
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PROPERTIES OF BOUNDS ON COMPUTATION

by

A. R. Meyer and E. M. McCreight

Carnegie-Mellon University
Department of Computer Science

Pittsburgh, Pa.
April 1969

This research was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense
under Contract No. F 44620-67-C-0058 and is monitored by the
Air Force Office of Scientific Research, and in part by the
Fannie and John Hertz Foundation. This paper is a slightly
revised version of a report which will appear in the Proceed
ings of the Princeton Symposium on Information Sciences,
March, 1969 .

ABSTRACT

Partial recursive functions which equal the amount of time or space

required by computations have special properties which distinguish them

from arbitrary partial recursive functions. Our main result illustrates

a property of running times similar in interpretation to Borodin's gap

theorem. The proof is based on the construction of difficult to compute

characteristic functions which take the value one very infrequently.

1. INTRODUCTION

Partial recursive functions which equal the amount of time or space

required by computations have special properties which distinguish them

from arbitrary partial recursive functions. One can tell effectively

whether a Turing machine halts in a given number of steps on a given argu

ment. This means that the function equal to the running time of the

machine has a recursive graph.

Borodin [2] has recently demonstrated that there are "gaps" between

running times. There are, for example, rapidly increasing recursive func

tions t such that no running time function has values between t(x) and

t(x)

2 for infinitely many integers x. Hence a program whose running time

is bounded above by 2*" must in fact be bounded above by t. Our main

result, Theorem 2 below, illustrates a property of running times similar

in interpretation to Borodin's gap theorem. Namely, we show that for any

recursive function t, there are recursive functions t 1 which (except at a

rapidly vanishing percentage of arguments) can be made arbitrarily much

larger than t, such that any running time function bounded above by t'

is in fact bounded above by t.

The proof is based on the construction of difficult to compute

characteristic functions which take the value one very infrequently. We

also note that there are difficult to compute characteristic functions

which take the value one at half of their arguments. It follows that the

computational complexity of characteristic functions is not related in

any simple way to the density of ones among their values. This observation

is used to emphasize the contrast between measuring the complexity of a

function in terms of programs which compute a function at all arguments,

and programs or circuits which compute finite segments of functions.

2. PRELIMINARIES

N is the set of non-negative integers. "Function11 in this paper means

function from N to N. cp̂ is the partial recursive function computed by

the i*"*1 Turing machine in a standard enumeration of Turing machines. $^
th

is the running time function of the i Turing machine; = the number
th

of steps required by the i Turing machine operating with input x, or
th

$^(x) is undefined if the i Turing machine does not halt on input x. We

assume that inputs and outputs are given in binary notation.

A function c:N -*{0,1] is called a characteristic function. 1*x is

defined to be 1 if x=0, and 0 if x > 0. If P(x) is a predicate, then

(vx)[P(x)] is equivalent by definition to (an)(vx ;> n)[P(x)], and

(ax)[P(x)] is equivalent by definition to (vn)(3x £ n)[P(x)].

The phrase "there are arbitrarily complicated functions f..." means

"for every recursive function g, there is a function f such that cp̂ =f

implies (VxH^Cx) s> g(x)]...." The phrase "for sufficiently complicated

functions f..." means "there is a recursive function g, such that for

functions f with the property that cp^f implies (vx)[$^(x) £ g (x)] "

The arguments of this paper apply equally well to the number of tape

squares used by Turing machines, or to any measure on computation as

characterized by Blum [1]. For simplicity we keep to the number-of-steps

measure.

3. LARGE BOUNDS ON RUNNING TIME

If a Turing machine runs for y steps on some input, its output must

be smaller than 2 y simply because the machine cannot have printed more than

y ones on its output tape. It follows that if f and t are functions and

(gx)[f(x) ̂ 2 f c^ X^], then f cannot be t-computable since t(x) steps are

insufficient to print output f(x). This elementary observation yields

Theorem 1. For every function t:N -»N and every (total) running time func

tion $ i, if (fx)[$i(x) £ 2 t ^] , then there is a function which is $ ± -

computable [6] but not t-computable [6].

Proof. It is easy to show that $^ is ^-computable for any total

running time function $^ (cf. Fischer, Meyer, Rosenberg [4]). By the pre

ceding remarks, $^ cannot be t-computable. •

Theorem 1 breaks down completely if we replace the running time func

tion $^ by arbitrary recursive functions. In fact if t is any recursive

function, there are recursive functions t 1 which are never smaller than t,

are much bigger than t at most arguments, and yet t and tf bound exactly

the same set of running times.

