NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

A NOTE ON STAR-FREE EVENTS

By

Albert R. Meyer

Carnegie-Mellon University
Pittsburgh, Pennsylvania
February, 1968
This work was supported by the Advanced Research Projects
Agency of the office of the Secretary of Defense (SD-146)
and is monitored by the Air force office of Scientific
Research. Distribution of this document is unlimited.

ABSTRACT

```
A short proof of the equivalence of star-free and group-free regular events is possible if one is willing to appeal to the Krohn-Rhodes machine decomposition theorem.
```


1. INTRODUCTION

The star-free events are the family of regular events expressible in the extended language of regular expressions (using Intersection and complementation, as well as union and concatenation of events) without the use of the Kleene star (closure) operator. The equivalence of the star-free and group-free events was first proved by Schutzenberger [1966]. Papert and McNaughton [1966] show that the star-free events are precisely the events definable in McNaughton's L-language, and are thereby able to establish the above equivalence without extensive use of the properties of finite semigroups. However, if one is willing to appeal to the machine decomposition theorem of Krohn and Rhodes,the equivalence of star-free, group-free, and also noncounting regular events can be proved more simply. We present such a proof in this note,

2. PRELIMINARIES

We assume the reader is already familiar with regular events and finite automata. Our notation follows Yoeli [1965] and Ginzburg [1968]. In particular, if f and g are functions from a set S into itself, arguments are written on the left (so that $s f=f(s))$, and the composition fo, mens that f is applied first (so that $s(f \circ g)=(s f) g)$.
A semlautomaton is a triple $A=<Q^{\wedge}, £^{\wedge}, M^{\wedge}>$ with Q^{\wedge} a finite set (of states), E^{\wedge} a finite set (of inputs), and M^{\wedge} a set of functions M_{a}^{\wedge} : $Q^{\wedge}->Q^{\wedge}$ indexed by ст $£ E^{\wedge}$. The mapping M_{a}^{*} is abbreviated ${ }^{*}{ }^{\wedge}{ }^{\wedge}$ ". The element $\mathrm{qo}^{\wedge} £ \mathrm{Q}^{\wedge}$ is the next state of $\mathrm{q} £ \mathrm{Q}^{\wedge}$ under input ст $^{\mathrm{E}} \mathrm{2}^{*}$. For $x €\left(F^{\wedge}\right)^{*}$ the mapping $x^{\wedge} ; Q^{\wedge}->Q^{\wedge}$ is defined inductively: A^{\wedge} is the
identity map on Q^{\wedge} wligre A is the null word in $\left(£^{A}\right)^{*}$, and if $x=y_{\text {сr }}$ for y e ($\left.E^{\wedge}\right)^{\prime \prime}$ and ст $£ £^{\wedge}$, then x^{\wedge} is $y^{\wedge} 0$ ст $^{\wedge}$. Hence, $(x y)^{\wedge}=x^{\wedge}{ }^{\circ} y^{\wedge}$ for all $x, y €\left(£^{\wedge}\right)^{*}$. For $x £ \quad$ and integers $k £ 0, x^{k}$ is the concatenation of x with itself k times; $x^{\circ}=A$ by convention. Clearly, $\left(x^{k}\right)^{A}=\left(x^{A}\right)^{k}=$ the composition of x^{\wedge} with itself k times. The (necessarily finite) set of distinct mappings x for $x \in(E)$ form a semigroup G^{\wedge} under composition. G^{\wedge} Is called the semigroup of A.

Let A and B be semiautomata. B is a subsemiautomaton of A providing $S^{B} C E^{A}, Q^{B} \Leftarrow Q^{A}$ and the mapping ${ }_{c t}{ }^{B}$ is the restriction of ${ }_{c t}{ }^{A}$ to Q^{B} for each $a € £^{B}$. B is a homomorphic image of A providing that $S^{\wedge}=E^{B}$ and there is an onto mapping $T\left(: Q^{\wedge}-» Q^{B}\right.$ such that $T\left[{ }^{\circ}=\mathrm{cr}^{\wedge \circ} \mathrm{T} \mid\right.$ for each \& $£ £^{A}$, The mapping $\boldsymbol{H} \mathrm{i}^{\text {s }}$ called a homomorphism of A onto B. A covers B, in symbols " $A \wedge B$ " if and only if B is a homomorphic image of a subsemiautomaton of A.

An automaton is a quińtuple $A^{A}-{ }^{*} C Q^{A}, A, s A, F^{A}, \quad{ }^{A}$ * wnere $\mathrm{A}=\left\langle\mathrm{Q}^{\wedge}, £^{\wedge}, H^{\wedge}\right\rangle$ is a semiautomaton, called the semiautomaton of $\&_{p s}{ }^{\wedge}$ is an element of Q^{\wedge} called the start state, and F^{\wedge} is a subset of Q^{\wedge} called the final states. The event accepted by_A is $\left\{x \in\left(£^{\wedge}\right){ }^{*} \mathbf{j} s^{\wedge} X^{\wedge} 6 F^{\wedge}\right]$. This definition of automaton is merely a notational variant of the usual finite state acceptor (cf. Rabin and Scott [1959]), and the events accepted by such automata are precisely the regular events.

3. STAR-FREE AND NONCOUNTING EVENTS

The star-free events are defined inductively as follows:
Definition 1. Let J be a finite set (of inputs). The singleton \{o\} is a star-free event over E. If U, V c j^{*} are star-free events over $£$,
then $U \mathrm{U} V, \mathrm{U}$ (the complement of 0 relative to $£ *$), and $U V$ (the concatena-
 over E only by implication from the preceding clauses.

By DeMorgan's law, $U \mathrm{fl} V=0 \mathrm{U} V$ and so star-free events are also closed under intersection. Since the regular events over $£$ include the singletons and are closed under union, relative complementation, and concatenation, it follows that every star-free event is regular.

Definition 2. (Papert-McNaughton) A regular event $U \mathrm{c} j$ * is a noncounting regular event over $£$ if and only if there is an integer k, S such that for all $x, y, z € £^{*}$

$$
x y{ }^{*} U_{z} \text { é}^{\prime} U » x y{ }^{*} u{ }^{+\prime} z £^{T+} U \text {. }
$$

Intuitively, an automaton accepting a noncounting event U need never count (even modulo any integer greater than one) the number of consecutive occurrences of any word y once consecutive y 's have occurred in an input word.

Lemma 1. (Paper-McNaughton) Every star-free event is a noncounting regular event.

Proof. The singleton [a) is trivially a noncounting regular event for every. ££ (choose $=2$), so it is sufficient to show that if U and V are noncounting regular events over $£$, then so are $\mathrm{U} \mathrm{U} \mathrm{V}, \mathrm{U}$, and UV.

Let $k=$ maxfky.kyj. Then for any $x, y, z € £^{*}, x y^{k} z £ U U V$


```
    k.,-H k-k
\(x y \quad(y \quad z) £ V \gg x y \quad z 6 U U V\). Thus, \(U U V\) is a noncounting
regular event with \(\mathrm{k}=\) maxtky, \(k_{y} \backslash\).
```

$$
\text { Similarly, } x y{ }^{k . j} z € U «^{*} x y^{k i r} z j £ U \ll y^{k_{n}+1} z j £ U » y^{k t j+1} z € U \text {, }
$$ so that 0 is a noncounting regular event with $k^{\wedge}=k^{\wedge}$.

Finally $y_{v *}$ let $k=2$-maxfk $U^{\prime}{ }^{k} l_{\forall} 1$ and suppose $x y^{k} z £ U V$. Then $x y{ }^{k} z=u v$ for some $u £ U, v € V$, and it must be the case that either $u=x y^{k / 12} w$ for some $w £ £^{*}$, or that $v=v^{\prime} y^{\wedge} z$ for some $w^{\prime} € £ *$. In the first case, $u=x y^{k} \wedge^{2} w=x y^{k u}\left(y^{k} /{ }^{2}{ }^{-k u} w\right) € U$ implies that $x y^{k u+1}\left(y^{k} / /^{2 k} U \mathrm{w}\right) \geqslant x y^{k} /{ }^{2}{ }^{+1} w \in U$ since U is noncounting. In the second case, $V=w^{\prime} y^{k} /{ }^{2} z £ V$ similarly implies that $w^{\prime} y^{\wedge^{2}{ }^{+1} z} \mathfrak{Z}$ V. Hence, in either case $x y^{k+1} z €$ UV. Conversely, if $x y^{k+1} z € \in V$ the argument can clearly be reversed to show that $x y^{k} z g$ UV. Thus, UV is a noncounting regular event with $k^{\wedge}=2 \cdot$ maxfk,$\left.k_{y}\right\}+1$. Q.E.D.

If U is a noncounting regular event over $£$ and $a € 2$, then $a € U$ implies that U contains all words in o* of length at least k^{\wedge}. Therefore, either $U \mathrm{fl} \mathrm{cr}^{*}$ or $\mathrm{Ufl} \mathrm{a}^{*}$ is a finite event. The regular event (era)* is neither finite nor has finite complement, which proves:

Corollary 1. The noncounting (and hence the star-free) regular events are a proper subfamily of the regular events.

4. GROUP-FREE EVENTS

Associated with any event $U c S^{*}$ is a congruence relations (mod U), on 2* defined for $w, y £ 2^{*} b y:$

$$
\mathrm{w}=\mathrm{y}(\bmod \mathrm{U})<\left(V \mathrm{x}, \mathrm{z} £ 2^{*}\right)[\mathrm{x} w \mathrm{z} £ \mathrm{U} \gg \mathrm{x} y \mathrm{z} € \mathrm{U}]
$$

Noncounting regular events are thus those regular events U such that

The relation between this congruence and automata is an immediate consequence of the familiar theorems of Nerode and Myhill (cf. Rabin and Scott [1959]): if U is a regular event, then there is an automaton ft accepting U (viz., the reduced automaton accepting U) such that $x=y(\bmod U) \geqslant x^{A}=y^{A}$.

Definition 3. A subgroup of a semigroup S is a subsemlgroup of S whose elements form an abstract group under multiplication in S. A semigroup is group-free if and only if all its subgroups are isomorphic to the trivial group with one element. A semiautomaton is group-free if and only if the semigroup of the semiautomaton is group-free. A regular set U is group-free if and only if there is an automaton ft accepting U such that the semiautomaton A of $f t$ is group-free.

Lemma 2. Let S be a semigroup. If there is an integer $k S 0$ such that $s=s \quad$ for all $s € S$, then S is group-tree.

Proof. Let G be a subgroup of S, and let g be an element of C. Then $g^{k}=g^{k+1}$ implies $\left.e \wedge g \vee V \wedge V^{\wedge}\right) \wedge g$ where $g^{\prime \prime}$ is the inverse of g in G and e is the Identity of G. Hence, $G=[e)$ is the trivial group.
Q.E.D.

Corollary 2. Every noncounting regular event is a group-free regular event.
$k y \quad k n+1$
Proof. If U is a noncounting regular event, then $y^{u}=y \quad(\bmod U)$
 Hence, $\left(y^{\wedge}\right)^{k 1 /}$ " $\left(y^{\wedge}\right)^{k u+1}$ for every element $y^{\wedge} € G^{\wedge}$, and G^{\wedge} is group-free by lemma 2.
Q.E.D.

5. DECOMPOSTION INTO RESETS

The machine decomposition theorem of Krohn and Rhodes supplies the key step in the proof that group-free events are star-free.

Definition 4. Let A and B be semiautomata and $w: Q^{A} \times £^{A}-{ }_{s}{ }^{B}$. The 0 cascade product A to B of A and B with mapping $c u$ is the semiautomaton
 $s^{B} £ \mathcal{Q}^{B}$ by:

$$
\therefore S^{*}>{ }_{\square T}{ }^{\circ}=<S^{\wedge}{ }_{0}{ }^{\wedge} \text {, s W U O V }
$$

A cascade product of three or more automata is defined by association to the left, e.g., a cascade product of semiautomata A, B, and C is any semiautomaton $(\mathrm{A} \wedge \wedge 3)^{\wedge} 2^{\wedge}$ for any mappings u$)^{\wedge}$ and with appropriate domain and range.

Definition 5. A semiautomaton R is a reset providing $Q^{R}=f 1,2 \mid$, and $£^{R}$ is the union of three mutually exclusive sets $£^{R}, £^{R}, £^{R}$ such that:
 $\mathrm{CT}^{\mathrm{n}}=$ the identity on Q^{n}.

The following weak form of the decomposition theorem is sufficient for our purposes (for a constructive proof of the general theorem see Ginzburg [1968\}):

Theorem. (Krohn-Rhodes) Every semiautomaton A is covered by a cascade product of semiautomata A_{1}, for $1<;$ i $\sum_{n}, A_{\text {, }}$

IS 3 reset oit $61 \mathrm{s£} \mathrm{~A}^{\text {^ }} \mathrm{G}$ I. s \& oorx tIT 1.v!L3X tiornoinorptii.c lirts^s of s GROUP OF G.
since the trivial group has only itself as a homomorphic image, THE FOLLOWING LEMMA IS IMMEDIATE:

```
LEMMA 3. EVERY GROUP-FREE SEMIAUTOMATON IS COVERED BY A CASCADE
PRODUCT OF RESETS.
COROLLARY 3. EVERY GROUP-FREE REGULAR EVENT IS ACCEPTED BY AN AUTOMATON
WHOSE SEMIAUTOMATON IS A CASCADE PRODUCT OF RESETS.
```

PROOF. LET ft, WITH GROUP-FREE SEMIAUTOMATON A, BE AN AUTOMATON
Accepting a group-free regular event u. by lemma 3 and the definition
OF COVERING, A IS THE IMAGE UNDER A HOMOMORPHISM $t[$ OF A SUBSEMIAUTOMATON
OF A CASCADE PRODUCT C OF RESETS. THERE IS NO LOSS OF GENERALITY IN
ASSUMING THAT $£^{\wedge}=£^{\circ}$, SINCE THE SUBSEMIAUTOMATON OF C OBTAINED BY
.... \quad A , . . . X T . , .
RESTRICTING E TO £ IS ALSO A CASCADE PRODUCT OF RESETS WHICH COVERS
A. CHOOSE ANY $S^{\circ} € Q^{\circ}$ SUCH THAT $S^{\circ} T \mid=S^{\wedge}(T H E ~ S T A R T ~ S T A T E ~ O F ~ f t) ~ A N D ~$
DEFINE $F^{\circ}=\left\{Q € Q^{\circ} \mid Q H \in F^{\wedge} J\right.$ THEN FOR ANY $X £\left(£^{\wedge}\right)^{*}, X \in$ UO

A WITH SEMIAUTOMATON © © START STATE S ${ }^{C}$, AND \hat{C} FINAL STATES " \mathcal{F}, IS THE
REQUIRED AUTOMATON ACCEPTING U. Q.E.D.
6. THE MAIN THEOREM.
the behavior of cascades of resets can be described in terms of
Star-free events using

Deftnition 6. For a semiautomaton A and states $p, q \in Q^{\wedge}$, the set A of p-g-inputs is $\left.f x £\left(S^{\wedge}\right)^{*} \mid p x^{\wedge}=q\right)$.

Lemma 4. Let $C=B u>R$ with B a semiautomaton, R a reset, and UJ: $Q^{B} \times S^{B} \wedge^{\wedge} 2^{n}$. If $B_{\rho q}$ is a star-free event (over $£^{\circledR}$) for all $p, q \in Q^{p}$, then C ' Is a star-free event (over $£^{c}=£^{\ominus}$) for all a, $b £ Q^{c}$.

Proof. Write "S" for the (equal) sets $£^{8}$ and $B y$ the definition of cascade product, the first component of $<\mathrm{p}, 1>\mathrm{y}$ Is simply py for B
any $p € Q, y € S$ - Since R Is a reset, in order for the second component of ${ }^{\wedge} \mathrm{Cp}, 1>\mathrm{y}$ to be 2 , R must receive an input $<\mathrm{r}$, cr^ $€ £ 2$ for some $r € Q^{B},<j € S-$
 x must equal y 。 z for some $y, z £ £^{*}$, or $€ S$ such that: $p y^{\beta}=r$ for some
 for y and or satisfying the preceding conditions. Then no prefix of z causes R to receive an input <s, $5>\wedge € E_{1}^{R}$ (where $s £ Q^{B}, 5 " £ £$), i. e..,

 one li 35 *
thelefthand union being over all $r £ Q^{B}$, 。 $6 E$, such that $<r, a>\sum^{\wedge} \wedge^{\prime}$ and the righthand union being over all $\mathrm{s} £ \mathrm{Q}^{8}, 5 £ z$ such that $<\mathrm{s}, 8>\mathrm{u} € z^{\wedge}$.

The unions in the expression for C " _ are finite, and v^{*} is <pj><q,2>
a star-free event $\&=£$ and,$\left.£=f_{a}\right\} n$ fat), so that $C \wedge \wedge$ is a
star-free event. The set of $x £ C_{<p, I X q, i>}$ is precisely the set of

-10-

References

1. Ginzburg, A., Algebraic Theory of Automata, to appear (1968).
2. Papert, S. and R. McNaughton, "On topological events", Theory of Automata, University of Michigan Engineering Summer Conferences (1966).
3. Rabin, M. 0. and D. Scott, "Finite automata and their decision problems", IBM J. Res. and Dev., 3,2 (April, 1959), 114-125.
4. Schutzenberger, M. P., "On a family of sets related to McNaughton's L-language", Automata Theory, Caianiello, E. R. (ed.), Academic Press, N. Y, XI966)7~320^324.
5. Yoeli, M., "Generalized Cascade Decompositions of Automata", JACM, 12, 3 (July, 1965), 411-423.

