NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

BLISS REFERENCE MANUAL

A Basic Language for Implementation of
System Software for the PDP-10

A, Wulf
Russell
N. Habermann
Geschke

Apperson
Wile

LY

cuopu=E

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

January 15, 1970

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-67-C-0058) and

is monitored by the Air Force 0Qffice of Sclentific Research. This
document has been approved for public release and sale; its distri-
bution is unlimited.

PREFACE

This manual is a definitive description of the BLISS language as
impliemented for the PDP~10., BLISS is & language specifically designed for
writing software systems such as compilers and operating systems for the
PDP-10. While much of the language is relatively "machine independent" and
could be implemented on another machine, the PDP-10 was always present in
our minds during the design, and as a result BLISS can be implemented very
efficiently on the 10. This is probably not true for other machines.

We refer to BLISS as an "implementation language'™. This phrase has
become quite popular lately, but apparently does not have a uniform meaning.
Hence it is worthwhile to explain what We mean by che phrase and consequently
what our objectives were in the language's design. To us the phrase "imple-
mentation language" connotes a higher level language suitable for writing
production software; a truly successful implementation language would
completely remove the need and/or desire to write in assembly language.
Furthermore, to us, an implementation language need not be machine inde-
pendent-=-in fact, for reasons of efficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language
for implementing software. One of the most often mentioned is that of speed=~
ing up its production. This will undoubtedly occur, but it is one of the less
important benefits, except insofar as it permits fewer, and better program-
mers to be used, Far more important, we believe, are the benefits of docu=~
mentation, clarity, correctness and modifiability. These were the most
important goals in the design of BLISS,

Some people, when discussing the subject of implementation languages,

have suggested that one of the existing languages, such as PL/I, or at most

-a derivative of one, should be used; they argue that there is already a pro-
liferation of languages, so why add another. The only rational excuse for
the creation of yet another new language is that existing languages are
unsuitable for the specific applications in mind. In the sense that all
languages are sufficient to model & Turing machine, any of the existing
languages, LISP for example, would be adequate as an implementation language,
However, this does not imply that each of these languages would be equally
convenient. For example, FORTRAN can be used to write list processing pro-
grams, but the lack of recursion coupled with the requirement that the pro-
grammer code his own primitive list manipulations and storage control makes.
FORTRAN vastly inferior to, say, LISP for this type of programming.

What, then, are the characteristics of systems programming which should
be reflected in a language especially suited for the purpose? Ignoring
machine dependent features (such as a specific interrupt structure) and
recognizing that all differences in such programming characteristics are
only ones of degree, three features of systems programming stand out:

1. Data structures. In no other type of programming does the

variety of data structures nor the diversity of optimal
representations occur,

2., Control structures. Parallelism and time are intrinsic

parts of the programming system problem,¥*

3. Frequently, systems programs cannot presume the existence

of large support routines (for dynamic storage allocation,

for example).

*
0f course, parallelism and time are intrinsic to real time programming

as well,

These are the principal characteristics which the design of BLISS
attempts to address., For example, taking point (3), the language was
designed in such a way that no system support is presumed or needed,
even though, for example, dynamic storage allocation is provided. Thus,
code generated by the compiler can be executed directly on a "bare"
machine. Another example, taking point (1), is the data structure defini-
tion facility., BLISS contains no implicit data structures {and hence no
presumed representations for structures), but rather provides a method
for defining a representation by giving the explicit accessing algorithm.

One final point before proceeding with the description of the lan-
guage--namely, the method of syntax specification., The syntax 1s given

in BNF, for example

escapeexpression — EXITBLOCK escapeexpression|EXITLOOP escapeexpression

escapeexpression —>|e

where: (1) lower case words are metalinguistic variables, and (2) the
"empty' construct is represented by a blank (as in the first alternative

of the second rule above).

TABLE OF CONTENTS

I. LANGUAGE DEFINITION
I.1.1 ModuleS.....iiivvveunvenss ctestesstuernbsavarunheanae s ., 1.1
1.1.2 Blocks and CommentB,....aocaseessncssascaccananannsrrosces 1.2
1.1.3 Literals....ceeevesesseeennnes teesaasraneseseraen eseses 1,3
I.1.4 Names...... tenetessareerasans P
I.1.5 PoiNters.......cuevaveavssvooncssnscsassrcsnnnsnns vessnes L5
I.1.6 The "contents of" Operators..... crersrrens crrassens veee 1.6
I.2.1 Expressions....... s scssansssnen crseccasernarnas R §
1.2.2 Simple Expressions.........ccceeceeee Ceesassrivesneane ees 2.2
I.2.3.1 Control Expressions.........eeus. ssnssarsavaanvenen e 2,301
1.2.3.2 Conditional Expressions........ tesiesessaenns creavas 2,.3.2
1.2.3.3 Loop ExpressionS......... eressassarasseans ceesnsanes 2.3.3
1.2.3.4 Escape Expressions....... setreera vesresssnsasssansaas 2.3.4
1.2.3.5 Parallel.Expressibns.................. 2.3.5
1.2.3.6 Co-routine EXpressionsS....sccceveacacancresnae ereenas 2,3.6
1.3.1 Declarations......... rassassnaasns PP I |
1.3.2 Memory Allocation..,...... frcscacratessenerarsaacnnsats 3.2
I.3.3 Module Communication..... Cetereasanarensesrnrnns reeeans 3.3
I.3.4 Functions.......... rseereera crrresane P
I.3.5 Structures............ it isi s araransesenens veseness 35
T.3.6 MACTOSeesevervsarasvaasarssonsesssssssssnssnsens eeesses 3,6
II. SPECIAL LANGUAGE FEATURES
II.1.1 Special Functions........c.sa. seesascanraas PP & 3 B |
I1.1.2 Character Manipulation Functions.......esececveconces 11-1.2
II1.1.3 Machine Language.....eesvsececsas tereencorecssrnasasees II=1.3
III. SYSTEM FEATURES
(not yet available)

IV. RUN TIME REPRESENTATION OF PROGRAMS

IV.1l.l IntroductioN..c.e.cevessecrarcsssaasans
IV.1.2 The Stack and FunctionsS....reveeseocs
IV.1.3 Access to Variables......vivs000s000s

iv.1.4 Co-routine Creation and Calls.........

V. IMPLEMENTATION OF_THE BLISS COMPILER
(not yet available)

APPENDIX:
A, SYNLAX..srcnaacancesas creenns reseassnes
B. Input-Output Codes......... cesainea ceses

C. Word Formats....... creseacessesansann -

sas e et

..b.o.oo.Bcl

LRC I BN

...C.1

] .IV-l.].
en s .IV-l.z

1.1

I. LANGUAGE DEFINITION

1.1 Modules
A module is a program element which may be compiled independently of-

other elements and subsequently loaded with them to form a complete program.

module - block

A module may request access to other modules' variables and functions by
declaring their names in EXTERNAL declarations., A module permits general
use of its own variables and ROUTINEs by means of GLOBAL declaratioms.
These lines of communication between modules are linked by the loader prior
to execution, A complete program consists of an ordered set of compiled

modules linked by the loader.

1.2

1.2 Blocks and Comments
A block is an arbitrary number of declarations followed by an arbi-
trary number of expressions all separated by semicolons and enclosed in a

matching begin-end pair.

block — begin declarations compoundexpression end
declarations —>|declaration;|declarations; declaration;
compoundexpression — |e| e; compoundexpression

begin — BEGIR

end — END

comment — | ! restofline endoflinesymbol|% stringwithnopercent %

Comments may be enclosed between the symbol ! and the end of the line on
which the ! appears. However, a | may appear in the quoted string of a
literal, or between two % symbols, without being considered the beginning
of a comment. Likeﬁise, a % enclosed within quotes will be considered part
of a string.

As in Algol the block indicates the lexical scope of the names declared
at its head. However, in contrast to Algol, there is an exception. The
names of GLOBAL variables and ROUTINEs have a scope beyond the block and
although they are declared within the module, the effect, for a module

citing them in an EXTERNAL declaration, is as if they were declared in the

current block.

