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ABSTRACT 

This paper is a progress report of an effort at Carnegie-Mellon 

University to determine how a large capacity core storage facility 

(LCS) can be used to reduce the demand paging overhead costs in the 

IBM System/360 Time Sharing System (TSS/360) and in similar general 

purpose time-sharing systems. A discussion is presented of how the 

number of paging operations and the cost of each paging operation 

can be reduced by using LCS as both a swapping device and an 

extension of executable core. Two problems which arise are con

sidered. One is the design of an effective method for determining 

whether pages should execute in HSS or in LCS. An analysis of 

this problem is presented and possible solutions are discussed. 

The second problem is the development of efficient core management 

algorithms for LCS. A new algorithm for releasing core is presented 

and compared with two existing algorithms. Finally, results from a 

feasibility implementation of the ideas in a pre-release version of 

TSS/360 are presented as a demonstration of the validity of using 

LCS to reduce paging overhead. 
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INTRODUCTION 

It is our desire at the Carnegie-Mellon University Computation Center 

to provide to the university community a general purpose computer utility 

capable of supporting the wide range of academic and research programs 

which are currently being advanced. In particular, we wish to develop an 

integrated system of processors, storage devices, communication channels, 

and software which will: 

« Accept conversational, real-time, and batch tasks at any 

given time and process them concurrently. 

. Provide languages and facilities for writing, debugging, and 

executing programs conversationally. 

. Contain a file system suitable for safely storing source 

code, object code, data, and output. 

. Accommodate the addition of new languages, new software 

subsystems, and new types of conversational terminals. 

. Accept tasks ranging in size from very small student programs 

and desk calculator work to very large tasks which tax all 

of the facilities of the system. 

The first attempts to provide systems having these capabilities 

resulted in Project MAC's CTSS at Massachusetts Institute of Technology^ 
(2) 

and the Q-32 Time-Sharing System at System Development Corporation. 
(3) 

Other early efforts produced JOSS at the RAND Corporation J and BASIC 
(4) 

at Dartmouth College. The latter two systems emphasized conversational 

computing, ease of operation, and file facilities, but were dedicated 

systems in that they provided only a single algebraic language. 



Today's commercial systems have adopted many of the features developed 

by these early time*.sharing projects, but none can qualify as the desired 

general purpose computer utility. For example, RUSH^provides a time-

shared conversational environment, but is a dedicated system. Some of the 

large operating systems such as SCOPE II for the CDC 6 6 0 0 , ̂ G E C O S for the 

GE 6 2 5 , ̂ a n d IBM's OS / 3 6 0 ̂ p r o v i d e more complete programming environments 

and perhaps remote job entry from terminals, but are lacking in conversational 

capabilities and file facilities. 

The so-called "second generation time-sharing systems" - namely, IBM's 

T S S / 3 6 o / 9 ^ MULTICS for the GE 645 at Project MAC, ̂  ^ and the SDS Sigma 7 

( 1 1 ) 

system - represent the first deliberate attempts to incorporate all of 

the capabilities set forth above into a single hardware-software system. 

The difficulties which these systems are experiencing discourage many people, 

but we believe they contain concepts in their design which can form a nucleus 

for the desired system. These concepts include virtual memory, program seg

mentation, sharable segments, reentrant program code, hardware reference 
( 1 2 ) 

bits and change bits, demand paging, and configuration partitioning. ' 

With this point of view, Carnegie-Mellon has undertaken a study and redesign 

of the TSS / 360 system in an attempt to bring the desired general-purpose 

computer utility closer to reality. This paper is a report of the results 

and progress of that effort. 



THE IBM 360/67 SYSTEM WITH A LARGE CAPACITY STORE 

Figure 1 indicates some of the elements of the Carnegie-Mellon 

360/67 hardware configuration. The CPU and each channel access memory 

as a homogeneous, directly addressable core of 8,912,896 bytes. The only 

difference between the high speed store (HSS) and the large capacity store 

(LCS) is in cycle time and access time. Thus the disk, tapes, data cell, 

and peripherals can read from or write to either store. 

The storage channel is a device which reads from one memory location 

and writes into another, effecting a core-to-core data transfer. In normal 

operation it is limited in speed by the memory's data transmission rate 

and by the interference on the memory bus controller due to access requests 

from other devices (including the CPU). The transmission rate of two way 

interleaved 8 p,sec LCS is two million bytes per second and therefore 

represents the maximum transmission rate to or from LCS which the storage 

channel may achieve. Interference degradation varies widely depending 

on the demands for the memory bus controller. Actual measurements show 

that if the storage channel is transferring data from HSS to LCS and the 

CP is executing from HSS, then the storage channel transmission rate 

ranges from 1.2 to 1.8 million bytes per second. This rate drops signifi

cantly when the CHJand/or other devices are accessing LCS. 

