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ABSTRACT 

The problem of solving sequential Boolean equations is shown 

to be equivalent to the problem of finding whether there exists a 

path on a labeled graph for every sequence of labels. Algorithms 

are given for testing whether a solution exists, and if a solution 

with a finite delay exists. In case of existence of solutions the 

algorithms provide them. 
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I. Introduction 

Assume , x 2, x m are independent binary variables and y^, y^, 

are binary dependent variables (unknowns) satisfying the equation 

F (x^ x 2, ..., x m, y r y 2, . .., y n, d y i, dy £, . .., dy R) = 0 , (1) 

where F is a Boolean expression of the described variables and the connec

tives "+" (Boolean addition), f. f (Boolean multiplication), '-f (comple

mentation) and dz is the value of z one time unit later. Namely, it is 

assumed that time is discrete and 

dz(t) = z(t + 1). (2) 

Let us denote the vector (x-, x 0, x ) by X and the vector 
1 2 m 

(y l f y 2, y n) by Y. Similarly, let 

<JY m (dy r dy 2, 6y^). 

X may have any one of the 2 m values and Y may have any one of the 2 n values. 
The sequence of values of X at time t = 1,2, L is denoted by 

mL 
X(l), X(2), X(L) and there are 2 such possible sequences. The 

sequence of values of Y at time t = 1, 2, . L, L + 1 is denoted by 

Y(l), Y(2), Y(L +1) and there are 2 m^ L + ^ such possible sequences. 

The original equation (1) can be written in the form 
F (X, Y, dY) = 0 (3) 

Definition 1.1; The equation (3) is said to have a solution if for every 

finite sequence of values for X, namely, X(l), X(2), X(L) there 

exists a sequence of values for Y, namely, Y(l), Y(2), ... Y(L), Y(L + 1) 



such that (3) will hold for every t = 1, 2, ..., L. 

H. Wang investigated a seemingly larger class of equations, namely, 

equations of the form 

G(X, dX, Y, dY) = 0 (4) 

However, every equation of this form can be transformed into the form of 

(1) by the following steps: 

(1) Define new dependent variables 8j, z^, ...» z^ 

(2) Form the following set of simultaneous equations, where Z 

denotes (z t, ..., z ): I m 

G(X, dZ, Y, dY) = 0 ^ 

21 - *1 

2 2 
(5) 

z = x m m 

(3) Transform the simultaneous equations into one equation using 

the rules A=*0and B=0 «-r* A+B ~ Ojt, and CrpD CD + CD = 0. The 

resulting form in this case is: 

H(X, Y, Z, dY, dZ) = 0 (6) 

where x^, x^ are independent variables, and 

V » ••.» y » Zis..•• z are dependent variables. J1 * 9 Jrx 1 m 

Equation (6) is in the form of (1), and it is clear that equation (6) 

obtained in this way has a solution if and only if equation (1) has a solution. 

For example, consider Wang's Example 1: (Here the names of the variables 

are changed to agree with the present notation.) 



Example 1: In the following equation, y is the dependent variable: 

x y d y + x y d y + x y d x + x y d x = 0. 

We replace dx by dz in the above equation, and form the simultaneous equations: 

xydy + xydy + xydz 4- xydz = 0 

x = z 

Now, x = z is equivalent to xz + xz = 0, and the two simultaneous equations 

are equivalent to: 

xydy + xydy + xydz + xydz + xz + xz = 0. 

This last equation is of the form: 

F(x, y, z, dy, dz) = 0 

where x is an independent variable and both y and z are dependent variables. 

It has a solution if and only if the given equation has one. We remark 

that Definition 1.1 extends in an obvious way to equations involving terms 
k k 

such as d x^ (where d x^(t) = x^(t+k)), Wang observes that such equations 

can be reduced to form (4), so we need not consider them further. 

Definition 1.2: The equation (3) is said to have a solution with a finite 

delay d if the knowledge of X(l), X(2), X(d) is sufficient to determine 

a value for Y(1), and for every t, the knowledge of Y(t), X(t), X(t + 1),..., 

X(t +d) is sufficient to determine a value for Y(t + 1 ) so that the 

determined part of the sequence of Y is part of a solution for the given 

sequence of X in the sense of Definition 1.1. 



An alternative statement is that there exists functions f̂  and f̂  

such that for any L £ d and any sequence X(1), X(2), ..., X(L) the 

sequence Y(1), . .., Y(L-d+1) given by: 

Y(1) = £ 1 (X(l), X(2), X(d)) 

Y(t + 1) = f2(Y(t), X(t), X(t + 1), X(t + d)) (7) 

for t = 1, 2, ..., L-d 

can be augmented by some values for Y(L-d+2),...,V(L+1) to satisfy equation 

(3) at every t = 1, 2, ..., L. 

Wang described an algorithm for deciding whether a given equation has 

a solution, in which he makes use of solution tables. In the next section 

we shall prove that the problem of solving such equations is equivalent 

to the problem of deciding whether in a given labeled graph, for every 

sequence of labels there exists a path in the graph. In section 3 a 

method of solution is presented, which is believed to be more efficient 

than Wang's method. 

Wang also described an algorithm for deciding whether a given equation 

has a solution with a finite delay. However, the authors are unable to un

derstand the procedure in full. Furthermore, Theorem 6 in Wang's paper, 

which summarizes his results on this subject, is false. A counter-example 

is given in Section 4. In Section 2 it is shown that the problem of 

deciding whether an equation has a solution with a finite delay is equiva

lent to the problem of deciding whether in a given labeled graph, for every 

sequence of labels there exists a path in the graph which can be determined 

with a finite delay. In Section 4 the solution to the latter problem is 

presented. 

