
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON THE NUMBER OF MULTIPLICATIONS
FOR THE EVALUATION OF A POLYNOMIAL

AND SOME OF ITS DERIVATIVES

Mary Shaw
J.F. Traub

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

August 7, 1972

This work was supported in part by the National Science
Foundation under Grant GJ-32111 and the Office of Naval Research
under Contract N00014-67-A-0314-001 0, NR 044-422. Part of the
work was done while J.F. Traub was a Visiting Scientist at the
National Center for Atmospheric Research, which is sponsored by
the National Science Foundation.

CONTENTS

1. Introduction 1

2. An Algorithm for Calculating All Derivatives in a

Linear Number of Multiplications 3

3. A Family of Splitting Algorithms 4

4« Arithmetic Operation Counts • 3

5. Special Cases 9

6. Optimality 12

7. Applications 16
References 18

1. INTRODUCTION

Some of the recent work in computational complexity has dealt with

the number of arithmetic operations needed to evaluate a polynomial or a

polynomial and its first derivative [B072], [MU71], [PA71]. Here we

consider the evaluation of a polynomial and its first m derivatives and,

in particular, the calculation of all the derivatives.

Let P denote a polynomial of degree n. Define a normalized derivative

as P^/il. The normalized derivatives are commonly needed for applications

(Section 7). When we refer to derivatives in this paper we always mean

normalized derivatives. We consider P itself to be the zeroth derivative P ^ .

All arithmetic operations are counted. A multiplication or division

is denoted by M/D. Preconditioning is not permitted.

Prior to the new results reported here, the best algorithm for computing

all the derivatives was the iterated use of Horner's rule (synthetic

division), which requires ̂ n(n+l) multiplications and the same number of

additions. (The iterated Horner's rule is defined in Example II of Section 5).

We give a new algorithm which computes all the derivatives of a

polynomial in 3n-2 M/D. Unlike many algorithms which reduce the number of

multiplications required to calculate some function, this algorithm is

does not increase the number of additions. If n is odd, we give an

algorithm (Example VI of Section 5> which computes all derivatives in

3n-3 M/D.

Both these algorithms belong to a family of algorithms for computing

the first m derivatives. All the algorithms in the family require the

same number of additions as the iterated Horner's rule for the first m

derivatives.

-2-

Since n is the optimal number of multiplications for evaluating P

alone, 3n-2 M/D is within a constant factor of optimality. Although

we have no optimality results for derivatives, we can report related

optimality results. We show that the calculation of either a^ 1, i=1,...,n

or (x) /i!, i=0,...,n in 2n-7 multiplications is optimal.

We summarize the contents of the paper: in Section 2 we present the

algorithm for computing all derivatives in 3n-2 M/D. A family of splitting

algorithms for computing the first m derivatives and arithmetic operation

counts for these algorithms are given in the next two sections. In Section

V we obtain three known algorithms, two new algorithms, and one algorithm

very similar to a recently discovered technique as special cases. Optimality

results are presented in Section 6. We close by giving

applications of these algorithms.

2. AN ALGORITHM FOR CALCULATING ALL DERIVATIVES IN A LINEAR NUMBER OF

MULTIPLICATIONS

In this section we exhibit an algorithm for computing a polynomial

and all its derivatives at a point x in a number of M/D which is linear

in the degree of the polynomial. Let

P(t) = T. a, ,t i

i=0 n _ i

Algorithm
-1 n-i-1 . n - -
i ai + 1 X 1 1 ,...,n-l

= a 0x n, j=0,1,...,n

= T J '] + T j - r j=0,l,...,n-1, i=j+1,...,n

This is a special case of a one-parameter family of algorithms presented

in the next section. We show there that

Tn = p (j 1 , (x) x j, j = 0,l,...,n-1

2 n

Since x ,...,x may be obtained in n-1 multiplications while

a^x11,..., a
n i x m a y b e obtained in n multiplications, the may be

obtained in 2n-1 multiplications. We show in Section 6 that this is

optimal. The derivatives (x)/j !, j=1 ,. . . ,n-l may then be obtained

in n-1 divisions. Since (x) /n! = a*, it need not be computed. Thus

this algorithm yields all the normalized derivatives in 3n-2 M/D.

