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ABSTRACT 

This paper deals with the design of hierarchically structured 

programming systems. It develops a method for evaluating the cost 

of requiring programmers to work with an abstraction of a real 

machine. A number of examples from hardware and software are given 

as illustrations of the method. 
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INTRODUCTION 

The starting point of this paper is the goal of constructing systems 

with a hierarchical structure of the type first illustrated by E. W. 

Dijkstra in [1,2]. Each level in such a system provides a virtual machine 

which hides (or abstracts from) some aspects of the machine below it. In 

desigining such a system we repeatedly face a question which a hardware 

designer faces only once: "How do I know that the instruction set provided 

by this machine is suitable for the programs which users will want to run 

upon it?" There is a risk in freezing the design of a level, the risk 

that we may force some inefficiency upon our final system. We may even 

eliminate some essential capability. 

The purpose of this paper is to introduce a concept which appears to 

be useful in the design of hierarchically structured systems. For purposes 

of comparison, we shall review an approach which was suggested earlier, then 

introduce and illustrate the main concepts of this paper. 

THE "TOP DOWN" OR "OUTSIDE IN" APPROACH 

Several papers [3,4,5] suggest that the solution to software design 

problems lies in beginning with a precise description of the desired system 

and deriving the internal structure from it. This would prevent design 
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decisions which remove necessary capabilities and eliminate the risk of 

constructing a system with unexpected undesirable properties. The papers 

referenced were all concerned with providing simulation tools which could be 

used to verify that each decision was an adequate one. The approach was called 

"top down" or "outside in". 

In this paper we shall refer to this approach as "outside in" rather 

than "top down" because the latter appellation often leads to a confusion 

of this approach with the levels introduced by Dijkstra [1]. The "outside 

in" approach and that of Dijkstra cannot be compared as they are addressing 

quite different questions. Dijkstra was not discussing the sequence in which 

design decisions were made, he was discussing the structure of the final 

product. Higher levels in Dijkstra's sense are not necessarily "closer to 

the outside" in our sense. Some low level features may appear on the "outside". 

The "outside-in" approach has been discussed in several places (e.g., 

[6]) and found to involve a number of difficulties. 

1. The necessary specification of the "outside" is often difficult 

to obtain. In addition to the obvious difficulty in making such 

design decisions, it is difficult to express those decisions 

precisely without implying additional, internal , design decisions. 

2. The derivation of a design from such a specification is often not 

feasible. The set of possible internal structures for a given 

external specification is so large that oneneeds some additional 

constraints before a search can be begun. These constraints are 

usually information about the "inside" (e.g., the hardware). 



3. In attempting to follow the "outside in" procedure it is quite easy 

~ to specify internal mechanisms which would simplify implementa

tion of the desired outside but would themselves be impractical 

to implement. 

4. It is difficult to apply this method if one is actually designing 

a set of systems whose only description is "general purpose" 1 . 

5. As was pointed out in [7] the application of this method may 

result in a piece of software which is unnecessarily inflexible 

(see also [8]). 

6. It is quite common to design software in a situation where the 

inside is already fixed (e.g., the hardware for an operating 

system, or the operating system for a piece of application soft

ware) . 

It is for these reasons that we have found it necessary to abandon the 

pure "outside in" approach and adopt some additional procedures which are 

actually of an "inside out" or "bottom up" nature. We do not propose the 

following as a procedure to be used instead of the "outside in"; we propose 

these as complementary approaches which must be used in some judicious com

bination according to the needs of the situation. 

"TRANSPARENCY" OF AN ABSTRACTION 

We wish to consider a typical stage in a "bottom up" design process. 

We assume that we have a well defined lower level and are considering the 

1. We are indebted to C. W. Root of NV Philips-Electrologica (Apeldoorn, The 
Netherlands) who was the first to point out to us the difficulties introduced 
when "general purpose" is included in the description of a future product. 



design of the next highest level. The lower level may be either hardware 

or an intermediate level in our software design. We shall refer to either 

as the base machine. We assume that we are considering a proposal for a 

new abstraction to result in a new programmable machine which we shall refer 

to as the virtual machine. 

We must determine the set of states which is possible for the base 

machine under arbitrary programs in the "language" of the base machine. 

Also of interest is the set of state sequences which can be obtained by 

arbitrary base machine language programs. 