A storage hierarchy is formed in the system by HSS, LCS, the disks, 

and the data cell. The storage at each level is larger, slower, and less 

expensive per bit than the storage at the previous level. Figure 2a 

illustrates an ideal organization of such a hierarchy in which information 

could flow back and forth between adjacent levels and the CPU could directly 

access information at any level. This organization cannot yet be achieved, 



but our system does allow the approximation to the ideal illustrated by 

Figure 2b. Here we see that information can pass between levels 1 and 2 

via the storage channel and between levels 2 and 3 via the selector 

channel. But for information to pass from a disk to the data cell it 

must first be moved either to LCS or HSS since no path exists between 

levels 3 and 4. The CPU does not have direct access to levels 3 and 4 

(i.e., information must be transferred to core before being referenced), 

but it can access instructions and data stored in either levels 1 or 2. 

It is this availability of two levels of executable storage which 

distinguishes the CMU configuration from the standard IBM 360/67, GE 645, 

and SDS Sigma 7 in which storage level 2 is a high-speed drum. We examine 

in the next section the implications of this distinction with regard to 

the problems which plague the second generation time-sharing systems. 

THE NEED FOR LCS 

At this writing, none of the second generation time-sharing systems 

work satisfactorily, and there is no single problem or group of problems 

to which the failure can be attributed. However, a dominant problem 

seems to be the extremely high overhead required to support each task. 

Because of this overhead, only a few conversational tasks can be given 

acceptable service at any one time. The primary concern of our work with 

TSS/360 has been to reduce this overhead and thereby increase the capacity 

of the system. 

To understand the sources of this overhead let us review the demand 

paging mechanism which is present in all three systems. When a task 

executes, only that local portion of its program and data which is relevant 



at a given time (the working set) need reside in core storage. The remainder 

may reside on a lower level storage device (the swapping device). What 

the program "sees" is not physical core but a two dimensional address 

space called a virtualjnegiory. A hardware mapping mechanism uses a set 

of tables (called page tables) for each task to translate an access of a 

virtual memory address into an access of a physical core location. If the 

block (or page) of virtual memory containing the address being accessed 

does not reside in physical core, then an interrupt is generated and the 

system monitor causes the page to be read into core (paged-in) from the 

swapping device. When the transfer is complete, the monitor sets the page 

tables to indicate that the page is now part of the task's working set. 

When a page is no longer needed it can be paged out to the swapping device 

and deleted from the working set. Thus working sets vary dynamically and 

active portions of many independent tasks can simultaneously reside in core. 

Core can be thought of as being allocated to, a task in units of page-

seconds, where one page-second is one page of core (4096 bytes in TSS/360) 

allocated for one second. The page-second costs associated with a dsmand 
(13) 

paging mechanism were analyzed in an earlier paper by Hugh Lauer. He 

showed that if J: seconds are required to transfer a page from a swapping 

device into core and if a task requires a working set of size n during a 

time-slice of computing, then a total of 
n(n+l) n

2 n 
2 t " ( ^ + t page-seconds (1) 

of core must be allocated to the task just to transfer its pages from the 

swapping device. That is, if T is the length of a time-slice, then the 

system expends 



n n t 
v 2'" *2 1 ' * IJ 

page-seconds of core to prepare for each second that a task computes. 

Each such page-second spent in preparation represents one second during 

which a page is assigned to a dormant task. 

We have attacked the overhead problem in TSS/360 in two ways: 

. by reducing the number of paging operations required to 

support each task, and 

, by reducing the costs associated with each paging operation. 

We have attempted to achieve these reductions by using LCS both as a 

swapping device and as an extension of physical core. That is, we associ

ate with each page of virtual memory a marker indicating if that page is 

to be accessed by the CPU (i.e., executed) while residing in HSS or while 

residing in LCS. Pages which are executed in LCS use a disk as a paging 

device and migrate back and forth between LCS and the disk. Pages which 

are executed in HSS use LCS as a paging device and migrate back and forth 

between HSS and LCS. 