Wang has informed us in a private communication that Theorem 6 is false 
as stated because of a misprint. In any case, we believe that our decision 
procedure is simpler than Wang's original procedure. 



II. Equations and Graphs 

Let G be a directed graph with N vertices: V = (v^9 v^9 ^ 

Each edge is labeled with one letter of an alphabet J of a letters: 

X\* -^2* • ^ e m a y assume that there is at most one edge from 

v^ to v^ with label JL9 since for our purposes having several such edges 

is the same as having one. There are no other restrictions on G. (There 

may be any number of edges with a given label emanating from a given 

vertex; clearly, such numbers must be integers between 0 and N. The 

graph may or may not be connected.) 

Let the elements of £ be called letters, and a finite sequence of 

letters be called a tape. A path is a finite sequence of edges: 
el* e 2 * - # # f ek s u c ^ that e£ enters the same vertex from which e ^ 

emanates, for every i = 1, 2, k-1. An edge may be used any number of 

times on one path, and naturally, a path can go through one vertex any 

number of times, and thus, may include loops (circuits). With each path 

there is an associated (unique) tape of the labels appearing on the path 

in their natural order. 

Let U be any set of vertices, and t be any tape. T(U,t) is the set 

of all vertices reachable from U by paths labeled t. £* is the set of 

all tapes with letters of £. 

Definition 2.1: The graph G is said to be solvable with respect to £ if 

for every tape in £* there exists a path on G whose sequence of labels is 

the given tape. 

In symbols: 

G is solvable with respect to £ VTe£*[r(V,f) ̂  0]. 



We shall now show that the problem of solving an equation of the 

type (3) in the sense of Definition 1.1. can be reduced to a problem of 

deciding whether a given graph is solvable with respect to some alphabet. 

The method is most easily shown by means of an example. 

Consider, again, Example 1; after it has been transformed to the form 

of equation (1). 

xydy + xydy + xydz + xydz + xz + xz = 0 

For illustrative purposes we expand the left hand side on y, z, dy, dz. 

The resulting expression in this case is: 

yzdydz(x) + yzdydz(1) + yzdydz(x) + yzdydz(1) + 

+ yzdydz(1) + yzdydz(1) + yzdydz(x) 4- yzdydz(x) + 

+ yzdydz(1) + yzdydz(x) + yzdydz(1) + yzdydz(x) + 

+ yzdydz(x) + yzdydz(x) + yzdydz(l) + yzdydz(1) = 0. 

Consider the first term: yzdydz(x). The meaning of it is that yzdydz = 1 

only if x = 0, or in other words, the state yz = 1 may be followed by the 

state dydz = 1 only if x = 1. There are 4 possible values for (y,z), namely 

(0,0), (0,1), (1,0) and (1,1). We construct a graph with 4 vertices cor

responding to these 4 states. Vertex (a,b) is connected to vertex (c,d) 

with an edge labeled e if and only if the left hand side of the equation 

becomes zero on the substitution of y=a, z=b, dy=c, dz=d and x=e. Therefore, 

in our case, vertex (1,1) is connected to (1,1) with an edge labeled 1. 

Similarly, each of the 16 terms may define up to 2 edges in the graph. The 

resulting graph is shown in Figure 1, and is also represented by Table 1. 



Figure 1. 

The graph representing the 
equation of Example 1. 

\Label 
Vertex\^ 0 1 

1 1 - 1 1 , 0 1 

1 0 0 1 , 0 0 -
0 1 - 1 0 , 0 0 

0 0 1 1 , 1 0 -
Table 1. 

A table representation of the graph 
of Equation 1. 

It is interesting to note that Table 1 is similar to the characteriz

ing table Wang has constructed for this example. 

In general, the graph representing an equation of the form (1) will 

have N « 2 n and a = 2 m. Assume we are given a sequence of values for X, 

namely, X(1), X(2), X(L) and we want to find a sequence of values 

file:///Label


for Y, namely, Y(1), Y(2), , Y(L + 1) such that the equation will hold 

for t s= 1, 2, . L . The meaning of it in the graph representation is 

that we are given a tape of length L and want to find a path of this length 

on the graph with the same tape of labels. If such a path can be found 

then the sequence of nodes the path goes through will specify a sequence of 

values for Y which satisfy the requirement, and vice versa. Thus, the 

problem of deciding whether an equation has a solution is equivalent to 

the problem of deciding whether the corresponding graph is solvable. 

Given a graph G with N nodes and label-alphabet 2 with a letters, one 

can construct a corresponding equation which has a solution if and only if 

the graph is solvable. Again, let us use an example, which will also be 

useful later, to demonstrate this point. 

Example 2; Consider the graph shown in Figure 2. 

Figure 2. 
The graph of Example 2. 

Let us choose the following code for the nodes of the graph: 



a i 0 0 

p : 0 1 

Y : 1 1 

6 : 1 0 . 

This code may be chosen arbitrarily, as long as each state has a unique 

codeword. Clearly, the only requirement is that the length of the 

codewords, p, satisfy the condition 

2P * N. 

P 
In case 2 > N not all codewords are assigned to nodes, and they may be 

thought of as assigned to nodes **iich are neither entered nor left by. 

edges. Such isolated nodes will never be a part of a chosen path, and 

the corresponding values for Y will never appear in a chosen sequence of 

values for Y. 