Consider the matrix of with i and j indicating row and column

index. The derivatives may be calculated in increasing order by calculating

the matrix by columns or in decreasing order by calculating the matrix by

diagonals. These two variations have identical roundoff properties, since

they produce the same chains of intermediate results. No rounding error

analysis has yet been performed.

3. A FAMILY OF SPLITTING ALGORITHMS

We study a family of algorithms for computing the first m derivatives

of a polynomial. Assume, without loss of generality, that

n+1 = p q

Define

s(j) = (n-j) mod q , j-0,l,...,n

Algorithm

(3.1) T " 1 = a i + 1 x B (i + 1) , 1=0,1,...,n-1

(3.2) TJ = a 0 x s (0) , j=0,l,.,.,m

(3.3) T J = T ^ J + ^_iX»(i-J)-"(i-J-D+l , j = 0 m, i=j+l,...,n

We show that this recurrence may be used to compute the derivatives.

The key is the following theorem. Let C(k,j) denote binomial coefficients.

Theorem

(3.4) T | = x s (1 _ : i) ^ = jC(k,j)a i - kx k~ j

Proof In the triangle where they are defined, the T | are uniquely determined

by the starting values (3.1), (3.2) and the recurrence relation (3.3). We

need only verify that the T J given by (3.4) satisfy the starting conditions

and the recurrence.
The starting conditions are satisfied since

T " 1 = x ^ ^ ^ j ^ C C k . - D a ^ x ^ x ^ ^ ^ a . ^ , since C(-1,-1>-1. C(k,-l)-0

Tj - / (°) | c (k l J) a] / W ^ 0

The recurrence is satisfied since

i . , i-1 k+1 - j _j j-1 s(l-j) £ k-j £ n 1
V T i - r x LktjC(k'J)ai-kx " k=j-fMlt,J"i;ai-i-kx

=xs(i-j)+iyc(k,j)ai_1_kxk^

8(1-J) -9<i-j-l)+l_J
=x i 1 '

which completes the proof.

Corollary

T j = Cx) j mod q
n ~ j! X

Proof

Tn = x S (n" J)k=j C < k' J) an-k x k" J

Using the properties of s(j), the recurrence may be written as

^ = a i + l x S (1 + 1) * i=0,l,...,n-l

TJ - a 0x q _ 1 , j-0,l,...,m

i - * i • • « - i > - •

Ti = î-l + ^l-l** > m o d q = °» J-0,...,m, l-j+l,...,n

The following pseudo-Algol program implements the algorithm. Assume

still that n+1 = p q. Further let

m = r q + s

where r and s are obtained by division of m by q. In the interest of

clarity, an n+2 by m+2 element array is used to develop the derivatives.

It is clearly possible to rewrite the program to use only about n storage

locations.

begin

[x is the point of evaluation (x^O), a(i) are coefficients]

[x(i) will be x 1, T(i,j) will be T J]

x(0) 1

x(1) <-x

for ± - 2,3, q

x(i) «- x * x(i-l)

[powers of x require q-1 multiplications]

for i = 0,q, 2q, (p-l)*q

begin

for k = 0, 1, q-2

T(i+k-l,-l) *• a(i+k)*x(q-k-l)

[inner loop requires q-1 multiplications each time]

T(i+q-2,-l) <- aCi+q-1)

[multiplication by coefficients requires total of p*(q-l) multiplications]

end

[entire initialization requires (p+1)(q-1) multiplications]

for j = 0,1,

begin

T(j,j) - T(j-l.j-l)

for i = j+1, j+2 n

if (i-j) mod q = 0 then

T(i,j) <• T(i-l,j-l) + T(i-l,j) * x(q)

else

T(i,j) + T(i-l.j-l) + T(i-l,j)

end

-7-

[recurrence requires (nri-1) (n-£ m) additions and (nri-1) (p-r-1)+~ q-r(r+1)

multiplications]

