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ABSTRACT

The problem is tp ecaleulate a simple zero of 2 non-linear functiom f
by iteration. We exhibit a family of iterations of order Zﬂ“‘t which use n
evaluations of f and no derivative evaluarions, as well as a second family of
ite;ations of order Zn_] based on n-} evaluations of f and one of £f', In
particular, with four evaluations we construct an iteration of eighth order.
The best previous result for four evaluations was fifth order,

We prove that the optimal order of one general class of multipoint
iterations is Enhq and that an upper bound on the order of a muleipoint iteration

based on n evaluations of f (no derivativesa) isa En.

CONJECTURE. A multipgint iteration without memory based on n evalua-

. : n-1!
tiens has optimal order 2 .
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1. INTRODUCTION

We deal with iterations for calculating simple zerpos of a scalar
function £. This problem i3 a prototype for many non-linear numerical
praoblems {Traub [72]). WNewton-Raphson iteration is probably the mest
widelvy used algorichm for dealing with such problems. It is of second
order and requires the evaluation of f and f', that is, it uses two
evaluations, Conzider an fteration econsisting of two successive Newton-
Raphson iterates (composition of iterates). This iteration has fourth
order and vequires four evaluations, two of £ and two of £'. More gen-
erally an iteration composed of n Wewteon irerates Is of order 2" and re-
quires n evaluations of f and n evaluations of f', that is, ?n evaluations.

We shall show that an itera#tion of order Zn‘] may be constructed from
just n evaluations of £f. We exhibit a second type of iteration which re-
quires n-] evaluations of f and pne evaluation of £' to achieve order ZHqT.

In particular, with four evaluations we coastruct an iteration of
eighth order, The best previouz result {Traub [b64, p. 196]} for four
evaluations was fifth order,

Newton-Raphsen {teration is an example of a one-point iteration,

The basic aptimality theorem for cne-point iteration states that am amalytic
one-point iteration which is based on n evaluations is of order at most n.
(This theorem was first stated by Traub [61], (64, Section 5.47; we give

an improved proof hete.] We conjecture that a multipoint iteration based

on n evaluations has cptimal order 2n']. We prove that the optimal order

of one important family of mulecipoint iterations is 2“_] and that an upper

bound on the order of multipoint iteration based on n evaluations of f is




Zn. This upper bound is close to the conjectured optimal order of
2771,

To compare various algorithms, we must define efficiency measures
based on speed of convergence {order), cost of evaluating f and its
derivatives {(problem cost), and the cost of forming the iteration

(algorithm cost}. We analyze efficiency in another paper (Kung and Traub

[73]). We confine ourselves here to iterations without memory deferring

the analysis of iterations with memory to a future paper.

We summarize the results of this paper. The class of problems and
algorithms studied in this paper is defined in Section 2. Particular
families of iterations are defined in the next three sections. The opti-
mality theorem for one-point iterations is proven in Section 6. An opti-
mal order theorem for one general class of multipoint iterations and an
upper bound for the order of a second class are proven in the following
section. A general conjecture is stated in Section 8. Section 9 contains
a small numerical example,

Appendix I gives pseudo-Algol programs for forming two families of
multipoint iterations. The last appendix proves a theorem on where evalu-

ations of an iteration must be taken.
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2. DEFINITIONS
Weé define the ensemble of problems and algorithms., Let

D= {f|f is a real analytic function defined on an open interval If C R which con-

tains 4 simple zero e of £ and £' does not vanish on If.].

Let {} denote the set of functions ﬁ which maps every f € D to ﬁ(f}

with the following properties:

1. ﬁ{fj is a function mapping Iﬁ £ c If into Iﬂ ¢ for some open
x 3

subinterval Iﬁ £ containing O«

2. f&(f}(af} = -
) ) 0 .
3. There exists an open subinterval Iﬁ £ o Iﬁ containing o
] ’f

3

] — rd s » —_— u
such that if X < ﬁ\fjgxi) then fii x, = o whenever %y £ Iﬁ,f'

4, Let k, dU""’ be non-negative integers, For j=-T,...,k-1,

dk-l
0 1] j
let uj+1(yn;yT,...,yd +T;...;yi,---.yj )} be a function of

d.+1
i ]
1
T+ T (d+1) variables. For j=0,...,k-1, let
i=0

z, = uD{x},
2.1
-1 @y @)

2,4 = uj+|(x;f(zﬂ},...,f (zG);.,.;f(zj),...,f (zj)).