LCS is a more favorable swapping device than a drum since LCS has no 

rotational delay before data transfer can begin as does a drum. This means 

that using LCS as a paging device for the virtual memory pages which execute 

in HSS reduces the value of t in equation (1) and therefore reduces the 

cost in HSS page-seconds of paging operations. The disk is a slower paging 

device than a drum, but in this case the cost is in the much more plentiful 

LCS page-seconds. We obtain another important reduction in HSS page-second 

cost by executing some of the task's working set in LCS and thereby reducing 



the value of n In equation (1). Thus, the paging operations which require 

allocation of a scarce resource - namely, HSS page-seconds - have been 

reduced in cost. 

By allowing some virtual memory pages to execute from LCS we have 

increased the size of executable core available in the system. In the 

standard configuration without LCS it is necessary to assume that a task 

begins each time slice with none of its virtual memory pages in core. With 

the addition of LCS it is possible to allow working set pages to remain in 

executable core between time-slices. This implies a large reduction in the 

number of paging operations since a task need not page-in its entire work

ing set at the beginning of each time-slice. 

Thus, by using LCS we have achieved our goals of reducing the number 

of paging operations required for each task and the cost of each paging 

operation. Two problems arise which will be discussed in the following 

sections. The first is that the LCS access time is more than ten times 

that of HSS, so that when some of a task's virtual memory pages are executed in LCS 

it requires longer to do a given amount of processing. Hence the system 

designers must carefully consider the issue of deciding whether each virtual 

memory page will execute in LCS or in HSS. The second problem is that 

because of the size of LCS the core management algorithms used for HSS are 

inadequate for LCS and new ones must be devised. 



THE ALLOCATION OF VIRTUAL MEMORY PAGES 

For each virtual memory page the system must decide whether that page 
•f 

should be executed in LCS or in HSS. Given that a page is residing in LCS, 

* consider the relative costs of these two alternatives. If a page is 

executed in LCS there is a processing cost in that each access to LCS 

takes longer than an access to HSS. In our configuration an LCS access 

takes approximately 3.6 (j,secs longer than an access to HSS. There is 

no direct HSS page-second cost incurred when a page is accessed in LCS, 

but the extra processor time required by the task will mean that the 

task's pages which are executed in HSS may have to remain in HSS for a 

longer period. Hence, the cost of leaving a page in LCS to be executed 

there is in processor time and amounts to the difference in HSS and LCS 

access time multiplied by the number of accesses to the page. 

If a page is transfered into HSS when it is accessed by the processor 

then there is both an HSS page-second cost and a processing time cost. 

These costs occur because of the processing time required to perform a 

page-in operation to HSS and because the task and the HSS core pages 

allocated to it must remain dormant while the operation takes place. In 

TSS/360 when the virtual memory page is accessed and found not to be in 

HSS, an interrupt is generated and the following processing occurs: 

. The interrupt is recognized, the virtual memory page is 

located in LCS, a core page is allocated in HSS for the 

virtual memory page, a request is made to the storage channel 

to perform the transfer into HSS, and the task which initiated 

the access to the virtual memory page is marked inexecutable. 

. The storage channel performs the transfer and generates an interrupt. 



. The storage channel interrupt is recognized, the successful 

completion of the page-in operation is recorded, and the 

task is marked ready to execute. 

These operations take on the order of | to 1 msec of processor time 

and.-L. to n page-msecs of HSS in TSS/360, where n is the number of HSS 

core pages allocated to the task at the time of the page-in operation. 

We may define for each virtual memory page an access density as 

follows: 

The access density of a virtual memory page is the average 

number of accesses to the page per time slice, where only 

those time slices during which the page is accessed at least 

once are considered in computing the average. 

Given this definition, we would expect a page of program code containing 

loops to have a greater access density than a page of code having no 

loops; also, we might expect a page of data to have a smaller access 

density than a page of program code. Based on the cost evaluations 

given in the preceding paragraphs the first criterion for deciding whether 

or not to execute a given page in LCS or to transfer it into HSS is the 

access density of the page. There exists a threshold access density 

value, AD f c, for which the processing overhead to move a page into HSS 

is equal to the additional cost of making AD f c accesses to LCS rather 

than to HSS. In TSS/360 this threshold is on the order of 200 accesses 

per time-slice per page. Hence, if the access density of a page is less 

than AD f c then the page should be left in LCS; if it is greater, then the 

page is a candidate for being paged-in to HSS. 