For any given implementation of our virtual machine we can determine a 

set of base machine states and sequences of base machine states which is 

obtainable by running programs written for the virtual machine. 

If the virtual machine and its implementation were completely transparent, 

any base machine state and any sequence of base machine states which we could 

obtain by programming the base machine would also be obtainable by programming 

the virtual machine. In the more common situation, where some base machine 

sequences cannot be obtained by programming the virtual machine, we term 

the missing state sequences the loss of transparency. 

In the above we have defined transparency as a property of a triple 

consisting of the base machine, the virtual machine, and the implementation 

of the virtual machine on the base machine. In many cases, however, we can 

find that there is a loss of transparency for the virtual machine, base 

machine and any conceivable or likely to be used implementation. In such 

cases we shall speak loosely of the transparency of the virtual machine for 

a given base machine. 

In fact, in many cases we can ascertain a lack of transparency for a 

given virtual machine and any base machine likely to be considered. In 



those cases we can speak very loosely about the transparency of the virtual 

machine without reference to a specific base machine. 

For the purposes of the present paper it is sufficient to rely on our 

intuitive understandings of what the properties of reasonable base machines 

and certain virtual machine propositions are. For many interesting software 

design problems there Is no need to resort to formal models. 

Preliminary Example 

The following example is intended to illustrate the concept of trans

parency and to make the point that a loss of transparency is often one of 

the goals of a design. 

Figure 1 shows a diagram of a low level portion of a four wheeled vehicle. 

Note that each front wheel is connected to two strings and should a driver 

use such a vehicle, he would control the steering by pulling on a total of 

four strings. 

It is probably feasible for well coordinated people to learn to use 

such a control mechanism, but it is certainly not conventient or pleasant. 

Figure 2 shows the addition of a higher level mechanism which uses the mech

anism of Figure 1 to provide a more convenient virtual machine for the driver. 

Figure 1 



The ropes have been wrapped around a steering wheel and attached so that 

now the vehicle can be controlled by the more easily learned mechanism of 

turning the wheel in the desired direction. If this is properly done, it 

is a very good abstraction from the real machine. (If it is not properly 

done, it may introduce all sorts of inefficiencies, including excessive tire 

wear and poor driving characteristics.) 
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The point of this example, however, is that even if this is done in 

an ideal way, the abstraction is not transparent in the sense just defined. 

Figure 3 shows some of the states which were possible with the lower level 

control mechanism. Positions (a) and (b) will be possible by the use of 

any reasonably designed steering wheel implementation, (c) and (d) will 

no longer be possible with reasonable implementation. Very sharp turns (e) 

could be eliminated by some designs and permitted by others. 
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Figure 3 



If the steering wheel were an abstraction proposed in a "bottom up" 

design process, we would ask that the designer use the concept of transparency 

in evaluating the validity of the proposed design. In this particular case 

the lack of transparency with regard to (c) and (d) would be considered 

acceptable because situations in which those positions are useful are extremely 

rare. The lack of transparency for those cases can be considered a desirable 

feature of the abstraction; one of the purposes of introducing certain ab

stractions is to prevent the occurrence of undesirable states. The loss of 

(e) is more difficult to evaluate; It Is undesirable, but it might be acceptable 

if the turning circle would be adequate anyway or if there was a cost decrease 

obtained by eliminating this extreme position. 

The fundamental assumption behind our proposed "bottom up" approach 

is that the primitive mechanisms from which one builds a system have the 

ability to perform all the functions finally expected of the system. (If 

that is not true, the project is hopeless from the start.) If we evaluate 

each level by examining the loss of transparency as illustrated above and 

make certain that nothing desirable is lost, we may be assured that the 

upper levels will still have the desired capabilities. 

The remainder of this paper will be devoted to examples from the field 

of computer systems. 