In our example the choice of S = {0,l} is obvious. Again, in general 

the letters of the alphabet will have to be coded into binary codewords 

of length q such that 2^ ̂  <j. In this case, if 2^ > <j then one may assign 

several codewords to a given label. 

The resulting table, for our example, is given in Table 2. 
Y 

X 
0 1 

0 0 0 1 , 1 1 0 0 , 1 1 , 1 

0 1 1 1 -
1 1 1 0 -
1 0 0 0 -

Table 2. 
The coded table for Example 2. 



Now, the table is translated into an equation of the form (1), where the 

left hand side is expanded with respect to y.., dy^, dy^. 

y i y 2 d y i d y 2 ( 1 ) + yiy2 d yi d y2 ( x ) + y ^ ^ ^ o ) + yiy 2
dyi dy 2

( 1> + 

+ y 1 y 2
d y 1

d y 2
( 1 ) + y ^ ^ ^ O ) + yiy 2

dyi dy 2
( 1> + y ^ ^ ^ o o + 

+ y 1 y 2
d y 1

d y 2
( x ) + y ^ ^ ^ O ) + yjy^y^y^ 1) + ^ y ^ ^ O ) + 

+ y 1y 2
dy 1

dy 2(o) + ^ y ^ y ^ y ^ * ) + y 1 y 2
d y 1

d y 2 ( x ) + y ^ d y ^ y ^ x ) = o 

which is equivalent to: 

xdy1dy2 + x ^ d ^ + y ^ ^ + + y-,dy2 + xy 2 = 0. 

Definition 2.2. The graph G is said to be solvable with respect to E with 

a finite delay d if the knowledge of the first d labels of the tapejUl), 

J>(2), , J!(d) is sufficient to determine the initial vertex V(1), and 

for every t, the knowledge of V(t), I(t)9 Mt + 1), , i(t+d) is suf

ficient to determine a vertex V(t + 1), so that the determined part of 

the sequence of vertices is part of a path with the given tape of labels. 

The same construction, demonstrated by Examples 1 and 2 above, shows 

that the problem of deciding whether an equation is solvable with a finite 

delay d is equivalent to the problem of deciding whether a graph (with a-2q) 

is solvable with a finite delay d. 

Before we continue with the description of our solution for the two 

decision problems, two remarks concerning related problems should be made: 

(1) The variables of equation (1) were assumed to be binary, namely, 

over [o, 1j . However, any equation of the form (1) with variables 

over any finite alphabet may be constructed. All such equations 



are representable by a graph, and both decision problems for 

them are equivalent to the decision problems for graphs. 

(2) There is some interest in solving equations of the form (1) 

under a restricted set of sequences of X. Clearly, in these 

cases x 1, x 0, x are not independent variables. The I z m 
problem can still be translated to an equivalent problem on 

a graph, where the restrictions are translated to restriction 

on tapes. Sometimes this restriction can be expressed by an 

augmented graph. 

III. An Algorithm for Deciding if a Graph is Solvable and the Specification 
of a Solution. 

The problem of deciding whether a given graph is solvable is equivalent 

to the problem of deciding whether the corresponding multipath automaton 

accepts all tapes. The concept of multipath automata (nondeterministic 

automata) and the technique used here has been originated by Rabin and 

Scott [6] and discussed by others. (For example, see reference 7.) 

We define a multipath automaton A, corresponding to a graph G with 

labels from £ as follows: 

(1) The set of states is V. 

(2) The input alphabet is £. 

(3) The set of next states for state s and input letter J? is given 
by r(ts},je). 

(4) The set of initial states is V. 

(5) The set of final (accepting) states is V. 

Clearly, if a tape is accepted by A then there exists a path labeled 

with this tape in G. Therefore, the problem of deciding whether G is 



solvable reduces to the problem of deciding whether A accepts all tapes 

over £. This means that in the construction of D(A), (the single path, 

or deterministic equivalent of A,) the empty set should never be generated. 

In case it is generated, the corresponding graph is unsolvable. Otherwise, 

it is solvable. 

Let us demonstrate the procedure on Example 2. The transition table 

of D(A) is shown in Table 3. Since 

0 1 

076 

Table 3 
Generation of D(A) for Example 2. 

the empty set of states has not been generated, all tapes are accepted by 

the automaton, namely, G is solvable. The reader may test Example 1 and 

will find that its generation table has only one line. 

The construction of D(A) also yields a simple solution to the follow

ing problem: Given a specific tape .£(!), J?(2), , J?(L), find a path in 

G with this tape of labels. Let S(l) be the set of all vertices of G. For 

every t = 1, 2, L, let S(t + 1) = r (S(t),X(t)). The result of this 

construction is a sequence S(1), S(2), , S(L), S(L + 1) such that all 

states in S(t + 1) are reachable by a path labeled ̂ (1), ^(2), ,^(t). 

Now, to find a path which satisfies the requirement, simply trace it back

wards on the sequence as follows: Choose any element of S(L + 1). (If 

this set is empty, there is no path satisfying the requirement.) Call it 

V(L + 1). Assuming that V(t + 1) is known, choose V(t) to be any vertex 

of S(t) which leads to V(t + 1) with an edge labeled i(t). Clearly, there 



must be at least one such element in S(t) iff V(t + 1) is an element of 

S(t + 1). 

Example 3. Consider the graph whose transition table is given in Table 4. 