1.3

1.3 Literals

The basic data element is a PDP-10 36 bit word. However, the hard~
ware provides the capability of pointing to an arbitrary contiguous field
within a word and so a 36 bit word may be regarded as a special case of

the "partial word'". Literals are normally converted to a single word.

literal — number | quotedstring
number -> decimal | octal
decimal — digit | decimal digit
octal - # oit | octal oit

digit - 0}1]|2 --- |9

oit -» 0|12 --- |7

Numbers (unsigned integers) are converted to binary modulo 236 residue
-235. The binary number is 2's complement and is signed. Octal constants

are prefixed by the sharp sign, #.

quotedstring — leftadjustedstring] rightadjustedstring
leftadjustedstring ~» 'string'

rightadjustedstring — "string"

Quoted-string literals may be used to specify bit patterns corresponding to
the 7=bit ASCII code for visable graphic characters on the external 1/0

media. Two types of single-word strings are provided for left or right justi-
fication of the string within a word. Normally quoted strings are limited to
five characters and the unused bit positions are filled with zeroes. In COWN
and GLOBAL declarations, the namesizevalue (see later material) may be of

the form

namesizevalue — name < (quotedstring)

t.3a

In this special case, if the string is & leftadjustedstring, the atring
may be of arbitrary length &nd is bitten off in five character hunks and
placed in successive words. The last word 1s leftadjusted and filled with
trailing zero bits. The number of words so filled is such that there is

at least one word with some zero (null) characters at the end,

Within a quoted string the quoting character is represented by two

successive occurrences of that character.

1.4

1.4 Names

Syntactically an identifier, or name, is composed of a sequence of
letters and/or digits, the first of which must be a letter, Certain names
are reserved as delimiters, see Appendix A. Semantically the occurrence
of a name is exactly equivalent to the occurrence of a pointer to the named
item, The term "pointer” will take on special connotation later with
respect to contiguous sub-fields (bytes) within a word; however, for the

present discussion the term may be equated with "address'. This interpre-

tation of name is uniform throughout the language and there is no distinc-

tion between left and right hand values. Contrast this with Algol where a

name usually, but not always, means '"contents of'.
The pointer interpretation requires a 'contents of' operator, and "."
has been chosen. Thus .A means 'tontents of location A"and ..A means

"econtents of the location whose name is stored in location A'! To illustrate

the concept, consider the assignment expression
simpleexpression = pll « e

This means 'store the value computed from e into the location whose pointer
is the value of pll". (Further details are given in 2.2.)} Thus the Algol
statement "A := B" is written "A « ,B". 1t is impossible to express in

Algol BLISS expressions such as; "A « B", "A « . B", " A« [B", etc.

1.5 Pointers

1.5

As explained in 1.4, the value of a name 18 a pointer which names a

location in memory. However, pointers are more general than mere ad-

dresses since
may, further,
full details,
Manual.) The
example is 60
the base word
the position,
modulo 24 and
and forms the
optionally be

have defaults

they may name an arbitrary contiguous portion of a word, and
involve index modification and indirect addressing. (For
the reader should refer to the PDP-10 System Reference

most general form of pointer specifies five quantities; an
<El,€2,63,€4>, where 60 is computed modulo 218 and forms
address (Y field); 61,62, are computed modulo 26 and form

size fields respectively (P, § fields); € is computed

3
forms the index field (X field); EZ is computed modulo 2
indirect address bit (I field). Each of 61,62,63,§h may
omitted, in which case a default value is supplied. 61,63,§4

of 0, but 62 has the default of 36. Thus, for example,

the expression

(x+1)<.y,3>

defines a three bit field in the first location beyond x. The position

of this three

bit field is “.y" bits from the right end of the word.

location "x" location "x+1"

i

1.6

1.6 The "contents of" Operators

The interpretation placed on jdentifiers in Bliss coupled with the dot
operator discussed earlier allow a programmer direct access to, and control
over, fields within words, to pointers to such fields which are themselves
stored within memory, to chains of such polnters, etc. Two additional
"contents of" operations besides the dot are provided which are more effi-
cient in certain cases, but which are defined in terms of the dot and
pointer operations. These operators are @ and\ , and are defined by the
following (where t is a temporary):

@ = .€<0, 36, 0, 0>
\NE= .(t «€) <0, 36, .t <18, 4>, .t <22, 1>

Thus, both ¢ and \€ specify a full 36 bit value., @€ uses only the right-
most 18 bits of € as the absolute address from which to fetch the value.
\€ interprets the rightmost 23 bits of € as an indirect bit, index register
field and base address. Whichever form ig used, the compiler attempts to
optimize the code produced; thus, for example, identical code is produced
for .x, @x, and \x, if they occur in an expression,

Suppose that the assignment "X «Y < 3, 15, R1, 0>;" has been executed,
that is a pointer has been stored in X (that pointer has P=3, §=15, X=R1l,
I=0), and further that register R1 contains two. Now:

(1) Z « .X stores the value of X, i.e.,the pointer, into Z

(2) Z « ..X stores the value of the fifteen bit field (which ends three
bits from the right) on the second word following Y into Z

(3) Z « @ X stores the value of Y into Z
(4) Z «\ .X stores the value of the second word following Y into Z

(5) X «5 stores 5 into the relevant fifteen bit field of the second
word following Y

{(6) @ X «5 stores 5 into Y

(7) \X «5 stores 5 into the second word following Y

2.1 Expressions

Every executable form in the BLISS language (that is, every form
except the declarations) computes a value., Thus all commands are expres-
sions and there are no "statements" in the sense of Algol or Fortran.

In the syntax description e is used as an abbreviation for expression.

e -+ simpleexpression | controlexpression

2.2

2.2 Simple Expressions

The semantics of simpleexpressions is most easily described in terms

of the relative precedence of & set of operators, but readers should also

refer to the BNF-like description in 4.1,

The precedence number used

below should be viewed as an ordinal, so that 1 means first and 2 second

in precedence.

In the following table the letter € has been used to denote

an actual expression of the appropriate syntactic type, see 4.1.

Precedence

1
1

Example
{compoundexpression)

block

€ (€15 €yrenns€)
name(€,,€),...,€_]

name
literal

&pointer parameters>

.E

@c

\e
€%

€xe

€/

61 MOD 62

Semantics

The component expressions are
evaluated from left to right

and the final value is that of
the last component expression.

A function call, see 3.4.
A structure access, see 3.5,

A pointer to the named item,
see 1.4,

Value of the converted literal,
see 1.3,

A partial word pointer, see 1.5,

Value (possibly partial word)
pointed at by €,

Equivalent to .€0.36.0.0>.

Equivalent to .(te€)< 0,36,.t< 18,4>,
<22, 15>,

Gl shifted logically by bits;
left if positive; right if

62 negatife. (Shifts are modulo 256)
Product of €'s.

€, divided by €,.

Gl modulo 62.

Negative of €.

Sum of €'s,

Difference between 61 and Eﬁ'

[Note all arithmetic 1s carried out modulo 236

2.2a

with a residue of -235.

All arithmetic is integer; if fleoating point arithmetic is introduced

it will be by means of special operators, viz., KFMP, FDV, FNE, FAD, FSU.]

Precedence
7

7

[Truth is represented by 1, falsity by 0.]

8

9

10

11

11

12

Example

El NEQ ez
€, LSS €,
€, LEQ €,
€, GIR €,
€, GEQ €,

NOT €

€ AND €
€ OR €
€ XOR €

€ EQV €

SRR

Semantics
=9

el#

M
A

L
A
N

bitwise complement of €
bitwise and of €'s

bitwise inclusive or of €'s
bitwise exclusive or of €'s
bitwise equivalence of €'s

The value of this expression is
identical to that of , but as a
side effect this value is stored
into the partial word pointed to
by € ; with associative use of «,
the dssigmments are executed from
right to left: thus €, « -
means € « (€, « €,). "HoweVer,
in general, there is no guarantee
regarding the order in which a

- simpleexpression is evaluated

other than that provided by pre-
cedence and nesting: thus
{(R+2; @R * (R« 3)) may evaluate

to 6 or 9.

The reader should refer to the PDP-10 reference manual for a complete

definition of the arithmetic operators under various special input value

conditions.

2.3.1

2.3.1 Control Expressions

The controlexpressions provide sequencing control over the execution

of his program; there are five forms:

controlexpression — conditionalexpression l 100pexpression]

parallelexpression | escapeexpression | coroutineexpression

The general goto statement has deliberately been omitted from the

language to improve readability and structuring of programs.

2,3.2

2.3,2 Conditional Expressions

conditionalexpression — IF €4 THEN e, ELSE eq

e. is computed and the resulting value is tested. If it is odd*, then e

1 2

is evaluated to provide the value of the conditional expression, otherwise

ey is evaluated,

conditionalexpression - IF 4 THEN e,

This form is equivalent to the IF-THEN-ELSE form with 0 replacing eq-
However, it does introduce the "dangling else" ambiguity. This is resolved
by matching each ELSE to the most recent unmatched THEN as the conditional

expression is scanned from left to right.

