < 1BUFFERCNT1) 
[CHAR(1SMCNT1+1,c) = 1 BUFFER1(c) 
CHCNT(f SMCNT1+1) = f BUFFERCNT1 ] 
SMCNT=1 SMCNT* +1 ] 

BUFFERCNT=0 



CHAR 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 < CHAR £ p3 
not applicable 
s and c, both integers 
call ERNOSY if a < 1 or s >f SMCNT1 

call ERNOCH if c < 1 or c > f CHCNT1(s) 

SMCNT 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 £ SMCNT £ pi 
0 
none 
none 

CHCNT 
possible values: 
initial values: 
parameters: 
effects: 

integers 0 < CHCNT < p2 
not applicable 
s, an integer 
call ERNOSY if s < 1 or s >f SMCNT1 

In making the line holder of Figure 3 it will probably prove 

advantageous to (1) separate out the problem of storing the individual 

characters that make up a word from the problem of storing the makeup of 

lines out of words, and (2) avoid duplicate storing of identical words. 

Both can be accomplished by use of the mechanism defined in Figure 4 as 

a submodule for that described in Figure 3. The implementor of the "line 

holder11 would pass the individual characters of the "words11 to the symbol 

table whose definition guarantees him that he will receive a unique 

encoding of every symbol. Note that the specification in Figure 4 does 

not rule out an implementation which stores duplicate copies of words, but 

it does require that all receive the same encoding. 

It is important to note that the user of the "line holder" will 

never know or need to know of the existence of the symbol table inner 

mechanism. 



Figure 5 

Alphabetizer for Line Holder 

This module accomplishes the alphabetization of the contents of 

the modules referred to above by producing a pointer function,ITU., which 

gives the index of the ith line in the alphabetized sequence. 

Function ITH: 
possible values: integers 
initial values: undefined 
parameters: i an integer 
effect: 

call ERAIND if value of function undefined for parameter given 

Mapping Function ALPHC: 
possible values: integers 
values: ALPHC(l) = index of 1 in alphabet used 

ALPHC (1) infinite if character not in alphabet 
parameter: 1 an integer 
effect: 

call ERAABL if 1 not in alphabet being used 

Mapping Function EQ$: 
possible values: true,false 
parameters: 11,12,wl,w2 all integers 
values: 

EQW(11,w1,12,w2)=for all c(t>SWORD 1 (11 ,w1 ,c) = f CSWORD1 (12,w2,c)) 
effect: 

call ERAEBL if 11 < 1 or 11 > 1 CSLINES* 
call ERAEBL if 12 < 1 or 12 > 1 CSLINES1 

call ERAEBW if wl < 1 or wl > 1 CSWORDS1 (11) 
call ERAEBW if w2 < 1 or w2 > 1 CSWORDS1 (12) 



* Mapping Function ALPHW: 
possible values: true,false 
parameters: 11, 12,wl,w2 all integers 
values: 

ALPHW(11,w1,12,w2) = if .not. fEQWf(11,w1,12,w2) and 
k = min c such that (f CSWORD.1 (11 ,w1 ,c) • noteq.'CSWORD1 (12,w2, 
then 1ALPHC1(•CSWORD1(11,w1,c)) < f ALPHCf(,CSWORDl(12,y2,c)) 
else false 

effect: 
call ERAWBL if 11 < 1 or 11 > ^SLINES* 
call ERAWBL if 12 < 1 or 12 > fCSLINESf 

call ERAWBW if wl < 1 or wl > 'CSWORDS1(11) 
call ERAWBW if w2 < 1 or w2 > 'CSWORDS*(12) 

Mapping Function EQL: 
possible values, true, false 
parameters: 11,12 both integers 
values: 

EQL (11,12) = for all k (fEQWf(11,k,12,k)) 
effect: 

call ERALEL if 11 < 1 or 1 > 'CSLINES' 
call ERALEL if 12 < 1 or 12 > 'CSLINES' 

Mapping Function ALPHL: 

possible values: true,false 
parameters: 11,12 both integers 
value: 

ALPHL(ll,12) = if .not.'EQL1(11,12) then 
(let k = min c such that .not. fEQWf (11,k,12,k)) 
•ALPHW1(11,k,12,k) else true 

effect: 
call ERAALB if 11 < 1 or 11 > 'CSLINES' 
call ERAALB if 12 < 1 or 12 > 'GSLINES' 

Function ALPH: 
possible values: none 
initial values: not applicable 
effect: 

for all i .not<. 1 and i.not>.1GSLINES1 ( 
ITH (i) is given values such that( 

for all j .not<.1 and .not>. CSLINES 
there exists a k such that ITH(k) = j 

for i >-l and < 'GSLINES' (that1ALPHL'(ITH(i), ITH(i+l))) 



Figure 5 is intended to exhibit the situations in which mapping 

functions are useful in specifications. This module is an alphabetize^ 

intended to work with the "line holder" shown earlier. It determines 

values for ITH in such a way that (1) every integer between 1 and the 

number of lines is a value of ITH and if i < j then the line numbered 

ITH(i) does not come before the line numbered ITH(j) in the alphabetic 

ordering. 