"REGISTER" FOR MARKOV ALGORITHM MACHINE 

Figure 4 is a specification of a module developed for use in a Markov 

algorithm interpreter or compiler. One can view this module as providing 

a virtual machine which has a register which has essentially the same capabili

ties as that in the idealized Markov algorithm machine. Characters may be 



DEFINITIONS 

INTEGER PROCEDURE: LENGTH 
possible values: an integer 0 £ length £ 1000 
effect: no effect on values of other functions 
parameters: none 
initial value: 0 

INTEGER PROCEDURE: CHAR(I) 
possible values: an integer 0 £ CHAR £ 255 
parameters: I must be an integer 
effect: no changes to other functions in modules 

V 
if I £ 0 V I > LENGTH then a procedure call to a user written 
routine RGERR is performed. (program cannot be assembled 
without such a routine) 

initial value: undefined 
PROCEDURE: INSERT(I, J ) 
possible values: none 
parameters: I must be an integer 

J must be an integer 
effect: 

if I < 0 V I > 'LENGTH1 V J < 0 V J > 255 then a subroutine call to 
a user written routine INSAER is performed. (routine required) 
else LENGTH « 1 LENGTH 1 +1 if LENGTH * 1000 a subroutine call to 
user written function LENGER is performed. 
CHAR(K) = 

if K £ I, 'CHAR(I)1 

if K • 1+1, J 
if K > 1+1, 'CHAR(K-I)1 

PROCEDURE: DELETE (I, J) 
possible values-: none 
parameters: I, J must be integers 
effect: 

if I * 0 V J < 1 V I+J > 'LENGTH' +1 then a procedure call to a 
user written routine DELERR is performed. 
else 

LENGTH = 'LENGTH' - J. 
CHAR (K) - if K < I then 'CHAR(K) 1 

if K I. then 'CHAR (K+J) 1 

Figure 4 



inserted and deleted at any point in the string, etc. The one fundamental 

difference is that, because this is a specification for a real piece of 

software, there are limits to its capacity. 

Informally, the four operations provided can be described as follows: 

"LENGTH" reveals the number of characters in the register. 

"CHAR(I)" gives the Ith character in the register if I * length. 

"INSERT(I,J>" places a new character at the specified point in the register. 

"DELETE(I,J) n removes a character in the register. 

At first glance this appears to be a good design. In fact, it was used 

unsuspectingly and, for quite a while, the faults were not apparent to any of 

those involved in the project. The fault is easily noticed as a loss of 

transparency. 

Such a module has many possible implementations. We list just a few of the 

more interesting or useful ones: 

1 1. Register is an array. Access is by indexing; inserts and deletions 

.JSJ; 

require shifting. 

I 2. Register is a one-way linked list. Access Is by linear search 

1 counting for the Ith item requested. Inserts and deletions 

| require list processing operations - no large shifts. 

3. Register is a two-way linked list. Access is by search from either 

end or from the last point accessed. Insertions require list 

processing operations. 

4. Register is a linked list with an "index" pointing to a number of 

points within the list to reduce searching. 



5. Register is a linked list of small arrays. Most small changes 

can be done on a single small array as in implementation (1). 

Larger changes require addition or removal of one or more small 

arrays. (The small arrays might be machine words in which up to 

six characters are packed.) 

Each implementation would be good under some set of operating conditions 

and costs (e.g., (1) is the minimal coding time version). 

We can easily imagine having designed an abstract machine which con¬ 

tained operators which could be used for one of the above implementations. 

We refer to that machine as the "base11 machine. On any likely base machine 

there will be simple sequences (e.g., a single store operation) which replace 

a single character in the register with another single character. These 

sequences involve no shifting in implementations (1) or (5) and no linked 

list operations in implementations (2)-(5) . These sequences cannot be evoked  

by calling the "virtual machine" operations defined above. Thus, this design 

has a loss of transparency because there are sequences on the base machine 

which cannot be evoked by commands given to the virtual machine. Further, 

we see that the lack of transparency is undesirable because (1) the missing 

sequences are both harmless and useful, (2) the work they accomplish can only 
2 

be performed by much more expensive sequences evoked by the higher level. 

The above loss of transparency can easily be corrected by the addition 

of the "alter" command specified in Figure 5. In our experimental project 

2Even if we were willing to accept the loss of efficiency, we would have 
difficulties because of the psychological nature of good professional pro¬ 
grammers. Most feel such revulsion at the writing of inefficient programs 
that they would seek some way of going beneath the interface of the base ma¬ 
chine in order to improve performance. In that case the modular structure 
would be lost. Such behavior is readily apparent in much production software. 



we did this during the project. Because of the "upward compatible" nature 

of the improvement, old programs continued to work but new ones could be 

written to be more efficient. In no case did we have to reveal the inner 

workings of a module to gain in efficiency. 
PROCEDURE: ALTER(I, J) 
possible values: none 
parameters: I, J must be integers 
effect: 

if I < 0 V I > 'LENGTH' V J < 0 V J > 255 then a subroutine call 
to a user written Routine ALTERERR is performed. 