[T(n,J) is now x j m ° d q P(j)(x)/j!]

for j = 0,q, 2q, . . . , (r-1)*q

for k = 1,2,..., q-1

T(n,j+k) «-T(n,j+k)/x(k)

for j = 1,2 s

T(n,r*q+j) «- T(n,r*q+j) /x(j)

[m-r divisions used to obtain normalized derivatives]

end

-8¬

4. ARITHMETIC OPERATION COUNTS

Recall that we wish to calculate the first m derivatives of a polynomial

of degree n. As above, let

n + 1 = p q , m = r q + s

where r and s are obtained by division of m by q. It can be shown that

the family of algorithms uses (m+l)(n-lm) additions, independent of the

parameter q. It uses the following number of M/D:

(p+l)(q-1) multiplications for initialization,

(m+l)(p-r-1) +~ q r(r+1) multiplications for the recurrence,

m - r divisions to calculate P U)(x)/j!
Let f (q) denote the total number of M/D required to calculate the first m,n
m derivatives of a polynomial of degree n if the splitting q is used. Then

(4.1) f (q) = n-1 + q + m(n+1) - (ra+2)r +]r q r(r+l) m,n v - 2
q

The algorithm can be slightly improved in two cases. If all n

derivatives are required, P(n^(x)/n! = a Q and it is not necessary to compute

it from x M —nl ' S O ° n e <*^ v^ s^ o n ^ s s a v e d - If q = n + 1 , it is not

necessary to compute , so one multiplication is saved. These special
cases are not reflected in the function f (q) . m,n

Given m and n, the best choice of q can be determined by minimizing

f (q) subject to the constraint that q be an integer. Analysis of best m,n
splittings as a function of m and n will be reported in a future paper.

5. SPECIAL CASES

By choosing particular values of m and q, we specialize the algorithm

and operation count formula of the last two. sections. The first three

algorithms are known and are included for comparison. The fourth algorithm

is very similar to an algorithm discovered by Munro [MU71J. The last two

algorithms are new.

I. m - 0, q = 1

- a... , i-0,1,...,n-l i i+l

0 0

Ti " T i \ + Ti-1 x' 1 = 1'•••• n

P(x) = T° n
This is Horner's rule and requires n additions and n multiplications.

II. m = n, q = 1

T" 1 = a 1 + 1 , i-0,1,...,n-l

TJ - a Q , j=0,l,...,n

TJ = T|"l + T J _ i X f j-0,l.....n-l, i-j+l,...,n

^y® = , j-0.1,...,a

This is the iterated Horner's rule and requires 1 n (n+1) additions and

ln(n+l) multiplications.

III. m = 0, q - n + 1
-1 n-i-1 = ^ i + 1 x , i-0,1,...,n-l

„0 n
TQ - â x

Ti = Ti-1 + Ti-1 ' 1 = 1 » - " > n

P(x) - T° n
This is the "naive" way of evaluating a polynomial by calculating all

the monomial terms first. The general specification of the algorithm

requires n additions and 2n multiplications; however, in this case
n+1 x x is never used, so 2n-l multiplications suffice.

IV. m = 1, q - /ri+T = a

T" 1 = a i + 1 x s (± + 1) » i - 0,1....,n-1

T | - TJ:j + TJ^a-^-sCi-j-iHi t j s, 0 j l > i = j + 1 > . . . , n

^ > - x " ^ , J-0,1
p(j)

The recurrence may also be written as

= T̂ lJ + T^x" , (i-j) mod a - 0

This is a new algorithm for computing P(x) and P'(x). It requires 2n-l

additions and n-1 + 2 /n+I M/D.

For simplicity of exposition, we have assumed that n+1 is the square

of an integer. If this is not the case, q may be taken as approximately

vn+T.

The calculation of P(x) and P'(x) by the iterated Horner's rule

requires 2n-l additions and 2n-l multiplications. Munro [MD71] gives

an algorithm for computing P and P' which he asserts requires 2n + 2Vn"

additions and n + 2v£" multiplications. Our algorithm uses about the

3

-Ti

sane number of multiplications but fewer additions. Our algorithm is

very similar to Munro's, but we have not performed a detailed analysis

of the differences.