Only the least significant bit of e, is tested; a zero bit is interpreted as
false and a one bit as true. Thus any odd integer value is interpreted as
truee and any even value as false.

2,3.3

2.3.3 Loop Expressions

The value of each of the six loop expressions is =1, except when an

EXITLOOP is used, see 2.3.4.
loopexpression — WHILE eq Do e,

The e is computed and the resulting value is tested. If it is odd, then
e, is computed and the complete loopexpression is recomputed; if it is even,

then the loopexpression evaluation is complete.

loopexpression — UNTIL ey DO e,
This form is equivalent to the WHILE-DQ form except that 4 is replaced by
NOT(e3).

loopexpression — DO e, WHILE ey

The expressions e,se; are computed in that sequence. The value resulting
from eq is tested: 1if it is odd, then the complete loop expression is

recomputed; if it is even, then the loopexpression evaluation is complete.

loopexpression — DO e, UNTIL eq

This form is equivalent to the DO-WHILE form except that ey is replaced by

NOT(e3).

loopexpression - INCR name FROM 4 TO e, BY ey DO e,

This is a simplified form of the Algol 68 for-loop. The "name" is declared
to be a REGISTER or a LOCAL for the scope of the loop. The expression e, is
computed and stored in name. The expressions e, and e, are computed and

stored in unnamed local memory which for explanation purposes we shall name

U, and U3. Any of the phrases "FROM el" "To ez" or "BY e3" may be omitted--

2.3,3a

in which case default values of e; = 0, e, = 0, ey = 1 are suﬁplied. The

following loopexpression 1s then executed:

Do (e3; name e—.name+U3) UNTIL .name GTR .Uz;

The final form of a loopexpression is:

loopexpression — DECR name FROM ey TO €, BY eq DO e

This is equivalent to the INCR-FROM-TO-BY-DO form except that the final loop

is replaced by

Do (e3; name e—.name-U3) UNTIL .name LSS .Uz;

2.3.4

2.3.4 Escape Expressions

The various forms of escapeexpressions permit control to leave its
current enviromment. They are intended for those circumstances when other

controlexpressions would have to be contorted to achieve the desired effect.

escapeexpression -~ enviroment level escapevalue] RETURN escapevalue
envirorment - EXIT | EXITBLOCK | EXITCOMPOUND | EXITLOOP | EXITCONDITIONAL
levels - I [e]

escapevalue - | e

Each of these expressions conveys to its new enviromment a value, say ¢,

obtained by evaluating the escapevalue, which may optionally be omitted imply-

ing € = 0. The levels field, which must evaluate to a constant, say n, at

compile time, determines the number of levels of the specified control environ-

ment to be exited; the levels field may optionally be omitted in which case

one level is implied. The maximum number of levels which may be exited in

this way is limited by the current function (routine} body or the ocutermost block.
RETURN terminates the current function, or routine, with value €.
EXITBLOCK terminates the innermost n (where n is the value of the

"levels" field) blocks, yielding a value of € for the

outermost one exited.

EXITCOMPOUND terminates the innermost n compound expressions, yielding
a value of € for the outermost one exited.

EXITLOOP terminates the innermost n loop expressions, yielding a
value of € for the outermost one exited,

EXITCOND terminates the innermost n conditional expressions,
yvielding a value of € for the outermost one exited.

EXIT terminates the innermost n control scopes (whether blocks,
compounds, conditionals, or loops with € as the value
of the outermost,

2.3.5

2.3.5 Parallel Expressions

parallelexpression — SET expressionset TES

expressionset —a|e|; expressionset | e ; expressionset

When a compoundexpression is enclosed between a pair of parentheses or a
BEGIN-END pair, its component e's are evaluated sequentially from left to
right, the rightmost providing the final value. However, when an expression-
set is enclosed between a SET-TES pair the order of evaluation is undefined
which implies that the constituent e's may even be evaluated in whatever order
the compiler finds conveniaent, and possibly even in parallel. The value of
the SET-TES expression is that of the last e to be evaluated at execution
time. Thus, unless there is only one e the value is unpredictable.

The n expressions should be sufficiently restrictive that -the final
state is independent of the actuzl order in which the component expressions
are evaluated, An escape expression ig illegal where its use would imply

escaping from the SET.TES enviromment. Another form of parallelexpression is:
parallelexpression — CASE elist OF SET expressionset TES

Let us suppose that the actual e's within the elist are 61,62,...,Em and that
the actual expressions within the expressionset are HO;H1;”’;Hn' Then the
expressions [HG_ | 1 =1,2,...,m} are executed as if sandwiched between a
SET and a TES. lThe number of selected expressions is m. For m=1 the case
expression is sequential with no forking and has a predicatable value (that

of the selected expression).

parallelexpression — SELECT elist OF NSET nexpressionset TESN
nexpressionset —9| ne | ne; nexpressionset

ne —e:e

2.,3.5a

This form is somewhat similar to the case expression except that the expres-
slons in the nexpressionset are not thought of as being sequentially numbered--
instead each expression in the nexpressionset is tagged with an "activation”

expression, Suppose we have the following select expression
SELECT E], Ez, 63 OF NSET 64: 65;‘66: 67; 68: 69; 610: 611 TESN

then the execution proceeds as follows: first E], 62, 63 are evaluated,
then 64, 66, 68 and €10 are evaluated; correspondingly 65 is evaluated if
and only if 64 is equal to one of 61, 62, or 63. Similarly 67 is evaluated
if an only if 66 is equal to one of €, 62, or €3, etc. As with the case
expression, the order of evaluation of the nset elements is not defined
and the value of the entire expression is that of the last ore to be executed
at execution time, Thus, the value of the complete select expression is
uniquely determined only in the case that the elist contains precisely one
element.

An escape expression is illegal where its execution would imply escape

from an NSET-TESN environment.,

2.3.6

2.3,6 Co-routine Expressions

The body of a function or routine may be activated as a co-routine
and/or asynchronous process; the additional syntax is

coroutineexpression — CREATE e, (elist) AT e, LENGTH e, THEN e,
EXCHJ (24’ e5)

The effect of a 'create' expression is to create a context, that is
an independent stack, for the routine (function) named by e,, with para-
meters specified by the elist, at the location whose address is specified by e, and of
size e, words., Control then passes to the statements following the 'create'. When
two or more such contexts have been established, control may be passed from
any one to any other by executing an exchange-jump, EXCHJ (eﬁ’ esf where the
value of e, must be the stack base, €ys of a previous 'create' expression.
The value of eg is made avajlable to the called routine as the value of its
own EXCHJ which caused control to pass out of that routine, Thus the
value of the EXCHJ operation is defined dymamically by the co-routine which
at some later time re-activates execution of the current co-routine.
Should a process, the body of which is necessarily that of a function
(or routine), execute a 'return', either explicitly or implicitly, the ex-
pression e, ffollowing the 'then' in the 'create' expression of the creating
process) 1s executed in the context of the created process. The normal
responsibilities of e, include making the stack space used for the created
context available for other uses and performing an EXCHJI to some other
process,
The facilities described above, namely 'create' and 'exchj', are
adequate elther for use directly as co-routine linkages or for use as primi-

tives in constructing more sophisticated co-routine facilities with macros

*
Note that the lst EXCHJ to a newly created process causes control to enter

from its head with actual parameters as set up by the CREATE.

dede
The value e5 is not available to the called routine on the lst EXCHJ to it.

2.3.6a

and/or procedures. It should be noted in the context that if the created
processes are functions (rather than routines) the resulting processes cone-
tinue to have access to lexically global variables which may be local to an
embracing function (access to lexically local variables which have been
declared 'own' is available in either case). In such a case the resulting
structure is a stack tree in which all segments of the tree below the
lexical level of the (function) process are available to it,.

Two additional complexities are added if the create and exchj
are to be used for asynchronous, and possibly parallel, execution of pro-
cesgses, One is synchronization, by which we man a mechanism by which a
process can coordinate its execution with that of one or more others. A
typical example of the need for synchromnization occurs when two processes,
independently update a common data base, and each must be sure that the
entire updating process is complete before any other process attempts to
use the data base. The second complexity arises in connection with inter-
rupts, and in particular from the fact that certain operations must not be
interrupted (some exchj operatioms for example)., It is possible that cer-
tain situations require synchronization mechanisms but do not need to be
concerned about the interrupt problem--as for example, a user program with
asynchronous processes, which is 'blind' to interrupts, and which some
monitor systems view as a single 'job'.