SCOPE USER MANUAL

By

Alan H. Bond

```
Carnegie-Mellon University
    Pittsburgh, Pennsylvania
        February 6, }196
```

This work was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-146) and Is monitored by the Air Force Office of Scientific Research.

CONTENTS

-1. PREFACE
2. INTRODUCTION AND SUMMARY
3. OFF LINE USE, TERMS AND CONCEPTS
4. THE SCOPE MONITOR
A. GENERAL LAYOUT AND THE OPTION STATE
8. MANAGEMENT STATE
C. PROGRAM STATE
D. DEBUG STATE
E. TEXT HANDLING
F. USER MANUAL
G. DRAWING STATE

H, USER PROGRAM INTERACTION STATE
I. TEXT EDITING STATE
5. PROGRAMMING FOR GRAPHICS
6. WRITING INTERACTIVE PROGRAMS
A. B ROUTINES
e. USER INTERRUPTS
c. MULTISCOPE INTERACTION
D. OVERALL CONTROL STRUCTURE
7. THE B ROUTINES
6. SUBPROGRAM LIBRARY

9, USER SUBSYSTEMS
10. GRASP \qquad
11. HOW THE SCOPE MONITOR WORKS

FIGURES

1. LOG IN. \qquad

2, ____MANAGEMENT PAGE_
3. DIRECTORY
4._PROGRAM PAGE
5. \qquad
\qquad
6. TEXT HANDLING PAGE \qquad
__2.___D R A W],NQ „M ODE \qquad
8. . CODF. TO SWITCH IN AND OUT THE H.....MODULE.
9. LAYOUT OF H-MODULE \qquad
10. INTERFACE ROUTINE \qquad

1. PREFACE

THIS MANUAL DESCRIBES HOW TO USE THE SCOPES. IT IS CONCERNED MAINLY WITH SOFTWARE, AS THE HARDWARE IS TREATED DEFINITIVELY IN THE CARNEGIE TECH, DOCUMENTI "A VISUAL DISPLAY SYSTEM SUITABLE FOR TIMESHARED USE' BY QUATSE, JESSE T.. LATEST VERSION DECEMBER 1966. OBTAINED FROM THE COMPUTATION CENTER DOCUMENTATION STAFF, IN ORDER TO USE THE SCOPES, IT IS SUFFICIENT TO READ THE QUATSE DOCUMENT AND THE SCOPE USERS MANUAL. THE QUATSE MANUAL SHOULD BE READ FIRST, A BRIEF DESCRIPTION OF HARDWARE CONCEPTS AND TERMS IS GIVEN IN SECTION 3 OF THIS MANUAL^

THE SCOPES ARE SITUATED IN ROOM PH18A, COMPUTATION CENTER, TELEPHONE EXTENSION 27. THEY ARE" ON WHEN TELETYPES ARE ON, USUALLY 10100 AM TO MIDNIGHT AND HAVE NORMAL TELETYPE TURN-ROUND TIME, EXCEPT THAT PROGRAMS SUBMITTED FROM SCOPES RUN AT THE BEGINNING OF THE WAIT TIME, 1,6.* IMMEDIATELY, TO ALLOW THE USER TO BE PRESENT AT RUN TIME AND TO INTERACT WITH HIS PROGRAM, AT PRESENT ONLY 3 MINUTE PROGRAMS CAN BE RUN, AND ONLY PROGRAMS SUBMITTED FROM SCOPES^CAN INTERACT WITH THE SCOPES;

ONLY ALLOWED USERS CAN USE THE SCOPES. IN ORDER TO BECOME AN ALLOWED USER, ONE SHOULD CONTACT A. H. BOND, C. C> EXTENSION 66, THE MAIN USES OF THE SCOPES ARE EXPECTED TO'BE FORI (A) PROGRAMS NEEDING ON-LINE DYNAMICAL: GRAPHICAL DFSPLAYL AMD' (B) INTERACTIVE PROGRAMS, THAT IS, PROGRAMS WHICH COMMUNICATE WITH! THE HUMAN WHILE RUNNING, AND CAN BE GUIDED AND INFLUENCED BY THE HUMAN, THE VERY GENERAL DISPLAY EQUIPMENT ALLOWS A GREAT VARIETY OF METHODS OF MAN-PROGRAM INTERACTION.

THE SYSTEM IS STILL UNDER DEVELOPMENT AND ATTEMPTS TO USE "SOME TEATURES WTLL YTELD THE E^RO^ MESSAGE ${ }^{n}$ SORRY, NOT YET IMPLEMENTED'. HOWEVER, THE SCOPE USERS MANUAL WILL' BE KEPT STRICTLY UP TO DATE WITH CURRENT IMPLEMENTATION, THFCI DATE OF REWRITING_IS SHOWN ON THE FRONT COVER,__BETWEEN REWRITES, ANY CORRECTIONS TO THE MANUAL ARE KEPT ON ANAND~FIA~*D~1zk! T~ >IF OBTAINED BY EXECUTING USER CR38AB14; FILE 81/P; GET TO \$| RUN,AND,TAPEI

ALLOW 5 PAGES AND 2 MINUTES FURTHER COPIES OF THE FULL MANUAL CAN BE OBTAINED BY EXECUTING USER CR38AB14; FILE 82/PJ GET TO SJ RUN,AND,TAPEI ALLOW 60 PAGES AW 6~MINUTES.
OR FROM A H BOND \qquad

2. INTRODUCTION AND SUMMARY

THE SCOPES CAN BE USED OFF-LINE, THAT IS, WITHOUT USING THE CENTRAL_PROCESSOR_OF_THE G-21, _I'N_FACT,__ONLY_USING ONE BK MODULE OF MEMORY, OFF-LINE, ONE CAN ENTER CHARACTERS OMTO THE SCOPE FACE FROM THE KEYBOARPS AND ENTER VECTORS (LINES). ONE CAN ALSO ALTER EXISTING DISPLAY BY DELETION AND INSERTION OF ELEMENTS, AND ONE CAN__TRANSLATE__(MOVE) PARTS _OF THE DISPLAY TO OTHER _PARTS OF_JJHE SCREEN. THE $\overline{\operatorname{REST}}$ OF THE G-21 CAN OPERATE NORMALLY. THE OFF-LINE" CAPABILITIES_ARE THE SUBJECT_OF J. QUATSE^S MANUAL. THEY CAN ALSO BE USED WITH THE SCOPE MONITOR LOADED. THE SCOPE MONITOR IS AUXILIARY TO THE MAN G-gj MONITOR ANp WORKS ON AN INTERRUPT BASIS, NORMAL USER PROGRAMS CAN BE PROCESSED BY THE G-21 AND WHEN SOM E SCOPE CO M PUT A T IQ N I_S_NEEDEB „,_THE_U S ER PROGRAM_IS_INTERRUPTED FOR A EW MILLISECONDS.

IN THIS WAY THE SCOPE MONITOR CAN SNATCH BRIEF SPELLS OF COMPUTATION TO CARRY OUT MANAGERIAL FUNCTIONS AS DESIRED BY THE ySER.__T_HIS_1_S DONE BY PR_ES_SjNG T HE_A P P R 0P R I_ATE_IN T ER R UPT BUTTONS^^ THE MEANINGS CURRENTLY ASSOCIATED WITH THE BUTTONS ARE SHOWN BY AN EXPLANATORY DISPLAY. THE FACILITIES_PROV_IDED BY THE SCOPE MONITOR ARE DESCRIBED IN DETAIL IN SECTION 4. THEY INCLUDE STORAGE OF DISPLAY MATER IAL ON *SCQPE FILES', SUBMISSION OF PROGRAMS TYPED ON THE SCOPES, THE PERUSAL AND EDITING OF TEXT, AUXILIARY DRAWING" OP ER ATIDNS LIK E_L_IGH T_- PEN_IR. A C KI NG. THERE A RE_D E3UGGING_F A CjLITIE S WITH A DYNAMIC CORE DISPLAY AND ON-LINE PATCHING AND TRANSFER FACILJTIES,

IN ADDITION TO INTERRUPTS PRODUCED BY THE INTERRUPT BUTTONS, THE SCOPF MONITOR RECEIVES INTERRUPTS ONCE EVERY SECOND, TRIGGERED BY THE G-20 REAL-TIME CLOC K."' RELY I NG ONLY ON T HE S E CLOCK P U L S E S TO PROCESS REQUESTS WOULD LEAD To TOO LONG A RESPONSE TIME._THE_CLOCK PULSE "ENABLES THE' SCOPE MONITOR TO PR 0V I DECONTINUOU'S MODE OPERATIONS SUCH AS THE DYNAMIC CORE DUMP, THE ROTATION MODE AND THE CURVE DRAWING MODE.

INTERACTIVE PROGRAMS CAN BE WRITTEN_IN NY PROGRAMMING __LANGUAGE. THEY C A N C 0 MM U NI GATE WITH THE SCOPES 3V US ING THF •B ROUTINES' PROVIDED BY THE SCOPE MONITOR \{THESE ARE LIKE I ROUTINES -HTTHE MAIN MONT'TOTr; USING THESE, A PROGRAM CAN SET UP A GENERAL GRAPHICAL DISPLAY AMD CAN EXAMINE A GRAPHICAL DISPLAY ENTERED BY A -HUMAN. THE HUMAN AND PROGRAM ARE TREATED MORE OR LESS EQUIVALENTLY BY THE SCOPES, AND THE SCOPES PROVIDE A GENERAL, =UPID AMD ""TRANSPARENT INTERFACE BETWEEN THEM TO PERMIT MAN-MACHINE COOPERATION ON A PROBLEM.

INTERACTION WITH THE PROGRAM CAN CONSIST OF EACH READING DISPLAY MATERIAL SET UP BY THE OTHER j AND * IN ADD ITI ON.THERE ARE 8 'STATE SWITCH FSl_AND 2 IN A LOG KNO 0 S » (G IV J NG_A Q UA S I - C 0 NT INUO US_ VARIABLE), WHICH CAN BE SET BY THE HUMAN AND READ BY THE PROGRAM USING B ROUTINES. ALSO THE USER CA NDEFINE_HIS_ 3WN INTERRUPTS AND THE SCOPE MONITOR WILL PASS CONTROL TO THE DEFINED POINTS IN HIS PROGRAM,WHEN HE PRESSES THE APPROPRIATE BUTTON.

THE 8 ROUTINES ARE DESCRIBED IN SECTTOM 7. THE*E IS A ' B-PROCEDURE' _IN ALGOL AND FORML, WH CH CALLS THE 8_R_OUJM MES, AND ALSO MANY USEFFUL SUBPROGRAMS TN THESE LANGUAGES AND IN SPITE. THESE ARE KEPT ON AND FILES AND ARE DESCRIBED IN SECTION 8, SIMILAR SUBPROGRAMS CAN BE WRITTEN IN ANY LANGUAGE AVAILABLE ON THE G-21_.

G-21 SYSTEMSAUXILI 4RY~"To ' THE SCOPE Mb NITO 3 ARE DES C ft I BED" "'IN" SECTION IQ) FnR EXAMPLE, A USER SYSTEM IS NEEDED TO MOVE MATERIAL BETWEEN AND FILE'S AND SCOPE FILES". "IN SECTION u, *E OUTTTNE THE INTERNAL WORKING OF THE SCOPE MONITOR PROGRAM.
\qquad

```
3. OFF LINE USE, TERMS AND CONCEPTS
```

THERE ARE 3 SCOPES* NUMBERED 1, 2,3 FROM THE LEFT OF THE ROO_M._THE SCOPE_FACE JS 10 INCHES BY 10 INCHES AMD HAS 1024 X 1024 RASTER POINTS. THE 32 BUTTONS ALONGSIDE THE FACE ARE THE STATE SWITCHES AND CONSTITUTE THE STATE WORD. THE LOWER 2 ROWS ARE COLORED GREEN AND ARE FOR USE BY A USER PROGRAM, WHEN A SWITCH IS ON IT IS LIT AND THE VALUE OF THE SWITCH_IS 1, 0_N_THE LE_F_T_OF THE_ SCREEN ARE 2 'ANALOG KNOBS' KNOB 1 ABOVE KNOB 2, THESE CAS 3S USED BY A_ USERJPROGRAM;__THEIR VALUE VARIES FROM 0 TO 63 AND THE FULL RANGE IS OBTAINED IN HALF A TURN,
ON THE DESK, THERE ARE TWO KEYBOARDS, USED EQUIVALENTLV.AND A CONTROL PANEL CONSISTING OF:
(I) 20 INTERRUPT BUTTONS NUMBERED 0-19
(If) A CURSOR CONTROL CONSISTING OF 4 BUTTONS T~O INDICATE WHICH DIRECTION__TO MOVE THE CURSOR ON THE SCREEN._THE CENTRAL BUTTON fN THE CONFIGURATION MAKES THE CURSOR MOVE FASTER, AND THE SLEW BAR MAKES IT MOVE EVEN FASTER.
(III) THE MARK BAR

	TO E	ENTER		SPLAY	MATERIAL	ON	THE		EEN		NE	FIRST		TES	FROM	
THE	6TH	ROW	OF	STA	SWITCHES THAT			THERE ARE			4 'PAGES'			FOR	USE.	
THIS	MEANS		HAT	ON	CAN	HAVE j4		DIFFERENT			INDEPENDENT				LAYS	
AVAIL	ABLE,	WHI		CAN	BE M	MADE	"VIS	IBLE	BY		IMG	THE		ROP	RIATE	
STAT	SWITC	C H_A		SUPE	POSED A	AS D	ESI	RED.	HOW	,	ER,	ONE		OULP	ONLY	
ENTE	MATE	ERIAL'	INT	O ON	PAGE"A		AT \\| M									

BEFORE ONE CAN ENTER MATERIAL* ONE MUST _USFJ__TJHE SCOPE MONITOR, DESCRIBED LATER, TO RESERVE SOME MEMORY SPACE FOR THE MATERIAL__AND _TO DEFINE_THAT SPACE TO CORRESPOND TO THE REQUIRED PAGE NUMBER. " ALSO ONE MUST ENABLE THE PAGE ONE IS USING AND TURN THE PAGE STATE SWITCH ON. THIS ALLOWS DISPLAY MATERIAL TO BE ENTERED MANUALLY. WHEN A PAGE IS ENABLED, IT HAS A CURSOR VISIBLE AND TH]S_DEFINES THE PLACE ON THE SCREEN WHERE ATTENTION IS FOCUSED." CHARACTERS MAY NOW BE ENTERED FROM THE KEYBOARD IF OME SETS THF STATE SWITCHES, TO_ENTER AND CHARACTER. \qquad

TRANSLATIONS, ETC«, AS DESCRIBED IN J.Q.H, HOST OPERATIONS ARE DONE BY SETTING THE STATE SWITCHES TO THE APPROPRIATE VALUES, P 0 SI T IJ) N I N G THE C URS OR AND PR E S SING THE M ARK B A R.J_ONE C AN IN PUT DOUBLES IZE CHARACTERS BY SETTING A STATE SWITCH AND ONE CAN GET SUB S CRI P T_ SI ZE CHA RAG T E RS_ BY PR ES SIN G_^j_0NE Q EJTS BACK TO NORM A L_ SIZE BY PRESSING , MARGINS ARE ENTERED BY POSITIONING THE CURSOR AND SETTING THE MARGIN STATE SWITCHES AND PRESSING HARK, MARGINS AND ALL OTHER CONTROL SYMBOLS CAN NOT ONLY BE MADE VISIBLE BY A STATE SWITCH, THEY CAN ALSO_BE MANIPULATED IN EXACTLY THE SAME WAY AS NORMAL SYMBOLS.

TO CLEAR A PAGE OF ALL MATERIAL, IT MUST BE VISIBLE AND ENABLED, AND "~ONE THEN SETS THE CLEAR STATE SWITCH. THE SPACE RESERVED FORTHE PAGE IS STILL THERE AND IT IS STILL ENABLED AFTER THE CLEAR OPERATION.

ONE SHOULD ONLY HAVE ONE PAGE ENABLED AT ANY ONE TIME, AS THERE IS ONLY ONE CURSOR POSITION.

