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ABSTRACT 

Partial recursive functions which equal the amount of time or space 

required by computations have special properties which distinguish them 

from arbitrary partial recursive functions. Our main result illustrates 

a property of running times similar in interpretation to Borodin's gap 

theorem. The proof is based on the construction of difficult to compute 

characteristic functions which take the value one very infrequently. 



1. INTRODUCTION 

Partial recursive functions which equal the amount of time or space 

required by computations have special properties which distinguish them 

from arbitrary partial recursive functions. One can tell effectively 

whether a Turing machine halts in a given number of steps on a given argu

ment. This means that the function equal to the running time of the 

machine has a recursive graph. 

Borodin [2] has recently demonstrated that there are "gaps" between 

running times. There are, for example, rapidly increasing recursive func

tions t such that no running time function has values between t(x) and 

t(x) 

2 for infinitely many integers x. Hence a program whose running time 

is bounded above by 2*" must in fact be bounded above by t. Our main 

result, Theorem 2 below, illustrates a property of running times similar 

in interpretation to Borodin's gap theorem. Namely, we show that for any 

recursive function t, there are recursive functions t 1 which (except at a 

rapidly vanishing percentage of arguments) can be made arbitrarily much 

larger than t, such that any running time function bounded above by t' 

is in fact bounded above by t. 

The proof is based on the construction of difficult to compute 

characteristic functions which take the value one very infrequently. We 

also note that there are difficult to compute characteristic functions 

which take the value one at half of their arguments. It follows that the 

computational complexity of characteristic functions is not related in 

any simple way to the density of ones among their values. This observation 

is used to emphasize the contrast between measuring the complexity of a 



function in terms of programs which compute a function at all arguments, 

and programs or circuits which compute finite segments of functions. 

2. PRELIMINARIES 

N is the set of non-negative integers. "Function11 in this paper means 

function from N to N. cp̂  is the partial recursive function computed by 

the i*"*1 Turing machine in a standard enumeration of Turing machines. $^ 
th 

is the running time function of the i Turing machine; = the number 
th 

of steps required by the i Turing machine operating with input x, or 
th 

$^(x) is undefined if the i Turing machine does not halt on input x. We 

assume that inputs and outputs are given in binary notation. 

A function c:N -*{0,1] is called a characteristic function. 1*x is 

defined to be 1 if x=0, and 0 if x > 0. If P(x) is a predicate, then 

(vx)[P(x)] is equivalent by definition to (an)(vx ;> n)[P(x)], and 

(ax)[P(x)] is equivalent by definition to (vn)(3x £ n)[P(x)]. 

The phrase "there are arbitrarily complicated functions f..." means 

"for every recursive function g, there is a function f such that cp̂ =f 

implies (VxH^Cx) s> g(x)]...." The phrase "for sufficiently complicated 

functions f..." means "there is a recursive function g, such that for 

functions f with the property that cp^f implies (vx)[$^(x) £ g ( x ) ] . . . . " 

The arguments of this paper apply equally well to the number of tape 

squares used by Turing machines, or to any measure on computation as 

characterized by Blum [1]. For simplicity we keep to the number-of-steps 

measure. 



3. LARGE BOUNDS ON RUNNING TIME 

If a Turing machine runs for y steps on some input, its output must 

be smaller than 2 y simply because the machine cannot have printed more than 

y ones on its output tape. It follows that if f and t are functions and 

(gx)[f(x) ̂  2 f c^ X^], then f cannot be t-computable since t(x) steps are 

insufficient to print output f(x). This elementary observation yields 

Theorem 1. For every function t:N -»N and every (total) running time func

tion $ i, if (fx)[$i(x) £ 2 t ^ ] , then there is a function which is $ ± -

computable [6] but not t-computable [6]. 

Proof. It is easy to show that $^ is ^-computable for any total 

running time function $^ (cf. Fischer, Meyer, Rosenberg [4]). By the pre

ceding remarks, $^ cannot be t-computable. • 

Theorem 1 breaks down completely if we replace the running time func

tion $^ by arbitrary recursive functions. In fact if t is any recursive 

function, there are recursive functions t 1 which are never smaller than t, 

are much bigger than t at most arguments, and yet t and tf bound exactly 

the same set of running times. 

Definition. Let c:N -»f0,1} be a characteristic function, and let d:N -»N 

be any function. Then c is d-sparse iff (yx)[c(x)r=1 =* yy(x < y £ d(x)+x) 

[c(y)=0]J. 

By choosing d to be rapidly increasing, we guarantee that a d-sparse 

characteristic function takes the value one.at a rapidly vanishing fraction 

of its first n arguments. 