Note that ITH as defined might be an array in which the values speci

fied are stored by the routine ALPH, or it might be a routine which 

searches for the appropriate line each time called. An interesting alter

native would be to make use of FIND [4] within ITH so that the computation 

is distributed over the cal-ls of ITH and so that in some situations 

unneeded work may be avoided. We repeat that the important feature of 

this specification is that it provides sufficient information to use a 

module which is correctly implemented according to any of these methods, 

without the user having any knowledge of the method. 

Using the Specifications 

The specifications will be of maximum usefulness only if we adapt our 

methods to make use of them. Our aim has been to produce specifications 

which are in a real sense just as testable as programs. We will gain the 

most in our system building abilities if we have a paradigm for usage of 

the specifications which involves testing the specifications long before 

the programs specified are produced. The statements being made at this 

level are precise enough that we should not have to wait for a lower level 

representation in order to find the errors. 



Such specifications are at least as demanding of precision as are 

programs; they may well be as complex as some programs. Thus they are as 

likely to be in error. Because specifications cannot be "run,11 we may be 

tempted to postpone their testing until we have programs and can run them. 

For many reasons such an approach is wrong. 

We are able to test such specifications because they provide us with 

a set of axioms for a formal deductive scheme. As a result, we may be able 

to prove certain "theorems11 about our specifications. Example "theorems11 

might be: 

1. The specification never refers to Fl(p) unless it is certain that 

p is less than 9. 

2. Whenever F3(x) is true F4(x) is defined and conversely. 

3. It is not possible for F5(x) to take on values greater than p3. 

4. Error routine ERRX will never be called. 

5. There exists a sequence of function calls which will set F2(x) = 

F5(x) = 0. 

6. There will never exist distinct integers i and j such that Fl(i) = 

F2(j). 

By asking the proper set of such questions, the "correctness" of a set 

of specifications may be verified. The choice of the questions, hence the 

meaning of "correctness" is dependent on the nature of the object being 

specified. 

Using the same approach of taking the specifications as axioms and 

attempting to prove theorems, one may ask questions about possible changes 

in system structure. For example, one may ask which modules will have to 

be changed, if certain restrictions heretofore assumed were removed. 



It would be obviously useful if there were a support system which would 

input the specifications and provide question answering or theorem proving 

ability above the specifications. That, however, is not essential. What 

is essential is that system builders develop the habit of verifying the 

specifications whether by machine or by hand before building and debugging 

the programs. 

Incidentally, the theorem proving approach might also be considered as 

a basis for a program which searches automatically for implementations of 

a specified module. 

Hesitations 

To date the paradigm has received only limited evaluation. It has 

been used with reasonable success in the construction of small systems 

with simple modules in an undergraduate class. Currently nearing comple

tion is a description of a simplified man/machine interface for a graphics 

based editor system. However, any attempt to use this on a larger project 

(where the probability of failure without the technique is high) is in a 

very early stage. Clearly the idea needs further practical use before its 

usefulness can be evaluated. I hope that some of my readers will be in a 

position to do this. 

There appears to be a weak limitation on the technique in that it 

makes it easy to describe objects which receive data in small units, and 

where the calling program must be aware of the period between receipt 

of such small units. As of yet we have not found a way to follow the 

paradigm for such objects as a compiler where the user sends one very 

large unit and does not want to know of internal steps in the processing 

of individual characters, phrases, etc. For such situations we have been 



forced to make use of techniques similar to that of Wirth and Weber [5], 

We did, however, combine the two techniques with some success. 

In usage of these techniques it has become clear that there is a 

great initial resistence to their use. This approach to the description 

of programs as somewhat static objects, rather than sequential decision 

makers, is unfamiliar to men with lots of programming experience. The 

first few attempts always fail and require the patient guidance of an 

instructor. The idea is, however, simple and is eventually mastered by 

almost everyone. 
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13 . A B S T R A C T 

This paper presents a method for writing specifications of parts of 
software systems. The main goal is to provide specifications sufficiently precise 
and complete that other pieces of software can be written to interact with the 
piece specified without additional information. The secondary goal is to include 
in the specification no more information than necessary to meet the first goal. 
The technique is illustrated by means of a variety of examples from a tutorial 
system. 
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