V. m £ n » q * n + l

_-l n-i-1 . „ . . T^ = a £ + i x » i"0,l,...,n-l

= a Qx n , j=0,l,...,m

Ti = ^-l + ^-l * J"0.1'""111' i-j+l.....n

p (^ (x) = x~V , j-0,1 m

algorithm requires (m+l)(n-lm) additions. The predicted number of This
M/D is f (n+1) - 2n+m, but x n + 1 is never used, so 2n+m-l M/D will suffice. m,n
Further, if m - n, P (n)/n! = a Q so we can obtain all n derivatives in

In (n+D additions and 3n-2 M/D. This special case was presented in

Section 2.

VI. Let n be odd, m = n, q = 1 (n+1)
This algorithm calculates all derivatives in In (n+1) additions and

3n-3 M/D.

6. OPTIMALITY

We shall prove that the calculation of the x * P * (x) / j !,, j=0 ,.. . ,n

in 2n-1 multiplications, as done by the algorithm of Section 2, optimizes

the number of multiplications. Before proving this result we summarize

what is known with respect to optimality

If m = 0, Horner's rule (Example I of Section 5) optimizes both

additions and multiplications. Furthermore, Borodin [B071] has shown it

is the only algorithm which optimizes additions and multiplications.

If m = 1 , the new algorithm given in Example IV of Section 5 requires

n-1 + iVrtt-l M / D . Munro's algorithm requires about the same number of M / D .

These are best algorithms known for P and P".

If m = n, the new algorithms given in Examples V and V I , which

require 3n-2 M/D and 3n-3 M/D (for n odd) , respectively, are the best

algorithms known.

All the splittings require (nri-1) (n--j m) additions. For m = 0, this

reduces to n additions which is known to be optimal. For m = 1, this

reduces to 2n-l additions which Kirkpatrick [KI71] has shown to be optimal.

We now consider the optimality of the evaluation of x J P * j ; (x) / j ! ,

j=0,1,...,n, with respect to multiplication. First we shall require a

result which is interesting in its own right. We use the notation S(V)

to denote the degree of the polynomial V.

Theorem

Given a number x and n arbitrary numbers a*, a*, the computation

of a-x, a x 1 1 using multiplications and additions requires at least

2n-l multiplications. Furthermore, if only 2n-1 multiplications are used,

it is impossible to evaluate a^, a x n, Q(x) , for any polynomial

Proof

The proof is by induction on n. The theorem is certainly true for

n - 1 .

Assume the theorem has been proven for n = L. Let aT(x) denote the
L

set a,x a Tx . We shall first show that 2L+1 multiplications are

required to evaluate a T (x) . By the inductive hypothesis 2L-1
L+l r

multiplications are not enough. We now show that 2L multiplications are

not enough. The most general form involving a L +^ which can be built

without multiplications involving aT,, is Ka_,, + U(x) where K is an
L+l L+l

integer and U(x) is a polynomial which is independent of a, Let
v T.+1

(6.1) T(x) = i ^ L + 1 + Ux(x)] [K 2 a L + 1 + U2(x)]
be the first multiplication in the chain of operations leading to

L+l
aL+l 3C • 'JJh 6T1

(6.2) T(x) = C + a L + 1Z(x) + W(x)

where

C = hh^+l ' Z (x) = K l U 2 C x) + K 2
U l (x) ' W (x) = V x) U 2 (x)

, L(x), Z(x), T(x) requires 2L+1 multiplications. If 3 (Z) < L+l, then

If 9(2)£L+1, then by the inductive assumption, the evaluation of

the evaluation of cL(x) , T(x) requires 2L multiplications and another

multiplication is required to evaluate a L f l x L f l . Hence we have shown

that the evaluation of a L + 1(x) requires at least 2L+1 multiplications.