The second criterion for making the LCS to HSS paging decision is 

based on the availability of HSS page-seconds in the system. The system 

must either maintain an estimate of the number of HSS core pages needed 

during each time slice and not begin a time slice until that number is 

available, or allow HSS core pages to be "stolen 1 1 from a task while the 

task is in a time slice. In either case, as the number of virtual memory 

pages in the system which are executed in HSS increases, so does the amount 

of time each task must wait to begin each time slice and/or for page-in 

operations to complete. Hence, the total number of virtual memory pages 

in the system competing for HSS space must be limited. 

We may now make some comments on ways in which the system can mark 

each virtual memory page to be executed in HSS or in LCS. Y. C Chen has 

considered this problem in a multiprogramming environment where each page 
(14) 

of a task allocated in HSS remains there until the task terminates. 

He suggests that for scientific programs all data and all code which form 

program loops be allocated in HSS, with the remaining code allocated in 

LCS. His conclusions are based on the first criterion discussed above in 

which the access density of a page is the determining factor. His analysis 

differs from ours in that he is considering the total number of accesses 

to each page during the lifetime of the task while we must consider only 

the number of accesses during one time slice of computing. Hence we 

would expect an optimal scheme for our system to leave more virtual memory 

pages in LCS than does Chen's. In particular, it seems that an algorithm 

which transfers to HSS all executable program code and leaves in LCS all 

data and all interpretable program code (data to an interpreter) would be 

closer to optimal for the type of system we are considering because it 



would tend to place the most densely accessed virtual memory pages in 

HSS. 

The question then arises whether the 'executable code - data 1 division 

we have suggested is an acceptable one with respect to the second criterion, 

i.e., the availability of HSS page-seconds. With this division, as the 

number of tasks in the system increases so will the number of virtual memory 

pages competing for HSS core pages. We have no way of predicting at what 

point this increase will cause enough overhead to significantly effect 

system performance; that it will be a problem, there is no doubt. 

When we designed the first implementation of these ideas in TSS/360 

we had the additional constraint that the effort require no more than one 

man-month of work. The scheme chosen was to execute in HSS all sharable 

virtual memory pages and execute non-sharable pages in LCS. In TSS/360 a 

sharable page is one which may be included in the address space of more 

than one task. In particular, all system code and. system data is sharable, 

e.g., the monitor, the assembler, compilers, interpreters, system catalog. 

We have imposed the restriction in this implementation that a user can 

specify virtual memory pages as sharable only if he is given special per

mission to do so. Hence, we essentially allow the system to execute in 

HSS and require all user programs to execute in LCS. We do not claim that 

this division is optimal nor will it be our final choice, but it has several 

desirable properties as follows: 

, The system pages are almost entirely reentrant, executable code, 

and therefore represent a subset of the pages which would be 

allocated in HSS by the'executable program code - data 1 division 

suggested above. 



• A system page is accessible by all tasks and therefore may 

be accessed more densely than a page of code assigned to 

only one task. 

. There are approximately 200 systems pages in TSS / 360 and this 

number does not increase measurably as the number of tasks 

in the system increases. Hence, the demand for HSS space is not 

so great as to cause excessive paging and the accompanying 

overhead. 

The major problems with this division are that user tasks with heavy 

processing requirements will receive degraded service since all of their 

program code will be executed from LCS and that certain system pages with 

low access densities are paged to HSS unnecessarily. These problems might 

be solved by allowing compilers, assemblers, or system programmers to 

specify to the system which pages will be heavily accessed. We might also 

monitor the behavior of programs to be optimized, particularly system 

programs, under typical operating conditions in order to develop activity 

tables for the system to use in making the LCS or HSS decisions. 

Finding optimal decision algorithms for assigning pages is but one 

part of the task of implementing LCS in TSS/360. It is a problem into 

which we hope to gain more insight as we gain experience with the system. 



CORE MANAGEMENT 

A major portion of the core management problem in a paging environ

ment such as we have been considering is how to make core pages available 

when they are needed. That is, in general there will not be enough LCS 

and HSS space to contain all the virtual memory pages of all the tasks 

in the system. Hence, at any given time some virtual memory pages which 

are executed in LCS must be "swapped out 1 1 on the disk and some virtual 

memory pages which are executed in HSS must be "swapped out" in LCS. 

There must be an algorithm in the system for determining when to swap 

pages out and which pages to swap out. In this section we will examine two 

existing algorithms for performing this function and present a new one for 

the CMU-TSS system. 