MARGINS CONTROL ONLY TEXT ENTERED AFTER THEM AND ONE CAN HAVE SEVERAL MARGINS ON' ONE PAGE. IN THE ABSENCE OF MARGTNFTHE END OT THE__SCREEN IS AN EFFECTIVE MARGIN WHEN ONE DOES A RETURN CHARACTER. IF DISPLAY MOVES OFF THE SCREEN IN ANY DIRECTION IT * WRAPS ROUND' AND APPEARS ON THE OTHER' EDGE OF THE SCREEN) SIMILARLY FOR THE CURSOR POSITION, ~ "

THE LIGHT PEN CAN BE USED TO POSITION THE CURSOR AT AN EXISTING DISPLAY ELEMENT. ONE POINTS THE LIGHT ?EN AT THE ELEMENT AND T H ${ }^{\wedge}$ jc URS 0 R_W_L L A UT 0 MAT ICALLY MOVE THERE. IT MAY BE NECESSARY TOTNCREASE THE BRIGHTNESS TO" GET IT TO WORK. "

THE SCREEN FACE CAN BE PHOTOGRAPHED IN COLOR OR 3LACK AND WHITE WITH AN ORDINARY CAMERA. THE ENGINEERING GROUP HAS A POLAROID CAMERA __FOR THIS PURPOSE, ALSO THERE IS A SPECIAL HARD COPY DEVICE, UNDER DEVELOPMENT" BY THE ENGINEERING GROUP, WH TCH' TAKES AN_ ACTUAL SIzE_ NEGATIVE IMAGE OF THE SCREEN DIRECTLY ONTO PHŌTOSENSITIVE P̄APER"," SO THAT THE "LINFS AND" CHARACTERS A'RE" BLACK ON WHITE._ENQUIRIES_ABOUT THIS EQUIPMENT SHQULD BE DIRECTED TO $\overline{B E A U} \mathrm{BR}$ INKER $, \mathrm{C}, \mathrm{C}$, EXTENSION 75. OPINIONS AND IDEAS OW THE HARDWARE SHOULD B E S E N T TO THE ENGINEERING GROUP, THERE IS NON A VA TL ABLE A RAND TABLET,WHICH CAN BE ATTACHED TO EITHER SCOPE 1 OR SCOPE 2~. IT CAN BE USED AS A POINTING DEVICE LIKE THE LJQHT PEN, BUT IN AUDITION IT ACTS 1KB THE MARK BAR. FURTHER, IT WILL EMIER LINES C 0 N TINUOUSLY INTO THE PAGE GIVING CURSOR TRACKING AND CURVE DRAWING, INSTRUCTIONS ON ITS USE ARE TO BE FOUND IN A FOLDER WITH THE EQUIPMENT. ENQUIRIES ABOUT IT SHOULD BE SENT TO DICK SHOUP.
\qquad a

4. THE SCOPE MONITOR

A. GENERAL LAYOUT AND OPTION STATE

THE_S_COPE MONITOR PROVIDES A^ RANGE OF FACILITIES WHICH ARE LINKED TO THE INTERRUPT BUTTONS. THE MEANING OF THE BUTTONS IS ${ }^{\wedge} E$ D EFIN'ED AS 0 NE USES VARIOUS * STATES' OF THE SCOPE MONITOR. WHEN ONE FIRST APPROACHES A SCOPE, AFTER THE SCOPE MONITOR HAS BEEN LOADED^ 1T__HAS__1IHIS SPACE RESERVED FOR SYSTEM MESSAGES' ON THE BOTTOM OF THE SCREEN. IN THIS STATE, EVERY INTERRUPT BUTTON LEADS JO THE LOG-IN_STATE JFIG. 1> AND THE USER MUST ENTER,HIS FULL G-? 1 USAGE NUMBER AT THE POSITION OF THE CURSOR, THE CURSOR IS SET 9Y~ THE SCOPE MONITOR AND THE STATE SWITCHES ARE SET TO ENTER, CHARACTER, PAGE 1 (IF THIS DOESN'T HAPPEN, SET THEM $3 Y$ HAND). AFTER TYPING THE USAGEJJUMBER, PRESS_RETURN, JH= REIURN CHARACTER IS USED BY THE SCO-PE MONITOR AS A COMPARE INTERRUPT, AND TELLS IT TO READ INJ-HE_CHAR_A_CTER JUST TYPED BY THE USER. IF THE NUMBER WAS MISTYPED, OR DOES NOT BELONG TO AN ALLOWED USER, THE MESSAGE 'SORRY NOT ACCEPTABLE' WILL APPEAR. OTHERWISE. IT WILL GO TO OPTION STATE AND DISPLAY THE MEANINGS OF THE INTERRUPT BUTTONS IN THIS,,_STAXE_i_THE OPTION STATE !S_jrHE. TOP-LEVEL OF A HIERARCHY OF STATE'S AND WITH IT ONE SELECTS ANOTHER STATE.

```
    NOTE THE WORD 'STATE' IS USED TO DESCRIBE THE CONDITION OF
THE SCOPE MONITOR AND THE DEFINITION OF INTERRUPTS IN THAT
CONDITION,___EACH HAS AN ASSOCIATED SYSTEM 'PAGE' AND SO SOMETIMES
THE WORD 'PAGE. REFERS TO A 'STATE'. OCCASIONALLY, THE CONDITION
OF THE SCQPE_MflNJIOR IS_ DESCRIBED AS A 'MODE', ESPECIALLY IF IT IS
DOING AN OPERATION CONTINUOUSLY. THE USE OF THESE WORDS SHOULD BE
DISTINGUISHED FROM THEIR USE IN OFF-LINE_USE. THERE IS SOFTWARE
STATE, PAGE AND MODE DISTINCT FROM HARDWARE STATE, PAGE AND MODE.
IT IS HOPED THAT NO CONFUSION WILL ARISE.__T_HUS THE MEANINGS OF THE
BUTTONS IN THE OPTION STATE ARE ALL 'CHANGE STATE TO. . . . STATE'
THE_VARJOUS_STATES ARE DESCRIBED BELOW. IN EVERY STATE, INTERRUPT
O ALWAYS MEANS GO BACK TO OPTION STATE. INTERRUPTS 17, 1.8, AND 19
ARE CURRENTLY USED FOR SYSTEM MAINTENANCE AND SHOULD NOT 3E USED.
```

_f H E—DISPLAYS USED BY"'THE" SCOPE MONITORCAMNOT BE" ALTERED $9 Y$ THE USER AS THEY ARE IN ALTERNATE MODE, EVEN THOUGH PAGE 1 IS USED BY THE SCOPE MONITOR, IT CAN ALSO BE USED BYTHE USER AS A NORMAL PAGE

WHEN TYPING IN MORE THAN ONE VALUE TO THE SCOPE MONITOR, DO A RETURN AFTER EACH VALUE AND THE SCOPE MONITOR WILL REPOSITION THE CURSOR","

```
LOG - IN
ENTER YOUR USAGE NUMBER HERE
```

THIS SPACE RESERVED FOR SYSTEM MESSAGES

FIGURE 1

IN EACH STATE, THE MEAJyj 1 NG OF THE INTERRUPTS ARE DISPLAYED $9 Y$ A SYSTEM PAGE, THIS DOES NOT INTERFERE WITH THE USER DISPLAY AND CAN BE TURNED ON OR OFF (MADE VISIBLE OR INVISIBLE) IN ANY STATE BY USING INTERRUPT 1. ON PRESSING AN INTERRUPT BUTTON, ITS NUMBER IS DISPLAYED IN THE BOTTOM RIGHT HANQ CORNER OF THE SCREEN, DURING the processing of an interrupt the number is made to flash, the USER SHOULD^ NOT PRESS ANOTHER INTERRUPT BUTTON UNTIL THE NUMBER HAS STOPPED FLASHING. USUALLY THE OPERATION IS VERY QUICK AND THE US-ER DOESN'T _Sj=E_ANY FLASHING_JHOWEV|R, OPERATIONS REQUIRING_THE SCOPE FILES INVOLVE THE USE OF THE DISC AND ONE MAY HAVE TO WAIT FOR THE DISC TO BECOME AVAILABLE FOR A SECOND OR TWO. THE NUMBER WILL ALSO FLASH WHILE TYPING IN VALUES OF PARAMETERS TO THE SCOPE MONITOR, IN THIS CASE. ONE CAN CONTINUE TO„ENTER PARAMETERS. \qquad LOG OUT

PRESSING INTERRUPT 8, ON THE OPTION PAGE, LOGS THE CURRENT USER OUT AND THE MESSAGE 'LOGGED OUT' IS DISPLAYED.

THE MEANING O? ~THTTNTERRUPTS IN THIS~STATE A"RT~SFIIOWBY~THE SYSTEM DISPLAY, REPRODUCED IN FIGURE 2.

TK ALLOWED USER HAS RESERVED FOR H1H \#T£M "\$P*8WfS?" 1 TO 20 WHICH ARE ARBITRARY IN SIZE. HE CAM SAVF C I \quad C \quad A ATffMt_ ON THESE FILES PERMANENTLY BY USING INTERRUPT 2, \quad, \quad (A* *SV§ F « f CONTENTS OF A PREVIOUSLY STORED FILE TOA A PAGE OISPLAYFFF USIHQ INTERRUPT 3. WHEN USING 3. SPACE DOES NOT HAVE TO BE""RffWIf)TO* THE PAGE. IT IS DONE AUTOMATICALLY, INDEED ANY MATGRFAJ!M THAT
 BY PRESS I_NG_INTERRUPT 5. THE DISPLAY_IS_L_IKE FIGURE 3 , $\underline{\text { jf }}$ THE BASE (RECORD NUMBER) AND LENGTH OF THE RECORD ON THE DISC. THIS IS NOT OF MUCH USE TO THE NORMAL USER EXCEPT TO SEE THAT A FILE IS PRESENT OR HAS CHANGED IN LENGTH.

INTERRUPTS $4, ~ 6-9$ HANDLE THE RESERVED SPACE FOR THE PAGES, iln Wijy T тм 6 Tn^s TRvTs~some SPArcEToP~A~QTVEN PAGE, THE UNIT USED IS THE BLOCK, WHICH IS $16 Q$ " WORDS_ THERE ARE 30 BLOCKS AVAILABLE FOR USE BY 3 SCOPES. A PAGE PACKED SOLID WITH DISPLAY PROBABLY NEEDS 4 BLOCKS OF SPACE

INTERRUPT 7 ENABLES A PAGE, "AND 8 DISENABLES A PAGE,
INTERRUPT 9 DELETES A PAGEI I.E., IT REMOVES THE SPACE

RESERVED FOR THAT PAGE AND MAKES IT AVAILABLE FOR OTHER USE, USING 6 MERELY DISENABLES A PAGE AND KEEPS THE SPACE RESERVED.

MANAGEMENT___ PAGEPRESS INTERRUPT NUMBER					
$\underline{2}$	SAVE PAGE	AS	SCOPE		
3.	READ__IN	SCOPE	EILE	A S	PAGE
4.	$A P P E N D$	E___TO_	-.PAGE		
5.	DISPLAY	DIRECTORY	Y OF	SCOPE	FILES
6.___GET____BLOCKS____PAGE					
7.__PNABLE__PA, GE.					
8.	DISENABLE	PAGE			
$?$	DELETE PA				

FIGURE_2

	DIRECTORY	FOR LCO2
FILE	BASE	LENGTH
00.	000	000
01^{\wedge}	576	$00-$
02.	535	$002^{\prime \prime}$
03.	570	004
04.	533	002
05.	530	003
06.	$525 "$	003
07.	000	000
08.	000	000
09.	000	000
10.	000	000
11.	000	000
12.	000	000
$13 \wedge$	$00 J)$	000
14.	000	000
15.	000	000
16.	000	000
17.	000	000 x
18.	000	000
$19 \wedge$	000	$000-$
20.	000	000

[^0]FIGURE'3
 UNCHANGED

BELOW IS GIVEN THE SEQUENCE OF ACTIONS SGQUIRFU TO L\&8 IN *HO SET UP THE SCOPE FOR ENTERING._CHAR*CTRS.F AND LMIH.DN. TMO SGRGGN.

1. IF NO ONE IS LOGGED IN YET, THERE WILL JUST BE THE ONE LINE MESSAGE ON THE BOTTOM OF THく= SCREEN, OR ELSE THE MESSAGE -LOGGED OUT*. IN THIS CASE, PRESS INTERRUPT O. THIS GIVES THE LOG IN PAGE. TYPE IU YOUR USER NUNBGFT A*O PRESS RETURN, THIS WILL GIVE THE OPTION PISE.
\qquad 2."JF SOMEONE ISJ.OGGED IN ALREADY, _PRESS INTERRUPT O \quad THIS GIVES THE OPTION PAGE,
\qquad 3. "JJN THE OPTION STATE

MANAGEMENT PAGE.

\qquad
6, PRESS TNTERRUPTT"! THIS MAKES THE MANAGE~MTTNT~TXGE^THLS"PLAY " INVISIBLE. \qquad
T PRESS"THE STATE SWITCH FOR PAGE 2.YOU'SHOULD SEE A CURSOR. USE THE CURSOR CONTROL TO POSITION THE CURSQR. TP TYPF IN CHARACTERS, PRESS STATE "SWITCHES ENTF~R AND CHARACTER AND THEN TY ${ }^{\circ} E$ FROM THE KEYBOARD. TO DRAW LINES, PRESS STATE SWITCHES_ENTER AND VECTOR AND USE THE CURSOR CONTROL AND THE MARK BAR.

C. THE PROGRAM STATE

FIGURE 4." T HIS S TATE ORGAN I ZE S THE I NI TI A TI ON "OF USE R PROGRAMS AND USER SYSTEMS FROM THE SCOPE MONITOR. WHEN A PROGRAM IS ACTUALLY I N f ER A C T IN G " W I T H f H E SCOPES, "THE "SCOE~MON I TOR SHOULD BE PUT IN USER PROGRAM INTERACTION STATE OBTAINABLE FROM THE OPTION STATE, HOWEVER, ALL ORGANIZATION PRIOR TO AND AFTER THE RUN IS DONE WITH THE PROG RAM S TA T E

Tl- SUBMIT a program, ONE SHOULD GET" SOME BLOCKS~FOR "A P AGE AND ENABLE IT, THEN TYPE THE PROGRAM ONTO THAT PAGE. NOTE THAT THERE ARE N0~TA8 SETT ING"S~ON THE \sim SC'OPESl EVEPTytTTING MUST BE SPACED BY HAND, ONE CAN KEEP PROGRAMS ON SCOPE FILES ALSO AND PUT THEM ON THE PAGE THAT" WAV, ONE WOUL USUALLY SET UP TH= PROGRAM ~W ITH THE" PROGRAM PAGE SYSTEM DISPLAY TURNED OFF. THEN OMg SHOULD TURN OFF THT"" ~~PAGE~'~ANd"TuIRrrGNTHiE~SYSTEM "6TSPTa"Y~A"G A i"N~UsTnG~T NTERH! U P T T T THE SUBMISSION OF A PROGRAM TAKES PLACE IN TWO STAGES. FIRST IT MUST BE MOVED TO THE 'INPUT FILE'. THIS IS NOT TO BE CONFUSED WITH A SCOPE FILE. IT IS A PSEUDO TELETYPE BUFFER» SECOND. THE INPUT FIL E " K UST BE'SUBMIT THD"»" TO RUN ON THE G - 21. TO "OVE I T "TO THE ~ INPUT FILE ONE SHOULD USE INTERRUPT 2. THIS CONVERTS THE PROGRAM TO (UPPER CASE) G-21 CHARACTERS AND PUTS IN A "BLA^K J09 CARD AT THE TOP. INTERRUPT 3 MOVES A PAGE WITHOUT CONVERSION AND.IS BARELY USED.

USING INTERRUPT 4, ONE CAN NON SUBMIT THE INPUT FILE. THE VALUFS OF TIME, P A GE S~IAN D" SYS T EM "RE Q UESi T E D~ A R=~T Y PTD ! N 1TN D PUT INTO THE JOB CARD, AND THE JOB IS PLACED IN THE G-21 QUEUE TO 3E RUN.

WHEN IT RUNS, ANY TELETYPE OUTPUT IS PUT IN THE 'OUTPUT FIL E', 0 NE CAN LOOK "AT" THE" INPU T FILE OR THE OUTPUT Fl L"E9Y""US I NQ I N TERRUPTS 5 AND 6. TH E S EM 0 VE THEM T 0 AD E SI GNATE D PASEJ SPACE TJOES NOT HAVE TO BE RESERVED F"OpTThE^GXTN~THT"r~015^aTION,

INTERRUPTS 7 AND 8 ARE NOT YET IMPLEMENTED BUT WILL PERMIT A P E RUSA L OF THE" I NP U T" O'R-OU'U P UT" FILE. THE SE FILE S AR E VE RY "MUCH" LARGER THAN CAN BE FITTED ONTO A PAGE, AND INTERRUPTS 5 AND 6 JUST TowinH-HE^FT^fTF^ ONLY LOOK AT THE REST OF ONE'S OUTPUT BY.GETTING THE LINE PRINTER OUTPUT. THE SCOPES 1, 2, AND 3 ARE EQUIVALENT TO TFLETYPES MUMBR 5, 6, AND" 7 " RESPECTIVELY, AND LINE PRINTER OUTPUT IS NUMBERED WITH THESE REMOTE NUMBERS. ALSO THE JOB CARD HAS THE WORDS SCOPES AND .COURIER., WHE _ THE COURIER SERVICE IS IN OPERATION; OUTPUT IS PLACED ON THE T A 8 LE HN ~PORT£R HALL PASE MENTNEA-R ~ T~H_F~SC0'ESR00M*~ OTHERWISE, ASK FOR IT AT THE I/O COUNTER.

WHILE A PROGRAM I_S_INTERACUN6 WITH THE SCOPES, THE SCOPE MONITOR CAN STILL BE USED IN ANY STATE. THE INTERRUPTS DEFI NED $9 Y$ THE_ USER WILL ONLY BE PASSED TO THE USER PROGRAM WHEN THE SCOPE MONITOR IS IN THE USER PROGRAM INTERACTION STATE.