J
B(fI{x) 1s defined by

(2.2) B(E)(x) = 2.




The asszumption that f € D is needed for theorems dealing with a class
of iterg;ians. Any particular ﬁ can be applied to f having only & certain
number of derivatives.

In Appendix I1I, we show that for any ﬁ £ Q, if the function uo(x) in
(2.1) is contimuous, then uﬂfx) = % for all x., To simplify proofs in this

x for all x.

[}

paper we assume that ug,{x)

If ﬁ €0, ﬂ ia called an iterarion without memory, since if the sequence

‘{xi1 is generated by LI = ﬁ(f}(xi), LI is computed using information enly

4

&t rthe current point xi. In this paper we limit ourszelves to iterations with-

out mMemary.

We clagsify iterations without memory. If k {5 the non-negative integer

in (2.2), then we say ﬁ iz 4 k-point iteration., In particular, #f k=1,

we call P a one-point iteration and if k > 1 and the value of k is not impor-

tant, we call ﬁ a multipoint iteration, {Similar definitions of one-point

and multipoint iteraticn are given in Traub [61], [64, Seetion 1.227].)

If there exists p(f) such that for any f ¢ D,

PEYOD) =~ ap
— }P(ﬂ)f = 5(6,5)

g (%-o

exists for a constant S(g,f) and S(P,£) # 0 for at least one £ & D, then

ﬁ is said ro have order of convergence {(order) p(f}) and asymptotic error

constant S{d,£),
(i)

Let vi(ﬁ} denote the number of evaluations of f used to compute

ﬁ(f)(x). Then v{(f) = T vi(ﬁ) ig the total number of evaluations required
i=0
by ﬁ(f)(x) per step.




To simplify notation, we often use g, ﬁ, Py Vis V instead of o

ﬁ(f)(x), p(ﬁ), vi(ﬁ), v(ﬁ), if there is no ambiguity.

The following two examples illustrate the definitions.

Example 2.1. (Newton-Raphson Iteration)

N {¢)
BE G = x - Fs

This is a one-point iteration with v0=1, v]=1,v=2, and p=2,

Example 2,2,

z0 = x,
£(z)
Z1 T % £ zg ’
f(z,)f(z,.) f(z,)
1 0 0
PE)(x) =2, = 2z, - . — .
20 @t @)

This is a two-point iteration with v0=2, v,

Section 5.)

=1, v=3, and p=4.

f’

(See



3. A FAMILY OF ONE-POINT ITERATIQNS

For £ € D, let F be the inverse function to £. For every n, define

yj(f): I, ~ R, =1,...,n, as follows: y1(f)(x) = x and for o> 1,

1] -
B v = v © 6 + S et - P e

for j=1,...,n-1. Note that F(j)(f(x)) can be expressed in terms of

f(l)(x) for i=1,2,...,j. It is aeasy to show that

_ £(x)
Y2 T Y1 T o)

_ o fw [Ew]?
Y3 T Y2 'zf'(x)Lf'(x)_j .

The family Qyn] has been thoroughly studied (Traub [64, Section 5.11).

Its essential properties are summarized in

Theorem 3.1,

Let Vn be defined by (3.1)., Then for n> 1,

1. Y. € ), and Yy is 2 one-point iteration,

z, p(vh) = n,

3. vi(yn) =1, i=0,...,n-T, vi(yn) =0, i » n-1, Hence

v(yn) = N.

Thus v requires the evaluation of f and its first n-1 darivatives,
n
In Section 6 we shall show that, under a mild smoothness condition on
the iteration, every one-point iteration of order n requires the evaluation

of at least £ and its first n-1 derivatives.