In the release 1 version of TSS/360 (TSS-1) the mechanism that frees 

core-pages is activated at the end of each time s l i c e . A l l private 

(non-sharable) virtual memory pages accessed during the time slice are 

swapped out at that time. If a page has been altered during the time slice 

(indicated by a hardware change bit for each core page), then a page-out 

operation is initiated to store a valid copy of the page on the swapping 

device. If a page has not been altered during the time slice, then the 

current copy of the page on the swapping device is still valid and no 

page-out operation is required. This method of freeing core space assumes 

that in most cases the core pages assigned to a task will be needed by the 

system before that task begins its next time slice. Hence, it is not 

profitable to incur the cost of a more elaborate mechanism which would 

selectively free core based on the needs of the system. 



A second typical mechanism for freeing core pages is the one proposed 

for the MULTICS s y s t e m / 1 6 ^ This mechanism uses the principle that a core 

page which has been referenced frequently and/or recently is more likely 

to be referenced again before a page which has not been referenced as 

frequently or as recently. In the hardware there exists for each core 

page a reference bit such that whenever an access is made to a core page 

the reference bit for that page is set. Instructions exist for reading 

these bits and resetting them. With this facility the system can monitor 

the accesses being made to each core page. 

In the MULTICS proposal there is a ranking routine which is called 

periodically to maintain a chain of pointers to core pages ordered with 

respect to the frequency and recency with which each page has been refer

enced. The ordering is maintained by testing the reference bit of each 

page represented in the chain. If a reference bit for a page is set, its 

pointer is moved to the end of the chain and the reference bit is cleared; 

if the reference bit is not set, no action is taken. Whenever the number 

of available core pages drops below a threshold,a replenisher routine is 

called to provide available core. The routine removes a given number of 

pointers from the top of the ranking routine's core page chain and frees 

the corresponding pages for use by the system. (Note: Ranking pages 

according to frequency and recency of use is not to be confused with 

determining the access density of a page. So far as the ranking routine 

is concerned, one access per page in an interval of time counts as much 

as one million accesses to the page in the same interval of time. The 

access density is concerned with the number of accesses in an interval, 

and it cannot be measured with any hardware commercially available at 

this time.) 



When we considered the core management problem for our system we 

found both of the approaches outlined above inadequate. The first scheme 

where all private core pages are freed at the end of each time slice is 

satisfactory for HSS core pages and we will continue to use it. But for 

the 2048 LCS pages, the probability is quite high that the system will 

not need to free the LCS core pages assigned to a task while the task is 

between time slices. This increased probability is worth exploiting since 

if a core page can remain assigned to a task and the task references that 

page in its next time slice, then the system has saved a possible page-out 

operation and page-in operation, and the task can obtain a time slice 

uninterrupted by a wait for the page-in operation to complete. Therefore, 

we wish the system to free LCS pages only when there is actual demand for 

them in the system. 

The second scheme, where a chain of core pages is maintained, has 

the desired property for LCS of freeing core only when it is needed but 

was rejected because it requires an excessive amount of overhead processor 

time in a system with a large number of core pages. In the 360/67 it would 

take approximately 35 jxsecs. to process each LCS core page during the scan 

made by the ranking routine. This processing includes testing the refer

ence bits and moving the pointers in the chain if necessary. This implies 

that the scan of a chain containing pointers to 2000 LCS pages would require 

70 msecs. of processor time. Executing this scan just twice per second 

would tie up the processor 14$ of real time. 

Even if an accurate ordering based upon frequency and recency of use 

could be inexpensively maintained, it is not clear that ordering is the 

correct basis for determining what core pages to free. The problem with 

the ordering is that a page chosen to be freed may be assigned to a task 



which has been between time slices (and therefore not referencing the 

page), but is just beginning a new time slice in which it will attempt 

to reference the page. One would like to order the core pages based 

upon the time at which they will next be referenced and release those 

with the longest projected inactive time (PIT) first. Although the 

system does not have such a projection on each core page, there is 

information in the system concerning the PIT of each task. Since a non-

sharable virtual memory page belonging to a task can be referenced only 

when the task is in a time slice, a chain of tasks ordered with respect 

to the PIT of each task can serve as a partial ordering of the core pages 

which are allocated to non-sharable virtual memory pages. Then when a 

request is made to release core pages to the system, core assigned to 

the task at the top of this core release chain can be freed. We now 

consider the problem of defining a task ordering to serve as a basis for 

such a core release procedure. 