The nature of "appropriate" synchronization primitives and mechanisms
for temporarily blinding the processor to interrupts (or interrupts in a
certain class) are highly dependent upon the nature of the processes being
ugsed and the operating system, or lack of one, underlying the Bliss program.

As a consequence, no syntax for dealing with either problem is included in

2.3.6b

the langusage; in any case, the amount of code necessary for these facilities
is quite small,
The co-routine user is well advised to read and understand the material

on the run-time representation of Bliss programs contained in section IV,

3.

3.1 Declarations

All declarations, except MAP, introduce names each of which is unique
to the block in which the declaration appears. Except with STRUCTURE and

MACRO declarations, the name introduced has a pointer bound to it.

3,2

3.2 Memory Allocation

There are four classes of declaration which allocate memory space.

declaration —» LOCAL namesizelist |

REGISTER namesizelist |

OWN namesizevaluelist |
GLOBAL namesizevaluelist

namesizelist - namesize | namesizelist, namesize
namesize — name,] name,, [ez]
namesizevaluelist — namesizevalue | namesizevaluelist, namesizevalue
namesizevalue — namesize | name, ¢ e, | name, [ez] « (valuelist) ‘

name, « quotedstring

3
valuelist — value | valuelist, value

value —e, | es (valuelist)

With LOCAL and REGISTER every name in the namesize list is declared to
have a scope coincident with the current block., For every incarnation of
the block at run time (including parallel incarnations of the same routine
via the 'create' mechanism) one word of memory is allocated for nameland e,
words of memory are allocated for name, . The memory space for a particular
incarnation is released at the corresponding block exit, The names have as

value the pointer to the first (or only) word of memory allocated, The contents

of the allocated memory 1s undefined and should not be presumed. The memory

space is taken from core (LOCAL) or the high speed registers (REGISTER) as
specified. Also, e, is restricted to an expression which is calculable at
compile time. Registers must be used sparingly since less than the full 16

will be available for general use.

3.2a

With OWN and GLOBAL, for every name in the namesizevalue 1list one

word of memory is allocated for name and e, words are allocated for name, .
The memory space is taken from core at compile time and survives for the
complete run, The names have as value the pointer to the first (or only)
word of memory allocated. The content of word name, may be initialized at
compile time to ey The contents of the e, words commencing at name, may
be initialized to the values in a valuelist, Whereas e is a single value,
there are eg occurrences of its ensuing valuelist, The expressions
€12€,5€,,8, are restricted to being calculable at compile time, Enéugh
words are allocated for name, to store the quoted string, The scope of an
OWN name is that of the block in which it is declared and of a GLOBAL name
is that of the outermost block of the final program. GLOBAL names are made
‘available to another module by citation in that module's EXTERNAL list,
Note that co-executing incarnations of the same block, whether invoked as a

recursive subroutine or as a co-routine (or both) refer to the same location

if that location was declared by (WN or GLOBAL declarationms.

3.3

3.3 Module Communication

There are two declarations by means of which modules may access names

of another module. The GLOBAL declaration has already been discussed (3.2),

declaration — EXTERNAL namelist

namelist -» name [namelist, name

Each name in the namelist of an EXTERNAL declaration must be defined by a

GLOBAL declaration in another module to which the current module will be

linked before execution. The EXTERNAL declaration makes these names known

to the current block of the current module via the loader.

3.4

3.4 Functions

declaration — FUNCTION name (namelist) = e |
FUNCTION name = e |
ROUTINE name(namelist) = e |

ROUTINE name = e

The FUNCTICN and ROUTINE declarations define the name to be that of a poten-
tially recursive and re-entrant function whose value is the expression e.

The syntax of a normal subroutine~like function call is

pl —»pl (elist) | p1 ()

elist — e l elist, e

where pl is a primary expression. Clearly, pl must evaluate to a name which
has been declared as a FUNCTION or ROUTINE either at compile time or at run

time. The names in the namelist of the declaration define (lexically local)

the names of formal parameters whose actual values on each incarnation are deter-

mined by the elist at the call site. All parameters are implicitly Algol
"ecall-by=-value"; but notice that call-by-reference is achileved by simply pre-
senting pointer wvalues at the call site. Parentheses are required at the call
site even for a ROUTINE or a FUNCTION with no formal parameters since the name
on its own is simply a pointer to the function or routine, E=xtra actual para-
meters above the number mentioned in the namelist of the function (or routine)
declaration are always allowed; however, too few actual parameters can cause
erroneous results at run time. A ROUTINE differs from a FUNCTION in having an
abbreviated and hence faster prolog. Restriction: a routine may not refer

directly to local variables declared outside it, nor may it call a FUNCTION.

P
1e
i

3.4a

declaration -» GLOBAL ROUTINE name (namelist) = e |

GLOBAL ROUTINE name = e

A ROUTINE name is like an OWN name in that its scope is limited to the block
in which it is declared and its value is already initialized at block entry.
The prefix GLOBAL changes the scope of the ROUTINE to that of the outer
block of the program enveloping all the modules. Note that this inhibits

a GLOBAL ROUTINE from access to REGISTER names declared outside it. This is

in addition to the other limitations of ROUTINES cited on the previous page.

Functions and routines may also be activated as co~routines and/or
asynchronous processes, and indeed, the body of a single function may be

used in any or all of these wodes simultaneously. (See 2.3.6.)

declaration — EXTERNAL nameparlist |
FORWARD nameparlist
nameparlist - namepar | nameparlist, namepar

namepar — name (e)

EXTERNAL and FORWARD each tell the compiler how many parameters, given
by ;i are expected by an undeclared function {or roatine), name. FORWARD
is for functions (or routines) declared later in the current block and
EXTERNAL is for routines from another module, The compiler permits the
number of actual parameters in a function (or routine) call to be greater

than or equal to the number of formals declared.

*
Clearly e must evaluate to a constant at compile time.

3.5

3.5 Structures

Structure declarations serve to define data structures by giving an
explicit algorithm for the "indexing rule" associated with that class of

structures,
declaration — STRUCTURE name [namelist] = e

This declaration introduces name as a new "structure class" by which
specific data names will be mapped in a MAP declaration., The names in the
namelist are formal parameter names which positionally correlate with actual
parameters in the usual manner, In addition, the structure class name is
used to denote the Oth formal parameter which will correlate with the name
(base address) of the data space used at the call site. The syntax of a

structure access is
pl — name [elist]

Before describing the meaning of this we must examine the MAP declaration.
declaration — MAP name: namelist

Here name must be defined by a STRUCTURE declaration, and the names in the
namelist must be defined as memory space. The MAP declaration permits the
memory space to be accessed by the indexing rule specifled by the STRUCTURE
declaration. In the following example, TRI may be accessed as a symmetric
matrix although oniy the lower triangle is stored.

OWN TRI[5%6/2],DOPE[5] « (0,1,3,6,10);

STRUCTURE VEC[I] = (.VEC-1+.1);

STRUCTURE SYM[I,J] = (.SYM-1+(IF.I GTR,J THEN.DOPE[.I]}+.J ELSE
' .DOPE[,J]+.1));

MAP VEC:DOFE;
MAP SYM:TRI;

3.5a

A given memory space may be accessed in more than one way by binding alias

names to it and mapping a different structure on each alias.

declaration — BIND equivalencelist
equivalencelist — equivalence | equivalencelist, equivalence

equivalence — name = e

Referring tc the previous example we could access TRI linearly by means of

the alias LIN, thus:

BIND LIN = TRI;
MAP VEC : LIN;

Notice that the value to which a name may be bound need not evaluate
at compile time but may be determined at execution time. For example, in
the following code this feature is used to effect a row interchange within

a matrix.