FIGURE 4 .

SCOPES 18
\qquad THE _INPUT_FIL_ IS MOVEDTO ANOTHER INACCESS18LE INPUT FILE ON SUBMISSION, AND THIS LATTER "INPUT FILE CANOT be LOOKED AT OR ALTERED HENCE, _JT_YOY_HAVE _MADE_A_MISTAKE_IM YOUR PROGRAM AMD have already submitted it, you cannot recall itit if will be rum. IF YOU RESUBMIT* PROBABLY BOTH WILL RUN.
scope programs only have the same priority as normal telftye Programs, AND they can only run for 3 minutes) however,the walting in handed differentiy, to make it easier for the user to be PRESENT WHILE HIS PROGRAM IS RUNNING. ON SUBMISSION OF THE PROGRAM It GOES TO THE TOP OF THE QUEUE (SM PRIORITY) AND WILL PROBABLY RUN WJTJILN 10 MINUTES OF SUBMISSION.__JHE_S_COPE MONITOR COMPUTES, AT THIS TIME, THE ALLOWED TIME OF NEXT SUBMISSION, ALLOWED TIME = [REAL TIME .. (TIME OF SUBMISSION OF CURRENTLY RUNNING PROGRAM) + + R"EAL TIME.

A	SUBSEQUENT_ATtEMPJ_to				SUBM	1 T A	Program		WILL YIELD		THE_ERROR		
MESSAGE	SORRY	NOT		ACCEPTA	BLE't	IF	THE	time	then	15	before		HE
ALL_O_WED	TİE W	WHEN	A_PR	ROGRAM	IS_Q	UJ=UEP		ERE	IS_NO_	INDIC	At IJ)N		Hat
IT IS	Queued.		WHEN	IT "FINI	ISHES		HE	COPE	MONIT	$0 \mathrm{R}^{\prime} \sim \mathrm{D}$	SPLAYS		THE
MESSAGE	'OUTPUT		READY'	' AND	THE	USER	CAN	FIND	TELE	ETYPE	OUTPUT		N

 DISCUSSED IN SECTION 8.
D. THE DEBUG STATE

SEE FICURE 5. THIS DISPLAYS A DYNAMIC CORE DUMP OF AMY REGION OF CORE OF THP G-?I. THE REGION DISPLAY IS SELECTED HY TURNING THE ANALOG"KNOBS AND SETTING THE STATE SWITCHES. <NO3 i IS THE LAST TWO OCTAL__DinITSJ__KNQB 2 THE MIDDLE TWO) AND THE 80TT OM ROW OF STATE SWITCHES "IS THETOP 4 BITS OF THE ADDRESS, WHILE THE DUMP IS BEING DISPLAYED, IT IS TYING UP THEG-21, AND THEUSER PROGRAM IN LOWER" CORE IS NOT 9EING PROCESSED; H6WEVER." INT*RRUPTS CAN 3E PROCESSED. THUS THIS FACILITY SHOULD BE_ USED SENSIBLY AND CERTAINLY NOT LEFT DISPLAYING FOR A LONGTIME,

THE INTERRUPTS ^LLOW ONE JO PATCH THE COR_E_• THIS JS_OONE_9Y putting a number into the input box. the debug state is entered in CORRECOODE. AND THE CURSOR IS_ENABLED,_ONE MOVES THE CURSOR TO the INPUT bOX AND CORRECTS THE CONTENTS OF IT; THEN ONE SHOULD GET OUT OF CORRECT MODE.

I fitERRUP T"T~CLEAR'STHE CONTENTS OF THE INPUT BOX" TO ZERO.
\qquad INTERRUPT__2_ STORES THE CONTENTS OF THE INPUT ROX IN THE LOCATION OF "THE OCTAL DUMP WHICH IS UNDERLINED,

INTERRUPT 3 PUTS THE CONTENTS OF THE UNDERLINED LOCATION INTO THE INPUT"BOX';
\qquad INTERRUPT 4 SWAPS THE CONTENTS OF THE INPUT BOX WITH THOSE OF THE UNDERLINED LOCATION.
\qquad INTERRUPT__ 5 ALLOWS ONE TO TRANSFER TO ANY LOCATION)
PLACED" TH£"LOGATION~PTfHE~TMUT~801TAND~TFEN"FRTS"S"E"S~m=R^JPT-ST this does a trm with control offy however, NOTE that Ce and Pe are "SET FOR THE SCOPE MONITOR, sO THAT
11)___ UHE USER HAD BETTER RESET THEM

TO HIS OWN" V A L U E S , ~ "' " " ~
(11)___HE _MUST_ KEEP_^ONTROL_OF_F_ ALSO NO"fl That
(111) he must return through his mark. \qquad

IF (I) (II) OR (MI) "ARE VIOLATED, YOU WILL" Probably destroy JH_E_ENT_I RE_WORLD. \qquad

THE USER CAN LOOK AT ANY REGION OF COPE) HOWEVER, HE CANNOT ALTER OR TRANSFER TO AN ADDRESS IF IT IS NOT IN USER CORE, I.E., IN 170 TO $/ 730 n 0$._IF HEJTJ?IES_Tp DO SO, THERE WILL BE NO _RE_SP_ONSE FROM THE SCOPE MONITOR.
\qquad
_ stome xneTJT
$3 \mathrm{~T}^{-} 10 \mathrm{AD} \quad$ INTUT^mSH^IEWRY"
T. sWa"P~"in"put :

00000000000
$005344 \quad 00000000 \sim 6 \sim 7$ Oil 00007365300000001453 040500Q56JZ
$005350 \quad 0155000010(1 \quad 017300056320005000010005550006732$

- 005354 0T7T0T0673?~0177UT07546 0 WbTOTO11"(i"~~TO0500"0W04 " $005360 \quad 00170005353000500000020177007666601770005300$
"TO5364 OOOTOOOOOrib" 0177000"3106" "' 01770003106 "00170004312

THIS SPACE RESERVED FOR SYSTEM MESSAGES

TEXTHANDLING HOPE

PRESS INTERRUPT NUMBER
2. SELECT PAGE \qquad
3. SELECT FILE
4. FORWARD TEN LINES
5. BACKWARD TEN LINES
6. GET TO S
7. DUMP
8. NAME CURSOR POINT TO BE STRUCTURE POINT
9. UNNAME STRUCTURE POINT
10. GET TO POINT
11. DISPLAY DIRECTORY OF STRUCTURE POINTS

12.	READ	BLOCKS AT BLOCK	FILE	TO	BLOCK-	PAGE	
13. WRITE	BLOCKS AT BLOCK	FILE	TO BLOCK	PAGE			

E. TEXT HANDLING STATE

SEE FIGURE 6. THIS STATE IS NOT YET DEBUGGED. IT DOES THE MOyEMENT_AjvID__SCROLLJ NG_(' ROLL ROUND "J OF_TE_XT ,_J T_I S DISTIMCT FROM THE TEXTEDITING SYSTEM WHICH IS BEING DEVELOPED BY MIKt COLEMAN AND IS CONCERNED WITH TEXT MANIPULATION ON THE PAGE TO AUGMENT THE FACILITIES PROVIDED BY THE HARDWARE.

TO PERUSE SOME TEXT,_ IT MUST BE ON A SCOPE_FILG_._ IT CAN BE MOVED ONTO A SCOPE" FILE FROM AN AND 'FILE BY JSINQ AN AUXILIARY " SYSTEM (Q,V. >_AUXI'LURY SYSTEMS W ILL MOVE TEXT FROM AN ANO FILE IN G-20 CHARACTERS AND CONVERT AND MOVE TO A SCOPE FILE AND WILL MOVE IT BACKHAND J2ONVERT IT BACK._OR WE CAM MOV_E_JT INSCOPE CHARACTER'S UNCONVERTED BETWEEN AND FILE AND SCO $\Rightarrow=E$ FILE A MO ALWAYS KEEP IT IN SCOPE CHARACTERS, _UNTIL_J_T I S_ NEC ESS ARY_TO ${ }^{\circledR *}$ INT_I_T_ OUT. ' IT IS SUGGESTED THAT DOCUMENTATION USE THE LEAD SYSTEM. (SEE SEPARATE WRITE-UP); IN WHICH ONE INSERTS TYPESETTING COMMANDS INTO THE TEXT, SO if IS PRINTED OUT IN A PRESCRIBED FORMAT. fffE"LEAD COMMANDS COULO_JF_KEPT_I_N_ALL JHE TIME AS PART OFJTH6 TEXT___IT IS HOPED EVENTUALLY TO BE ABLE TO OUTPUT ON THE LINE PRINTER OF THE _360 _WN_ICH _HAS_ UPPER _ AND LOWER CASECHARACTERS, THE 3-20. _OF COURSE, HAS ONLY 64 CHARACTERS, INCLUDING ONLY UPPER CASE LETTERS'. HAVING GOT THE DOCUMENT INTO A SCOPE FILE, ONE SELECTS .THAT FILE TTS'ING INTERR UP t 3 AND SELECTS A PAGE TO WORK ON USfNO INTERRUPT 2. THIS WILL AUTOMATICALLY GET 5 BLOCKS (AS MUCH AS CAM REASONABLY 3E SEEN ON ONE "PAGE)" TOR THAT PAGE AND ENABLE IT.'" THERE IS A SPEC I ALLY RES F.RVED__FI LE___USED FOR_A JSCRATCH AREA _ANDONE CAN NOW_ ROLL THROUGH THE TEXT USING INTERRUPTS 4 AND"5. THIS SUCCESS IVELY B $H \backslash N G S \quad I N \quad T E X T \quad F R O M _$THE__SELECTEn fjlE_0NTO_THE_80JTOM OF THE SELECTED PAGE AND MO'VES THE TOP OF THE PAGE fNTQ THE SCRTT'CH AREA, ONE_ CAN JJSE THE HARDWARE FEATURES TO ALTER_THE T=XT,_ AND ALSO THE SOFTWARE "TEXT EDITING "FEATURES PROVIDED BY THE" TEXT EDITING MODE." FINALLY, TO PUT THE EDJJED TEXT ONTO A FILE (WHICH CAN BE THE SAME ONE) " ONE EXECUTES G£T TO <i, WHICH PUTS EVERYTHING IN THE SCRATCH AREA £ S ELECTS_A _F I LE_ jAND_EXECUTES DUMP___ONE MAY NOT BE ABLE TO BACK UP' "THE" TEXT"" ONTO 'THE SAME FILE AS if MAY~H~ATE ALTERED IN LENGTH; HENCE_ THE DUMP PROCEDURE SHOULD ALWAYS BE FOLLOWED. IN ORDER TOWORK MORE EASILY, ESPECIALLY WITH LONG FIL=S, IMTERRUPTS 8_JT0_ _PROVIDE THE FACILITY OF IMPOSING STRUCTURE ONDTHERWISE AMORPHOUS TEXT. THE ' TEXT IS TREATED AS A V = RY LONG STRING OF" ${ }^{\circ}$ _ ${ }^{H}$ ARACTERS_AND CONTROL_CHA_RAC_TERS_._THE USERCAN NA_ME_A_NY POINT IN THE TEXT, BY "A 6 CHARACTER "NAME OF HIS"" OWN CHOICE, RY G'ETTING THE TEXT ONTO_ THE SCREEN, PLACING THE CURSOR AT THE POINT ANT) USIMG INTERRUPT 8. ONE CAN MOVE THE POINT REFERENCED $3 Y 4 \sim G I V E M ~ N A M E ~ 9 Y$ SIMPLY USING 8 AGAIN. ONE CAM REMOVE THE NAME ALTOGFTHER 3Y US ING 9, AND ONE CAN DISPLAY ADIRECTORY OF NAMED POINTS CURRENTLY USED BY_PRESSING INTERRUPT 11._ ONE_CAN _THEN GO JMMEDI ATELY TO ANY NAMED POINT" AND"" WORK "FROM THERE WITH 4 AND "5". A'S THE" TEXT" MOVES RTC'K WAR D~ AND FORWARD, THE SCOPE MONITOR KEEPS TRACK OF TH= LOCATIOMS OF THE

```
NAMED POINTS! H ACTUALLY PUTS A SCOPE NO-OP COMMAND (NO OPERATION
COMMAND) AT THE NAMED POINT. THE USE OF LINE NUMBERS IS CUMBERSOME
TO PROGRAM» WASTEFUL OF STORAGE SPACE, BUT, MORE IMPORTANT, VERY
MISLEADING IF BACKWARD AND FORWARD MOTION AND ARBITRARY INSERTION
AND DELETION ARE ALLOWED.___HOWEVER, SOME STRUCTURE IS NEEDED, AND
THIS HAS BEEN MADE AS FREE AS POSSIBLE.
F USER MANUAL
MH IT HOPED THAT THIS USER MANUAL WILL BE DISPLAYABLE FOROM
```

G. DRAWING STATE

SEE ~F"iCURE 7. THIS STATE IS INTENDEO TO PROVIOE EXTRA _FACILITIES _FOR__CONSTRUCTINQ DISPLAY MATERIAL_ _NOME__OFj_IT_!S DEBUGGED.

INTERRUPT 2 selects a page for attention.
_ _rRTERRUPT"3"TIJT^ONE fNnT"R^TAriW"M'aDr."~rirTITI"SrHIJTTe~~"""'Cr5IE~' TURNS ANALOG KNOB I, THE VECTORS ON THE CURRENTLY SELECTED PAGE ARE ROTATED ABOUT THE POSITION OF THE CURSOR.

INTERRUPT 4 PUTS ONE IN TRACKING f|OD<E. THIS PUTS A TRACKING figure on thf selected page. one can then use the light pen tcf MOVE THE CURSOR AROUND.

IN fER R"IP T~~T~P UT S~ONE~HT~CUF»VE "D RA WII W~ff OD^TirTWTS-ffISETTSr ONE MOVES THF CURSOR WITH THE LIGHT PEN, A CURVE IS DRA *N permanently into the p a G e. -'
\qquad

DRAWING MODE

FIGURE 7
_liti-THTS~STATE; "THE MEANING OF"THEINTERRUPTS"ARE'AS"D5T.N?D" BY THE USER PROGRAM, THE_US PROGRAM DEFINES THEM_8Y CALLING_R25, AND GIVING THE" INTERRUPT ENTRY POINT IN THE PROGRAM. THIS"IS EXPLAINED IN SECTION 6. ONE CAN ONLY GET INTO USER MODE "HILE THE PROGRAM IS ACTUALLY RUNNING.
I. TEXT EDITING STATE

THIS IS A SUBSYSTEM BEING DEVELOPED BY MIKE COLEMAN.

```
J. ERROR MESSAGES
```

~ ERRORMESSAGES FROM THE SCOPE MONITOR ARE FEWANO "U'NHELPFUL.
IT IS USUALLY POSSIBLE TO RECOVER AND JUST_CARRY ON FROM THE
OPTION STATE AFTER AN ERROR.
1.___SORRY ROUTINE NOT YET IMPLEMENTED.
2. SORRY NOT ACCEPTABLE."INDICATES AN ARGUMENTIS NOT ACCEPTABLE. USUALLY OUT OF BOUNDS._ ATTEMPTS TO USE A PAGE WITH NUMBER NOT IN [1, 4). ATTEMPTS TO READ IN A SCOPE FILE WITH NOTHING__ON IT; ^ATTEMPTS TO ALTER CORE_LOCATIONS NOT IN JSER_CORE WILL EVOKE THIS MESSAGE. THE STACK IS CLEARED,
3. UNSPECIFIED INTERRUPT. IF ONE PRESSES BUTTONS NOT DEFINED BY THE SYSTEM DISPLAY,
4. MULTIPLE INTERRUPT ERROR WILL OCCUR IF MORE THAN ONE ' I NTERRUPT IS REQUESTED: FOR' EXAMPLE," IF ${ }^{\circ}$ NE IS REQUESTED $3=F 0 R E " A$ PREVIOUS ONE HAS BEEN PROCESSED. , ALL INTERRUPT REQJESTS ARE REMOVED, AND YOU MUST REREQUEST.
5. PANIC. THIS INDICATES THAT YOU HAVE RUM OUT Or SPACE, EITHER CORE sPATE^7TTSc"Tr^fAck~spACE"". rf'TNTIALTZE^T.HE^STXCK^ AND REMOVES CONTINUOUS MODE OPERATIONS._YOU SHOULD BE ABLE TO recover, IF IT IS CORE SPACE, DELETING UNWANTED CORE BLOCKS WILL HELP.
6. ADDROP" <ADDRESS>. THI S SH 0 ULDN' T EVER '~HX=> "PEN". IF IT DOES, WRITE DOWN THE VALUE OF THE ADDRESS AND SEND IT TO A. H. BONO, YOU MAY WELL BE ABLE TO RECOVER FROM THIS ERROR CONDITION,
7. USER ERROR* THIS INDICATES AN ERROR HAS OCCURRED IN THE CALLING—OF A S ROUTINE BY THE USER PROGRAM. "YOU CAN REMOVE THE ERROR MESSAGE_DISPLAY BY GOING BACK TO OPTION STATE MOMENTARILY. AN ERROR CONDTTTOTTTS INDICATED TO THE PROGRAM AMD AN ERR3R NUMBER IS PASSED TO IT.___ LIST IS GIVEN AT_THE END OF_CHAPTER 7. '

- SOMETIMES, - AS A RESULT OF A SERIES OF ${ }^{3}$ ARTIALLY RECOVERABLE ERRORS, THE SCOPE MONITOR GRADUALLY DEGENERATES AND EXHIBITS" ANOMALOUS~TE"HAVTOR^_L_LE~SETTiNG RANOOM PATTERTSTTJNT"HE STATE LIGHTS, ETC. IN THIS CASE, IT IS TIME TO RELOAD......ALSO, IF

YOU DO NOT RECOVER CORRECTLY FROM ANY OF THE ERROR CONDITIONS, YOU CAN RELOAD. YOU RELOAD 8Y PHONING THE MACHINE ROOM (EXT, 60) AND ASKING FOR A R.ELOADJ)F THE SCOPE MONITOR AT THE: NEXT CONYGNIENT TIME. HARDWARE ERRORS OR FAULTS SHOULD BE REPORTED TO THE RESIDENT PHILCO CUSTOM ENGINEERS, C.__C___ EXT,___ WHO ARE IN CHARGE OF HARDWARE MAINTENANCE.
5. PROGRAMMING FOR GRAPHICS.