Assume that 

0 1 
a Y 6 

P 6 Y 

Y a.P -
5 - Y»6 

Table 4. 
Transition table for Example 3 

it is required to find a path for the tape 1 1 0 1. The sequence of sets 

of vertices is as follows: 

Let us choose v(5) = y. The vertex y is entered by edges labeled 1 and 

emanating from p and 6. However, 8 is not a member of S(4). Thus, v(4) 

v(3) a y is unique, and so is v(2) a 6. For v(1) one can choose between 

a and §. Therefore, the sequence o6yPY i s o n e solution. 

The solution to this problem, presented here, is close in method of 
g 

approach to the methods discussed by Schutzenberger. 

IV. An Algorithm for Deciding if a Graph is Solvable with a Finite Delay  
and Specification of a Solution. 

A graph G has a solution with delay zero if and only if there exists 

a non-empty set of vertices V c V such that for all j e J and v e V 1, 



r(\v},il) 0 V f ^ 0 . This condition yields a simple test for the existence 

of a solution with delay d = 0. Let V 1 « fy|3XeE 9 r(\vj,J?) = 0 . Now, 

let be T t restricted tp V « . Again, let 

and let T 2
 b e ^ restricted to (V - V^) - V 2, etc. There exists a solution 

for d « 0 if and only if for some i ̂  2 V £ = 0and (...((V - V ]) - V 2) - •••) 

The test for d > 0 is similar in approach, but one uses the information 

about the next d + 1 letters before making the transition to the next states. 

Formally, a set of graphs for i ̂  0 are defined. By convention G°=i G 

and the rules for the construction of G** are as follows: 

(1) The vertices of G1are the (i + 1) - tuples (v,£(!) ,i(2),. .. ,i(i)) 

where v € V and _i(1),..., i(i) are elements of S. 

(2) Vertex (v,l(1 ) , i(2), ,i(i)) is joined with vertex 

(v1 , i(2), i(i),£) with label i if and only if 

v f 6 r({vj , 20)). There are no other edges in G*. 

The test whether G has a solution with delay d consists simply in testing 

whether G d has a solution with delay zero. The procedure is illustrated 

by the following example: 

Example 4: Let G be given in Table 5. 

0 1 
a b,c a,c 
b c -
c a -

Table 5. 
Description of G of Example 4. 



States b and c transfer nowhere with label 1 , and therefore are eliminated 

from the table. Next, a has no transfer for label 0. The conclusion is 

that G has no solution with zero delay. 

The graph G \ constructed according to the above rules, is given in 

Table 6. 

0 1 

a 0 b 0 , c 0 b 1 , c 1 
a 1 a 0 , c 0 a 1 , c 1 
b 0 c 0 c 1 
b 1 - -
c 0 a 0 a 1 
c 1 - -

Table 6 
Description of G of Example 4. 

We now proceed to test G for a solution with delay zero. In Table 7 

the successive steps in the test of G^ are shown. First b 1 and c 1 are 

0 1 0 1 

a 0 b 0 , c 0 - a 1 c 0 a 1 
a 1 a 0 , c 0 a 1 c 0 - a 1 
b 0 c 0 
c 0 a 0 a 1 (b) 

(a) 

0 1 

a 1 - a 1 

(c) 

Table 7 
The test of G 1, Example 4. 



eliminated and the resulting table is 

b 0 are eliminated, as in Table 7 (b) 

eliminated, G has no solution of orde 

shown in Tables 8 and 9. 

0 1 

a 0 0 b 0 0 > c 0 0 b 0 1 » c 0 1 
a 0 1 b 1 0 » c 1 0 b 1 1 » c 1 1 
a 1 0 a 0 0 > c 0 0 a 0 1 » c 0 1 
a 1 1 a 1 0 » c 1 0 a 1 1 » c 1 1 
b 0 0 c 0 0 c 0 1 
b 0 1 c 1 0 c 1 1 
b 1 0 - -
b 1 1 - -
c 0 0 a 0 0 a 0 1 
c 0 1 a 1 0 a 1 1 
c 1 0 - -
c 1 1 - -

(a) 

0 1 

a 0 0 b 0 0 c 0 0 c 0 1 
a 1 0 a 0 0 > c 0 0 c 0 1 
a 1 1 a 1 0 a 1 1 
b 0 0 c 0 0 c 0 1 
c 0 0 a 0 0 -
c 0 1 a 1 0 a 1 1 

shown in Table 7 (a). Next a 0 and 

etc. Since all vertices of Ĝ  are 
2 3 

1. The tests for G and G are 

0 1 

a 0 0 b 0 0 > c 0 0 b 0 1 » c 0 1 
a 0 1 - -
a 1 0 a 0 0 » c 0 0 a 0 1 » •c 0 1 
a 1 1 a 1 0 a 1 1 
b 0 0 c 0 0 c 0 1 
b 0 1 - -
c 0 0 a 0 0 a 0 1 
c 0 1 a 1 0 a 1 1 

(b) 

0 1 

a 0 0 b 0 0 c 0 1 
a 1 0 a 0 0 c 0 1 
a 1 1 a 1 0 a 1 1 
b 0 0 - c 0 1 
c 0 1 a 1 0 a 1 1 

(d) 

Table 8 
2 

The test of G , Example 4. 



0 1 
a 0 0 - c 0 1 

a 1 0 a 0 0 c 0 1 
a 1 1 a 1 0 a 1 1 
c 0 1 a 1 0 a t 1 

(e) 

0 1 1 
a 1 0 - c 0 1 
a 1 1 a 1 0 a 1 1 
c 0 1 a 1 0 a 1 1 

(f) 

0 1 
a 1 1 - a 1 1 
c 0 1 - a 1 1 

(g) 

Table 8 (continued) 
2 

The test of G .Example 4. 