Definition. Let c:N -»f0,1} be a characteristic function, and let d:N -»N

be any function. Then c is d-sparse iff (yx)[c(x)r=1 =* yy(x < y £ d(x)+x)

[c(y)=0]J.

By choosing d to be rapidly increasing, we guarantee that a d-sparse

characteristic function takes the value one.at a rapidly vanishing fraction

of its first n arguments.

Theorem 2. Let t, g, and d be recursive functions. There is a d-sparse

recursive characteristic function c and a recursive function t 1 such that

(i) (vx)[t f(x) * t(x)] f

(ii) (yx)[c(x)=0 t '(x) * g(x)] ,

(iii) (v i H v x H s ^ x) £ t(x)] * (v x H ^ x) <; t f (x)]] .

The proof of Theorem 2 follows directly from two lemmas. The following

lemma is due to Michael J. Fischer who observed that it was implicit in

our original proof of Theorem 2.

Lemma 1. (M# Fischer) Let t be a recursive function. For every sufficiently

complicated recursive characteristic function c and every i 6 N,

(yx)[c(x)=l => $ t (x) <; t(x)] => (*x)l$±U) <> t(x)].

Proof. Let c be any recursive characteristic function and suppose

that for some i, n g N, if x £ n and c(x)=1, then S^Cx) £ t(x). Design a

new machine which computes c as follows: "Given input x, see if x ̂ n.

If not, compute c(x) (by simulating some given machine for c) and give

output c(x). Otherwise, compute t(x), and then simulate machine i on

input x for t(x) steps. If machine i does not halt in the allotted time,

giye output zero. Otherwise, compute c(x) and give output c(x) ."

Whenever x ^ n and $^(x) > t(x), the machine operating according to

the preceding instructions will halt with output zero in at most twice

the number of steps required to compute t(x). Hence, suppose c is any

recursive characteristic function such that every machine computing c

takes more than twice as many steps at almost all arguments as some

machine for t. Since the preceding machine computes c, it must be that

<> t(x) for almost all x. •

Lemma 2. For every recursive function d, there are arbitrarily complicated

recursive characteristic functions which are d-sparse.

Proof. The proof is a generalization of an argument of Rabin [7]

which shows that there are arbitrarily complicated characteristic functions.

Let g be any recursive function. We compute a d-sparse characteristic

function c in stages, so that c differs from the function computed by any

machine which halts in <> g(x) for infinitely many x. At any point in the

computation c is defined on an initial segment of the integers, and

execution of another stage increases the length of the segment by one or

more arguments.

Initial stage. Set c(y)=0 for 0 <> y <; d(0). Set the list of cancelled

indices to be empty.

Next stage. Let x g N be the least argument at which c(x) is not yet

defined. See if there is a j £ x such that j is not on the list of

cancelled indices, and such that $j(y) £ g(y) for some y, x ^ y ^ x + d(x).

If no such j exists, define c(x)=0 and go to the next stage.

Otherwise, let i be the least j satisfying the above conditions. If

> g(x), define c(x)=0 and go to the next stage. Otherwise, define

c(x) = Utp^Cx), define c(y)=0 for x < y <, x + d(x), add i to the list of

cancelled indices, and go to the next stage. END

The only part of the computation of c which might appear non-effec

tive is the computation of Ucp^x), but cp̂ Cx) is computed only when $.(x) £ g(x),

and so the computation of 1*cp^(x) is guaranteed to converge in this case*

Since each stage extends the initial segment in which c is defined, it

follows that c is (total) recursive. Moreover, inspection of the pro

cedure reveals that whenever c(x) is defined to be one, the next d(x)

values of c are defined to be zero. Hence, c is d-sparse.

It remains to show that every machine computing c takes more than g

steps at almost all arguments. The following assertion can be proved by

induction on i; the proof is left to the reader.

Fact. If i g N is not on the list of cancelled indices at some stage in

the computation of c, and if $^(x) <. £(x) for some x such that c(x) is

not defined at that stage, then there is a j <, i which will be placed on

the list of cancelled indices at some later stage.