A TYPICAL OUTPUT DEVICE,LIKE A DISC OR " PRINTER,WITH AN AUTONOMOUS CONTROL UNIT. WORKS AS_FpLLOWS" THE OUTPUT MATERIAL IS PLACED IN A BUFFER WHICH IS PART nF THE ADDRESSABLE CORE»IT MAY $J \pm A V E$ TO BE A SPECIAL AREA OR CAN BE ANY LOCATION. THIS MATERIAL IS IN BIT PATTERNS CORRESPONDING TO OPERATIONS PERFORMED $9 Y$ THE OUTPUT DEVICEj__tHE ${ }^{\wedge}$ OBV^OUS CASE_IS_the CHARACTER.__J_HERE MAY3E Others which control the operation of the device like new line ETC.__THE_TRANSFER__IS THEN_INITIATEDBY THE C^HICH CARRIES ON WITH OTHER TASKS WHILE THE I/O CONTROL UNIT PERFORMS THE I/O TRANSFER,___THE CP AND THE I/O CONTROL UNIT COMMUNICATE EITHER BY MUTUALLY ALTERABLE SENSE SWITCHES OR BY INTERRUPT. THE I/O UNIT WILL SEI AN INTERRUPT BIT WHEN READY TO _S.TARJ__AN_D WHEN TRANSMISSION IS COMPLETE TYPICALLY. A CP CAN COMMUNICATE WITH SEVERAL_DEViCES__EACH__HAVING ITS OWN_CHARACTER SETj _SO_THAT THE INTERNALLY STORED VALUES DO NOT HAVE ANY INTRINSIC EXTERNAL REPRESENTATION __SUCH REPRESENTATIONS ARE PROPERTIES OF THE I/O DEVICE. INPUT FROM A TYPEWRITER USUALLY TRANSFERS A SINGLE CHARACTER_OR_L11E_OF CHARACTERS TO A BUFFER AND INTERRUPTS THE CP WHICH READS FROM THE BUFFER TO A PACKING" AREA, SCOPES ARE SOMEWHAT MORE GENERAL. THE I/O MATERIAL IS PLACED_IN A_BUF_FER_FOR T_HE_SCOPE CONTROLLER TO DISPLAY. MOST OF THIS MATERIAL HAS TO BE"INTERPRETED AS__COMMANDS TO THE SCOPE. MOST SCOPES ARE RANDOM SCAN TUBES. MEANING THAT THE BEAM CAN MOVE EQUALLY EASILY TO ANYWHERE ON THE TUBE FACE ANT) FURTHER IMPLYING THAT ONLY THOSE POINTS EXPLICITLY MENTIONED WILL BE SCANNED. THIS IS IN CONTRAST TO A TELEVISION WHERE EVERY POINT ON THE FACE SCANNED IN TURN. OUR SCO ${ }^{\circ} E S$ ONLY HAVE TWO LEVELS OF BRIGHTNESS, BUT SOME HAVE FIVE OR MORS, TELEVISION HAS A LARGE RANGE OF BRIGHTNESS AVAILABLE. THJS THF $1 /$ 0 MATERIAL CONSISTS OF A SERIES OF COMMANDS TO THE' BEAM TO MOVE TO A CERTAIN POINT, DRAW A_LINE TO ANOTHER POINT NOW MQVE SOMEWHERE ELSE, NOW DISPLAY A CERT AIN CHARACTER AND SO ON. THERE MAY $3 E$ SPECIAL BITS FOR BLANKING CERTAIN ELEMENT S, ALTERING THE SIZE ETC. ALSO THE SCOPES OUTPUT FUNCTION IS A REGENERATIVE PRO CESS AND WE HAVE TO INSTRUCT THE BEAM TO DO THE SAME SCAN SEVERAL TIMES A SECOND TO GIVE A CONTINUOUS DISPLAY. THJS A TYPICAL BLOCK USUALLY OF WORDS OF GRAPHIC
I/O MATERIAL IS SOMETHING LIKE THISI
AI START SCANNING HERE
MOVE TO XO/YO
DRAW LINE TO X1.Y1
DRAW LINE TO X2,Y2
MOVE TO X3,Y3
draw character NO 32
LOQPBACK jOJf. 1
OUR SCOPES HAVE A VERY NICE WAY OF SCANNING" THC DISPLAY MATERIAL \}§ SETUP AS RP LOCATABLE BLOCKS WITH TRANSFER COMMANDS MHICH MUST CONNECT UP TO GIVE A LOOP AROUND WHICH THE SCOPE SCANNER OPERATES, thf display material must_be in one sp ecial region of addressable

G-2Q__CORE__VI_7___ $116000 p_{-} T O / J .7 J 22^{\prime} i^{\prime} \quad$ THE_ADOR=SSES USE D__BY THE SCOPE SCANNER" ARE RELATIVE TO"/160~o60 AND THEREFORE RAN3E FROM O ${ }^{\circ}{ }^{\circ} l^{\prime} 17$ 777. EACH OF THE THREE SCOPES CAN HAVE 4 PAfleg AND INDEED each picture in the core is a separate module of display material. THE LAYOUT IS SOMETHING LIKE THISI

AI "DELIMIT A2 PAGE 1. SCOPE "i
D I SPLA Y_MA TER I_AL

THE SCANNER ENTERS A M_ODUL_E,_ REMEMBERS_T_HE FIRST WORD, UNTIL IT HITS A STORE COM MAND, THEN JUMPS TQ~ THE ADDRESS MENfION50 IN THE FIRST kiORD. FACH DISPLAY MODUL E CAN BE DISPLAYED OJ^ ONE OF PAGES ITHROUGH 4 ON ANY COMBINATION OF SCOPES 1, 2, AND 3. TH \quad "DISPLAY MATERIAL _CA_N BE CHANGED BY A PROGRAM FREELY ALTHOUGH ONE S HOULD ALWAYS PRESENT A WELL-FORMED DISPLAY TO THE SCANNER", INPUT OR CORRECTION OF DISPLAY MATERIAL FROM_THE HUMAN Aj; THE SCQ ${ }^{3} E$ CAN BE ACHIEVED USING' THE KEYBOa"RD OR RAND TABLET THE INPUT 07 R f'TS INTO THE ADDRESSBLE MEMORY IS DONE BY THE SCANNER AS IT SCANS ROUND, ONE OF THE ADVANTAGES OF THE MODULAR LAYOUT IS THAT'NEW MATERIAL IS SIMPLY APPENDED TO THE END OF THE APPROPRIATE MODULE AND f"H"E""STO" RE" COMMAND MOVED DOWN, THE SCANNER WILL KE=p ADDING _NEW___MATERIAL AS_REQUESTED U_ NTH. IT HIJTS AG/UNST THJ? NEXT DELIMIT AT WHICH TIME" 11 WILL GENERATE A MEMORY F"ULL INTSRRUPT, ~~TOTIFYING THE SCOPE MONITOR, AND WILL_REFUSE TO ENTER ANY MORE. I NPUT ACTUALLY WILL BE PLACED IN ANY DISPLAY MODULE DeSI3NATED AS ENAB_LED FOR THa T SCOPE AND THAT INPUT DEVICE. THE DESIGNATION IS BY MEANS OF CERTAIN BITS IN T HE DELIMIT WORD. "THERE IS ONE 31T TO ENABLE__ THE MODULE FOR ALL_ENTRY, VECTORS_AND CHARACTERS _FROM_ANY_ ~OF""THE 'SCOPESDESIGNATED, AND" TWO OTHER BITS "FOR" THE"KsYSJSA RDS FOR THE PARTICULAR!_SCOPE_._ THE FULL DELIMITCOMMAND IS
 ALTERNATE MOOE-USUALL"Y ONLY USED BY SCOPE MONITOR," = IS THE GENERAL ENABLE BIT. KEY IS 2 BITS ONE F OR EACH KFYRO*=?D, FOUR CONSOLES ARE PROVIDED FOR BUT ONLY 3 INSTALLED. IF SEVER AL MODULES A.RE _FNABLED FOR THE_SAME DEVICE^ THE HPUT MATERIAL_WJLL BE ENTERED IN ALL OF THEM. THE NORMAL USER NEVER" SEES OR HAS TO BOTHER WITH THE DELIMIT, STORE OR CYCLE COMMANDS, THESE ARE MANAGED FOR HIM BY THE B ROUTINES. IT IS ARRANGED AS A SET OF STRINGS, EITHER CHARACTER STRINGS OR VECTOR STRINGS WITH A HEADER COMMAND AT THF FRONT TO INDICATE THE STARTING POINT ON THE SCRFEN. THUS A DISPLAY OF LINES AND CHARACTERS IS JLIKE _THIS

```
    VECTOR INCREMENT Y2 X2
    HEADER Y3 *3
    CHARACTERS Cl C2 C3__
    CHARACTERS C4 C5 C6 ~
    STORE
```

$\overline{T H E}$ ACTUAL FORM OF THESE $\bar{W} O$ RDS $f S$ AS FOLLOWS

11	1	Y_{0}		HEADER

10	01	Ti	$£ \mid$	C2	It	Si	C 3	. 3

T IS TAG BIT'S IS SIZE BIT, IF SET CHARACTER IS DOU3LE SIZE, CHARACTERS ARE SCOPECHARACTERSET AS ~GIVEN I THE HARDWARE MANUAL. IN A ALGOL-20 A WAY TO SET UP THESE WORDS IS SOMETHING

LIKE

HEADER «• 8L3 + YO * 8R 4000 + XO >
VECTJNC * 8L120 + SY « $2 \mathrm{t} 23+\mathrm{SX} 2 \mathrm{t} 22$
.. T \# 2*21 + B\#2t20

+ DELX»2tiO + DELXI
CHARS - 8L2 • <C1 * 4 + TI*2+SI> "2t20
* ($\mathrm{C} 2 » 4$ *T2"2+S2) "2tIQ
* TCJiT + T3*2*§3TV

SUCH MATERIAL SHOULD BE PACKED INTO AN ALGOL LOGIC ARRAY IN NORMAL "CORE—AND -THEN-83 C AL~LED "TdMOVE IT~T0~~A"TTEST37\ITTETTTTaITTN~TH~F DI SPLAY AREAi OTHER SCOPE OPERA TIONS AVAILABLE ARE

1	3	0				XfcFr

		$\mathbf{1}$	$\boldsymbol{0}$		6		K	
a_{0}								

ijthTch Tet mTrglns"fo^m^

	r	o		C COMFTW.fr		
2 i						

THIS SETS___ A_ COM PAR E_T R AP. J_N A JC E RTAIN CHARACTER KEYBOARD ENPINQ AFTER THIS WORD IN THIS MODULE. IF THIS CHARACTER IS TYPED IN, IT IS ENTERED -IN .THE MODULE AND AND INTERRUPT IS GENERATED BY THE SCANNER. THIS TS PROCESSED BY THE SCOPE MON.TO R AND CAN 3E PASSED TO A USER PROGRAM ENTRY POINT IF DESIRED.

6. WRITING INTERACTIVE PROGRAMS.
^. th^ P *out*nes

ALL INTERACT ION ' BETWEEN PROGRAM AND ' THE""SCOPES IS ACCOMPLISHED BY USING THE B ROUTINES. THE B ROUTINES ARE ACCESSED THROUGH A SPECIAL INTERFACING ROUTINE. THESE MECHANISMS NEED NFVER BOTHER _THE__AVERAGE- USER, IF HE SJMP_LY_USFS JHE_C_O'JES 0/ THE 9^{\wedge} ROUTINES IN THE SCOPE SUBPROGRAM LIBRARY (SECTION ${ }^{-} 7>$. " THUS IN _ALQOL-eo_01_ FORMULA ALGOL OHE SIMPLY WRITER

B (BNUM, ARG1, ARG2, ARU3. ARQ4, ARG55J AND IN SPITE

B BNUM, ARGj, ARGg, 8NUH IS THE NUMBER OF THE 3J*OUTP(E REQUIRED. NOT ALL ARGUMENTS ARE USED FOR ALL B ROUTINEST MOST OF ~ THEM HAVE TO DO WITH PASSING INFORMATION FROM THE PROGRAM TO THE SCOPES, BUT A FEW GO THE OTHER WAYI E.G., 88, WHICH rTa*D~S THE ANALOG KNOB_S. IN THEJ3ESCRI_PTIONt OF THE 8 ROUTINES, ARG1, ETC, a \quad OgNOTED BY $\bar{R} \overline{5} 2$ ETC. ITIS TO BE NOTED THAT THE VALUrS OF THE ARGUMENTS _AR| CHANGED BY A CALL ON A B ROUTINE, AND THIS CAN LEAD TO HAVOC te.G.," "CALLING 88 WITH ZEROSFOR A r G U vi ENTS" a AND 5 WI L L CAUSE THE ALGOL CONSTANT D TO BE REPLACED BY ANOTHER VALUE. TO AVOID THIS ONE CAN USE A GLOBAL BOOLEAN VARIABLE OUT, TF 0TJTT5 F A L_S_E__T HEN_NO__OUTPUT_OF VALUES WILL_OCCUR,_ A ME>_NO OV ERWRI T \| N Q _ WILL OCCUR, IF' OUT IS TRUE, OUTPUT WILL OCCUR, AND, IN H iS CASE, ONE CAN PUT SOME DUMM ARGUMENTS_IJ_T J E _PARAMETER LIST. IF THE LOCATION OF SOME DATA IN AN ARRAY' OR SCALAR IpEnttfter IS NEEDED, ONE MUST USE LIBRARY INTEGER PROCEDURE LOC IN ALGOL OR FQRML, WHTfCH FINDS THE ADDRESS WHERE THE ACTUAL VALU£TTRT"!fTI5"RTin TTfTJS LOC (A til) IS THE AD_DRE_SS_CONTAINING THE_VA_LUE OF_AriJ^LOC IS_IN THE "S COPE LIB RaRY FOR A L G 0 L" 0 R"FORML." IF YO U NEED THE LO"CATI ON OF A PROCEDURE ENTRY PO_I_NT _OR LABEL, YOU USE _T_HE L1 9R AR YJ NTEGER PROCEDURES PROpLOC o'R L $\overline{A B} E L L O C$ RESPECTIVELY $\overline{I^{\prime}} \bar{N}^{\prime \prime}$ AC30L-20.ALL' THE " ARGUMENTS TO 9 A R_E_J_NT EG E_RS,_IF AN ERROR OCCURS ON CALLING B DUE nr^{\wedge} IN'CORRE'cT ARGUMENTS". 9 wTIL PRINT AN ERROR M^'JJ'SA~GT~TfJD SET BNUM* - 1. THE REASONS FOR ERRORS ARE DESCRIBED IN D E T A I L_ I N THE DESCRIPTION OF THE B ROUTINES IN SECTION'6. THE DETAIUS OF THE INTERFACE ARE GIVEN IN SECTION 10. IN ADDITION, AND ON A HIGHER ——Level than the b routines."there are several useful subprograms in ALGOL,___FORML AND SPITE IN THE LIBRARY FOR DOING HIGHER LFVEL TASKS"'; FOR F"XA"MPLET"" PR0"CEDURE~NUM (X, Y, N> "WILL'TaTp A REAL VARIABLE N ANO DISPLAY IT AT X,Y IN -5D.3Z (OR 58.3) FORMAT. THE FULL I/O FACILITIES OF ALGOL-20 CAN RE USED IN READING "ROM ANO \bullet •PRINTING* TO THE DISPLAY PAGE. THIS IS SIMPLY ACHIEVED JSING THE
"' SCOPE LIBRARY PROCEDURES READ.PAGE AND PRINT,DN, ${ }^{3}$ aGE, 4 HICH ARE EXACTLY ANALOGOUS TO READC<W>) AND PRINT(<W>) . E.G._ _ R E A D . P AJ36 READS A" CARD" ^ROM "fHE 'SCOPE face INTO A BUFFER, "WTCH" "CaN"THEN 3E READ IN THE USUAL WAY WITH A READ STATEMENT. AT PRESENT, A PROGRAM
jCAN__ONLY INTERACT WITH THE SCOPES IF IT HAS BEEN SUBMITTED FROM A SCOPE AND IF THE"JOBCARD- USER IS LOGGED IN ON THAT SCOPE. AT THE TERMINATION OF A USER PROGRAM CONTROL GOES, TO IfI AND THENCE BACK TO SCOPE MONITOR TO ALLOW IT TO UNSET ALL THE SWITCHES SET BY THE ..PROGRAM. HENCE....THE USER SHOULD NOT PATCH IO. \qquad
before interaction can occur the program must announce itself BY CALLING.B-I \qquad
is PLAYTEXT."" ONE'S PROGRAM WILL NORMALLY SET IT UP IN $0-2.0 _$__JiHAJ^CTERjSj^JJO___QNE_ HAS TO CONVERT TO SC3PE CHARACTERS AND MOVE IT TO THE SCOPE DISPLAY REGION.

```
_B _ 0 AND_9 1 WILL_C_NVERT TEXT QETWEEN _G-20 CHA RACTER SET AND SCOPE CHARACTER SET.
```

B 2 CONVERTS TEXT__A_ND_ MOVES IT_JOJ11 S?LAY _REG_IOM IN ONE OPERATION.

```
B 3__MOVFS A REGION ALREADY IN SCOPE FORMAT TO TH DISPLAY REGION.
```

IO dISPLAY VECTORS, ONE MUST SET THEM U' IN A LOGIC ARRAY AND USE b 3. ONE CAN EASILY SET UP A DESIRED LOGIC ARRAY USING PROCEDURES HEADER, VECTOR, LINE, CURVE, ETC Big. B16, B17, B18
${ }_{\text {oK }} \mathrm{r}_{\mathrm{E}} \cdot Q, \ldots, \ldots$ SPACE IN THE DISPLAY AH_A SY "CAC'LINS"B15J the page does not need to be enabled for the program to enter DISPLAY MATERIAL BUT NEEDS TO BE ENABLED FOR THE HUMAN USER TO ENTER DISPLAY MATERIAL.
" " B16, 617. B18 ENABLE, DISENABLE AND DELETEA PAGE RESPECTIVELY.