BEGIN

STRUCTURE ARY2[I,J] = .ARY2 + (.I-1)*10 + (.J-1);
STRUCTURE ARY1[I] = .ARY1l + .I-1;

OWN X[100];

MAP ARY2:X;

BEGIN BIND XX1 = X[.K,1], XX2 = [,n,1]; MAP ARY1:XX1,XX2; REGISTER T;
INCR I FROM 1 TO 10 DO
(T « XX1[.1]; XX1[.1I] « XX2[.1I]; XX2[.I] « T);
END;

End;

3,6

3.6 Macros
Macro expansion takes place during compilation after lexlcal analysis
but before syntactic analysis. The range of a macrocall is sufficiently
general that it cannot be described in simple BNF, The only restrictions
on the positioning of a macrocall are that it may not appear as part of a
literal, name or reserved word, nor may it appear until lexically after the
corresponding declaration, so that the recursive macros are impossible.
declaration — MACRO definitionlist
definitionlist — definition | definitionlist, definition
definition - name, (namelist) = matchedstring1 5]

name, = matchedstring2 $

The matchedstring may be an arbitrary string of atoms of the language, except

that any occurrences of "MACRO" and "$;" must be as nested ordered pairs.

macrocall - name, (stringlist) I name,

stringlist — string | stringlist, string
Each string in the stringlist may contain any symbol other than a comma.
For the simple macro without parameters, expansion consists of simply
replacing every appearance of name., for its scope by matchedstringz. For
the parameterized macro, every occurrence in the matchedstring1 of each
name Iin the namelist is replaced by the corresponding string in the string-
1list. The modified (expanded) string then replaces the call in the program.
After expansion the input scammer is left pointing at the first symbol of
the expanded string so that macrocalls may be nested. Where a macrocall
appears in the matchedstring it is not expanded at the declaratiom but at

call sites of the enclosing macro.

3,6a

Macros may be used to provide names to bit fields so as to improve

readability,
MACRC EXPONENT = 27,8 §;
MACRO MANTISSA = 0,27 §;

MACRO SIGN = 35,1 §;
LOCAL X;
X <BIGN> « 0; X <EXPONENT> & 27; X <MANTISSA> « .I;

Macros may be used to extend the syntax in a limited way.

MACRO NEG = 0 GTR

$;
MACRO UNLESS(X) = IF NOT(X) §;

Macros may be used to effect in-line coding of a function.

MACRO ABS(X) = BEGIN REGISTER TEMP;
IF NEG(TEMP « X) THEN -.TEMP ELSE .TEMP END §;
HERE THE ACTUAL PARAMETER SUBSTITUTED FOR X MAY NOT INCLUDE THE
NAME TEMP.

II-1.1

II. SPECIAL LANGUAGE FEATURES

The previous chapter describes the basic features of the BLISS
language. In this chapter we describe additional features which are

highly machine and implementation dependent.

1.1 Special Functions

A number of features have been added to the basic BLISS language which
allow greater access to the PDP-10 hardware features. These features have
the syntactic form of function calls and are thus referred to as "'special

functions”. Code for special functions is always generated in line,

II-1.2

1.2 Character Manipulation Functions

Ten functions have been specified to facilitate character manipula-

tion operations, They are:

scann (ap) copynn (&P-{, apz)
scani (ap) copyni (3P1s apz)
replacen (ap, €) copyin (ap1, aPZ)
replacei (ap, €) copyii (apy, ap,)
incp (ap)
decp (ap)

For each of these € is an arbitrary expression, and ap is an expression

whose value is a pointer to a pointer. The second of these pointers is assumed

to point to a character in a string.

scann (ap)

scani (ap)

replacen (ap, €)

replacei (ap, €)

copynn (ap,,
copyni (ap,,
copyin (ap1.
copyii (ap1,

incp (ap)

decp (ap)

ap,)
ap,)
ap,)
ap,)

is a function whose value is the character from the
string.

is like scann except that, as a side effect, the
string pointer is set to point at the next character
of the string before the character 1s scanned.

is a function whose value is € and which, as a side
effect, replaces the string character by €.

is similar to replacen except that the string pointer
is set to point at the next character of the string
before the value of € is stored.

these functions are similar in that they each effect
a copy of one character from a source string (pointed
at by .ap,) to a destination string (pointed at by .ap,)
and have as value the character copiled. They differ
in that copynn advances neither pointer,vwhile copyni
advances .ap,, copyin advances +3Pq>s and copyii advances
both. 1In each case the pointer is advanced before the
copy 1s effected.

advances .ap to the next character

resets .ap to point at the previous character of the
string.

file:///4iile

II1-1.2a

Suppose that a string (of 7 bit ASCII characters) is stored in memory
beginning at location S. The string is terminated by a null (zero)
character. The following skeletal code will transform it into a 6-bit

atring with blanks deleted:

begin
register p7, pb, c;
p7 « (s=1) <, 7>; P6 « (8-1) <0,6>;
while (¢ « scani (p7)) neq 0 do
if .c neg " " then replacei (p6, .c);

end;

I1-1.3

1.3 Machine Language

It is possible to insert PDP-10 machine language instructions into a
Bliss program in the syntactic form of a special function
where

op 1ig one of the PDP~10 machine language mnemonics (see table
below) .

] is an expression whose least significant 4 bits will become
the accumulator (A) field of the compiled instruction.
This expression must yield a value at compile time of a
declared register name or a literal,

62 is an expresgsion whose least significant 18 bits will
become the address (Y) field of the compiled instruction.

€3 is an expression whose least significant 4 bits will become
the index (X) field of the compiled instruction.

64 is an expression whose least significant bit will become
the indirect (I) bit of the compiled instruction.

(A table of machine language instruction mnemonics follows. Defaults for 61-§4 are 0.)
The '"value' of these machine language instructions is uniformly taken

to be the contents of the register specified in the accumulator (A) field

of the instruction. (This makes little sense in a few cases, but was

adopted for uniformity.)
In order for the compiler to conserve space during compilation, the

mnemonics for the machine language operators are not normally preloaded

into the symbol table, Therefore, in order to use this feature of the

language, it is necessary for the programmer to include one of the follow-

ing special declarations

declaration -»MACHOP mlist | ALLMACHOP

mlist - name = e | mlist , name = e
in the head of a block which embraces occurrences of these special functions.
(Note: the e's in an mlist must be the actual values of the machine operation
and must evaluate at compile time.) Symbol table space for these names is

released when the block in which the declaration occurs is exited,

I1-1.3a

*
PDP-10 Instruction Mnemonic Table-

E
e Negative
MOV e Magnitude
¢ Swapped
no eftect
] Right Right }{ | Ones
Half word Left ' © VLeft } Zeros
Extend sign
BLock Transfer

EXCHange Ac and memory

10 AC

Immediate to ac
to Memory

to Self

Loal) Byte into a¢

use present pointer
Increment pointer

Increment Byte Pointer

DePosit Byte in memory

ADD

SUBtract

MULtiply {

Integer MULtiply o~

DIVide Immediate

Integer DIVide 10 Memory
and Roundd 11° Both

Floating AdD ~

Floating SuBtract Long

Floating MultiPly to Memory

Floating DiVide to Both

Floating SCale

Double Floating Negate
Unnormalized Floating Add

PUSH down { - Arithmetic SHift
POP up and Jump ,) ~
Logical SHift Combi
ROTate ombined

Zeros

Ones ,

Ac to SubRoutine
SET to Memory and Save Pc -

Complement of Ac and Save Ac

Complement of Memory AC and Restore Ac

- ac Immediate if Find First One
AND with Complement of Ac ° Memory g: (5)1:}; a;dwCL:]z::rC:L 10)
inclusive OR | | with Complement of Memory || Bath Jump< on Cal;:YOO (JFCL 4)’
Complements of Both on CaReY 1 (ECL 2)
Inclusive OR on CaRrY (JFCL 6,)
eXclusive OR on Floating OVerflow (JFCL 1,)
EQuiValence and ReSTore
and ReSTore Flags (JRST 2,)
(neve
SKIP if memory Lessr |and ENable p1channel (JRST 12,)
JUMP if ac Equal HALT (JRST 4))
Add One to ‘ { memory and Skip} if Less or Equal eXeCuTe
Subtract One from | | ac and Jump 1 Always
Immediate " Greater DATA
Compare AC {Wr::h Memory and sklp If AC Greater or Equal BLDCK lﬂ
‘ | Not equal CONditi Out
. - | Positive tans . .| all masked bits Zero

Add One to Both halves of ac and Jump if Negative in and Skip lr{some masked bit One

with Direct mask No modification never

Test ac Right with £

Left with £

set masked bits to Ones

with Swapped mask] {set masked bits to Zeros
Comiplement masked bits

and skip

if all masked bits Equal 0
if Not all masked bits equal 0
Always

x
Reproduced with permission of Digital Equipment Corporation from the PDP-10

Reference Handbook.