Thus with 2L+1 multiplications it is impossible to evaluate

a ^ x 1 * 1 , Q(x) i

the proof and the theorem.

a L + 1 x L + 1 , Q(x) for any polynomial Q 3 3 (Q) > L+1. This completes

Theorem
The evaluation of x j P (j) (x)/.j ! , .1-0,1, ,...n, requires at least

2n-l multiplications.

Suppose now that exactly 2L+1 multiplications are used. The induction

is complete if we show it is then impossible to evaluate cr L + 1(x), Q(x),

for any polynomial Q33(Q) > L+1. We use the notation (6.1), (6.2).

We consider three cases depending on 3(Z).

Case 1. a(Z) > L+1. Then the evaluation of a L(x), Z(x), T(x) requires

2L+1 multiplications. T(x) has a term in a ^ ^ , u > L+1. To extract

aJj¥1xJ*'1 from T(x) requires another polynomial depending on a^x 1 1 which

is impossible.

Case 2. 3(Z) = L+1. Then the evaluation of a (x), Z(x), T(x) requires

2L+1 multiplications. If 3(W) = L+1, no polynomial of degree greater than

L+1 has been produced. If 3(W) = u > L+1, another polynomial of degree y

must be available and this is impossible.

Case 3. 3(Z) = u < L+1. Then the evaluation of a (x), T(x), requires

2L multiplications. We may write

T(x) = a L + 1 x y + V(x) + W(x)

where 3(V) < u. If 3(W) * L+1 it is impossible to evaluate a polynomial

of degree greater than L+1 and extract a^x 1" 1" 1 with just one more multip

lication. If 9(W) > L+1 it is impossible to produce a^x1"*"1 and extract

it with just one more multiplication.

-15-

Proof

By the previous theorem, the calculation of a x n _ : 1, j=0,l n-1

requires 2n-l multiplications. The x j P (^ (x) /j ! can be expressed in terms

of the a^x""^ as a triangular linear system with integer coefficients,

with unity multiplying the a^ a~^- T n i s system can be solved for the

a^x n _ J as linear combinations of the x-V^(x)/j! with integer
coefficients. If the x^P^ (x) / j ? could be calculated with less than

2n-l multiplications, then so could the a^x"-^ which contradicts the

previous theorem and completes the proof.

7. APPLICATIONS

Polynomial derivatives often occur in applications of Taylor series,

which, of course, involve normalized derivatives.

As an example we consider the problem of shifting the zeros of a

polynomial, given its coefficients. Let P(t) = I a^ i t i have zeros
i-0

X . Then
V ' - - > n

n P (l) 6 0 i Q(t) = P(t+x) = I , W t 1

i=0
has zeros X^x Xn-x.

Shifting of zeros is a key ingredient in what is called Horner's

method for solving polynomial equations. Horner s name is attached to

three algorithms: nested evaluation of polynomials, calculation of all

derivatives by the iterated "Horner's rule", and a method for solving

polynomial equations. Ironically, he was anticipated in each of these

by other workers (Traub [TR66, pp. 298-299]).

Horner's method for solving polynomial equations is a digit-at-a-time

technique for calculating polynomial zeros. Although Horner's method is no

longer competitive with modern zero finding algorithms, zero shifting is

still a useful technique. Stewart [ST71] has performed an analysis of the

effect of rounding errors in the iterated Horner's rule and concludes that
•

zeros near the shift are not greatly perturbed. No rounding error analysis
has yet been performed on the new algorithms of this paper.

i (i)
Finally we observe that sometimes it is the x Jp J (x)/jl rather than

the derivatives which are needed. Let
s>± = x i P (i) (X)

IT

- 1 7 -

Many one-point iterations (Traub [TR64, Chapter 5]) can be written in terms

of the v . Thus Newton iteration is

$ = x ^

and the third order Iteration of Euler type is
2

ACKNOWLEDGEMENT

We would like to thank A, Cline, National Center for Atmospheric Research,

for the ideas underlying the proof of the first theorem of Section 6.

- 1 8 -

REFERENCES

[B071] Borodin, A., Horner's Rule is Uniquely Optimal. Theory of
Machines and Computations, edited by Kohavi and Paz, 1971,
pp. 45-58.