CIIAR(K) a if K / I then ' CHAR(K) 1 

if K = I then J „. 
Figure 5 

For some time we considered the amended design to have the proper 

degree of transparency, but further reflection has indicated an additional 

problem. In most of the base machines there exist sequences which 

efficiently insert several characters at a given point in the register. 

For example, in implementation (1), if we wished to insert four characters, 

we could do so (on the base machine) by shifting the information right 

four places and then inserting the four characters. By calling the 

commands proposed, the base machine would probably perform four one place 

shifts instead of the single four place shift. 

At this point there appear to be three fundamentally distinct 

solutions to this design problem. Each has advantages and disadvantages 

and we are unable to make a general choice among them. 

1. A more sophisticated implementation. The word "probably" occurs 

in the above paragraph because there do exist possible imple

mentations which would not incur the loss of efficiency described. 

For example, "Insert" might be implemented so that it would not 

actually perform the insertions in the basic data structure 



until a call was made to insert at a different point. In 

"this way the module could "store" commands until it had enough 

information to determine the most efficient way to perform 

the insertion series. Deletes are also possible in this way. 

2. String parameters. We could modify the routines defined so 

that they accepted strings as parameters. In this way the 

insertion of a string could be specified as a single operation. 

3. Use of "open". We could add an "open" instruction which would 

essentially mark a place in our register. Subsequent insert 

and delete operations would have the marked place as their 

implicit positional parameter. Modifications of the funda

mental data structure could be postponed until a "close" 

command or another call of "open". 

The first solution forces the module to make decisions which might 

not pay off. For example, such an implementation would be relatively 

slow if used for random insertions of single characters. The primary 

advantage of the first solution is that it has the same specification 

as the earlier solutions so that one could freely choose between a simple 

or- a sophisticated implementation without changing the rest of the system. 

The second solution's primary disadvantage is that it requires a 

more complex interface between the module and the rest of the system. 

Some format for the passing of string parameters must be agreed on. This 

is undesirable from the point of view of [9]. It might also result in 

a great deal of excess computation being done since strings might be 

assembled twice; once in the module and once in the parameter format. 

A good implementation in this direction is not impossible, but it 

certainly is difficult. 
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The third solution offers the greatest efficiency potential, but it 

is a little more revealing of internal structure. In a sense, this solu

tion shifts the burden assumed by the module in solution (1) to the program 

which uses the module. Although all the solutions have situations in which 

they would be appropriate, this is probably the best "general" solution. 

The above discussion permits us to discuss a fundamental "tradeoff" 

which exists between transparency and flexibility of a design. In the 

above examples we made the point that the lack of transparency intro

duced was true for all reasonable implementations of the proposed design. 

There are, however, situations in which a proposed virtual machine would 

be adequately transparent for some base machines, but would have a distinct 

loss of transparency for others. A design which would increase the trans

parency for one machine may pose great implementation difficulties or 

inefficiencies for another base machine. We can offer no better advice 

than that the designer must be alert for such situations and be prepared 

to make a difficult decision. 

A HARDWARE EXAMPLE 

As an example of a loss of transparency at the hardware level con

sider the HP 2116. The HP 2116 is a 16-bit, general purpose minicomputer. 

A simplified block diagram is shown in Fig. 6. The HP 2116 contains six 

registers: memory buffer (MB), memory address (MA), program counter (P), 

two accumulators or general purpose registers (A and B ) , and an instruc

tion register (I). 

The read/write memory cycle is divided into eight minor cycles. 

In each minor cycle one or more micro-operations can be performed. For 



Timing Read/ 
write 

Function 

Store 

MA 
Decoder 

Memory 

T Bus 

MB 

to MA 

CMZZZ 

33 

R Bus 

S Bus 

KEY A,B General purpose registers I Instruction Register 
P Program counter ALU Arithmetic and Logic Unit 

MA Memory Address Register — 16 bit wide data or control path 
MB Memory Buffer Register ^ > 16 bit vector AND 

Fig. 6. Simplified block diagram for the HP 2116. 
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example, the A register can be read to the R bus during one minor cycle. 

A partial list of the micro-operations which can be performed in a minor 

cycle is given in ISP notation in Table 1 [15]. 