4. A FAMILY OF MULTIPCINT ITERATIONS

iterations, ln}> which reguire

We construct a family of multipoint

no evaluation of derivatives of £, and

the evaluation cf f at n peints,

for which D™ ) =0 21\

For every n, define

ny

£):
V7 v, et sjre..

x and for n > 0,

as followa: {(£) {x)

x + 0f{x), 3 a neon-zero conatant

A £ (E) (a0)

TR

¢ LE) {x) - @.(0),

the inverse interpolatory polynomial for

for j=1,e..,n-1, where {(y) 1=

R That is, Q.{(y) is the polynomial of degree

£ at f0r (£)(x)), k=0, ..
« J

at most j such that

QjecE CcEXx)}) - vt (£} (x), k«0,....].

The if (£f), j=1 .. 0, are well defined if

{d4.2) t.(E}(I. ) e i
J o0
That (4.2) holds for I . sufficiently small will be part of the proof

of Thecorem 4.1..

It is easy teo show that



BECH R ECH)
KB I TR RN TR

o= b - f(¢0)f(*1) *]-ﬁﬂ ) #z—ﬁT
370 T EGy) - £ \EG) - £0) T ) - EGip )
A short pseudo-Algol program (Program 1) is given in Appendix I for computing
*n for m =2 4,
" Qur interest in the family of iterations {ﬁn} is due to the properties

proved in

Theorem 4,1,

Let #n be defined by (4,1). Then for n > 1,

1. *n € 4, and #n is an n-point iteration,

2. p(y) = 2“",

,3. Vﬂ{#n) = n, Vi{¢n} = D, i > 0, Hence V(wn) = n.

Proct.
We want ko show that, for £ £ D,

Y -y
(4.3) lim B = 8(4§_,£), n=1,2,...

n-1
L R

for constants S(#n,f}. The proof is by induction on n.

Since

Yooy

= 1 + BE' (),

lim
K—ry

(4.3) holds for n=1. Assume that (4.3) holds for n=1,...,m-1, From general

interpolatory iteration thecry (Traub [64, Chapter 4]), we know that




.4y 1 L (£)
. im =Y
i usn (wn-a) m
where
v () - L)
m

! (P (0} ™

and F is the inverse function of f. From (4.4) and the induction hypothesis,

b - lin v o by ; V-
-1 T (f -o) ° x-o

2" -
(x-&) Aty 0<n<m n T<n<m {X-&]Z

—

s

=2
|

Y (£} « O S{y ,f).
m 1sn<m n’

Hence S(ﬁm,f) = Ym(f) - I S(y_,f) and this completes the induction.
T<n<m n

From ¢{4.3) one can easily show that ¢j{f), j=2,...,0, 5atisries {&4.,2}

for I, sufficiently small and hence is well defined. Now we prove that

¥..f
1
L £ 1. It follows from {4.,3} that T satisfies properties 1, 2, 3 of

Section 2. Define

ZD = uﬂ(x) = x,
Z.] = u] {x,f{x}} = }H'Ef{x},
2o = Ui O5EGE)LEGD L)),

for j=1,...,n-1, where uj+](x;f(zuj,f(zTJ,...,f{zj}} = Qj(ﬂ} and Qj(y} is
the inverse interpelatory polynomial for f at f(zk}, k=0,...,j. Then by

(4,17, *n(f)(x} =z for all f €D and x € I¢n’f'

property 4 of Section 2, Therefore, ¥ € .

Hence ¢n(f} gsatisfies

It is not diffieuit to show that S{tn,f} # 0 for some £ € D.

Therefore, P(¥ ) = 9™l The fact that vgl¢ ) =m, v () =0, i>0

follows from the definition of wn. NED




-0a-

The iteration ¥,y is second order and is based on evaluations of f at
x and x + Bf(x). This iteration is given by Traub [64, Section 8.47,
The iteration ¢n uses n evaluations of f and is of order 2n-T. For n > 2,

no iterations with these properties were previously known.



-10~

5. A SECOND FAMILY OF MULTIPOINT ITERATIONS

We now construct a second family of multipoint iterations, bnn}, such

that p(wn) = 2n"1 and v(wn) = n., However, wn requires the evaluation of £

at n-1 points and the evaluation of f' at one point,

For every n, define

w (£): I SIg= Iy g 3=Theem,
]

as follows: w1(f)(x) x and for n > 1,

= f(x)
( ]) w2<f)(x) =X - f'(X)’
5. .
@17 () () = R, (0),

for j=2,...,n-1, where Rj(y) is the inverse Hermite interpolatory polynomial

of degree at most j such that

H

Rj(f(x)) X,

_1_
£ (X)’

Rj(f(wk(f)(x))) = wk(x), k=2,...,].