[B072] Borodin, A., Computational Complexity - Theory and Practice.
To appear in Currents in the Theory of Computing, edited by
A. Aho, Prentice-Hall, 1972.

[KI71] Kirkpatrick, D., On the Additions Necessary to Compute
Certain Functions. M.Sc. Thesis, Department of Computer
Science, University of Toronto, 1971.

[MU71] Munro, J. I., Some Results in the Study of Algorithms.
Technical Report 32, Department of Computer Science, University
of Toronto, 1971.

[PA71] Paterson, M.S. and Stockmeyer, L., Bounds on the Evaluation
Time for Rational Polynomials. IEEE Conference Record, Twelfth
Annual Symposium on Switching and Automata Theory, 1971,
pp. 140-143.

IST71J Stewart, G. W., Error Analysis of the Algorithm for Shifting
the Zeros of a Polynomial by Synthetic Division. Mathematics
of Computation, Vol. 25 (1971), pp. 135-139.

[TR64] Traub, J. F., Iterative Methods for the Solution of Equations.
Prentice-Hall, 1964.

[TR66] Traub, J. F., Associated Polynomials and Uniform Methods for
the Solution of Linear Problems. SIAM Review (8) 1966,
pp. 277-301.

Security Classification
D O C U M E N T C O N T R O L D A T A - R & D

(Security classification ot title, body ot abstract and indexing annotation must be entered when Ihe ovtrall report is elassilled)
I . O R I G I N A T I N G A C T I V I T Y (Corporate author)
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2«. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2b. G R O U P

S. R E P O R T T I T L E

ON THE NUMBER OF MULTIPLICATIONS FOR THE EVALUATION OF A POLYNOMIAL AND SOME OF
ITS DERIVATIVES

* . D E S C R I P T I V E N O T E S (Type of report and inclusive dales)
Scientific

. A U T H O R (S) (First
Final

s. A U T H O R (S) (First name, middle initial, last name)
Mary Shaw, J. F. Traub

6 . R E P O R T D A T E

August 7, 1972
a. C O N T R A C T O R G R A N

7a. T O T A L N O . O F P A G E S

21
76. N O . O F R E F S

8
ta, C O N T R A C T O R G R A N T N O .

N00014-67-A-0314-0010
M . O R I G I N A T O R ' S R E P O R T N U M B E R S)

b, P R O J E C T N O .

8b. O T H E R R E P O R T N O I S I (Any other numbers that may be assigned
this report)

1 0 . D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

I I . S U P P L E M E N T A R Y N O T E S

TECH OTHER
12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Office of Naval Research
Dept. of the Navy (Code 432)
Arlington, Va. 22217

1 3 . A B S T R A C T

Some recent work in computational complexity has dealt with the number of arith
metic operations needed to evaluate a polynomial or a polynomial and its first deriva-|
tive. Here we consider the evaluation of a polynomial and its first m derivatives
and, in particular, the calculation of all the derivatives.

We compute the normalized derivatives P (l)/i!; preconditioning is not allowed.
Prior to the new results reported here, the best algorithm for computing all the

derivatives was the iterated use of Horner's rule (synthetic division), which requires
%n(n+l) multiplications and the same number of additions.

We give a new algorithm which computes all the derivatives of a polynomial in
3n-2 multiplications or divisions (M/D). If n is odd, we give an algorithm which com
putes all the derivatives in 3n-3 M/D. Both these algorithms belong to a family of
algorithms for computing the first m derivatives. All the algorithms in the family re¬
quire the same number of additions as the iterated Horner's rule for the first m
derivatives.

Since n is the optimal number of multiplications for evaluating P alone, our
3n-2 M/D is within a constant factor of optimality. Although we have no optimality
results for derivatives, we report related optimality results. We show that the cal-
cuiation of either a ^ , 1=1,..., n or x^P w(x)/i!, 1=0,
tions is optimal.

, n in 2n-l multiplica-

D D ^ 1 4 7 3
Security Classification