IV-1.1

IV. RUN TIME REPRESENTATION OF PROGRAMS

1.1 Introduction
In order to make the fullest possible use of Bliss, it is important

to understand the run=-time enviromment in which Bliss programs run. The
address space is occupied by variocus types of information:

(1) program

(2) constants

{3) static size variable areas (globals and owns)

(4) stacks
Programs are 'pure' (they do not modify themselves) therefore program
and constant areas are placed in contiguous, write~protected regions
and may be shared, Static variable storage and stack space are placed
in readable/writable memory. The key to understanding the run-time
enviromment in the stack configuration and register allocation is illustrated
in Figure IV.1. Each process (co-routine) has its own stack configured as

shown in IV.1.

1.2 The Stack and Functions

IV'1 |2

The first 17]0 locations of each stack are reserved for state informa=-

tion (registers plus program counter) for a process when it is inactive.

use of these cells is explained more fully in 1.4,

The configuration

above these 17 state words depends upon the depth of nesting of function

calls, but each such nested call involves a similar (not identical) use

of the stack; Figure IV.1 illustrates a typical stack configuration

after several nested functional calls.

functions is executing

At a time when one of these

(1) The S-register points to the highest assigned cell in the

The

stack; the S-regiaster is used to control the allocation

of the stack area.

: *
(2) The F-register pointe to the 'local base of stack'; below

the F-register are the parameters to the function and the

return address.

the F-register contains the previous value of the F-register

The stack cell actually pointed to by

at the time at which the current function was entered.

(3) The calling sequence which is used to enter a function (or

routine} is

PUSH

PUSH

PUSH

PUSHJ

- SUB

SsP1

Sspz

S,p,

S,FCN

5,[noocooon] ;

push 1st parameter
stack

push 2nd parameter

stack

push nth parameter
stack

jump to the called

onto the

onto the

onto the

function

delete the parameters

(4) Above the F-register are stored the '"displays", D1...Df .

*'below' in the sense of decreasing address values.

IV -I -2&

One display is used for each lexical nesting of the decla-
ration of the function which is currently executing. The
value of the displays are the F-register values for the
most recent recursive entries for the lexically embracing
functions, The displays are needed and used to access
variables global to the current functions but local to-
embracing functions. Such access is prohibited in routines,
and consequently no displays are saved on & routine entry.

(5) Above the displays are saved any working registers which
are destroyed by the execution of the function body.

These registers are restored before the function exits.

{(6) Any local variables in the function are stored on top of
the saved registers. Space is acquired/deleted for locals
on block entry/exit by simply adding/subtracting a constant
to the S-register.

(7) An excessive number of declared registers, or the evaluation
of an unbelievably complex expression may exhaust the avail-
able registers, forcing the area above the locals to be used
for storing partial results of an expression evaluatiom.

(8) The V-register is used to return the value of the function

or routine.

Figure IV.2 illustrates the code generated surrounding the body of a func-

tion. The code surrounding a routine body is identical with the exception

that the displays are never saved.

Stack Configuration for a Function Call

Figure IV.1

Stack Structure and Registers for a Process

.~

i
/[/p"!] ,‘/tt{-‘:‘mp 8 J{ ,’ *

!

Parameters

3 l
The stack con- \\9

figuration shown
above 18 repeate

.f"“\\‘___"

for each nested

call. ‘L

T L
Local Variables .
)k L
o
R
z
Register Save Area .
Y
’f Pt
Display . .
. A
y~~—prev F reg

return addr

prev. F reg

return addr

f’—“\\H___‘

i

} 20

Register save 17
area when process

is inactive 5

4
Jr

..... -
State info for
inactive pro- 2 PC
cess 1 temp
0 WASTE

)

Declared and

working registers

¥

Registers

Figure IV.2

Function Prolog and Epilog

FCN: PUSH S,F H save old F-register
PUSH S,1(F) H copy display zero
LI] L] '/
€
PUSH S,f(F) H copy display £
HRRZ F,S H set up new F
SUBI F,f ; subtract no, displays
[AR
PUSH S5,F ; new display created
PUSH S,Ra H save register
-9 0 L Not
PUSH S,Rz H gave reglster Generated
L For
BODY OF FUNCTION OR ROUTINE Routines
POP S:Rz 3 restore register
POP S,Ra H restore register
SUB S,[(£+1)060000 (£+1)] ; eliminate displ&ys} &
POP S,F
POPJ S,
Figure IV.,3
Block Entry and Exit
BENTER: MOVEM R1,A+T(F) ; save in-use working registers
MOVEM Rj,1+j(F) ; save in-use working registers
ADD S ,[n00000R] ;3 INCR S-register by no. locals in blk
BEXIT: SUB S, [(nt3)00000(n+j)] ; DECR S~register by no. locals in blk

; (note: in-use reg's left in stack,

; re~loaded only when used)

IV-.l .3

1.3 Access to Variables

This section briefly indicates the mechanisms by which generated code

accesses various types of variables (formals, owns and globals, locals,

etc.)

The exact addressing scheme used by the compiler in any particular

case is highly dependent upon the context; however, the following material

should aid in understanding the overall strategy.

(a)
(b)

(e}

(d)

OWN and GLOBAL variables are accessed directly,.
Formal parameters of the current routine are accessed negatively
with respect to the F-register. If the current routine hag n
formals, then the ith one is addressed by

(-n+ i - 2){F)
Local variables of the current routine are accessed positively
with resﬁect to the F-register. To access the ith local cell,
one uses

dAd+d+r+ 1)F)
where d is the number of displays saved and r is the number of
registers saved on function entry.
Formal parameters and local variables which are not declared in
the currently executing function are accessed through the dis-
play. The appropriate display is copied into one of the working
registers then accessed by indexing through that register in a

manner similar to that shown in (b) or (c) above.

IV"1 .4

1.4 Co-routine Creation and Calls

The two co-routine mechanisms are the "create! and the 'exchj' expres-
sions; an understanding of the latter is necessary to an understanding of
the former-~therefore, we shall describe it first.

Assume two processes P1 and P2 with respective stack bases B1 and BZ'
Further, assume P1 is active (P2 inactive) and executes

x « exchj (Bz,zb;

The following code is compiled in P1%*

PUSH B,{P,] ; store new stack base addr. in temp.
MOVE (I)** v,/ ; parameter to Bz left in value register
PUSHJF B,EXCHRT ; jump to routine to handle the exchange

where

EXCHRT: PUSH B,S ; save caller's S-register

ADDI B,1l 1 sat up destn for BLT, end test
MOVE S,B i copy B in preparation for BLT
BLT S, (17-3XB) ; save caller's registers
HRRZ B,-2(B) ; plck up new stack base
HRLI s, (B) ; set up source for BLT
HRRI s,3 ; set up destination for BLT
BLT 5,17 ; restore called program's registers
MOVE s, (B) ; restore called program's stack ptr.
JRSTF 8 (B) ; jump to called program

The instructions generated for a 'create' simply establishes a stack
configuration appropriate for a later EXCHJ. 1In particular, suppose a

process executes

CREATE PO(PT’PZ"°"Pn) AT ey LENGTH e, THEN eq

Then the following code is generated

*% The exact form of this code depends upon the nature of the expression 1/.

* Note all numbers in code are octal,

Iv-l.4a

HRRZ (1)* tyse ; pilck up the new stack base addr
ADDI tl,l ; move past WASTE cell

MOVE ty,ty ; make another copy for the BLT
BLT t2,20(t1) ; Bave the registers

MOVEN* ty,e, : get negative length

HRL tst, ; s8et length in stack pointer
MOVE tz,t1 ; be sure to have good copy of base addr,
ADD tl,[20000020]; bump pointer above save area
PUSH tysPg ;

‘e push parameters

PUSH tl,pn H

PUSH tl,{E3] P phoney return to e,

MOVEM t1,3(t2) ; s8ave S-register for new process
MOVE(I)* tP, ; get entry point for new process
MOVEM t1,2(t2) ; 8ave entry point in state area
JRST ARNDIT ; skip around e, code

ETWO: code for e,

ARNDIT:

*The form of the code obviously depends upon its actual form in the ‘create’
expression,

APPENDIX A: SYNTAX

module -+ block

block -3 begin declarations compoundexpression end

begin - BEGIN

end — END

comment - I‘. restofline endoflinesymbol | % stringwithnopercent %
declarations — | declaration; | declarations declaration;

declaration — LOCAL namesizelist |

REGISTER namesizelist |

OWN namesjizevaluelist |
GLOBAL nsmesizevaluelist |
EXTERNAL namelist |

FORWARD nameparlist |
FUNCTION name (namelist) = e |
FUNCTION name = e |

ROUTINE name {(namelist) = e |
ROUTINE name = e |

GLOBAL ROUTINE name (namelist) = |
BIND equivalencelist |
STRUCTURE name [namelist] e |