At any given time a task in the system is in one of three states: 

active, scheduled, or unscheduled. A task is in the active state during 

its time slice. A task is in the scheduled state when it is ready to 

begin its next time slice and has been assigned a place in the scheduling 

queue. (We are assuming that at any given time the first task in this 

scheduling queue will be the next task to begin a time slice.) A task is 

in the unscheduled state when its time slice has been terminated and it 

is waiting for an input/output operation to complete or for a message to 

be input from the user's console. We are assuming an internal scheduling 

scheme such that when a task issues an input/output request and must wait 

for the completion of the operation, it is allowed to remain in its time 



slice for a specified period of time. If at the end of that period the 

task is still waiting, then its time slice is terminated and it enters 

the unscheduled state. Hence in most cases, tasks which issue a request 

for an input/output operation on a high speed device can remain active 

until the operation completes. Figure 3 illustrates the movement of 

tasks in the system from one state to another. 

The tasks in the active state may be said to have PITs of zero since 

they are in a time slice. When a task enters the active state it is 

removed from the core release chain. This prevents core pages assigned 

to active tasks from being stolen by the system. When a task completes its 

time slice and enters the scheduled or unscheduled state it is returned to 

the core release chain. 

When a task enters the scheduled state it is queued to begin its next 

time slice. This queue defines the ordering of the scheduled tasks in the 

core release chain; that is, if task x is behind task y in the scheduling 

queue, then task x is placed above task y in the chain. 

Tasks in the unscheduled state have unknown PITs and the system has 

little or no information to use in predicting when such a task can be 

scheduled. We have placed all unscheduled tasks above the scheduled tasks 

in the chain even though when a task enters the scheduled state it may be 

placed in front of other scheduled tasks in the scheduling queue. In so 

doing we have assumed that the probability of unscheduled task x beginning 

its next time slice before scheduled task y is less than one-half. 

It remains to specify an ordering among the unscheduled tasks. When 

a task enters the unscheduled state,we have chosen to enter it immediately 

above the highest scheduled task in the core release chain. This means 



that the longer a task remains unscheduled the greater the probability 

of it being at the top of the chain and hence having to give up core 

pages. This ordering has the effect of giving preferred service (i.e., 

faster response time) to the active terminal user at the expense of the 

user who is sitting idle in a long "think time" or at the expense of a 

task waiting for completion of an input/output operation on a slow speed 

device. 

We now have defined for all tasks not in the active state an ordering 

to be used for freeing LCS core pages when the need exists. Figure 4 

illustrates this ordering. The freeing operation consists of removing the 

task at the top of the chain and freeing core pages assigned to that task. 

We have further refined this core release algorithm based upon the 

following two considerations. First, note that it is possible for a core 

page to remain assigned to a task which is no longer referencing the page. 

This situation can occur for a compute bound task or for a task whose user 

is active at his terminal, since such a task has a low probability of 

reaching the top of the core release chain while it is between time slices. 

Hence it may be advisable to release those pages assigned to a task x which 

are not being referenced before releasing those pages assigned to a task y 

which are being referenced even though task x is below task y in the core 

release chain. The second consideration is that if a copy of the informa

tion in an LCS core page exists on the disk and the page is unchanged, then 

it can be freed without a page-out operation. Since at any given time 

there will be a large pool of freeable pages in the system from which to 

obtain core, a significant amount of overhead can be saved by freeing 

pages which do not require a page-out operation before freeing those which do. 



We have responded to these two considerations by decomposing the core 

release chain into four chains. When a task leaves the active state it 

is entered into chain 1 using the same ordering relationships described 

above. When the system needs core it removes the top task from chain 1 

and does the following: 

. Each core page assigned to the task which is unreferenced and 

has a valid copy on the disk is freed. 

# The reference bit is cleared for each core page assigned to 

the task which is referenced and has a valid copy on the disk. 

. The task is appropriately entered into chain 2. 

If chain 1 is empty when the system needs core, then it removes the top 

task from chain 2 and does the following: 

. Each core page assigned to the task which is unreferenced and 

does not have a valid copy on the disk is freed, and a page-out 

operation from LCS to disk is initiated. 

. The reference bit is cleared for each core page assigned to 

the task which is referenced and does not have a valid copy 

on the disk. 

. The task is appropriately entered into chain 3. 

If chains 1 and 2 are both empty when the system needs core, then it 

removes the top task from chain 3 and does the following: 

. Each core page assigned to the task which has a valid copy on 

the disk is freed. 

. The task is appropriately entered into chain 4. 



If chains 1, 2, and 3 are all empty when the system needs core, then it 

removes the top task from chain 4 and does the following: 

Each remaining core page assigned to the task is freed, and 

page-out operations from LCS to disk are initiated. 