Theorem 2. Let t, g, and d be recursive functions. There is a d-sparse 

recursive characteristic function c and a recursive function t 1 such that 

(i) (vx)[t f(x) * t(x)] f 

(ii) (yx)[c(x)=0 t '(x) * g(x)] , 

(iii) ( v i H v x H s ^ x ) £ t(x)] * ( v x H ^ x ) <; t f ( x ) ] ] . 

The proof of Theorem 2 follows directly from two lemmas. The following 

lemma is due to Michael J. Fischer who observed that it was implicit in 

our original proof of Theorem 2. 

Lemma 1. (M# Fischer) Let t be a recursive function. For every sufficiently 

complicated recursive characteristic function c and every i 6 N, 

(yx)[c(x)=l => $ t (x) <; t(x)] => (*x)l$±U) <> t(x)]. 

Proof. Let c be any recursive characteristic function and suppose 

that for some i, n g N, if x £ n and c(x)=1, then S^Cx) £ t(x). Design a 

new machine which computes c as follows: "Given input x, see if x ̂  n. 

If not, compute c(x) (by simulating some given machine for c) and give 

output c(x). Otherwise, compute t(x), and then simulate machine i on 

input x for t(x) steps. If machine i does not halt in the allotted time, 

giye output zero. Otherwise, compute c(x) and give output c(x) ." 

Whenever x ^ n and $^(x) > t(x), the machine operating according to 

the preceding instructions will halt with output zero in at most twice 

the number of steps required to compute t(x). Hence, suppose c is any 

recursive characteristic function such that every machine computing c 

takes more than twice as many steps at almost all arguments as some 

machine for t. Since the preceding machine computes c, it must be that 



<> t(x) for almost all x. • 

Lemma 2. For every recursive function d, there are arbitrarily complicated 

recursive characteristic functions which are d-sparse. 

Proof. The proof is a generalization of an argument of Rabin [7] 

which shows that there are arbitrarily complicated characteristic functions. 

Let g be any recursive function. We compute a d-sparse characteristic 

function c in stages, so that c differs from the function computed by any 

machine which halts in <> g(x) for infinitely many x. At any point in the 

computation c is defined on an initial segment of the integers, and 

execution of another stage increases the length of the segment by one or 

more arguments. 

Initial stage. Set c(y)=0 for 0 <> y <; d(0). Set the list of cancelled 

indices to be empty. 

Next stage. Let x g N be the least argument at which c(x) is not yet 

defined. See if there is a j £ x such that j is not on the list of 

cancelled indices, and such that $j(y) £ g(y) for some y, x ^ y ^ x + d(x). 

If no such j exists, define c(x)=0 and go to the next stage. 

Otherwise, let i be the least j satisfying the above conditions. If 

> g(x), define c(x)=0 and go to the next stage. Otherwise, define 

c(x) = Utp^Cx), define c(y)=0 for x < y <, x + d(x), add i to the list of 

cancelled indices, and go to the next stage. END 

The only part of the computation of c which might appear non-effec

tive is the computation of Ucp^x), but cp̂ Cx) is computed only when $.(x) £ g(x), 



and so the computation of 1*cp^(x) is guaranteed to converge in this case* 

Since each stage extends the initial segment in which c is defined, it 

follows that c is (total) recursive. Moreover, inspection of the pro

cedure reveals that whenever c(x) is defined to be one, the next d(x) 

values of c are defined to be zero. Hence, c is d-sparse. 

It remains to show that every machine computing c takes more than g 

steps at almost all arguments. The following assertion can be proved by 

induction on i; the proof is left to the reader. 

Fact. If i g N is not on the list of cancelled indices at some stage in 

the computation of c, and if $^(x) <. £(x) for some x such that c(x) is 

not defined at that stage, then there is a j <, i which will be placed on 

the list of cancelled indices at some later stage. 

Now suppose 9j=c. Then i is never placed on the list of cancelled 

indices (since c differs from cpj for every J which is cancelled). There 

wtll be some stage in the computation of c by which all of the finitely 

many integers j <. i which will ever be cancelled, have already been can

celled. Then for all values of c(x) defined at later stages, it follows 

from the fact above that $^(x) > g(x). • 

Proof of Theorem 21 Given recursive functions t, g, and d, let c 

be a d-sparse recursive characteristic function which is sufficiently 

complicated that Lemma 1 is satisfied. By Lemma 2 such a c exists. Let 

t'(x) a t(x) + g(x) • (Uc(x)). Clearly t' satisfies parts (i) and (ii) 

of the theorem, and since t' ^ t, the left to right implication in (iii) 

is immediate. For the converse implication, suppose (yx)[$ (x) t'(x)]. 