MAP name: namelist |

MACRO definitionlist
namesizelist — namesize | namesizelist, namesize

namesize — name | name {e]

namesizevaluelist

namesilzevalue

valuelist
value

namelist
namepar list
namepar
equivalencelist
equivalence
definitionlist

definition

compoundexpression
e

controlexpression

A,2

- namesizevalue | namesizevaluelist, namesizevalue

~» namesize | name <« e | name [e] « (valuelist) I

name < quotedstring
—value I valuelist, value
e [e (valuelist)
- name] namelist, name
— namepar l nameparliast, namepar
-> name (e)

— equivalence | equivalencelist, equivalence

— niame e

— definition | definitionlist, definition

—name (namelist) = matchedstring § |

name = matchedstring $

—| e | e ; compoundexpression

— controlexpression | simpleexpression

- conditionalexpression |
loopexpression |

‘escapeexpression |

parallelexpression |

coroutineexpression

conditionalexpression —IF e THEN e ELSE e |

loopexpression

IF e THEN e
~WHILE e DO e |
UNTIL e DO e |
DO e WHILE e |

DO e UNTIL e |

A.3

INCR name FROM e TO e BY € DO e |
DECR name FROM e TO e BY € DO e

escapeexpression — enviromment levels escapevalue | RETURN escapevalue

levels > | [el
escapevalue - | e
environment — EXIT | EXITBLOCK | EXITCOMPOUND

EXITLOOP | EXITCOND
parallelexpression — SET expressionset TES |
CASE elist OF SET expressionset TES |

SELECT elist of NSET nexpressionset TESN

expressionset - 1e| ; expressionset l e ; expressionset
nexpressionset - |ne| ne ; nexpressionset

elist —e | elist, e

ne - ese

coroutineexpression— CREATE e (elist) AT e LENGTH e THEN e | EXCHJ (e,e)

simpleexpression - pll «e | pll

pll —p10 | p11 XOR p10 | p11 EqQv pl0
pl10 - p9 I pl0 CR p9

p9 - p8 | P9 AND p8

p8 - p? | NOT p7

p7 —pb6 | pb relation pb

pb —»p5| -p5| p6+p5]| pb - p5

PS —9p4|p5*p4|p5/p4|p5M0Dp4
ph.. -p3 | p4 t p3

p3 —»p2 | .p3 | @3 | \p3

p2 ~»pl | pl <pointerparameters>

pl — literal |

relation
pointerparameters
modification
position
size

index
indirect
literal
number
decimal
octal

digit

oit

name

letter

quotedstring

A.b4

name |

name [elist]}

pl (elist) |

p1 ()|

block |

(compoundexpression)
—»EQL | NEQ | LSS | LEQ | GIR | GEQ
~» position, size modification

—| , index | , index, indirect

-| e
- | e
| e
-] e

- number | quotedstring
— decimal | octal

- digit | decimal digit
- % oit | octal oit
0] 1] 2}...] 9

S0 1] 2]l 7

— letter | name letter | name digit
Al B|Cc| ol Z2]alb|le] sen z

- leftad justed string | rightadjusted string

leftadjustedstring — 'string'

rightadjustedstring— "string"

macrocall

stringlist

— name (stringlist)

- string | stringlist, string

A5

The following liast contains all the names reserved in the language:

AND
AT
BEGIN
BIND
BY
CASE
CREATE
DECR
ELSE
END
EQL
EQV
EXCHJ
EXIT
EXITBLOCK

EXITCOMPOUND

EXITCOND
EXTTLOOP

EXTERNAL
FORWARD
FROM
FUNCTION
GEQ
GLOBAL
GTR

¥

INCR
LEQ
LOCAL
LSS
MACRO

MOD
NEQ
NOT
NSET

OF

OR

OWN
REGISTER
RETURN
ROUTINE
SELECT
SET

STRUCTURE
TES

TESN
THEN

TO

UNTIL
WHEN
WHILE
XO0R

B.1

APPENDIX B: INPUT-OUTPUT GODES ™

The table beginning on the next page lists the complete teletype code. The
lower case character set (codes 140-176) is not available on the Model 35,
but giving one of these codes causes the teletype to print the corresponding
upper case character. Other differences between the 35 and 37 are men-
tioned in the table. The definitions of the control ¢odes are those given by
ASCIl. Most control codes, however, have no effect on the console teletype,
and the definitions bear no necessary relation to the use of the codes in con-
junction with the PDP-10 software.

The line printer has the same codes and characters as the teletype, The
64-character printer has the figure and upper case scts, codes 040-137
(again, giving a lower case code prints the upper case character). The “96"-
character printer has these plus the lower case sef, codes 040~176. The
latter printer actually has only ninety-five characters unless a special charac-
ter is *“‘hidden” under the delete code, 177. A hidden character is printed by
sending its code prefixed by the delete code, Hence a character hidden under
DEL is printed by sending the printer two 177s in a row.

Besides printing characters, the line printer responds to ten control charac-
ters, HT. CR, LF, VT, FF, DLE and DC1-4. The 128-character printer uses
the entire set of 7-bit codes for printable characters, with characters hidden
under the ten control characters that affect the printer and also under null
and delete. In all cases, prefixing DEL causes the hidden character to be
printed. The extra thirty-three characters that complete the set are ordered
special for each installation.

The first page of the table of card codes {pages] lists the column
punch required to represent any character in the two DEC codes. The octal
codes listed are those used by the PDP-10 software. In other words, when
reading cards, the Monitor translates the column punch into the octal code
shown:; when punching cards, it produces the listed column punch when
given the corresponding code. The remaining pages of the table show the
relationship between the DEC card codes and several IBM card punches.
Each of the column punches is produced by a single key on any punch for
which a character is listed, the character being. that which is printed at the
top of the card.

*'I'his appendix reproduced with the permission of Digital Equipment
Corporation from the PDP-10 Reference Handbook.

Even
Parity
Bit

(= = =

o

DO = O e = O -

7-Bit
Octal
Code

000
001
002
003
004
005

006
007
010

011
012

023

024

025
026
027
030
031
032
033

034
035

Character

NUL
SOH
STX
ETX
EOT
ENQ

ACK
BEL
BS

HT
LF

VT
FF
CR
SO
S!
DLE
DC1
DC2

DC3
DC4

NAK
SYN
ETB
CAN
EM
suB
ESC

FS
GS

B.2

INPUTOUTPUL COBEFS

TELETYPL (ODE

Remarks

Nuli, tape feed. Repeats on Model 37, Contiod shift ' on Model 35,

Start of heading: also SOM. start of message. Control A,

Start of text:also EOA, end of address. Control B,

End of text: also EOM, end of message. Control €.

End of transmission (END): shats oft TWX machines. Control D.

Enquiry (ENQRY); also WRU, “Who are you?" Triggers identification
("Here is . ..) at remote station 1t so equipped. Control E.

G1A]

Acknowledge: also RU, "Are you . | . Control ¥,

Rings the bell. Control (;.

Backspace: also FEO, format cffector. Backspaces some machines.
Repeats on Model 37. Controt H on Mode] 35.

Horizontal tab. Control | on Model 35.

Line feed or line space (NEW LINE): advances paper to next line. Repeats
on Meodel 37. Duplicated by controb J on Model 35.

Vertical lzlp (VTAB)Y Control K on Model 35,

Form feel] to top of next page tPAGLE). Controb L,

Carriage return to beginning of line, Control M on Model 35,

Shil't out; changes ribbon color to red. Control N,

Shift in. changes ribbon color to black. Control Q.

Data link escape. Control P (DCO).
Device control 1. turms transmitter (reader) on. Control Q ¢ X ON).

Device control 2, turns punch or asuxiliary on. Control R (TAPE,
AUX ON3,

Device control 3. tums tonsmitter (reader) off. Controt S (X OFF),

Device control 4. turns punch or auxiliary off. Control T (FARE,
AUX OFT).

Negative acknowledge: abso LRR. error. Control U.

Synchronous wdle (SYNC). Control V.

End of transmission block: also LEM. fogical end of medium. Control W.
Cancel (CANCL). Control X, '

End of medium. Control Y.

Substitute. Control Z.

Escape, prefix. This code s gencrated by control shift K on Model 35S,
but the Monifor translates it 1o 175,

File separator. Contryl shift I oa Model 35,
Group separator, Control JHHCA on Made) 38,

Even
Parity

7-Bit
Octal
Code

036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077.
100
101
102

Character

RS
us
Sp
!