Now suppose 9j=c. Then i is never placed on the list of cancelled

indices (since c differs from cpj for every J which is cancelled). There

wtll be some stage in the computation of c by which all of the finitely

many integers j <. i which will ever be cancelled, have already been can

celled. Then for all values of c(x) defined at later stages, it follows

from the fact above that $^(x) > g(x). •

Proof of Theorem 21 Given recursive functions t, g, and d, let c

be a d-sparse recursive characteristic function which is sufficiently

complicated that Lemma 1 is satisfied. By Lemma 2 such a c exists. Let

t'(x) a t(x) + g(x) • (Uc(x)). Clearly t' satisfies parts (i) and (ii)

of the theorem, and since t' ^ t, the left to right implication in (iii)

is immediate. For the converse implication, suppose (yx)[$ (x) t'(x)].

Then since c(x)=1 implies t'(x) « t(x), it follows that

(vx)[c(x)=sl =* ̂ (x) t(x)]. By Lemma 1 we conclude that

(vx)[$t(x) <. t(x)]. n

4. COMPLEXITY OF FINITE SEGMENTS

The times required by machines which compute a function f reflect

one notion of the computational complexity of f• However, one can also

take the view that since it is never possible to compute more than a

finite portion of f, the complexity of f should be measured in terms of

the complexity of its finite segments. Both notions of complexity are

clearly of interest, but it is important to realize that they are quite

different.

The complexity of a finite function has been measured by the size

or depth of circuits which realize them (Winograd [9], Spira [8]). Let

c:f0,1...,2n~^} -»f0,1} be a function. A logical circuit with n input

lines and a single output line realizes c, if whenever the digits of the
n—1

binary representation of x € f0,1,...,2 " 1 (with leading zeros if neces

sary) are applied on the n input lines of the circuit, the value on the

output line is c(x). The circuit complexity of c can be defined as the

minimum value of the depth of circuits which realize c using only two-in

put logical gates. The circuit complexity of c is closely related to the

minimum depth of parentheses in Boolean expressions for c using binary

Boolean operations.

Alternatively, Kolmogorov, Chaitin and others have considered what

might be called the descriptive complexity of c as the size of a minimal

Turing machine or program for c For example, we could define the descrip

tive complexity of c to be the least j such that cp restricted to

f0,1,...,2n" } equals c.

The circuit (or descriptive complexity) of a function f:N -*f0,1}

can be defined as a function of n equal to the circuit complexity of f

restricted to f0,1,••.,2n"^}. It now makes sense to consider the circuit

complexity not only of recursive f, but any characteristic function f•

This is the first indication of the difference between the running time

notion of complexity, which is defined only for recursive functions, and

the notions of complexity of finite segments. Informally, the former

notion reflects the difficulty of, given n, finding a circuit or effective

description of n values of f, whereas the latter notions reflect the dif

ficulty of storing these values once they are found.

Both circuit and descriptive complexity of functions have the property

that characteristic functions which equal one on sparse sets have low

complexity. For example, if c:N -»f0,1} is d-sparse for d(x) > 2 , then

the circuit complexity of c is bounded above by approximately log2n. It
n— 1

can be shown that most characteristic functions on f0,1,...,2 " } have
1-e

circuit complexity n . By Lemma 2 we conclude that there are arbitrarily

complicated (in terms of running time) recursive characteristic functions

whose circuit complexity grows quite slowly. We shall postpone a more

thorough investigation of these observations for a later paper.

Another consequence of Lemma 2 is that there are arbitrarily complicated

recursive functions which can be approximated with high precision by very

easily computed functions. The constant function equal to zero, for

example, is a reasonable approximation to an exponentially sparse character

istic function.

Finally, as a contrast to Lemma 2 we establish the existence of

arbitrarily complicated characteristic functions with ones and zeroes

evenly distributed among their values. The proof was suggested by

R. W. Floyd.

Lemma 3. There are arbitrarily complicated recursive characteristic

functions c such that (yx)[c(2x) ^ c(2x+1)], and hence

]{x|0 £ x ^ 2n and c(x)=1}| = n.

Proof. Let g be a strictly increasing recursive function, and

h(x) = g(2x+1) + x + 1. Let c 1 be a recursive characteristic function

such that 9^=c1 implies (yx)[$^(x) £ h(x)]. Such a c 1 exists by Lemma 2.

Let c(2x) s c'(x) and c(2x+l) = l*c f(x). If cpj=c, then a simple modifica

tion of machine j yields a new machine i which computes c 1. Given input

x the machine i adds another digit zero at the low order end of the

representation of x, and then simulates machine j on the altered input.

Thus cpjsrc', and $^(x) equals $^(2x) plus the time to add a digit at

the end of the input - which certainly requires fewer than x+1 steps.