Then since c(x)=1 implies t'(x) « t(x), it follows that 

(vx)[c(x)=sl =* ̂ ( x ) t(x)]. By Lemma 1 we conclude that 

(vx)[$t(x) <. t(x)]. n 

4. COMPLEXITY OF FINITE SEGMENTS 

The times required by machines which compute a function f reflect 

one notion of the computational complexity of f• However, one can also 

take the view that since it is never possible to compute more than a 

finite portion of f, the complexity of f should be measured in terms of 

the complexity of its finite segments. Both notions of complexity are 

clearly of interest, but it is important to realize that they are quite 

different. 

The complexity of a finite function has been measured by the size 

or depth of circuits which realize them (Winograd [9], Spira [8]). Let 

c:f0,1...,2n~^} -»f0,1} be a function. A logical circuit with n input 

lines and a single output line realizes c, if whenever the digits of the 
n—1 

binary representation of x € f0,1,...,2 " 1 (with leading zeros if neces

sary) are applied on the n input lines of the circuit, the value on the 

output line is c(x). The circuit complexity of c can be defined as the 

minimum value of the depth of circuits which realize c using only two-in

put logical gates. The circuit complexity of c is closely related to the 

minimum depth of parentheses in Boolean expressions for c using binary 

Boolean operations. 

Alternatively, Kolmogorov, Chaitin and others have considered what 

might be called the descriptive complexity of c as the size of a minimal 

Turing machine or program for c For example, we could define the descrip

tive complexity of c to be the least j such that cp restricted to 



f0,1,...,2n" } equals c. 

The circuit (or descriptive complexity) of a function f:N -*f0,1} 

can be defined as a function of n equal to the circuit complexity of f 

restricted to f0,1,••.,2n"^}. It now makes sense to consider the circuit 

complexity not only of recursive f, but any characteristic function f• 

This is the first indication of the difference between the running time 

notion of complexity, which is defined only for recursive functions, and 

the notions of complexity of finite segments. Informally, the former 

notion reflects the difficulty of, given n, finding a circuit or effective 

description of n values of f, whereas the latter notions reflect the dif

ficulty of storing these values once they are found. 

Both circuit and descriptive complexity of functions have the property 

that characteristic functions which equal one on sparse sets have low 

complexity. For example, if c:N -»f0,1} is d-sparse for d(x) > 2 , then 

the circuit complexity of c is bounded above by approximately log2n. It 
n— 1 

can be shown that most characteristic functions on f0,1,...,2 " } have 
1-e 

circuit complexity n . By Lemma 2 we conclude that there are arbitrarily 

complicated (in terms of running time) recursive characteristic functions 

whose circuit complexity grows quite slowly. We shall postpone a more 

thorough investigation of these observations for a later paper. 

Another consequence of Lemma 2 is that there are arbitrarily complicated 

recursive functions which can be approximated with high precision by very 

easily computed functions. The constant function equal to zero, for 

example, is a reasonable approximation to an exponentially sparse character

istic function. 



Finally, as a contrast to Lemma 2 we establish the existence of 

arbitrarily complicated characteristic functions with ones and zeroes 

evenly distributed among their values. The proof was suggested by 

R. W. Floyd. 

Lemma 3. There are arbitrarily complicated recursive characteristic 

functions c such that (yx)[c(2x) ^ c(2x+1)], and hence 

]{x|0 £ x ^ 2n and c(x)=1}| = n. 

Proof. Let g be a strictly increasing recursive function, and 

h(x) = g(2x+1) + x + 1. Let c 1 be a recursive characteristic function 

such that 9^=c1 implies (yx)[$^(x) £ h(x)]. Such a c 1 exists by Lemma 2. 

Let c(2x) s c'(x) and c(2x+l) = l*c f(x). If cpj=c, then a simple modifica

tion of machine j yields a new machine i which computes c 1. Given input 

x the machine i adds another digit zero at the low order end of the 

representation of x, and then simulates machine j on the altered input. 

Thus cpjsrc', and $^(x) equals $^(2x) plus the time to add a digit at 

the end of the input - which certainly requires fewer than x+1 steps. 

Hence, (yx)[$j(2x) + x + 1 * $ j [(x)]. But (yx)[$i(x) 2> h(x)] by choice of 

c f, and so (yx)[$j(2x) ̂  g(2x)\]. A similar argument implies that 

(Vx)[$j(2x+1) £ g(2x+1)T, and therefore (x) * g(x)]. 

By choosing g to be rapidly increasing, c can be made arbitrarily 

complicated, and by definition c(2x) ^ c(2x+l). • 
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