This scheme first selects all freeable core pages which have not 

been referenced and for which a page-out operation is not needed. It 

then frees all pages which have not been referenced and for which a page-

out operation is needed. It then frees those pages which have been refer

enced, but do not need page-out operations. Finally, the referenced pages 

for which page-out operations are needed are freed. Figure 5 illustrates 

the movement of tasks in the core release chains. A referenced core page, 

as referred to here, is one which was accessed by the task to which 

i t is assigned after the last time the core release mechanism selected the 

task from the top of a chain and cleared the page's reference bit. This 

selection will occur at varying intervals for each task depending upon 

core demands in the system and the activity of the task, but the task will 

receive at least one time slice during each interval. 

The way in which the system determines when LCS space needs to be 

freed is as follows. Each time a LCS page is allocated a test is made to 

determine if the number of available LCS pages plus the number of page-out 

operations in progress to the disk is less than a threshold. If the sum 

is less than the threshold, then a request is made to the core release 

mechansim to free core pages. Each time the core release mechanism is 

activated it releases at least k LCS pages, where k is a system parameter. 

Consider the overhead involved in this core release algorithm. In 

contrast to the MULTICS proposal, no periodic scanning of a 2000 entry 



core page chain is required. When the system needs core the only pages 

considered are those which are candidates for being freed, i.e., those 

assigned to tasks at the top of the core release chains. Each time a 

task is removed from the top of a core release chain and an attempt is 

made to free pages assigned to it, a scan of the list of core pages 

assigned to the task is made. If only one core release chain were used 

and all the pages assigned to the top task in the chain were released when 

the system needed core, then every page in the list being scanned would be 

freed. In the four chain scheme, there is an extra cost in that multiple 

scans of the core pages assigned to a task may be necessary and extra chain 

maintenance is involved. This is still a quite small amount of processing 

time to expend in gaining additional reduction in disk paging operations 

and task wait times. 

Chain maintenance in this core release scheme, another source of over

head, consists of entering tasks into and removing tasks from the core 

release chains. Removing a task from a chain requires but a few instruc

tions. Entering a non-scheduled task into a chain can be facilitated by 

keeping a pointer to the highest scheduled task in the chain. The non-

scheduled task is then entered immediately above the highest scheduled 

task. Entering a scheduled task into a chain requires sorting it into its 

appropriate place among the scheduled tasks. This is the only chain main

tenance operation requiring any appreciable amount of CP time. 

Thus, we have an inexpensive LCS page release scheme which steals 

pages from tasks only when there is demand in the system for them and 

which orders the release of pages based on the projected inactive time 

of the page, the history of use of the information in the page, and the 

cost required to free the page. 



The algorithm which we have presented does not contain a provision 

for the release of core pages containing sharable virtual memory. Since 

we have proposed that most sharable virtual memory pages should be allocated 

in HSS,this is not a significant problem in our system. It would be desir

able to have associated with each sharable virtual memory page the number 

of tasks which are using the page. Then whatever mechanism is used to free 

private pages could also be used for sharable pages with the provision that 

when a sharable core page is to be released,its task counter is decremented 

instead and it is released only when that counter goes to zero. If such 

task counters cannot be implemented, as is the case in TSS/360, then one 

may adopt a scheme which periodically scans through a chain of the shar

able core pages and releases those pages which are not being referenced. 

EXPERIENCE WITH CMU-TSS 

The previous two sections have dealt with the problems of interfacing 

LCS with TSS/360. In this section, we present a brief progress report of 

our experiences with the system. 

Carnegie-Mellon received its first pre-release version of TSS/360 in 

the spring of 1967. Modifications were made in that system to use LCS, in 

place of the drum, as a swapping device in order to reduce the cost of each 

paging operation. All pages were executed in HSS and no changes ware made 

in the core release algorithms. These modifications yielded only a modest 

improvement in system performance. It became clear to us that if the 

number of requests for paging operations was not drastically reduced,our 

attempts to reduce the cost of each paging operation would be pointless. 

A later pre-release version of TSS/360 (version 58) was modified so 

that the processor directly accessed instructions and data from both HSS 



and LCS. In this system sharable virtual memory pages were executed in 

HSS and private virtual memory pages were executed in LCS, as discussed 

above. We did not attempt to implement the LCS core release algorithm 

of the previous section in this version. Instead, we modified the 

TSS/360 core release algorithm so that it would not release core pages 

which were being referenced unless they were needed by the system. The 

details of the modified algorithm are described in an appendix. This 

core release mechanism was crude but was easy to implement and sufficiently 

effective to allow testing of the system with a small number of tasks. 