Hence, (yx)[$j(2x) + x + 1 * $ j [(x)]. But (yx)[$i(x) 2> h(x)] by choice of

c f, and so (yx)[$j(2x) ̂ g(2x)\]. A similar argument implies that

(Vx)[$j(2x+1) £ g(2x+1)T, and therefore (x) * g(x)].

By choosing g to be rapidly increasing, c can be made arbitrarily

complicated, and by definition c(2x) ^ c(2x+l). •

References

1. Blum, M #, A machine independence theory of computation complexity,
JACM, v.14 (1967), 322-336.

2. Borodin, A., Complexity classes of recursive functions and the
existence of complexity gaps, Proc. of ACM Symposium on Theory of
Computing (1969), to appear.

3. Chaitin, C., On the length of programs for computing finite binary
sequences, JACM. v. 13, No. 4 (1966), 547-569.

4. Fischer, P. C., A. R. Meyer, and A, L. Rosenberg, Real-time counter
machines, Eighth Annual IEEE Symp. on Switching and Automata Theory.
Austin, Texas (1967), 148-154.

5. Kolmogorov, A. N., Three approaches to the definition of the concept
"quantity of information", Problemy Peredachi Informatsii> v. 1 (1965),
3-11. (in Russian)

6. McCreight, E. M #, and A. R, Meyer, Classes of computable functions
defined by bounds on computation, Proc of ACM Symposium on Theory
of Computing (1969), to appear.

7. Rabin, M. 0., Degree of difficulty of computing a function and a
partial ordering of recursive sets, Tech. Report No. 2. Hebrew University,
Israel (I960).

8. Spira, P. M., The time required for group multiplication, JACM. v. 14
(1969).

9. Winograd, S., On the time required to perform multiplication, JACM.
v. 14, No. 4, (1967).

Security CU»«tftc»ttoi>

DOCUMENT CONTROL DATA - R & D
(Smeutlty elmamltlemllon o f f i l l * , body o f mbattmet mnd indexing annotation muat ba anfrad whan thm o w a l l raport la claaaltlad^

1. O R I G I N A T I N G A C T I V I T Y (CotpOff author)

CARNEGIE-MELLON UNIVERSITY
Department of Computer Science
Pittsburgh, Penn sylvania 1 5 2 1 3

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1. O R I G I N A T I N G A C T I V I T Y (CotpOff author)

CARNEGIE-MELLON UNIVERSITY
Department of Computer Science
Pittsburgh, Penn sylvania 1 5 2 1 3

16. G R O U P

». H C P O R T T I T L E

PROPERTIES OF BOUNDS ON COMPUTATION

4. D E S C R I P T I V E N O T I I (T > p a o f raport mnd Inclualva dataa)

Scientific Interim
9. A U T H O R (S) (F l r a l n a m * , mlddla Initial* Imal nmma)

A. R. Meyer
E. M. McCreight

t. R E P O R T D A T E

April 1969
7a. T O T A L N O . O F P A O E S 76. N O . O F R E F S

12 9
•a . C O N T R A C T O R O R A N T N O .

F44620-67-C-0058
6. P R O J E C T N O .

9718

6l5^501R
*. 681304

O R I G I N A T O R * * R E P O R T N U M B E R ! * ! •a . C O N T R A C T O R O R A N T N O .

F44620-67-C-0058
6. P R O J E C T N O .

9718

6l5^501R
*. 681304

96. O T H E R R E P O R T NO(S) (Any othat numbata tfial amy 6a mmalgnmd
thla raport)

10. D I S T R I B U T I O N S T A T E M E N T

1 . This document has been approved for public release and sale;
its distribution is unlimited.

11 . S U P P L E M E N T A R Y N O T E S

TECH,OTHER

tft> S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Resea
(SRMA) 1^00 Wilson Boulevard
Arlington, Virginia 22209

IS . A B S T R A C T

Partial recursive functions which equal the amount of time
or space required by computations have special properties which
distinguish them from arbitrary partial recursive functions.
Our main result illustrates a property of running times similar
in interpretation to Borodin's gap theorem. The proof is based
on the construction of difficult to compute characteristic
functions which take the value one very infrequently.

DD .2TA.1473
Security Classification

Security Classification
14.

K I V W O f t O S
L I N K A L I N K * L I N K C

14 .
K I V W O f t O S

f t O L K W T M O C K W T R O L I W T

I

Security Classification