7 4 ) b 0 0lT~, c 0 0 0 

(2) b 0 1 0 , c 0 1 0 
(1) b 1 0 0 , (1) c 1 0 0 
(1) b 1 1 0 , (1) c 1 1 0 

a 0 0 0 , c O O O 
(2)-a 0 1 0 , c 0 1 0 

a 1 0 0 , (1) c- 1 0 0 
a l i o , (1) c 1 1 0 

c 0 0 0 
c 0 1 0 

0)e 1 0 0 
0)-c 1 1 0-

a 0 0 0 
a 0 0 1 

(2) a 0 1 0 
(2) a 0 1 1 

a 1 0 0 
a 1 0 1 
a l i o 
a 1 1 1 

(4) b 0 0 0 
b 0 0 1 

(2) b 0 1 0 
(2) - b O I I 
(1) b 1 0 0 
(1) b 1 0 1 
(1) b l i p 
(1) b 1 1 1 

c 0 0 0 
(3,) 0 0 1 

c 0 1 0 
c 0 1 1 

(1) c 1 0 0 
(1) c 1 0 1 
(1) o 1 1 0-
(1) rC 1 1 1-

(3) e 0 0 1 

a 0 0 0 
(2) a 0 1 0 

a 1 0 0 
a l i o 

a 0 0 1 
(2) a 0 1 1 

a 1 0 1 
a l i i 

Table 9 
The test of G , Example 4. 



In Table 9 the successive reductions were performed by crossing out 

entries, and the stage at which an entry was crossed out is shown in 

parentheses. The resulting table is given in Table 10. Since it is not 

empty, G has a solution with delay 3, and it is specified by Table 10. 

0 1 

a 0 0 0 c 0 0 0 b 0 0 1 
a 0 0 1 c 0 1 0 c 0 1 1 
a 1 0 0 a 0 0 0 9 c 0 0 0 a 0 0 1 
a 1 0 1 c 0 1 0 c 0 1 1 
a 1 1 0 a 1 0 0 a 1 0 1 
a 1 1 1 a 1 1 0 a 1 1 1 
b 0 0 1 c 0 1 0 c 0 1 1 
c 0 0 0 a 0 0 0 a 0 0 1 
c 0 1 0 a 1 0 0 a 1 0 1 
c 0 1 1 a 1 1 0 a 1 1 1 

Table 10 
The solution with d=3 for Example 4. 

The preceding test combined with an upper bound for the delay in any 

graph with N vertices will yield a procedure for testing whether a solution 

with finite delay exists. We now proceed to derive such an upper bound. 

Definition 4.1: Let G be a graph labeled by an alphabet £. The k-merge  

of G, is the following graph: 

(a) The vertices of G^ are V, the same as those of G. 
k 

(b) The label-alphabet £ is the set of all label sequences 

of S, of length k. 

(c) v t is connected in to v^ with an arc labeled ^(1) ̂ (2)...^(k) 

if and only if there exists a path from v^ to Vj in G labeled 

with the same sequence. 



Informally, the difference between G and G^ is that in the former 

the transitions are made in a way similar to the transitions in G with 

the same label-alphabet, except that one "looks ahead11 k + 1 places 

before making a decision as to the first step. In the latter one jumps 

k places all at once. 

Lemma 1; If G is solvable with delay d then G^ is solvable with delay 1. 

Proof: For G, to be solvable with delay 1 a safe transition has to be — — - d 
made when faced with two letters of namely, 2d letters of £. Since 

G is d solvable, the knowledge of 2d letters enables one to decide upon 

d transitions, namely, upon a transition in G,. 
Q.E.D. 

Lemma 2: If G^ is solvable with delay 1 then G is solvable with delay (at 

most) 2k - 1. 

Proof: If a safe transition can be made in G^ upon the knowledge of two 
k 

letters of £ , then a safe transition can be made in G upon the knowledge 

of 2k letters. (In this case, not only one transition can be made, but 

k of them; however, it is not known whether another transition can be made 

before k more letters are known.) n „ 

Definition 4.2: Two graphs G' and G" are said to be similar if they have 

the same set of vertices (namely, V f = Vfl) and for every letter V e S 1 

(the label alphabet of G f) there exists a letter JL" e £" (the label alphabet 

of G") such that for every v e V, r ' ( i v ] , £ f ) = rft(jv},£"), and for every 

X" e S" there exists a I 1

 e E 1 for which the same condition holds. 



Note that the number of letters in E 1 is not necessarily the same 

as that in E l f * Also, the number of possible functions f(v) « r(^vj ,X) 

is 2 N , where N m #(V). This follows from the fact that for each 

v,r(*jv{,£) may have 2^ possible values, and since there are N vertices, 
N N 

the total number of functions is (2 ) = 2 

Lemma 3: If G 1 and G11 are similar and G 1 is solvable with delay 1, then 

Gtf is solvable with delay 1. 

Proof: Define a relation * between the letters of E 1 and those of E f l 

as follows: for ji\ e E 1 and i " e E f l , 

i ' * J " <=> v ve v [ r ' ( H , h = <Jv{ •*-">]• 

From the similarity it follows that for every X' there exists an £ n, and 

for every i " there exists an I9 such that i ' * I". This relation can be 

extended to tapes in the natural way. 