(5.2) R}(f(x))

One can prove that wj(f), j=2,...,n, are well defined for IuJ £ sufficiently
j’
small. It is easy to show that

W = X%,
£{w)

UJZ = w-l - f;(m1),

f(m])f(wz) ] f(w1)
' (wy) 7
1

£ (wy) ~£ ) 1
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A short pseudo-Algol program (Program 2) is given in Appendix I for computing
W, for nz 4.

The basiec properties of the family of iterations {mnj is stated in the -
following theorem, The proof iz omitted sinece it is similar to the proof

of Theorem 4.1.

Theorem 5.1,

Let w be defined by (5.1). Then for n = 2

1. w, €0, and ® is an {(n-1)-point iteration,

n-1
2, p(wn) = 2 .

3- Vo(mn) = n"'.l, v-l(wn) = 1, Vi(mn) = 0, i> 1- Hence

V(wn) = n,

It is atraightforward to show that

S(§ ,£) ‘ n-2

. 2
(5.3) gza;:gy = {1+ Bf'(a) ] .

If ¢n is used, B should be chosen so that 1 + Bf'{(g) is small.

The iteration w, uses two evaluatjions of f and one of f' and p(w3) = 4,
Another iteration with thess properties is defined by Ostrowski [66, Appendix
G] and a geometrical interpretation is given by Traub [64, Section 8,5].

King [73] gives a family of fourth order methods based on two evaluations

of £ and one of f£f'. Jarratt [69] comnstructs a fourth order iteration
based on one evaluation of £ and two of f£'. The iteration wn‘uses n-1

) n-1 .
evaluations of f and one of f' and p(mn) = 2 . For n>3, no iterations

with these properties were previously known,




-12-

6. THE OPTIMAL ORDER OF CNE-POINT ITERATIONS

By imposing a mild smoothness condition we can prove that one-point
iterations of order n require the evaluation of f and at least its first n-l
derivatives. No such requirement holds for multipoint iterations.
For example, the multipoint iteration ¢n defined in Section 4 has order

-1

2" but requires no derivative evaluation.

Let ﬁ be a2 one-point iteration. Then from (2.1), (2.2)

(dy)
¢(f)(x) = UT(X,f(X),...,f (x)),
0 0 X o ) )
where U (¥5:¥qsee+5Y ) is a multivariate function of d.+2 variables.
102713 d +1 ]

In this section we drop the superscript on yj.

The following theorem was first given by Traub {61}, {64, Section 5.4].

We regard the proof given here as an improvement of Traub's proof.

Theorem 6.7,

Let ﬁ be a one-point iteration of order p(ﬁ) and let u](yo,y1,...,yd +1)
0

be analytic with respect to ¥ at y1=0. Then vi(ﬁ) 21, i=0,...,p(ﬁ)-1,

and hence p{(f) = v(@).

Proof.

For £ € D, define

) v (£) (%) -B(£) (x)
(6.1) T(E)(x) = —&

£P (x)
where Yp is a member of the family of iterations defined in Section 3. To

simplify notation, we write f for f(x).

T BT
CARNEMIE-BELIGH SE0ESOITY
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Define ¥, by

where o4 depends explicitly on f'{x},...,f{l}{x) {Traub [64, Section

5.1]). By the analyticity condition on B,

m I
f= Taf.
i=g *
Therefore from (6.1},
p-l i S
(6.2) T= T {o-xE T - AT,
i=0 i=p *

Since P and Vp are of order p, {6.1} implies that

Siv £ - S5(p,£)
lim T(£)(x) = Pa
xvay (€' ) 1P

< =

for all £ € D, Hence it follows from (6.2} that
(6-3) di = li, i=0,!l‘,p_1.’ Vf E D.

Consider

We know that o depends explicitly on f'(x),...,f{p-T}{x) and that the

p=1
same must be true for lp_]. Assume vj(ﬁ) = 0, for some j, 0 < j S p-1.
Then u1(y0,y],...,ydu+}) does not depend on Yj+1' This implies that

P!