To see how these micro-operations may be combined to form a machine 

instruction consider the timing diagram for the RAL (rotate A register 

left one bit) shown in Fig. 7. 

The ISP code describes the RAL instruction execution as follows: 

RAL ~* ( 

TO: (MB <- 0) ; next 

T1: (I 0) ; next 

T2: (I «- MB<15:10» ; next 

T3: (R^Bus <- A) ; next 

(T«Bus «- R^Bus X 2) ; next 

(A «- TJSus) ; next 

T6: (R^Bus «- P) ; (SJBus 1); next 

(T J u s «- R-Bus + S^Bus) ; next 

(P *-TU3us)) 

The base machine for the HP 2116 can perform a combination of 

the micro-operations listed in Table 1 during one minor cycle. Eight 

minor cycles can be "stacked" together to form a machine instruction. 

Note, however, there are some physical limitations imposed by the 

structure of the base machine . First, the data read from memory 

during the current memory cycle isn't available until half way through 

T2. This effectively limits instruction execution to T3-T7. Also for 
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Table 1. A partial list of micro-operations for the HP 2116 

Read Micro-operations 
SuBus MB 
S J u s - MA 
R J u s - P 
R^Bus - A 
R^Bus - B 

Store Micro-operations 
MB «- T^Bus 
MA <- T ^ u s 
P <- TJJus 
A - Tu^Bus 
B +- T J u s 

Function 
T J u s *- R J u s A S J B u s 

T u B u s <- R J u s V SuBus 

T J u s - RyBus + S ^ u s 

TuBus «- RuBus X 2 
T^Bus *- R^Bus / 2 



Tl 1 2 T3 T4 T5 T6 T7 

(I<-0) ( I A B < 1 5 : 1 0 > ) (RLUBUS<-A) ; n e x t (R*Bus<-P) ; 
( T U J B U S < - * U * B U S X 2 ) ; n e x t (S.-JBUS<-1) ; n e x t 
(A«-TJBus) (T.-iBus<-R*Bus+S JBus) 

(P<-TJ3us) 

Fig. 7. The timing diagram for rotation of A register. 
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data to be entered into memory it has to be in the MB by the middle of T3. 

The bus structure also limits some operations. For example, the A and B 

registers cannot be used during the same minor cycle because they both are 

connected to the R Bus. Finally some sequence of operations might be 

essentially a no-operation (NOP) such as ((RuBus «- A) next; 

(TJus «- RuBus A SoBus)). Since there is no store operation the A 

register remains unchanged. 

When we look at the instruction code provided to the user we find 

that some of the micro-operation sequences which were possible at the 

base machine level cannot be obtained by sequences of machine instructions. 

Consider for example, the shift-rotate instruction group. In 

addition to the restrictions imposed by the base machine structure the 

following rules apply to all instructions in the group: 

1. Minor Cycles T3, T4, T5 are used for instruction execution. 

The other minor cycles are used for housekeeping chores such 

as instruction decode, incrementing program counter, etc. 

2. All shifts and rotates take place in T3 and T5. 

3. All skip conditions are checked during T4. If the skip 

condition is met a flag is set so that two is added, instead 

«*f one, during the update of the program counter. 

Since the machine instruction set allows at most two one bit shifts per 

instruction, two machine instructions are required to perform a multiply 

by eight. The base machine can perform the multiply by eight in one 



machine instruction as indicated by the following ISP. 

RAL8 -» ( 

TO: (MB 0) ; next 

Tl : (I .- 0) ; next 

T2: (I ^ M B < 1 5 ; 1 0 » ; next 

T3: (R^Bus A) ; next 

(TJBus <- Rt^Bus X 2) j next 

(A «- TJBus) ; next 

T4: (RJBus «- A) ; next 

(T^Bus «- R JBus X 2); next 

(A «- TJJus) ; next 

T5: (R^Bus «- A) ; next 

(T^Bus «- R-Bus X 2) ; next 

(A T^us) ; next 

T6: (R_£us <-P) ; (S^Bus «- 1); next 

(T^us f- RuBus + SuBus) ; next 

(P TJ5us)) 

As another example of a loss of transparency consider a memory 

reference instruction. The instruction in Fig. 7 was a register reference 

instruction and could be executed in one major cycle time. In contrast, 

a memory reference instruction requires at least two major cycle times: 

the first to fetch the instruction, the second to fetch the operand. 