B19 APPENDS ONE PAGE TO ANOTHER

820 DISENABLESALL PAGES.

B"2 AND B3 ACTUALLY APPIND NEW DfSPLAY"~"MXTERITL TOfHE EXISTING PAGE,.

```
    _B28^CLEARS A PAGE. B4 AND B5 PERFORM RECIPROCAL OPERATIONS TO
82 A}\mathrm{ AND B3 IN COPYING DISPLAY MATERIAL FROM A GIVEN PAGE INTO A
GH/EN ARF_AY_ INTHE USER PROGRAM^
    B4 CONVERTS ALL TEXT TO G-21 CHARACfE~R~STT AMO IGNORES ALL
VECTORS. THE.ARRAY ;COULD THEN BE PRINTED OUT IN A FORMAT,_
    .g - ..... WITHOUT "CONVERSION, A PROGRAM"CAN "ONLY DEDUCE
INFORMATION AROUT THE PISPLAY BY COPYING IT INTO AN ARRAY AND
SEARCHING "THE AREA FOR FEATURES LIKE KEYWORDS,
```

86, B7, B8. BIf], 911 PROVIDE COMMUNICATION WITH THE CURSOR, ANALOG KNOBS AND USER STATE SWITCHES, \qquad

Bft READS THE CURSOR.

B7 SETS THE CURSOR.
"B* READS THEANALOG KNOb"S AND STATE

SWITCHES.
"BIT'READS the State switches ONLy.

BII SETS THE STATE SWITCHES,

B. USER INTERRUPTS

B12,813,822,824 ARE FOR COMPARE INTERRUPTS, BL3 DEFINES THE USER ENTRY POINT TOBE ENTERED WHENA COMPAREINTERRUPT OCCURS ON ANY CHARACTER. THIS OCCURS IN ANY STATE OF THE SCOPE MONITOR, EXCEPT DURING TYPING INTO THE SCOPE MONITOR, WHICH USES A COMPARE CHARACTER. B12 SETS COMPARE INTERRUPT ON A SPECJFIED CHARACTER FOR A SPECIFIED PAGE. B22 RESETS THE COMPARE ROUTINE TO THE STANDARD SCOPE MONITOR ROUTINE._B2L REMOVES COMPARE ON A SPECIFIED CHARACTER ON A SPECIFIED PAGE, 824 SETS AN ENABLED CURSOR AND IJNT_ERRUPT ROUTINE ON A SPECIFIED CHARACTER

 BUTTONS 1-15. AFTER B?5 HAS BEEN EXECUTED AND PROVIDED THE SCO'E MONITOR _IS_ IN_USER MODE THE INTERRUPT BUTTONS WILL_CAUSE AN INTERRUPT IN THE USER PROGRAM AND FOR" CONTROL TO BE PASSED TO THE SPECIFIED_PRO_C PJDU_RE OR ENTRY POINT.

INTERRUPTING USER PROGRAMS

ALGOL PROGRAMS

PRINTING HAS TO BE CAREFULLY CONTROLLED IN ALGOL PROGRAMS WHICH ALLOW INTERRUPTS. IFAN INTERRUPT OCCURS DURING PRINTING AND THE UISR PRINTS, THEN IT IS MORE OR LFSS IMPOSSIBLE TO RETURN TO THE ORIGINAL LINE OF COMPUTATION. ONE CAN SAVE THE INTERRUPT PRINT LINE AND PRINT LINE POINTER BY \qquad ;
LOGIC ARRAY AI-2H201; TEMpV|25II BUFFERSET(•PRINTi, Alol) I MP_ RESTORE IT LATER. HOWEVER, IF THE NAME AND PRINT STATEMENTS IN OPERATION HAVE 8EEN CHANGED» ONE CANNOT RECOVER fHWW] TF f*E UISR PASSES CONTROL TO ANOTHER PART OF THE PROGRAM AND NEVER WISHES TQ CONTINUE AT THE INTERRUPTED POINT, THEN THE PRINTING WILL WORK OUT ALL RIGHT. SOME: SAFE RULES ARE (1) DON'T PRJNT OUT IN THE UISR, (2) TURN OFF THE CONTROL SWITCH DURING PR"INTINQj BUT, AS DISCUSSED, THESE ARE NOT RIGID RULES.

EXAMPLE OF INTERRUPT DEFINITION IN ALGOL
I. USING A LABEL

BEGIN INTEGER ENPT,CSW,IN,SN,CC»

———OOPI CONTINUOUS ACTIONS>~J GO~TO~LOOP I

I 1. .USING A PROCEDURE
BEGIN
___ LIBRARY^PROCEDURE PROCL.OCJ
PROCEDURE UJSRI
_<ACTIONS>J GO TO NEWACTION)
END GOES BACK TO INTERRUPTED ACTION
B।? JL.PKOC^
<CONTINOUS ACTIO^S> \}
£CR_kA___ALGOL PROGRAMS

FORMULA _ALGOL COMPILES CODE WHICH IS HEAVILY DEPENDENT ON RUN-TIME ROUTINES. IF ANY RUN-TIME ROUTINE IS INTERRUPTED BY THE _SCOPE__MONITOR__WHICH__THEN_CALLS THE UISJ_WHI_CH_IN TURN CALLS THE INTERRUPTED RUN-TIME ROUTINE,THEN GLOBAL PARAMETERS^LI <E RETURN MARKS, INDEX REGISTERS AND TEMPS) ARE SOON FORGOTTEN, THE_R_EFORE THE ONLY CODE WHICH CAN BE USED WITHOUT DRASTIC SAFEGUARDS IN THE UISR IN FORMULA ALGOL IS CODE WHICH DOES NOT CALL ON RUN-TIME ROUTJMES HOWEVER IF THE UISR AND THE CODE FOLLOWING THE CALL ON 325 ARE COMPLETELY___I NnEPENpEjNT___AND_ DO NOT CALL ON THE SAME ROUTINES THEN ONE HAS MORE FREEDOM. 0~PE~RATIONS WHICH DO NOT USE THE RUN TIME ROUTINES INCLUDE STORING.AND ACCESSING OF SIMPLE^VARIABLES(BUT NOT ARRAY ELEMENTS),AND THE OPERATIONS $+,-,{ }^{\prime}, /{ }^{*}{ }^{*},{ }^{*},-, I F$ THEN ELSE, J3IGN, ABS, ENTIER, AND GO TOtLOCAL BACKWARD___TRANSFERS__ONLYJ^A HOWEVER, WITH INTIMATE KNOWLEDGE OF FORMULA ALGOL AND A LISTING OF ITS RUN -_Tj_ME_ROUTINES_,_-THE_EXPER.LENCED_USER_CAN BUILD HIS UISR SO THAT IT CAN CALL ON ANYTHING, THIS WOULD PROBABLY BE: DONE $3 Y$ WRITING_ SMALL MACHINE CODE ROUTINES, CALLABLE ONLY_WITH_ CONTROL OFF, WHICH WOULD SAVE AND RESTORE THE CONTENTS OF A LIST OF" J1AC_H_INE_ LOCATIONS. THE UISR WOULD PROBABLY LOOK LKE TH $13 \wedge$ \qquad

EXAMPLE OF INTERRUPT DEFINITION IN FORMULA ALGOL SN CDLC 0 PROCEDURE INTERACT\} BEGIN INTEGER »LOCISR)

| SN CMPL | 07200 | ERA | NC | READ NEXT COMMAND REGISTER | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN CMPL | 0050000000 | ADD | 0 | 5 | NUMBER OF INTERVENING COMMANDS |
| SN CMPL | 1330011000 | ST I | UISR SAVE LOCATION OF UISR | | |
| \sim S"N"~CMPT | 13377000 il | "Sff | LOCTSfTUSED IN~CALL I NHI 325 | | |

C. INTERACTION WITH MORE THAN ONE SCOPE

TO INTERACT WITH A DIFFERENT SCOPE FROM"THE ONE SUPMjTTED FROM, A PROGRAM SIMPLY USES THE B ROUTINES AS USUAL, BUT IN ADDITION SETS THE "SCOPE NUMBER BY USING ALGOL PROCEDURE~ SETSCOPENUM(N). IT DOES NOT NEED TO BE SET BEFOR. EV5RY CALL \qquad OF A BPOUTINE, JUST ONCE.
THUS, TO READ THE STATE SWITCHES ON SCOPE 2. ONE PERFORMS NSAVE-SCOPENUM. SETSCOPENUMC2) J ZERO.-OI OUT.-TRUEI _B (10_, ZERO, S_TSw, DUM, DUM, DUXJJ_ OUT-FALSEJ SETSCOPEMUM (MSAVE);
rvOTE WE SAVED TH. NUMBER OF THE SUBMISSION SCOPE BY USING ROUTINE _SCOPENIJM. SETSCQPENUM AND SCOPENUM MERELY SET AND READ INDEX REGISTER -51 .

ONE CAN THUS DO ALL THE USUAL INTERACTIONS WITH'ANY OTHER ~ SCOPE, HONEVER', THE B ROUTINE CALLS""WILL ALL GIV= " E R R O R ' EXITSUNLESS PERMISSION To INTERACT HAS BEEN GIVEN_3Y THE USER AT THE SCOPE TO BE INTERACTED WITH, BY USIN3 I ITSRRU³ _J-3„.IN_JHE PROGRAM STATE.
USER INTERRUPTS FOR ANOTHER SCOPE ARE DEFINED BY USHG B25. UPON ANY USER INTERRUPT, THE SCOP_E_ NUMBER IS PASSED TO.....TH___USER PROGRAM,
\qquad F_Ij_ALLY_ONE_CA_N DJ SjPLA Y jf_QIVEN_P_AGE ON MORE THAN ONE SCOPE, BY USING R26. THIS TAKES PARAMETER RS2. WHI CH "'T S THE BIT PATTERN AT THE END OF THE DELIMIT CONSISTING OF 4 91T5 FOR SCOPES 3.2,1 AMD 4 RESPECTIVELY,SN CORRESPONDING TO SCOPE M. THUS IF a PROGRAM WANTED TO DISPLAY A PaGF ON TH= SUBMISSION \qquad SCOPE AND ANOTHER SCOPE N, IT WOULD DO SOMETHING LIK^ THIS NI«-SCOPENUM; B ITP a Tj-21 N1-? t N1 B(26_J_A GE_RITp_A_T, 0, 0_ jn \qquad

OF" COURSE", IF PERMISSION HAS NOT REEN GIVEN, IT \qquad WJ.LL.._NOT. D.I SPLAY,

MIGHT BE LIKE THIS.

Acne*
7. DESCRIPTION OF THE B ROUTINES.

B-1 AN NOUNCE AN ONLINE USER
PARAMETERS! _ USAGE NUMBER FROM UOG-IN_
OUTPUT: R5i: SCOPE NUMBER

BO___CONVE.RT.S.G21_CHARACTER.. _STRJNGS_PACKED
4 PER WORD INTO SCOPE STRINGS PACKED
IN. DISPLAY .FORMAT.
PAHAMETERSI R52*LOCATION OF FIRST WORD.. OF. G2X TEXT,.
R53.-LOCATION TO RECEIVE FIRST WORD OF__THE CONVERTED TEXT 3LOC*.
THIS ADDRESS MUST BE IN USER CORE.
R?4-NUMBER OF CHARACTERS TO CONVERT.
OUTPUT! NONE
ERROR IF!..... R<53 OUT OF BOUNDS \qquad
BI___CONVERjS_SCOPE_CHARACTER_SJ_RJNGS
PACKED IN DISPLAY FORMAT INTO G21
CHARACTERS PACKED 4 PER_WORD.
PARAMETERS 1 R52«-BASE OF SCOPE STRING, R53*-LOCATION.TO RECEIVE FUST WORD OF THE G21 STRING.
THIS, ADDRESS_MUSTBEIN
USER CORE.

\qquad 44

 SHOULD He "ALLtU A_ WbLL. \sim R? 5—nnPFTNP TISFW t'NTF~r'riJPTS

THE FOLLOWING ARE NOT YET IMPLEMENTED

B29	MOVE PAGENJTO
PARAMETER'S!	R52"«-N
	R53*M

OUT PUT 1
NONE

TO OBTAIN THE ADDRESS OF A PAGE

AL DUM**" " "OUT^TRUE'l B<41,DUM,T8Q, durtdumvdum>1

OUT《FFALSE! ADDR《•T80•1+SCOPENUM+3*PAGE|

ERROR NUMBERS,

THE SCOPE" MONITOR PASSES AN INTEGER IN THE ACCUMULATOR WHICH IS_THE_J-OCATION IN THE SCOPE MONITOR WHERE _THE__ERROR_ "WAS DETECTED. THF FOLLOWING TABLE RELATES THES-" INTEQERS JO THEIR MEANI NGS

ERROR NO .ROUTINE MEANING

INTERACTION UNACCEPTABLE.EITHcR
(A > REMOTE FROM WHICH JOB WAS
SUBMITTED IS NOT
A SCOPE_I (E _ NOT IN [5,7).
OR(B)MANNUMBER OF USrR LOGGED IN
-> = M ANNUMBER
ON JOB CARD OF PROGRAM,

167003 SEVERAL. PROGRAM ATTFMPTJNG T3 INTERACT \quad| WITH A SCOPE FOR WHICH PERMISSION |
| :--- |

HAS_NOT BEEN GI
BROUTINE WITH THIS NUMBER
DOESN'T EXIST. \qquad
PAGE DOESN'T EXIST
_NO ROOM LEFT ON PA__E___
NOT ENOUGH SPACE,
EITHER(A) AGE EXISTS
OR(B)NO STORE COMMAND FOUND ON PAGF
JOR(C) A_DELIMIT. IMMEDIATELY J_pLLOJ_S__
THE STORE(PAGE FULL)
167,"46
171365
173 37-2
171402

171406
17 OR_18,"
PAGE^NO^NOT IN $[i, 4]$.
SEVERAL PAGE NO.NOT IN [1,4].
SEVERAL J_AJSE_D_OESN'T EJX.I ST.
SEVERAL LOCATION GIVEN IS NOT IN USER CORE
I.E. NOT IN t/I_ $000, / 7300$ _I
'LOCATION GIVEN IS NOT IN UPPER CORF
I.E. NO_T IN [/160000./177777] \qquad

```
8. SUBPROGRAM LIBRARY.
```


PROCEDURES IN ALGOL AND FORML THE SCOPE ALGOL'LIBRARY CAN NOW BE USED "AS AN OUTER BLOCK TO ANY ALGOL PROGRAM. YOU NEED AN EXTRA" END,OF COURSE. THESE PROCEDURES WERE WRITTEN BY RUDY KRUTAR, JIM KING,ALAN BOND AND DAVE VAVRA, THE LIBRARY IS CURRENTLY BFING MAINTAINED AND _ EXTENDED BY_RUSSELL MOORE,TO WHOM SJJGGEjmONS_AN/J^ QUERIES SHOULD BE DIRECTED.