Now, assume the tape ),£"(2),..., £"(L) is given. To demonstrate 

the fact that G11 is solvable with delay 1 simply follow these steps: 

(1) Let the initial vertex be one of the initial vertices chosen 

in G 1 when the first label on the tape is £'(1), where 

£'0) * l"0). Call it v(l). 

(2) Let r(i) be any letter of E f which satisfies ('(i) * X"(i). 

Choose v(i) as the next vertex in G 1 when the present vertex is 

v(i - 1) and the first two letters are V (i - 1) and d f(i). 

(This step is followed for all 2 <: i <: L.) 



Because of the similarity, the fact that the choice is safe for G' implies 

that it is safe for G". Q.E.D. 

Consider now the sequence of graphs: G = G^, G2>...,G^,... 

Lemma 4: If Gt is similar to G^ then for every h > 0, G i + h is similar 

" v 

Proof; r((v], X(l) Ml)... i ( j + h)) is the set of vertices connected to 

v with an arc labeled lO) Ml)... Mi + h) in G B y definition, 

r < M , X ( D . . . + h)> o r ( r ( H » i d ) . . . Mi)),2(1 + 

Since G^ is similar to G^ there exists a tape _X'(1)... Si (i) such 

that for all v e V 

r < M , i ( i ) . . . i ( j ) ) = v(\vl, i ' ( i ) . . . 

Thus, 

r ( | v j , io) . . . ^ ( j - * ) ) = r ( r ( W K * < n ^ ( i ) ) , i ( j + i )....£(;)-*)) 

- r ( l v | , jco) ... ^'(i) i ( j + D ... ̂ (j-th)). 

The same argument may be repeated with the roles of i and j reversed. 

Q.E.D. 

The total number of non-similar graphs over V is bounded by the 
N 2 

following argument: There are 2 functions one can assign to each fetter. 
2N" 

The set of functions associated with each graph can be chosen in 2 ways. 
Note that the number of letters to which the same function is assigned is 

of no interest here as long as there is one letter to which the function 
is assigned. This is due to the fact that the graphs are compared up to 

similarity only. 



Thus in the sequence of graphs, G-, G9,... only a finite number, at 

most 2 , non-similar graphs may appear. Also, by Lemma 4, once a graph 

appears in the sequence which is similar to a previous one, the sequence 

has entered a period, as far as similarity is concerned. By Lemma 3 it 

follows that if any G. in the sequence is solvable with delay 1 then some 
N 
2 

G, with i <> 2 is solvable with delay 1. By Lemma 1, if G is solvable 
2N2 

with a finite delay then for some i £ 2 , G i is solvable with delay 1. 

It follows, by Lemma 2 that the delay d satisfies the condition 

d <> 2 . T- - 1 , 

2 N 2 

d <: T- + l - 1 
The following theorem summarizes the results of this section: 

Theorem; There exists an algorithm for deciding whether a given graph 

with N vertices is solvable with a finite delay. In case the delay is 
2 N +1 

finite, it is at most 2 - 1. 
A straightforward method for deciding upon the existence of a solution 

B 
with finite delay consists simply in testing G for a solution with delay 
zero, where B is any known upper bound for the size of finite delay. How-w2 2 +1 
ever, since we have shown only that B <, 2 - 1, this approach is im

practical. 

Alternatively, one may successively test the k-merges for a solution 

with delay one until one discovers a G^ similar to G^ for some i < k. 

This computation may be substantially shortened by observing that if X 

and i 2 are labels in any graph such that r((v|,.ij) =>r(WU 2̂̂

 f o r a 1 1 

vertices v, then label 1^ may be ignored. We illustrate this with an example, 



Example 5. Let G be the graph given by Table 11. 

0 1 2 3 
a be ac be abc 
b c - - a 
c a - ab b 

Table 11. 
Description of G of Example 5. 

It is easy to see that G is solvable. We want to test G for a 

solution with finite delay. 

The transitions for label 3 include those of label 1, and so we eliminate 

label 3. The new graph, which we call G', is given in Table 12. The test 

given at the beginning of this section may be used to show that G f has no 
0 1 2 

a be ac be 
b c - -
c a - ab 

Table 12. 
Description of G f of Example 5. 

solution with delay one. 

We now wish to test the 2-merge of G for a solution with delay one. 

However, since the transitions of any label of of the form where 

.£=0,1,2,3 will include the transitions of X l (and similarly for 3£and l£), 

we actually need only test the 2-merge of G'. The 2-merge of G 1, which we 

call G£, is given in Table 13(a). Observing that the transitions for labels 

00, 10, 12, and 20 include those of 11 (and similarly 02 includes 22, and 

21 includes 01), we eliminate labels to obtain G" given in Table 13(b). 



Again, the test of G" for a solution with delay one gives a negative result. 

00 01 02 10 11 12 20 21 22 

a ac - ab abc ac abc ac - ab 
b a - ab - - - - - -
c be ac be - - be ac be 

(a) 

01 11 22 

a - ac ab 
b - - -
c ac - be 

(b) 

Table 13 
Description of and G1^ of Example 5. 

Continuing, we wish to test G^, but it is sufficient to test a graph 

G^ whose labels consist only of length three tapes of the form xwhere x 

is a label of G£ and JL is a label of G\ G^ is given in Table 14(a), and 

after eliminating labels in G^ we obtain Ĝ 1 given in Table 14(b). Ĝ 1 has 

no solution with delay one. 

Finally, we construct G^ (Table 15(a)) from the labels of Ĝ 1 and G f, 

and then G£ (Table 15(b)) by eliminating labels. Since G£ is similar to 

G", we conclude that GV has no solution with delay one, and therefore 
2' 4 
neither does G" for k > 4. Hence G has no solution with finite delay. 