S (YasTqaeaes¥y . )
ay,? T 9 Fga¥y a+1

is independent of Yj+1 and that




. A

F-I—u.l (x,ﬂ,f"(}c},...,f (K))
1
(33

is independent of £ {(x). Hence

p-1 {d 3}
Ay U0, ), O )
p-1 {p-1}. ay_rp"]

is independent of f{J}{x}, which isa contradiction. Therefore vi(ﬂ) z1,

i=1,...,p-1.
Next we show vﬂfﬁ} = 1. Suppose this is false. Then li=U, i> 0 and

from (6.2)

which is a contradiction. QED

Coronllary 6.7,

Let be defined by (3.7}, Then v_ achieves the optimal order of any
Yn I

cne-point iteration ﬁ for which v(ﬁ) = n and which satisfies the analyticity

condition of the thecrem.,

Remark
The analyticikty condition is not restrictive, For example, it includes
all rational iterations and all iterations defined by simple zeros of poly-

nomials with analytic coefficients.
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7. TWO OPTIMAL ORDER THEOREMS FOR MULTIPOINT ITERATIONS

We prove an optimal order theorem for one important <lass of itera-
tions and prove a fairly tight upper bound for the maximal order of a

second c¢lass of iterations.
Oour first c¢lass consists of all iterations such that for 4=0,...,k-1,

‘3.1 appearing in (2.1) is given by a Hermite interpolatory iteration based

on the points z¢,....2 . 1£ 0 belengs to this family, we say it is a
Hermite interpolatory k-point iteration. The order of jb may be computed
as follows. From Traub [64, S8Section 4.21],
d.+1 d.+1
Z . - a= 20 z -al) ’ .. (2. -a
j+1 [( ) ( ) ]
where the d. are as in (2.1). Hence

JA(E) (x)-0of = =zZ,-cf£ = O[{(x-c*)"]

where
k-1
P(J*¥= = (4, 12 n (4 +2).
It is easily verified that
k-1
V(i) - z (@ +1).
j-0. -

We wish to choose k, dog.,.§1- . such that for v()6) fixed, p(j6) is

maximized. The chcice of k and the d. are given by

Theorem 7.1.
Let d. ®~ 0, k 7 1 be integers. Let

k-1
v(0) - 2 {a +1y - mn
#1-0 °
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be fixed. Then

k-1
p(BY= (d. +1) 1 (d.+2)
Q =1 j

is maximized exactly when

{(7.1) k=n, dj=0, j=0,...,n-1

ar

(7.2) ken-1, dg=1, 4,20, j=1,...,0-2,

Prgof,
Since dj+] £ n, k £ n, there are only finitely many cases and the

maximum exists. Let the maximum of p be achieved at &j’ §j=0,...,k-1, We

show first that d =0, }=1,...,k-1, Assume that ar=m, m =1, for some r,

i
r=1,...,k-1. Define ﬁj, i=0,...,k+e-1 as

dJ -dj: .1=U3"-!E—]P j#l‘,
dr =0,
d. =0, j=k,...,k+m-1,

Then we can verify that

ktm-1 k-1
by (d+1) = £ (d.41) = n
and
. k+m-1  _ ) k-1 _
(du+l) jE1 (dj+2) = (d0+1) jE}tdj+2}'

This contradiction proves that &j=n, i=1,...,k=-1. A similar argument may

be used to prove d, < 1, If d =0, k=n while if d

0 0 =1, k=n-1 which completes

1]
the proof. QED
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Corollary 7.7.

Let ﬁ be a Hermite interpolatory iteration with v(ﬁ) = n. Then

phy =27

Note that *n’ defined in Section &4, is an instance of (7.1) while W ,
defined in Section 5, is an instance of {7.2). (Both {¢n} and {wn} are
based on inverse interpolation, There are two other families of iterations

based on direct interpolation.) Thus we have

Corollary 7.2,

Let wn and W, be defined by (4.1) and (5.7}, respectively. Then ﬁn

and @, have optimal order for Hermite interpolatory interatiomn with n

evaluations.