During the instruction fetch major cycle of every memory reference 

instruction the address portion of the memory word is loaded into the 

memory address register. This can occur any time after T2 when the 



instruction is known to be a memory reference instruction. During this 

time a predesignated register could be added to the address portion of 

the memory reference instruction. Thus base-displacement (using one of 

the two accumulator registers as a base register) or relative addressing 

(using the program counter as the added register) could be performed by 

the base m a c h i n e . The ISP for the fetch portion of a memory reference 

instruction using base-displacejnent addressing is as follows. 

Fetch -> ( 

TO: (MB <- 0) ; next 

Tl: (I <- 0) ; next 

T2: (I <-MB<15:10>) ; next 

T3: (RJBus <- A) ; (St^Bus <- MB<9: 0>) ; next 

(TtJBus *- RuJBus + SUJBUS) ; next 

(MA <- T L A B U S ) ) 

Whereas the multiply by eight sequence of micro-operations would 

be relatively cheap to add to the machine language level machine (add 

some extra decoding to select an unused bit pattern as the op-code) the 

cost of enhanced addressing modes may be higher. An alternate design 

using the same base machine might use a limited memory reference class 

of instruction (e.g., Load, Store) with enhanced addressing modes and 

a large class of register reference operations. Yet another design would 

use double words for memory reference instructions. The first word 

could contain the op-code and addressing information, the second the 

address portion. It is not clear which of these three virtual machine 

is more desirable. 
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AN UNSOLVED TRANSPARENCY PROBLEM FROM THE OPERATING SYSTEM AREA 

The following example is a problem which we consider to be an 

important unsolved research problem. 

One of the most difficult items in the programming of an operating 

system is the coordination and synchronization of many concurrent activ

ities. The handling of interrupts (the hardware device available for 

coordinating concurrent activities) is very difficult for a programmer 

and likely to introduce errors. For this reason, several operating 

system designers have introduced an abstract machine for which interrupts 

no longer exist. Instead, the machines are provided with "process 

synchronization primitives" which can be used to allow synchronization 

and communication between several cooperating processes which are, at 

least conceptually, operating asynchronously and in parallel. Among 

the better known of these are those of Dijkstra [1,10], Saltzer (11], 

and P. B. Hansen [12, 13], If all process synchronization at all levels 

(except the lowest which implements the primitives) to be handled in 

terms of the primitives, their transparency is an extremely important 

issue. The loss of any of the fundamental abilities to coordinate 

concurrent activities would seriously interfere with the usefulness of 

the operating system. 

It is difficult to make a precise determination of the trans

parency of such primitives because we do not have a precise expression 

of the essential capabilities of the base machine. We can, however, 

discuss two of the mentioned primitive systems with respect to a 

"typical" interrupt system. For both cases some lack of transparency 
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can be shown, but the question of "undesirable" lack of transparency 

remains a matter of opinion. 

Consider first the following situation: We wish to have two 

cooperating administrative units operating in parallel at least part 

of the time. One of them is primarily computation and occasionally 

determines that it needs certain records from the disk. Fortunately, 

it determines the name of the record it needs well in advance of the 

time that it must have the record in order to continue. It sometimes 

determines the names of many records (e.g., 10 or 12) simultaneously. In 

those cases it must process the records one at a time (an error would be 

introduced if two were processed at once), but the order in which they 

are processed is irrelevant. The other process (or perhaps a group of 

processes) can care for the finding of the records on the disk and 

bringing them to core. The computational process will proceed until 

it needs one of the records requested, and if it is not available, will 

then wait for it. The disk handling process or processes should bring 

the records to core in an order unpredictable by the computational process. 

For optimum use of processing resources, etc., we should like to see the 

computational process send one message to the others with the names of the 

requested processes but receive a "signal" as each record arrives so that 

it will not have to wait for all the records to arrive before beginning 

its work. 

On any reasonable base machine it would be possible to set up such 

signaling (using the primitives from the T.H.E. system, for example). 
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Using vthe primitives used by Hansen and his colleagues in the RC4000 

system [12] we cannot set up such conventions. That system has a 

restriction on interprocess communication so that there is a reply 

for every message (1:1). In this way the computational process must 

either send 12 messages or wait for a single reply. (An even more expen

sive possibility is to send one message, wait for reply, then receive 12 

messages and send 12 replies.). The fact that there is a lack of trans

parency is clear; whether, or not it is an undesirable one is a matter of 

opinion. Hansen has stated [14] that the restriction was introduced as 

a means of detecting certain common errors and that the restriction was 

not significant in the situations for which the system was intended. 