010 011 012 110 Ill 112 220 221 222 
a - - - abc ac abc be ac be 
b - - - - — - - - -
c abc ac abc - - - ac - ab 

(a) 
Table 14. 



011 111 222 

a - ac be 
b - - -
c ac •- ab 

(b) 

Table 14 continued 
Description of G' and G" of Example 5. 

0110 0111 0112 1110 1111 1112 2220 2221 2222 

a - - - abc ac abc ac - ab 
b - - - • - - - - - -
c abc ac abc - - - be ac be 

(a) 

0111 m i 2222 
a - ac ab 
b - - -
c ac - be 

(b) 

Table 15. 

Description of Gl and GV of Example 5. 

The procedure applied to Example 5 can be further improved in several 

ways. Nevertheless there are small graphs for which an enormous amount of 

computation is required to test the k-merges. We conjecture0that the best 

bound on the size of finite delay grows more slowly than 2 

Our next aim is to show that the upper bound for finite delay must be 

at least N(N-2). We describe a family of graphs, H^, where has N 

vertices and is solvable with a finite delay d = N (N - 2) but with no 



smaller delay. The structure of for N s 4,5,... is shown in Table 16 

and Figure 3. 

0 1 
vl v2, v3 

V V V 1 9 29 * * " N 
V 2 

• 

V3 -
• 

Vi -

VN-1 \ -

VN -

Table 16 
Description of H^. Figure 3 

The graph H N 
It is easy to see that is solvable. It remains to show that it is solvable 

with a delay d = N (N - 2), For that purpose consider tapes of the form 
r>m 0 1. For m = 0 one may not start at V2 , V3 9 0 • • , VN' F O R M = ^ M A Y N O T 

start at V ^ V 2 * * 0 ' , VN I9 e t C ' Ta^^-e ^ indicates for each m the vertices 
which cannot be used as the start vertex for a path labeled 0ml. It shows, 

N(N-2)-l 
for example, that cannot be the start vertex for the tape 0 1 

N(N-2) 
and cannot be the start vertex for 0 1. 

1 

r 



m Non-initial Vertices 

0 v v • 

1 v r v 2, . ••' V r 
2 y v • VN-2' 

N-3 ... v N, v r V V 

N-2 v N, v r V 

N-1 V V • . . . V 

2N-4 v v • ... v N, V,. 

2N-3 v v • . . . v - V V 

2N-2 v y • ... v N. 

(N-3) (N-1) VN-1' v 

(N-3) (N-1) + 

(N-2) 

(N-2) 

(N-1) v 

(N-2) (N-1) + 

(N-2) 

(N-2) 

N + 1 
V 

Table 17 
Non-initial vertices of H„ for N omi. 



N(N-2) 
Thus, once forced into vertex , and faced with 0 as the prefix 

of the forthcoming tape, no decision can be made as to the choice of 

the next state. Vertex v^ is forbidden, since a 1 on the next place in 

the tape may occur; and vertex is forbidden, since a 01 on the next 

places in the tape may occur. Furthermore, a long sequence of O's leads 

to v 1 within N.-1 letters. Thus, d ;> N(N-2). 

In order to show that has a solution with delay N-(N-2), we 

indicate how to choose a path with this delay. 

First, consider tapes which begin with 0m1 for any m, 0 <. m <> N* (N-2)-1 

The initial vertex in a path for such a tape may be any vertex which is 
not forbidden (by Table 17) for 0m1. Similarly, if ̂  tape begins with-
N« (N-2) 
0 , the initial vertex may be any vertex except v^. 

Now suppose that a path through has been specified as far as some 

vertex v and that the remainder of the tape which led to v begins with 

i.0m1, where i=0 or 1 and 0 ̂  m <, N-(N-2)-1. The next vertex in the path 

may be any vertex in r(}v|,£) which is not forbidden for 0m1. If the 
7 N*(N-2) 

remainder of the tape begins with JcO , the next vertex may be any 

vertex in r({v),il) except v^. That there will always exist a possible 

next vertex in r(jv],£) follows from the construction of Table 17 and our 

choice of initial vertices. We omit a formal proof. 

Example 2 is H^. An equation corresponding to it is given by (8). 

Since d=8 in this case, it constitutes a counter example to the statement 

of Theorem 6 in Wang's paper. 
According to Theorem 6 d ̂  2 m (2n- n - 1) + 1. In Example 2, m = 1 
and n = 2. Thus, d should be <> 5, which it is not. The mistake is not 
correctable by a fixed coefficient, since for m = 1 it would imply 
d <. 4(N - |lpg2̂ J - 1) + 1 which is asymptotically smaller than N(N-2). 
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APPENDIX 

SOLUTION OF BOOLEAN EQUATIONS 

Let a, b, ,,,, c be independent Boolean variables (fixed elements 

of a Boolean algebra) and x, y, z be dependent Boolean variables 

(unknown elements of the same Boolean algebra). Let G(a, b, c, x, y.. 

and H(a, b, ..., b, x, y, ..., z) be any two expressions of these variables 

Definition: A set of values for x, y, z is.said to constitute a 

solution of the equation G = H if when the values are substituted into the 

equation, the equation becomes an identity. 

The problem of solving Boolean equations was settled in the beginning 

of this century and is discussed by Lewis [2]. More recently, several 

other authors have discussed the problem, for example, Phister [3] and 

Ashenhurst [4]. Nevertheless, the subject remains generally unknown and 

unused. We present a brief exposition in an effort to clarify the subject, 

assuming the reader is already familiar with the elementary properties of 

Boolean algebra (as used, for example in the logical design of circuits). 