The second theorsm of this section gives an upper bound on the order
achievable for any multipoint iteratiom uses values of f only (and no deriva-

tives).

Theorem 7.2,

Ler ﬁ be a multipoint iteraticn with vﬂiﬁ] = n, ui{ﬁ} =0, i > 0.

Then p(#) = 2%.-

Proof.
For £ € D, let xﬂ be a starting point such that if X = ¢(f}(xi)
then lim,xi = ”f: From {2.1), for each i, denote
j_—u::l .
Zin - *i0
Ziati+l T %+l P P E TR LAC TN )
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for j=0,...,n-1. Then

.
(7.3) 1lim —EHDD - _ o4 5y,

sy P
i (zin-u)
Suppose that p > 2". choose q such that p > q > 2", Then (7.3) implies

z,, -
lim (i+])n

i, a4
i (zin o)
Let m be sufficiently large so that for i =2z m

|z i+1 'O"I
i+l oy, |z, -ol < 1.

|z, ol ?

in
Then

¢
(7.4) | < lzmn-ryl , ¥j.

I z (m+j)n-a

However, there exists a £ € D, a sequence {zi} and 4 constant A, 0 < A < 1,

such that

2t
(7.5) |zt-a] > AT, v,

(see Winograd and Wolfe {771, Theoram 3]). From (7.4) and (7.5},

J (m+i)n mn . nj
L . 2 _ 2 2
lz_ -o| " > |z(m+j)n of > A = (A" )
Hence
mn

. . 2
qjlloglzmn-al < 2njllog A l,

or
mn

q\° < l1log A% )
2“ jlog| zmn-ql i
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Since the left side is unbounded as j - = while the right side is indepen~

dent of j, we have a contradiction. Hence p(f) = 2", QED

In Section 4, we constructed an iteration wn such that v0(¢n) = n,
vi(¢n) =0, 1i>0 and p(wn) = 2n-1. Hence the upper bound of Theorem 7.3

is within a factor of two of the order of that iteration. We conjecture

-1
in the next section that p = 2" is optimal,
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8. A CONJECTURE

Cogjecgﬁ}e 8.1.

Let'ﬁ be an iteration (with no memory) with v(f) = n. Then

(8.1) y < 2071

_ This extends a conjecture of Traub [72] which states (8.1) for n=2,3,
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9, NUMERICAL EXAMPLE

Lethf{x} = x3 + ln{1+x} where 1n denotes the logarithm to the natural

base, Hence o=0, Starcing at xﬂ=1lil-1 and 10‘2, we compute X by iterations

1
¢n and W s n=3,4,5. For comparison we also use as many steps of the Newton-
Raphson iteration as necessary to bring the errer to about 1077, caleula-
tioqs were done in double precision arithmebic on & DEC PDP-10 computer.
About 16 digits are available in double precision.

Restults are summarized in Examples 1-3, The parameter 9 that appears
in *n was chosen B = -.2 which makes the asymptotic error constant of wn
for this problem near unicy., The asymptotiec error constants of Wys n=3,4,5
and the Mewton-Raphson iteration are also near unity for this problem., Re-
call that P(¢n} = p(wn} = 2n-1 and rhar for Newton-Raphson itermtiom, p=2.
We expect x, = x? to hold and this is numerically verified in the examples.

i Q

From (5.3), we expect

) | ( S)Zn-z
mn(xo) *

(9.1)

-2
and (9.1) is numerically verified in the examples for Xy = ",

The examples iliustrace the advantage of *n and w, over the repeated
use of Newton-Raphson iteracion. Starting with Zq = 10'1, ws(xo) calculates
the zero to"full acecuracy™ at a cost of four evaluaztions of £ and one of £',
Four Newton-Raphson iterations are required with & cost of four evalwations
of £ and four of é*. The difference is significant when the evaluation of
f' 13 expensive. This observation takes only the cost of f' into account,

A more complete anzlysis based on efficiency measure considerations is given

by Eung and Traub [73].




EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Let x,
i

-22-

X 107" 1072
Xy = Yy (%) 21x107 .27x10'8
X, = b, () -.80x107° ~.47x1071®
16
= - X
%, ws(xo) .27X19
X4 10".I 10-2
X, = wy(xy) .30x1074 42x1078
X = wy, (x4) -.15x1o'8 -.12x10']5
- -16
x, = ws(xo) -.24%10
= ﬁ(xi), where ﬁ denotes Newton-Raphson iteration.
%, 107! 1072
x, -.26x107% _.48x1074
%, -.33x107° -.11x1078
xq -.s4x10" "] 4ex10” Y
x -.31x10" 18
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Program 1 and Program 2 which are adapted from a result of Krogh [70]

compute ¢n(f)(x) (with the parameter 8} and mn(f)(x) for n = 4.

Program 1.
VO,O = X
h =B x £(x)
Vo,1 = Vo,0 TP
vy q = B(ECY, ) - E(vg o))
T = vy X f(vo’o)
Yo,2 T Vo,0 7 T
vyg 1= T/ (Eg ) - E(vg 5))
o, == f("o,o) X f("o,1)
Va2 1= vy g 7 vy )/ (Blvg ) - (v o)
psi := v0,2 + U2 X V2,2

for k=3 step 1 until n-1 do

begin

vO,k = psi

for i=0 step 1 until k-1 do

begin
Vet B (g gV B ) - B )
end
M = £ 1) X T
peiim psi + Hk X vk,k

end




..

omega

.

2,2

n. 3

for k=3

begin

end

AI-2

X

=X

=0,0 A T |

0,00 w0, 2
Ter,1y

=1,2 7 o, 2570
S0,2 v 0,0 2,2

£>tep 1 until n-1 do

v, , - omega

for i=0 step 1 until k-1 do

begin
i1,k i imiLk>/ 00,1
end
X C-To,k-i 7 tked
omega := omega 17 \ *

g0, ke
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Theorem

Let ﬁ € {i. If the funcction u,. appearing in the definiticon of the set

0

1 (property 4) is continucus, then uu(x)'= x, for all =x.

Proof
, . . 0
Consider the functions Wpseseslly in (2.1}, Let f €D, x € ;ﬁ,f' Let

yi+i(x), z (%) be defined as follows:

zU(X) = uD(x),

]

i (1)
@.1 Vi 0 = £ ),

- Y 0 c ] ]
2 00 T Sy 05 Y:{x)"'°’qu+1(x)""=y1(x}""'ydj+1(X})=

for j=0,...,k-~1, i=0,...,dj. ‘Then

' 0 0 -1 k-1
(4.2} @(E)(x) = uk(x; YI(X),.--,ydu+1(xi;---;y1 (x).---,ydk_]+](x)).

Since ﬁ(f}(af) = o by Property 2 (Section 2},

0 k-1
{ﬁta} a'f = uk(&f;}r1{0f)}"'iydk-]+] (af))'
Suppose that uu{x} # x, Then there exists ) such that uﬂ(mﬂ} # W -
By the continuity of Uy uu(w} # @ in an open interval IU containing Wy -
0
We shall show that ﬁ(f}(m) = ¢ for all w in IG n Iﬁ £ For any fixed
. R _

0 . . .
f€Dand w€ I, n Iﬁ,f define yi+1(w), zj(w) by setting x = w in (A.1}.

Then by {(A.2)
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(a4 SE) W = v Cw Y?{m},...,y:;iT+}(w}).

" ‘Since uﬂ(m} # w, there exists a polynomial q such that

qiwy = 0, q'(w} =1,

(i) - 3 i R
q (zj{m}} = yi+]{mj, =0y wa,k-T, i U,...,dj.

Certainly, q &€ D and g = w. By {4.3)

0 k-1
(A-S:I W= uk{ws F] (w‘):"‘!ydk T+-| (u’)}-

Equations (A.4) and (A.5) imply that P{f}{w) = w for all £ € D and for all
0
. . i = . { =
w E IU M Iﬁsf There exists a g & D such that Qg Wy Since ﬁ £ 0,
. . 0 . . _
there exists an open interval Iﬁ,g containing w, such that if X P }{xi},
then lim xi = mu whenever Xg = IE g » This is a contradiction since for all
]

1] .
X, £ IU M Iﬁ,g {xﬂ % mn}, ﬁ(g }(xﬂ} = X, which does not converge to W e QED
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