#
h)

=T NS BN - W V. R N S R . T

B.3

ITFYETYE cioalnt

Renuirks

Record separator. Control shift N on Model 38,

Unit separator. Control shitt O on Maodel 35.
Space,

Accent acule or apostrophe,

Repeats on Model 37.

Repeats on Model 37,
Repeats on Model 37,

Repeats.on Model 37,

B.4

84 INPU T OUEPUTT gy~

Even 7-Bit
Parity Octal
Bit Code Character Renmuarks

103 C
104 D
105 E
106 I
107 G
110 H
11
112
113
114
115
16
117
120
121
122
123
124
125
126
127
i30
131
132
133
134
135
136
137
140 , Accent grave.
14]
142
143
144
145
146
147 £

Repeats on Model 37,

Shift K on Model 35,
Shift L on Model 35.
Shift M on Maodel 35,

P 2 — -~ NS ECC—VUWURIOVOZZ R = —

Repuats on Model 37,

afoooe oW

—C O =0 = - 00— -0 00— —00 0= =000~ -m—,0C - = -

Even 7-Bit
Parity Octal

Bit Code Character

150 h
151 i
152 j
153 k
154 |
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176

= 3

O C = O = = O O = = QO = O QO — C ™ = O -~ O O —

I 177 DEL

REPT

PAPER ADVANCE
LOCAL RETURN
LOC LF

LOCCR
INTERRUPT, BREAK
PROCEED, BRK RLS
HERE IS

B.S

TEEEAYEE o)

Remarks

Repeats on Model 37.

This code generated by ALT MODE on Model 35.

This code generated by ESC key (if present) on Model 35. but the
Monitor translates it to 175.

Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 35 only: causes any other key that is struck to repeat continuously
until REPT is released.

Modet 37 local line feed.

Model 37 local carriage return,

.Model 35 local line feed.

Model 35 local carriage return.

Opens the line (machine sends a continuous string of null characters).
Break release (not applicable)d.

Transmits predetermined 21-character message.

MAY 1968

B.6

INPU L OUEPITE - ot

CARD CONLS

. PDP-10 PP 10
& Character ASCHH DEC 029 DEC 0206 Clenacier ASCH DEC 029 DEC 026
Space 040 None None 100 N3 4
! 041 11 82 1287 A U] 121 121
* 042 87 0x3 B 102 122 122
043 83 OK6 ¢ FO3 123 123
3 044 1183 1IR3 }] 104 14 124
% 045 084 087 I 105 125 125
& 046 12 11 87 I 106 126 126
’ 047 85 B 6 TG 107 127 127
(050 1285 U084 A H 110 128 128
) 051 1185 1284 & ‘ | 111 129 129
* 052 1184 1184 J 112 111 111
+ 053 1286 12 K 113 112 112
. 054 083 0813 L 114 113 i3
- 055 11 11 M 115 114 i1 4
. 056 1283 1283 N 11 s 115
/ 057 01 01 0 117 116 I o
0 060 0 0 P . 120 7 117
| 061]] 0 121 18 118
2 062 2 L R 122 119 119
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 03
5 065 5 S L 125 04 04
6 066 6 6 \% 126 05 05
7 067 7 7 W 127 06 06
8 070 8 8 X 130 07 07
9 071 9 9 Y 131 08 08
: 072 82 11820r110 Z 132 09 09

; 073 Il 86 082 . 133 1282 1185
< 074 1284 1286 \ 134 11 87 87
= 075 86 B3 | 135 . OR2 1285
> - 076 0Bo 1186 t 136 1287 8BS
? 077 087 12820r 120 - 137 ORS 82
Binary 79
Mode Switch 1202468
End of File 121101

The octal codes given above are those generated by tiie Monitor trom the column punches. The card
reader interface actually supplies a direct binary equivalent of the column punch. as listed in the following
two pages.

MAY {968

B.7

CAHEY O -
- Column Column
Punch Character Octal Punch Character Octal
None Space 0000 ' 12 1 4001
0 0 1000 11 J 2400 .
1 1 0400 112 K 2200
2 2 0200 13 L 2100
3 3 0100 4 M 040
4 4 0040 115 N 2020
5 5 0020 il6 O 2010
6 6 0010 117 P 2004
7 7 0004 118 Q 2002
8 8 0002 19 R 2001
9 9 0001 01 / 1400
12 1 A 4400 0?2 S 1200
122 B 4200 03 T 1100
123 C 4100 04 U 1040
124 D 4_040 035 A" 1620
125 E 4020 06 w 1010
126 F 4010 07 X 1004
127 G 4004 | 08 Y 1002
128 H 4002 09 YA 1001
Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal
12 & + & ¢ & 4000
11 - - - - - 2000
120 » 5000
11 0 : 3000
82 . ~ - : . 0202
83 # = # = # 0102
84 @ - {a @ @ 0042
8BS : ' t ' 0022
8 6 = ' = 0012
87 . \ 0006
1282 ¢ ? . [4202
1283 4102
1284 o) <) < 4042
1285) (] A 4022

1286 + < + 4012

B.8

H INPUT DUTPUT CODES

>lumn 026 Data 026
Punch Pracessing Fortran 029 DEC 026 DEC 029 ~ Octal
1287 | ! t 4006
1182 ! : ! 2202
1183 $ $ $ $ $ 2102
1184 . * * * . 2042
1185) |) 2022
1186 ; > : 2012
1187 1 & \ 2006
082 See note ;] 1202
083 ' , \ , . , 1102
084 % (% (% 1042
085 - " - 1022
086 > # > 1012
087 ? “ ? 1006
121101 End of File End of File 7400
1202468 Mode Switch Mode Switch 5252
79 Binary Binary xx05

Note: There is a single key for the 0 8 2 punch on the 029 but printing is suppressed.
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a |
12 8 2 punch), and the code for 11 0 to 2202 (11 8 D).

c.1

APPENDIX C: WORD FORMATS

<P,S> refers to a field § bits wide and P bits up from the right hand

end of the word, thus:

fe—(36 -5 - P

«——P —»

VI

referenced partial word

The format of a pointer is

P = <30,6> Position

S = <264,6> Size

I=<22,1> Indirect address
X = <18,4> Index

Y = <0,18>

The format of an (non I/0) instruction is

F = <27,9> Function code
A= <23,4> Accumulator
I,X,Y as above

The format of an integer number is

<35,1>
<0,35>

SIGN
MAGNITUDE

The format of a floating point number is

SIGN = <35,1>
EXPONENT = <27,8>
MANTISSA = <0,27>

Security Classification

DOCUMENT CONTROL DATA-R&D

(Securlly clsssllication of title, body of absiraci and indexing annotation muast be shisred when the oversll report Is classiiied)

L OMIGIMNATING ACTIVITY {Corporals suthor)

Carnegie-Mellon University
Department of Computer Science

8. REPORT SKCURITY GLASMFICATION

UNCLASSTFIED

2b, aMOUP

Pittsburgh, Pennsylvania 15213

3. AEPORY TITLE

BLISS REFERENCE MANUAL

4. DESCRIPTIVE NOTESR {Type of report and inclusive dates)
Scientific Interim

8. AUTHORIR) (First name, middle Iniilel, Tant name)

W. A, Wulf, D. Russell, A. N. Habermann, C. Geschke,
J. Aperson and D, Wile

¢ REPORT DATE

January 15, 1970

Ta. TOTAL NO. OPF PAGES '

64

Th, NO. OF REFS

£ 4a. CONTRACT OR GRANT NO.

F44620-67-C-0058

2, ORIGINATON'S REFPORT NUMBER(S)

b, FROJECT NO.

9718
o, | 6154501R [TH g?r::ol:;nonT NGI8) (Any othet numbers that may be aseigned
d, 681304

10. DISTRIBUTION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

1. .U_.P-:I.IMIN'I'AHV NOTES 12, PPONSORING MILITARY ACTIVITY
ir Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)

Arlington, Virginia 22209

TECH, OTHER

13, ABBTRACT

This document describes the BLISS implementation language as written for the
PDP-10. BLISS is a language specifically designed for use as a tool in imple-
menting large software programs. Special attention is given in the language
design to the requirements of the systems programming task, such as: space and
time efficiency, the representation of data structures, the lack of run-time

support facilities, flexible control structures, modularization, and parameteri-
zation of programs.

DD |'uoon\:‘oll 473

Becurly Clasalfcation —

Becurity Classilication

KEY wWORDS

LINK A

LiINK B

LINK €

ROLEK

wy

AOLE

wY

ROLE

wY

Security Classification