Another lack of transparency in [12] results from a decision to 

transmit an eight character message with each synchronization signal. 

Thus sequences on the base machine with simply synchronization but with

out such a message are not available through the virtual machine or 

nucleus. This was a decision based on knowledge that, in the intended 

application areas, synchronization without communication of a message 

tt>uld not be needed. Apparently the system was not intended to be able 

to handle teletype communication on a character at a time basis at the 

nucleus level. It would be unfortunate if each character arriving were 

handled with an eight character message and similar reply; some lower 

level mechanism must be used. 

It is interesting to note that the primitives used by Dijkstra in 

T.H.E. do not have this particular lack of transparency. From another 

point of view it is possible to make certain programming errors with 
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those primitives that would be detected by the RC4000 system nucleus [14]. 

The authors of this paper believe the transparency of Dijkstra's 

primitives is an open question; in fact, it is a question which requires 

careful definition. We have seen statements of the problem which would 

yield a negative answer [16]. On closer investigation, it appeared that 

the statement of the problem eliminated solutions which would be acceptable 

on practical grounds [17]. The-heart of the difficulty lies in our ability to 

reassign operating system tasks among processes (e.g., to increase the 

number of processes) to avoid an apparent limitation of the primitive 

scheme. Since we abstract from the concept of interrupt, supply the 

synchronizing primitives, and introduce the concept of process simul

taneously, the set of achievable computations is very hard to characterize. 

From a practical point of view, the ability to stop a process which 

is not executing a synchronization primitive seems available on the base 

machine, seems essential, and seems to be missing with Dijkstra's 

primitives. All attempts to go beyond this statement have failed to 

date. This example is included in the hope that others will see fit to 

investigate it further. 

"SUGGESTIVE TRANSPARENCY" 

One example of a lack of transparency which resulted in a perform

ance difficulty occurred in the design of virtual memory mechanisms. 

Usually the virtual machine provided no means of indicating to the 

mechanism that a segment contained useless information. As a result, 
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many old save areas and similar useless items were moved between core and 

backup store. 

This is one of many situations in which a weaker form of trans

parency is important. It is often necessary that a mechanism be able 

to receive suggestions about certain base machine sequences although the 

virtual machine user is not able to cause those sequences. The user of 

a virtual memory mechanism should be able to suggest removal of a segment 

by indicating that he will not need it again. He must not be able to 

cause such removal since there may be other users of the segment or the 

optimal time for removal may not occur until later. 

"MISLEADING TRANSPARENCY" 

A related problem occurs when the design of the virtual machine 

suggests that certain virtual machine programs are efficient although 

they are actually expensive on the base machine. A virtual memory 

mechanism which simulates a very large random access memory is an example 

of such a design. To use such a virtual machine efficiently one must 

have certain additional information. It is often possible and prefer

able to design a virtual machine in which the expensive sequences are 

either impossible or difficult to evoke. 

OUTSIDE IN AND BOTTOM UP PROCEDURES IN COMBINATION 

Advocation of design from the outside in is based on the engineering 

rule that one should not begin to design an object that is not fully 
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specified. It is difficult to reject this precept. Whenever one begins 

to build an object with only a muddy view of what it will be, one gets a 

muddy object. 

The difficulties with the outside in approach come because of a 

number of peculiar characteristics of software engineering. 

1. The economics of the industry are such that one is seldom 

designing a single object; we are usually designing a family 

of related objects. (Only a proper subset of that family will 

actually ever exist.) 

2. Because of our limited experience with man-machine symbiosis 

it is often impossible to specify the outside before construc

tion and not want to change it afterwards. As was pointed out 

in [7] the outside in procedure often adds difficulties in 

such a change. 

In software we begin with a specification of the family of objects 

one wishes to construct. The technique described in [18] allows one to 

describe parameterized families of objects, but the members must be 

highly similar items. To describe a broad family of objects we must 

describe a set of lower level mechanisms which will be common to all 

members. The family being designed consists of all possible "tops" for 

that lower level structure. It is at this point that the concept of 

transparency becomes important. By use of this concept we may assure our

selves that the class of tops which can be built upon the lower level 

structure includes the family of objects that we set out to design. 
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