Clearly, there is no claim of originality in the appendix. 

n 
Theorem Al: The equation £ G = 0 is equivalent to the simultaneous 

i = 1 1 

set of equations G^ = 0 for i s 1, 2, .... n. 
n 

Proof: Clearly G. = 0 for i = 1, 2, ..., n implies £ G. = 0. 
n 1 i = 1 1 

Now assume £ G. = 0. Multiply the equation by G, . 
1 = 1 1 k 

0 = E G kG. = G k + s G kG. * 6 k. Hence, G k = 0. 
i = 1 I £ k 

Here idempotency and absorption were used. Q.E.D. 



A2 

Theorem A2: The equation G = H is equivalent to the equation GH + GH = 0. 

Proof: GH + GH = 0 <=> GH = 0 and GH = 0 (Theorem AT). 

<=£> GH = 0 and G + H = 1, 

<=£> H is the complement of G. 

<=> G = H. Q.E.D. 

In view of Theorem A2, it is sufficient to consider equations of 

the form F(a, b, ..., c, x, y, ..., z) = 0. 

Theorem A3: (The expansion theorem) 

F(a, b, . . ., c, x,y„ . ., z) = xF(a, b, . . ., c, 1, y, . . ., z) 

+ xF(a, b, . .., c, 0, y, . . ., z). 

(The proof is through the disjunctive canonical form. [5]) 

Thus, every equation may be transformed into the form xA + xB = 0 

where A and B are expressions in a, b, . ,., c and y, z, but without 

x. 

Theorem A4: The equation xA + xB = 0 has a solution if and only if 

AB = 0 has a solution. 

Proof: Assume x, y, z constitutes a solution of xA + xB = 0. 

0 = (AB)0 = AB(xA + xB) = xAB + xAB = AB(x + x) = AB. 

Now assume y, z constitute a solution of the equation AB = 0. 

We observe that the value x = B with the given y, z constitute a 

solution of xA + xB = 0. n i ? n 



Theorem A5: Let xA + xB = 0 be a solvable equation. For every element m 

of the Boolean algebra, x = B + Jm is a part of a solution to the original 

equation. 

By ffa part of a solution11 is meant that there exist values for 

y, z which together with x =s B + Am constitute a solution. 

Proof: Use the values of y, z which constitute a solution for the 

equation AB = 0. (That this equation has a solution is the consequence 

of (Theorem A4.) Also use x = B + Am. On substitution in the original 

equation one gets: (B + Am)A + B(A + m)B = 0. Q.E.D. 

Theorem A6; If x is a part of a set of values which constitute a solution 

of the equation xA + xB = 0, then there exists an element m of the Boolean 

algebra such that x = B + Am. 

Proof: x A + x B = 0 = > x A = 0 and xB = 0. 

B + A x = B + A x + Ax = B + x==xB + xB + x = x. 

Namely, the theorem Is satisfied with m = x itself. Q.E.D. 

The conclusion of these six theorems is that 

(1) Any set of simultaneous equations may be transformed to a 

single equation of the form F(a, b, ... c, x, y, ..., z) = 0. 

(2) The equation may be transformed to the form xA + xB = 0. 

(3) We now consider the equation AB = 0. Any set of values of 

y, ..., z which constitute a solution of AB = 0 may be 

augmented by x = B + Am, where m is arbitrary, to form a 

solution of the original equation. 



(4) By repeating this process as many times as there are unknowns, 

we reduce it to an equation with no unknowns. 

If this equation is reduced to an identity, then the original 

equation is solvable and all solutions are as characterized. 

If the last equation is not an identity, then the original equation 

has no solution. 

Example: Assume we want to design a full serial adder with two binary 

inputs, a and b. The carry c must satisfy the equation: dc = ab + be + ca. 

Here dc (t) = c(t + 1). 

(We shall not concern ourselves with the design of the sum.) Assume we 

wish to use an R-S Flip-Flop with inputs R and S and output c which is 

characterized by the equations dc = S + Rc 

RS = 0 

The design problem is to express S and R in terms of a, b, and c. 

S and R must satisfy the simultaneous equations 

S + Rc = ab + be + ca 

RS = 0 

By Theorem A2 and elementary operations, one can show that the first 
r * 

equation is equivalent to 
S(aB + Be + ca + RaBc) + S(Rab + Rbc +Rca + abc + RaBc) = 0 . * % 

Use Theorem AT to join the two equation into one: 

S(ab + be + ca + Rabc + R) + S(Rab + Rbc + Rca + abc + RaBc) = 0. 

By Theorem A4, R must satisfy the equation: 
(ab + be + ca + Rabc + R) (Rab + Rbc + Rca + abc + Rabc) = 0. 



which is equivalent to 

R(ab + be + ca) + R(aBc) = 0. 

The last equation has a solution if and only if (ab + be + ca)(aBc) = 0, 

which is indeed an identity. 

Thus, 

R = aBc + (SB + Be + ca)m 
r 

where is an arbitrary switching function. Next, substitute this value 

of R into the equation for S. The resulting equation is 

S(a6 + Be + ca) + S(abc) = 0. 

and 
S SB abc + (ab + be + ca)m . 

s 

In this example S is independent of m^, but this is not always the case. 

If we choose 
m = aBc and m = abc, then r s 9 

R = aB and S = ab, 

which is a well known solution of this problem. 
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