An experiment was devised to compare the performance of the CMU-TSS 

system with the standard, drum-oriented TSS/360. We prepared a paper tape 

which contained the input messages for a terminal session. The task 

logged on, loaded the assembler, entered 83 lines of source code, requested 

an assembly, and logged off. The TSS Assembler performed a syntax check on 

each line as it was input and reported to the user any errors before accept

ing the next line. Runs were made on both systems by running one, two, four, 

and eight identical copies of the paper tape on teletypes. An internal 

logging routine recorded all interrupts, overhead, and terminal interactions 

on magnetic tape. 

Figure 6 indicates the response times obtained. Response times during 

the syntax check (i.e., the time between the carriage return at the tele

type and the request for the next line of source code) for the unmodified 

TSS/360 were extremely poor. With eight tasks on the system, average 

response time was greater than 30 seconds. In the modified system, the 

average was less than 0.1 second, independent of the number of tasks in 

the system. 



Other results from the experiments indicate the potential of the 

modified system to service more than 8 tasks. We know that in the 

modified system each task had 25 private pages assigned in LCS and no 

paging of shared pages was necessary between HSS and LCS. There are 

approximately 200 sharable virtual memory pages in the system, so that 

1800 core pages of LCS are available for private virtual memory pages. 

This implies that 72 conversational tasks having comparable memory 

requirements could be run without doing any paging at all. We also know 

from the experiments that CPU idle time was a linearly decreasing function 

of the number of tasks, and that with eight tasks in the system the CPU 

was idle 60$ of the time. Most of this idleness occurred when all t^sks 

were inputting text and there was no work to do. It appears that much of 

this time can be recovered when the system load goes up. 

We do not claim that our experiments were precisely controlled and 

error-free or that the tasks used comprise a representative system load, 

but they do indicate orders of magnitude. The fact that we achieved an 

improvement of two orders of magnitude in response time demonstrated to 

us the validity of our hypothesis that the number of paging operations 

is a crucial factor in system overhead and that allowing the processor 

to directly access LCS is a feasible way of reducing overhead. 

SUMMARY AND PROJECTION 

We have explored the overhead costs of demand paging in TSS/360 and 

in similar general purpose time-sharing systems. We have discussed how 

that overhead can be reduced by incorporating LCS into the system. LCS 

reduces the total number of paging operations and the cost of handling 



each paging operation, but it creates two new problems. One is the 

design of an effective method for determining whether pages should execute 

in HSS or LCS. We have presented an analysis of this problem and discussed 

possible solutions. The second problem is the development of an efficient 

algorithm for releasing LCS core pages. A new algorithm was presented and 

compared with the MULTICS and TSS/360 core release techniques. Finally, 

we demonstrated the validity of our hypothesis with a feasibility imple

mentation of the ideas in a pre-release version of TSS/360. 

With so many variables to consider, we cannot confidently extrapolate 

our results, nor can we predict the saturation point of the TSS/360 

system. But looking ahead, we can see two new bottlenecks. One is the 

slow paging rate of the IBM 2314 disk. If we assume optimal scheduling 

of the disk seeks, we can achieve a maximum rate of 40 page transfer 

operations per second. The actual paging rate is less because disk channel 

time must be shared with accesses to system and user files and because the 

allocation of disk space results in sub-optimal scheduling of seeks. As 

the load on the system grows and LCS page-seconds become a scarce resource, 

the slow disk paging rate will become a factor with which to reckon. 

The other bottleneck is the design of the memory bus controller. When 

the system load increases and more core accesses are demanded, the CPU and 

the storage channel experience severe degradation in speed. Thus service 

capacity is limited. We are currently considering this problem in detail. 

Both problems, and others which we have not yet appreciated, keep us 

from attaining the ultimate in a general purpose time-sharing system. But 

the CMU-TSS system is a significant step toward that goal. 



APPENDIX 

The core release algorithm implemented for the experiments with the 

pre-release version of TSS/360 is shown in Figure 7. xxxTl and xxxT2 

are threshold values defined for HSS and for LCS such that xxxT1<xxxT2. 

HSSAVAIL and LCSAVAIL indicate the number of core pages available for 

assignment in HSS and LCS respectively. When xxxAVAIL drops below xxxTl, 

then core pages in xxx are freed at the end of each time slice until 

xxxAVAIL is built up to xxxT2. In addition, regardless of the value 

of LCSAVAIL, LCS pages which are not being referenced are freed at the 

end of each teletype interaction. 
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