1 ,	INTEGER	PROC	EDURE		$\mathrm{C}(\mathrm{N})$			INTEGER	N)	GIVES	THE		ADDRESS
WHERE THE	VALUE O	AN	IDEN	F I	ER	1		STORED.	FOR	A R R A Y	STTO		U t I I)
WILL GIVE	THE 1 ST	WORD	OF		A R R								

_2. LOGIC PROCEDURE DECML (NUMBER)i INTEGER NUMBERI"GETS THE DECIMAL G-20 CHARACTERS FOR THE VALUE OF NUMBER AND PACKS THEM IN DECML.

4. AN ALTERNATIVE VERSION OF B, WHICH HAS GLOBAL $300 L E A N$ VARIABLES OUT ${ }^{\text {ND""PR"." IF OUT IS TRUE PARAMETERS ARE OUTPUT, IF PR }}$ IS TRUE, THE VALUES_OF PARAMETERS AND NATURE OF EXIT ARE PRINTED.
. 5 , PROCEDURE BA(BNUM,ETC) IS A "PROCEDURE RATHER THAN A FUNCTION AND CALLS ON B..
 COMPUTES A HEADER INSTRUCTION AT X,Y. NOTE THAT X, Y_MUST LIE J_N CO, 1023 J ,
7. LOGIC PROCEDURE VECTOR (X,Y,SG)» VALUE $X, Y, S G t$ INTEGER XTY J__LOG f C~SsTcO"MPUTES~A~VEC! TOR "STRINGELEMENT"WT"TTrTx~*~T7~n Y•^ Y. $\quad S G=H$ USUALLY, $S G=2$ FLAGS THE VECTOR SO THAT IT WILL BLINK

OR INTENSIFY ACCORDING TO THE SETTING OF STATE SWITCHES.
8. LOGICPROCEDURE CHARAC (C S G, if) INTEGER C SG.I) PRODUCES A SCOPE CHARACTER IN A WORD IN POSITION I » 1, 2, OR 3, SG IS THE TAG FIFLD, SO $S G=2$ GIVES BLINKING AND INTENSIFICATION. C IS THE SCOPE CHARACTER NUMBER AS GIVEN IN THE 3UATSE MANUAL.
9. LOGIC PROCEDURE CHARSTR (C1,""C2," C3, SGI." S^2. S33JI
10. PROCEDURE CHARACTER (X, Y, $\mathbf{~})$ J INTEGER X, Y, LOGIC) PUTS "a~""cTTa"Ra"cTER0N " THE"" SCREEN AT P_TnT X,"'Y." "c IS A SGOPE~ CHARACTER-STRING WORD AS OBTAINED BY_ USING CHARAC OR CHaRSTR,__IT can also be obtained by

J J J 5L2 _ j_fIR * ${ }^{4}$ L ${ }^{\text {wHFRE }} \mathrm{N}$ IS THE SCOPE CHARACTER NUMBER FROM THE" QUATSE MANUAL.' "CHARACTER HAS ONE CHARACTER ${ }^{p} E R$ WORD AND A SEPARATE HEADER FOR EACH CHARACTER, AND IS, THEREFORE, WASTEFUL OF SPACE, G-20 CHARACTERS ARE BEST PUT ON THE SCREEN USING 32.
\qquad 11, _ PROCEDURE_NUM < X _V__N) \}_ VALUE N) INTEGER X, Y) REAL N j_ TAKES A REAL NUMBER N, FINDS DECIMAL CHARACTER FORM, AND PUTS IT ON_THE_SCR6EN aT__X,Y IN -5D.32 FOR_MAT.

12, PROCEDURE LINE (XI, YI, X2, Y2M INTEGER XI, YI. X2, Y?) PUTS A LINE FROM (XI, YD TO (X2, Y2), WITH A SEPARATE HEADER.

PROCEDURE GENERATE <T, ~Yr"T.~ DT, MORN")")"' VALUE DT. NORM j REAL $X, Y, T, D T, ~ M O R M i ~ G E N E R A T E S ~ A ~ C U R V E ~ W I T H ~ P A R A M E T E R ~ T ~ W H O S E ~$ X', YARE GIVEN $9 Y$ EXPRESSION INVOLVING T WHEN ACTUALLY CALLING GENERATE THjUS

GENERATE (A • SI N (T) ,"' f' * $\operatorname{COS}(T), T$, DT, NORM)') .WILL PLOT AN ELLIPSE.
 INTERVALS IN T OF DT. IT ASSUMES A SQUARE SCREEN WHOSE LINEAR SIZE IS "NORM IN RELATION TO THE VALUES OF X, Y.

14, CURVE (X, Y, T, DT, TA, TR)J INTEGER X, Yf REAL T, DT, TA-, "TBrPLOTSFROM "TA TO "TB;
15. INTEGER PROCEDURE SCALEX (X)I REAL Xt

INTEGER PROCEDURE SCALEY (Y)I REAL YI THESE "ALLOW EASY SCALING, GLOBAL VARIABLES XA, XB, YA, YB, SXA, S*B, SYA SYB INDICATE THAT THE PART OF THE SCREEN USEDWILL 8E FROM SXA TO SXB AND SYA TO SYB, WHERE THESE LIE IN [0, 10231, AND THAT THIS WILL CORRESPOND TO VALUES XA, XB, YA, BY IN THE REST OF THE COMPUTATION. \qquad THUS

CHARACTER (SCALEX (X), SCALEY (Y), C)J PUTS A CHARACTER ON THE SCREEN AT POINT X, Y IN THE USERS SCALE.

THERE ARE AN EQUIVALENT SFT OF PROCEDURES TAKING REAL ARGUMENTS FOR__P_OSITION_AND USING SCALE X AND SCALE Y, THESE ARE DESIGNATED BY AN ADDED i"ON tHENAME. THUS,CHARACTERS, NUM1, LINEI, CURVE1, ETCi
16. REAn.PAGF (N,RBuFF) > $\quad{ }^{\text {th }} \mathrm{j} L \quad-\mathrm{n}^{\top} \mathrm{i} \quad \mathrm{ru} \mathrm{u}^{\wedge} \mathrm{Tr} \mathrm{T} \wedge \wedge \mathrm{pT}$ LENGTH.... 1 BLOCK > INTO ^_m!.P ! on dc"! VhH ^ v tScw »eln rortM WORD , SO IT IS LIKE A NORMAL CARD READ, YOU MAY THEN ">CAD FROM RBUFF USING AL THE NORMAL FORMATTING POWER OF ALGOL,
pRi^TiON PAGE(N,WBUFF,X,Y)) POTS THE CONTENTS OF'PRINT BUFFER__WJBUFf __AFTER NORMAL ALGOL PRINTING (WHICH CAN BE WITH OR WITHOUT <E> OR <W>) ONTO PAGEN AT X,Y. THUS THE FULL GENERALITY OF ALGOL I/O 'S AVAILABLE FOR COMMUNICATION WITH THE SCO ES.
3. \quad SETS'C'OPENUM (N)) INTEGER $N j$ SETS SCO^S' MUMBER TO N, SO THAT FURTHEP_ CALLS OF B ROUTINES APPLY TO THIS SCOPE. THEY OF COURSE GIVE AN ERROR IF PERMISSION HAS NOT BEEN SIVtN MANUALLY AT THE SCOPE,
"19. INTEGER "PROCEDURE SCOPENUMj GIVES THE SCOPE NUMBER CURRENTLY SELECTED. IT_ SHOULD NOT BE C0*F_USED_WITH T_HE_SCOPE NUM8ER PASSED UPON INTERRUPT.

20 BUTTIN(ENPT,CNTRLSW.INTNUM,SCOPNUM,PAGE IN,PAGEOUT> J INTEGER * "ARO UM E N TS. DEFINES BUTTON INTERRUPTS,DISPLAYS 'INTERRUPT S NOW DEFINED' ON PIAGEOUT AND CONTINUES COMPUTING. ON INTERRUPT, IT PASSES CONTROL TO ENPT, WHICH CAN RE A CLOSED PROCEDURE OR A LABEL, I_T PUTS*X ${ }^{\text {nterrupt }}$ NUMBER ON PAGEOUT UPON_I NTERRUPT "CNTRLSV' = n" INHIBITS INTERRUPTS." INTNUM IS THE NUMBER OF THP BUTTON INTERRUPTING AND SCOPNUM IS THE NUMBER OF THE SCOPE INTERRUPTING.
21. eOWIN 2 5NPT,CNTRLSH.S-OPNUM.CTIAR«PAGEIN.PASEOUT.CH)I SETS "COMPARE INTERRUPTot~CHARACTER cWDN~7a1e~1^IN, SIMILAR to BUTTIN. ON INTERRUPT, THE CHARACTER WHIGH CAUSED THE INTERRUPT WILL BE FOUND IN IDENTIFIER WHOSE LOCATION IS CH.

NOTE THAT CONTIGUOUS DECLARATION OF SCALARS IN FORML GIVES "ALLOCATIONS IN SUCCEMTvTIWDST WHEREAS I\#"ATfIOL^TT~GYVES CONTIGUOUS LOCATIONS BUT IN THE REVERSE ORDER TO THE ORDER OF "dec! ar 7tTon7 :

THUS, LOGIC D3, D2, D3J DUMPS (3, D3) I_PJ__TS_TH _J?_V'J__S_P' D3, D2 AND DI.

MACROS AND ROUTINES IN SPITE

1. MACRO BC XX1,XX2,XX3,XX4.XX5,XX6J CALLS INTERFACE ROUTINE 10. EXPECTS ALL ARGUMENTS TO BE CONSTANTS, I.E., FIXED AS ASSEMBLY TIME.
2. MACRO BV XXI, XX2, XX3, XX4, XX5, XX6, EXPECTS XXI TO 9E CONSTANT AND XX2 ..• XX6 TO BE "VARIABLES, I.E., 3E LOCATIONS WHICH CONTAIN THE DFSIRED ARGUMENTS,
3. 10 THTTNTERTACE~RWT"i"N_.
4.___THERE IS A _VARIA_NTON B WHICH PUTS A MESSAGE ON THE G-20 TYPEWRITER ASKING FOR THE H-MODULE TO BE SWITCHED, IF IT ISN'.T.

5, SOME MACROS TO^ EASILY GENERATE SCOP? DISPLAY MATERIAL HEADR, VEC. CWD, STOR.
9. USER SUBSYSTEMS.

AN • INTERACTIVE PROGRAM ON THE G-20 IS INEFFICIENT IN ITS USE OF COMPUTER TIME IN THAT IT OFTEN IS IN A LOOP WAITING FOR THE HUMAN TO TELL IT WHAT TO DO NEXT, ALSO THE PROGRAM MUST WAIT IN THE QUEUE BEFORE IT CAN BE INITIATED. THE PAUSE SYSTEM IS USEFUL FOR GETTING SHORT BURSTS OF USER PROGRAM.

IN IMPLEMENTING A TIME SHARING SWAPPING SYSTEM FOR THE. SCOPE MONITOR, IT WAS FOUND EASY TO ALLOW ANY USER TO WRITE SUBPROGRAMS OF RELOCATABLE REENTRANT ASSEMBLY CODE WHICH ARE ORGANIZED BY THE SCOPE MONITOR. SWAPPED IN AN OUT AS REQUIRED AND AS SPACE PERMITS, E_LOCATED IN CORE AND LINKED TOGETHER DYNAMICALLY IN A SIMPLE WAY. THERE IS ALSO AN AUXILIARY MACRO SYSTEM WHICH ALLOWS THE CONVERSION OF ORDINARY ASSEMBLY CODE INTO THE REQUIRED REENTRANT RELOCATABLE MODULAR FORM. IT TURNS OUT THAT ANY MODULE OF ANY. USER CAN CALL AN.Y MODULE OF ANY OTHER IN AS VIOLENTLY A RECURSIVE WAY AS REQUIRED, AND THAT ONLY ONE COPY OF ANY MODULE IS IN CORE EVEN IF CALLED BY SUBSYSTBMS FROM ALL THREE SCOPES AT ONCE.

TO CONVERT CODE TO MODULAR FORM, ONE USES THE MACROS AND ROUTINES ON USFR CR3SAB14. FILE 34. THEN ONE BREAKS THE CODE AS FOLLOWSI

FILE 34 PACKAGE USER CR38AB14; FILE 34/Pj INSERT \$
NON RELOCATABLE (GLOBAL) SYMBOL DECLARATIONS LBL T9 01

BEGIN BEGIN
RELOCATABLE (LOCAL) SYMBOL DECLARATIONS

LBL E201
ENTRY POINT DECLARATIONS ENPT 1. EI
(REENTRANT) CODE E
ENPT 2, E2

EI ENT
PUSH 51
CLA 0 1*

STL	2.50

TRM E3

	EXIT				
ENT					
	TRM	E4			
	TRA	$1-$			
	EI				

OR NONREENTRANT

EXTERNAL IDENTIFICATIONS TO E3 ISMOO 1. 5. •AB14)
ENTRY POINTS OF OTHER MODULES E4 ISMOD 2. 7. *ADO3J
E.G. E3 IS ENTRY POINT 1 OF

MODULE 5 OF USER AB14

END	END		
STORE	STORE	6.	AB14\|

STORES THE GENERATED MODULE. E.G..
AS MODULE 6 OF USER AB 4

THE PtTSht MACRO' TJECL~A~R¥S STACK VARIABLES. fc , 9•. PTTSfl $5^{\prime \prime}$
DEC LARES 5 VARIABLES AND PUSHES THE STACK, ONE THEN USES THESE
VARIABLES WITH THE POINTER IN REGISTER 50. THUS CLA ?,50 CLEAR AND ADD SECONO

STACK VARIABLE.
ST I 3.50 PUT IN THIRD STACK
VARIABLE"". "
PUSH MUST IMMEDIATELY FOLLOW THE ACTUAL ENTRY POINT (TO ALOW THE Mark t"o~b1T~sTackeo>. * rFentrTnt routine does not exit thhough ifs" MARK BUT THROUGH THE STACKED MARK USING POP N . WHERE N IS THE NUMBER OF' STACK VARIABLES IN THE "ROUTINE. TO EXIT 'BACK TO THE S C OPE MONI TOR USE EXIT. THE S T A CK I NG. JNCLUD IN G_ST ACKING THE MARK TNWT, 50 (WHICH SHOULD THEREFORE NOT BE USED BUT ALWAYS ALOWED FOR) AND PUSHING. POPPING, ERROR RECOVERY IS ALL DONE BY- THE SCOPE MONITOR,

STACKED VARIABLES HAVE TO BE USED TO KEEP THE VALUES OF VARIABLES N EE OED " "DU1RTnU RECURS I'VE。ALLS OR "AN Y "T IM E THE'CO D"E "MAY" HAVE TO WAIT. TO SWAP IN ANOTHER MODULE ONE HAS TO WAIT FOR THE DISC. SO SfXCKEin/ARIABLES HAVE TO BE US'ED FOR ANY VALUE'S, SET" BEFORE ANY TRM, WHICH ARE REFERRED TO AGAIN AFTER THE RETURN

THROUGH THE MARK. THIS IS BECAUSE ANOTHER USER MAY ENTER THE SAME CODE DURING THE WAIT". ONE CAN HAVE MODULES OF REGULAR CODE BUT IT CANNOT CALL ITSELF RECURSIVELY.__AND CANNOT BE SHARED BY ANY OTHER SYSTEM. NOTE THAT EACH USER HAS HIS OWN NAMES FOR ALL HIS IDENTIFIERS. HAVING CREATED THE SUBSYSTEM. IT CAN BE LOADED FROM THE PROGRAM STATE. MODULES WILL NORMALLY BE MARKED AS DISPENSIBLE AFTER USE. AND ARE LIKELY TO BE SWAPPED OUT IF THE SPACE IS NEEDED FOR SOMETHING ELSE) HOWEVER, THE USER CAN MARK ANY MODULE AS _RETAINED ${ }^{\prime}$ WITH AN I.NTERRUP T ON THE PROGRAM PAGE. HE CAN *RELEASE' ALSO, LOADING A MODULE"AUTOMATICALLY RETAINS IT, OR ONE CAN SIMPLY ASK TO TRANSFER TO A MODULE WHICH WILL LOAD IT IF NECESSARY, EXECUTE IT AND RELINQUISH IT.

THE ADVANTAGE OF SUBSYSTEMS IS, OF COURSE, THEIR EFFICIENCY THEY CAN BE USED ON AN INTERRUPT BASIS WITHOUT SUBMITTING A Q-gQ PROGRAM. A SUBSYSTEM CAN USE 8 ROUTINES TO SET UP DISPLAYS, ETC. IN PRINCIPLE; ASSEMBLY CODE AND EVEN OCTAL CODE GENERATED BY A COMPILER CAN BE CONVERTED TO SUBSYSTEM FORM, SPACE PERMITTING. IN ORDER TO HAVE A DATA AREA TO WORK ON, IT IS SUGGESTED THAT SOME MODULES BE RESERVED AS DATA AREAS WITH THE ENTRY POINTS GOING TQ DATA ACCESSING FUNCTIONS, SUCH MODULES COULD THEN BE LOADED AND RETAINED IN CORE AND THE- CODE MODULES BE PURE PROCEDURES WHICH COULD. SWAP IN AND OUT AND MANIPULATE THIS DATA. THEY ARE NOT ACTUALLY SWAPPED OUT. JUST RELEASED TO AVAILABLE SPACE. AND, WHEN NEXT NEEDED, A NEW COPY SWAPPED IN.

FOR PASSING PARAMETERS INDEPENDENTLY OF PARTICULAR DATA AREAS, REGISTERS 52-58 CAN BE USED. THESE ARE SAVED DURING WAITING FOR THE DISC TO SWAP IN THE NEXT MODULE.

THE TEXT EDITOR IS A SEPARATE SUBSYSTEM DEVELOPED BY MIKE COLEMAN, AND THEN ADAPTED TO WORK WITH THE SCOPE MONITOR.

TO DEBUG A SUBSYSTEM, ONE SHOULD FIRST GET IT WORKING AS COMPLETELY - AS POSSIIBLE BY RUNS IN LOWER CORE WITH LINEPRINTER OUTPUT. THEN ONE CAN RUN IT IN THE H-MODULE BY RUNNING A WAITING PROGRAM IN LOWER CORE, SO THAT YOU CAN ONLY CLOBBER YOURSELF. THE WAITING PROGRAM IS BEST WRITTEN IN UPDATE AND CAN THEN GIVE A DUMP OF THE H-MOOULE AND RELOAD A FRESH COPY OF THE SCOPE MONITOR AT THE TERMINATION OF THE RUN. IN THIS WAY, ONE CAN DEBUG A SYSTEM IN 3___MINUTE_BURSTS W HTHQUT ENDANQERING INNOCENT USERS AND HI THOUT BOTHERING THE OPERATORS TO DO DUMPS, WHEN THE USER SUBSYSf_M ${ }^{\text {TM }!S}$ SUPPOSEDLY DEBUGGED? _I_T__CAN BE RUN ANY TIME WITH NORMAL USER PROGRAMS IN LOWER CORE, BUT If MUST FIRSr'PASS AN ACCEPTANCE TEST, THE ACCEPTANCE TEST PROGRAM CAN BE OBTAINED FROM A. H. BOND.
'Grasp'ISa graphical System,akJn to 'Sketchpadot"developed BY GENE THOMAS ON THE G.21, AND DESCRIBED BY HIM AT THE ACM CONFERENCE 1967, IT WORKS WITH OUR SCOPES AND IS WRITTEN IN ALGOL 20,__SO _ U__SHOULD 1BE_ EASJLY_ TRAJ_SFER_BLE__TO T_HE_360. IT JS Currently being maintained and extended by ron bushyager,

GRASP \qquad GRAPHIC S SERVICE PROGRAM) IS A GENERAL GRAPHIC MODEL. buILDING SYSTEM. IT ISUSED IN TWO WAYS:

2, the USER CAN USE PART OF the GRASP SYStem as an OUter BLOCK TO ~AN A' QOL PROGRAM/ WhICH CONTAINS PROCEDURE CALLS TO GRASP PROCEDURES, SIMILAR TO THE LANGUAGE, BUT EMBEDDED IN ANY ALGOL CONSTRUCII ONS~ \qquad _THTS FMRWRAM WO ULTJ~~C~ONSTITUT=AN'APPTTCATION PROGRAMS AND, IN _ THE_ GRASP LANGUAGE, ONE_ CAN___INSTRUCT THE_ APPLICATIONPROGRAM TO BE CALLED FROM ITS AND FILE AND APPLIED TO THE MODEL.

GRA~SP~ DTTRS NOT__HAVE CONSTRAINT SAfTSFACTiON FETN^ESTgUTTT IN. THERE .IS.QUITE A GOOD AND COMPREHENSIVE USER MANUAL AVAILABLE.

11. HOW THE SCOPE MONITOR WORKS.

A. RELATIONSHIP OF THE" SCOPES TO THE 9.21 AND THE MAIN MONITOR

THIS SECTION CAN BE SKIPPED,

\qquad TJ_E_G__21_ HAS SEVERAL 8K MEMORY MODULES ON A 8USS, AND,_I_N ADDITION, THE H-MODULE, WHICH CAN BE SWITCHED IN AS REQUIRED TO REPLACE THE Q-MODULE. THE CORE LOCATIONS OF THE H-HOOULE ARE /160,000 TO /177,'777, AND A PROGRAM WILLi COMMUNICATE WITH THIS CORE WHEN THE H-MQPULE_SWITCHED IN) OTHER^ISE, IT- WILL COMMUNICATE WITH THE G-MQDULE, SWITCHING IS DONE BY SETTING S13 IN I_E_CE REGISTER. IT CAN ONLY BE SWITCHEP IF THE OPERATOR HAS SET THE MODULE SWITCHES. TO SEE IF IT IS SWITCHABL5 WE MUST READ THE STATUS REGISTER SR (REGISTER 5) AND LOOK AT S4. THE NORMAL PE IMAGE PROTECTS THE H-MODULE, AND SO WE CAN RESET THAT TO /7fI OR /13 ACCORDING TO WHFTHER THE CORE IS INVERTED OR NOT. THE CORE IS INVERTED IF THE (ABC) BUTTON HAS BEEN SET BY THE OPERATOR, AND T_HIS CAN BE READ BY LOOKING AT SI OF SR.IF . 1 IS SET, THE USE 170 . THE . MAIN MONITOR IS CONTINUALLY SERVICING INTERRUPTS FROM TELETYPES. ETC., AND WHEN IT DOES SO IT STACKS THE ACCUMULATOR AND THE NC REGISTER ONLY* THE MAIN MONITOR,INTERRUPT STACK IS 4 DEEP AND CIRCULAR_wHEN IT_RESTORES CONTROL TO THE PROGRAM, IT RESTORES THE ACCUMULATOR AND TRANSFERS TO (NO AND IT RESETS PE AND CE TO A STANDARD PATTERN NOT TO THE PATTERNS IN OPERATION WHEN THE INTERRUPT OCCURRED. IT RESETS THEM FROM THE PE AND CE IMAGES, WHICH ARE <169*1) AND (133*5), RESPECTIVELY. HENCE* WE MUST EITHER TURN CONTROL OFF OR RESET THESE EVERY TIME AFTER CONTROL HAS BEEN ON. THE SCOPEL JNTS R RUPT BUTTONS SET 813 IN IR AND THE MAIN MONITOR SENDS CONTROL>0 THE SCOPE MONITOR, THE SCOPE iNTERRIUPT BUTTONS, AT THE SAME TIME, SET THE INTERRUPT WORDS IN THE H-MOPULE, AND THE SCOPE MONITOR READS THESE,

```
FIGURE 8 SHOWS CODE TO SWITCH IN AND OUT THE H.MODULE. THE CLOCK INTERRUPT TO THE SCOPE MONITOR CAN BE EASILY PATCHED AND FOR SPECIAL EFFECT. THE_SCOPE MONITOR CANNOT USE ANY OF THE USUAL FACILITIES OF THE MAIN MONITOR, LIKE I ROUTTNTS". AS THESE MAY 9 E ~ IN USE BY THE LOWER CORE PROGRAM. COMMUNICATION WITH THE DISC IS EFFECTED BY USING THE TELETYPE DISC ROUTINE, AND THE SCOPE MONITOR ONLY ENTERS THFM IF THEY ARE FREE AND WAITS OTHERWISE, THE SCOPE F TLES"" 7 R"E~TO"SPICTA LTY^RES
TYPE 25 ._THE_3L_OCKS _ ARE OF LENGTH 160 , HALF TH5_ USUAL.BLOCK LENGTH. DISC SPACE IS HANDLED IN GLOBS ON AN AVAILABLE S'ACE LIST" BY THE SCOPE MONITOR*
```

TO SWITCH IN THE MW-12		
	ERA 0 , SR)	
	IEZ $0 \quad$ S 4 J	
	TRA L U	
	EXR $\quad 777776, \mathrm{CE}>$	
	ERA \quad / $77777, \mathrm{CE} 1$	"
	UNL 0 S13J	
	OAD 0 o;	
	LDR 0 , ce;	
	ERA 0 , s r ;	
	IEZ 0	
	OCA 0 /70-/13 J	
	OCA $\begin{array}{llllll} & \mathbf{0} & 7 & 1 & 3 & 1\end{array}$	
	L'Dfr'~0 TPET	-
	fRA LZI	
L T	pfto'rern	h module nut swi ichabl_
L2	NOTTMAITTXTT	HHODT1LE SWTT-C'RET) IN.CONTKOX"IS' ${ }^{\text {(OFF }}$ "

TO RESTORE J_J__MJU._USER SETTINGS
L_R \qquad $1^{\wedge 9}+1$ * PEJ \qquad
LDR
135*5, CEI

FIGURE 8.

```
B. THE H-MODULE
```

THE LAYOUT OF THE H-MODULE IS SHOWN IN FIGURE 91 THE ACTUAL PATH OF THE SCANNER I'S AS SHOWN IN THE SMALL FIGURE. IN ORDER NOT TO UPSET THE SCANNER* IT IS DIVERTED MOMENTARILY TO A SMALL! LOOP. LOCATIONS O AND 1 OF THE H-MODULE. ON ANY REARRANGEMENT OF THE DISPLAY AREA.
\qquad THE SYSTEM MESSAGES SIT IN THE H-MODULE AND ARE MADE; VISIBLE ON A GIVEITSCOPE $9 Y$ SETTING THE LOWER BITS OF THE DELIMIT, SYSTEM MESSAQES DISPLAY IN ALTERNATE MODE AND ON ALL PAGES C. PROCESSING OF INTERRUPTS, WAITING, REENTRANT CODE

THE QOHPLETIO_ J _ AM OPERATJON__IS EITHER TRIGGERED BY AN interrupt like the compare interrupt on the return character, or. IN_THE CAS£ OF DISO TRANSFERS. THE SCOPE MONITOR KEEPS LOOKING TQ SEE IF if CAN COMP-ETE THE OPERATION, IN THIS CASE TO ENTER THE MAIN MONITOR DISC ROUTINES.

THIS TIME SHARING, INTERRUPT PROCESSING, MECHAMISM WAS _DESIGjNED AND I MPLEMENTED__9Y_4S3RY RI GJtTJNOUR \qquad D. INTERACTION WITH THE USER PROGRAM
 PROCEDURE IN ALGOL;

USER INTERRUPTS ARE HANDLED DIFFERENTLY FROM INTERNAL INTERRUPTS. they ARE CLASSIFIED IN THE ISR.. 3 UT CONTROL IS NOT TRANSFERRED TO THE USER PROGRAM UNTIL AFTER ALL THE SWITCHES AND MAIN MONITOR REGISTERS HAVE BEEN RESTORED JJST BEFORE CONTROL WOULD BE TRANSFERRED BACK TQ MAIN MONITOR.' AT THIS POINT, THE SCOPE MONITOR EXECUTES ANY USER INTERRUPTS BY TRANSFERRING WITH CONTROL ON TQ THE USER ENTRY POINT IN LOWER CORE. ACTUALLY, IT Stores Its OWN MARK IN the USER ENTRY POINT AND dOES A tre to ENTRY POINT +1. THUS IF: THE FIRST INSTRUCTION TURNS CONTROL OFF,ONE CAN MAINTAIN CONTROL OFF IN AN INTERACTIVE PROGRAM,

	$\begin{aligned} & \text { exr } \\ & \text { STI } \\ & \hline \end{aligned}$	A.	$\begin{aligned} & / 77776 . C E) \\ & \text { L20I } \end{aligned}$	CONTROL 0-F	
				SAVE PARAMETER	
	ERA	0	, sr;	READ STATUS REGISTER	
	IEZ	JL	\$4 j	IS THE MM-12 SWITCHABLE	
	TRA		I2t	NO EXIT	
	LDR	0	/20302.CE)	SWITCH TO THE MM-12	
	CAL		/1-0152)	GET THE CLOBBER WORD	
	IUO		L10*	IS IT INTACT	
	TRA		L2J	NO EXIT	
	LDR	0	. PE)	RESET MEMORY PROTECT	
	CLA		L20I	REFETCH THE PARAMETER	
	TRM		/160154I	ENTER THE SCOPE MONITOR	
LO	LDR		$169+1 . p e ;$	RESTORE MEMORY PROTECT	
	LDR		133+5.CE)	RESTORE CE REGISTER	
	TRE	1	10)	EXIT	
L2	CLS	0	i ;	SET EXIT SWITCH TO ERROR	CONDITION
	TRA		LO)	EXIT	
L10	ALF		1JR01I	CLOBBER WORD	
L20	LWD		,	TEMP	
	LBL				

FIGURE 10 .

E. THE TRANSIENT VERSION

```
    IN THE TRANSIENT VERSION UNDER DEVELOPEMENT.ONLY THE ISR AND
TABLES___WILL BE RESTDENT,OCCUPYINO ABOUT,I5JU- WORDSj___TH__J_T_HE_R
ROUTINES AND THE SYSTEM MESSAGES ARE SWAPPED IN AS REQUIRED AND
ALL MODULES.WHETHER THEY BE SYSTEM CODE.USER CODE. SYSTEM MESSAGES
OR USER DISPLAYS,ARE TREATED EOUIVALENTLY IN THE SAME AVAILABLE
SPACE THE SCHEOULIJ_G__IS SUCH THAT_MODULES ARE KEPT IN CORF AS
LONG AS POSSIBLE,TO MINIMISE UNNECESSARY SWAPPING. THUS, A USE OF
SEVERAL RELA'ED _FACILITJES_SHOJJLD_INVOLVE NO SWAPPING. _J__THIS
WAY, FOR LIGHT USE THE TRANSIENT VERSION SHOULD RUN AS FAS\overline{T}
RESIDENT VERSION. AND FOR HEAVY USE. EITHER CODE OR DISPLAY AREA,
THE TRANSIENT VERSION WILL BE ABLE TO CARRY OUT OPERATIONS
IMPOSSIBLE FOR THE RESIDENT VERSION,BUT WITH .ESS EFFICIENCY AND
SLOWER RESPONSE.
```


3CPL Syntax in Backus Normal Form

```
<cap> ::= A|B|\ldotsZ
<small> ::= a|b|.7.2.
<diqit> : := 0|1|... }
<cctd> t:i _T1T...7~
<nl> . z- <cap>||small>||digit>
<n2> ts- <nl>|<n2><nl>
<name> <small>|<cap><n2>
<stringconstant> 7:= -
<ol> :: r <octd>|<ol><octd>
<octn> *8<ol>
-decn> ,i= ^iqit>|<decn><digit*
<numfcer> ; :. <decn>|<octn>
<3-0,> frifilfizlf^'1
<4-0p> 
<5-0p>
<6-0p>
<7-op> lshiftjr.hift
<»-op-»
*9-0p>
<priir,ary-E> 1 - <strino>I<string-constant* < <number> Itrue! raisee 1 (E) I
```



```
<2-E> := <prlmary-E»|<2-0p»<2-E»
<3-E> <2-E> <2-E><3-0p><3-E>
<4-E> <3-E> <3-E><4-0p><4-E>
<5-E> <4-E> <4_E>*5-0p><5-E>
<6-E\rangle <5-E\rangle <5-E><6-0p><6-E>
<7-E> r <6~E> <6-E><7.0p><7.E>
<3-E> r <7-E><7-E><8-0p><8-£>
<9-E\rangle : = <8-E\rangle <6-E\rangle\langle9-0p\rangle\langle9-E\rangle
    = <9-E > | <9-E> __< E > < <E>
<E11\rangle::= <E >| <E11>_<E\rangle
<E-li_t> <null>T<E|l>
<nll> := <name>|<nll>_<name>
<D1> = <nll>r<E|l>
<D2> - <name>(<namelist>)be<block>
<D3» = <name_<namelist>j_<E>
-D4> = <name> ~vec<constant>
^manilifesto :, ="^n7me>=<constant>
<manifest2> <<manifistl>|<manif
manifest* t <n_ull>> , <mmanifest2>
<globall> :iz <name>_<constant*
```



```
<qlobal> "= <null>|<qlobal2>
<D5> <D1H<D2>|<D3>!<D4>|-manifest*I<global*
<D> <D 5>I<D5>also<D>
<C1> ::- 《E11>:=<E11>
<c2> < < X <^1ist>i
<C3> croto<E>
<C3> ::= break
<C4> return
<C5> ::= finish
<Cf>> = Eppultis<E>
<C1> ::= switchon<E> into<block>
<cS\rangle = <block> ~
<C9> ... <cl>||C2>!<<C3>|<C4>|<C5>!<C6>1<C7>||C8>
^C10> i-.z if<Et>then<C>
<C11> tist<ETthen<C>else<C>
<C12> ... u7l-s<E^dB<C>
<C13> = while<E>d^TC>
<c14> ::- HnTII<E>do<C>
<C15> = f5F^an.e> =*E>to<E*_|g<C>
<c16> ^c9>repeat m
<C17> -- <c9>re,,eatwhue<E>
<C18> <c9>repeatuntil《E>
<CI9> <C9>~C1C>1<G11>|<C1?>||Cl亳>|<C14*|<C15>直
    <C1G>|<C17>]<C18>
<L1> ::" <name>-
<.L2> ::= ___<constant> ;
<L3> " *= d-flult!
<L> - <L1>||L2>||_3>
<C> = <C19%||L><<C>
<clist> ::= <null> |j.<c><Clist>
<Dlist> : <null>|:<D><Dli-t>
<body> r <D><Dlist><clist>|<C*<Clist>
<blbck> >.z _<body>j_
```


[^0]: THIS SPACE RESERVED FOR SYSTEM MESSAGES

